1
|
Lehr AW, Nguyen TA, Han W, Hong E, Badger JD, Lu W, Roche KW. Phosphorylation of NLGN4X Regulates Spinogenesis and Synaptic Function. eNeuro 2025; 12:ENEURO.0278-23.2025. [PMID: 40032531 PMCID: PMC11913403 DOI: 10.1523/eneuro.0278-23.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Neuroligins (NLGNs) are a family of postsynaptic adhesion molecules that bind to their presynaptic partners, neurexins, facilitating the formation and maintenance of synapses. In humans, there are five genes encoding NLGNs (NLGN1-3, NLGN4X, and NLGN4Y), with NLGN1-3 having highly conserved counterparts in rodents, allowing these genes to be studied with high confidence of translational validity in mouse models. Human NLGN4X and 4Y were often assumed to serve similar functions because they share a 97% sequence homology, whereas mouse NLGN4-like is quite divergent. Many NLGN-mediated synaptic effects are modulated through post-translation modifications, which exert temporal and spatial control. In this report, we characterize a conserved phosphorylation site, serine 712, on NLGN4X and 4Y. Despite serine 712 being located in a highly conserved region between NLGN4X and 4Y, we observed kinase specificity. PKA exclusively phosphorylates NLGN4X S712, whereas Cdk5 phosphorylates S712 on both NLGN4X and 4Y. NLGN4X S712 phosphorylation regulated spine density, with phosphorylation reducing mature mushroom spines and unphosphorylated S712 increasing spines and enhancing miniature excitatory postsynaptic current frequency.
Collapse
Affiliation(s)
- Alexander W Lehr
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Department of Neuroscience, Brown University, Providence, Rhode Island 02906
| | - Thien A Nguyen
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Department of Pharmacology and Physiology, Georgetown University, Washington DC 20057
| | - Wenyan Han
- Synapse and Neural Circuit Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Eunhye Hong
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - John D Badger
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei Lu
- Synapse and Neural Circuit Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
2
|
Dang R, Dalmia M, Ma Z, Jin M, Aluru K, Mirabella VR, Papetti AV, Cai L, Jiang P. Neuroligin-3 R451C induces gain-of-function gene expression in astroglia in an astroglia-enriched brain organoid model. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:1. [PMID: 39775628 PMCID: PMC11711438 DOI: 10.1186/s13619-024-00219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/07/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Astroglia are integral to brain development and the emergence of neurodevelopmental disorders. However, studying the pathophysiology of human astroglia using brain organoid models has been hindered by inefficient astrogliogenesis. In this study, we introduce a robust method for generating astroglia-enriched organoids through BMP4 treatment during the neural differentiation phase of organoid development. Our RNA sequencing analysis reveals that astroglia developed within these organoids exhibit advanced developmental characteristics and enhanced synaptic functions compared to those grown under traditional two-dimensional conditions, particularly highlighted by increased neurexin (NRXN)-neuroligin (NLGN) signaling. Cell adhesion molecules, such as NRXN and NLGN, are essential in regulating interactions between astroglia and neurons. We further discovered that brain organoids derived from human embryonic stem cells (hESCs) harboring the autism-associated NLGN3 R451C mutation exhibit increased astrogliogenesis. Notably, the NLGN3 R451C astroglia demonstrate enhanced branching, indicating a more intricate morphology. Interestingly, our RNA sequencing data suggest that these mutant astroglia significantly upregulate pathways that support neural functions when compared to isogenic wild-type astroglia. Our findings establish a novel astroglia-enriched organoid model, offering a valuable platform for probing the roles of human astroglia in brain development and related disorders.
Collapse
Affiliation(s)
- Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Mridul Dalmia
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Kushal Aluru
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Vincent R Mirabella
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ava V Papetti
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Lehr AW, McDaniel KF, Roche KW. Analyses of Human Genetic Data to Identify Clinically Relevant Domains of Neuroligins. Genes (Basel) 2024; 15:1601. [PMID: 39766868 PMCID: PMC11675371 DOI: 10.3390/genes15121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Neuroligins (NLGNs) are postsynaptic adhesion molecules critical for neuronal development that are highly associated with autism spectrum disorder (ASD). Here, we provide an overview of the literature on NLGN rare variants. In addition, we introduce a new approach to analyze human variation within NLGN genes to identify sensitive regions that have an increased frequency of ASD-associated variants to better understand NLGN function. Methods: To identify critical protein subdomains within the NLGN gene family, we developed an algorithm that assesses tolerance to missense mutations in human genetic variation by comparing clinical variants from ClinVar to reference variants from gnomAD. This approach provides tolerance values to subdomains within the protein. Results: Our algorithm identified several critical regions that were conserved across multiple NLGN isoforms. Importantly, this approach also identified a previously reported cluster of pathogenic variants in NLGN4X (also conserved in NLGN1 and NLGN3) as well as a region around the highly characterized NLGN3 R451C ASD-associated mutation. Additionally, we highlighted other, as of yet, uncharacterized regions enriched with mutations. Conclusions: The systematic analysis of NLGN ASD-associated variants compared to variants identified in the unaffected population (gnomAD) reveals conserved domains in NLGN isoforms that are tolerant to variation or are enriched in clinically relevant variants. Examination of databases also allows for predictions of the presumed tolerance to loss of an allele. The use of the algorithm we developed effectively allowed the evaluation of subdomains of NLGNs and can be used to examine other ASD-associated genes.
Collapse
Affiliation(s)
- Alexander W. Lehr
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Kathryn F. McDaniel
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
| |
Collapse
|
4
|
Wang N, Zhu B, Allnutt MA, Grijalva RM, Zhao H, Chandra SS. Decoding transcriptomic signatures of cysteine string protein alpha-mediated synapse maintenance. Proc Natl Acad Sci U S A 2024; 121:e2320064121. [PMID: 38833477 PMCID: PMC11181078 DOI: 10.1073/pnas.2320064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Synapse maintenance is essential for generating functional circuitry, and decrement in this process is a hallmark of neurodegenerative disease. Yet, little is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single-nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in the CSPα KO brain. Significantly, all neuronal classes in CSPα KO brains show strong signatures of repression in synaptic pathways, while up-regulating autophagy-related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. Glial responses varied by cell type, with microglia exhibiting activation. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, with the classical Neurexin1-Neuroligin 1 pair being the most prominent, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice to preserve synapse maintenance. Together, this study provides a rich dataset of transcriptional changes in the CSPα KO cortex and reveals insights into synapse maintenance and neurodegeneration.
Collapse
Affiliation(s)
- Na Wang
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT06510
- Department of Biostatistics, Yale School of Public Health, New Haven, CT06510
| | - Mary Alice Allnutt
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT06510
| | - Rosalie M. Grijalva
- Department of Neuroscience, Yale University, New Haven, CT06510
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT06510
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT06510
- Department of Biostatistics, Yale School of Public Health, New Haven, CT06510
| | - Sreeganga S. Chandra
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
| |
Collapse
|
5
|
El Yacoubi FA, Oukabli M, Ibrahimi A, Kisra H, Bensaid M. Unraveling the Role of Neuroligin3 in Autism Spectrum Disorders: Pathophysiological Insights and Targeted Therapies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:801-811. [PMID: 37497709 DOI: 10.2174/1871527323666230727102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Autism Spectrum Disorder is a neurodevelopmental disorder characterized by impaired social and communication skills, repetitive behaviors, and/or restricted interests with a prevalence of as high as 1% of children. Autism spectrum has strongly associated with genetic factors and exhibits wide clinical and heterogeneous genetic architecture. Most genes associated with Autism are involved in neuronal and synaptic development. The neuroligin3, the sex-linked gene on the X chromosome, was the first gene to be associated with a monogenic form of Autism. Neuroligin3 is a postsynaptic cell adhesion protein involved in synapse transmission, brain formation, and neuronal development. In this review, we provide recent findings on different mutations in the Neuroligin3 gene linked to Autism spectrum disorder and their molecular pathway effect. We also give the behavioral, and synaptic alterations reported in the Neuroligin3 animal model of Autism and the potential therapeutic strategies targeting the biological processes and the main symptoms of autism spectrum disorder. In addition, we discuss the use of novel technologies like induced pluripotent stem cells from Autistic patients that have the potential to differentiate in human neurons and therefore have a variety of applications in therapy and biomedical studies to search specific biomarkers, and develop systems for screening chemical molecules in human cells to discover target therapies.
Collapse
Affiliation(s)
- Fatima Azzahrae El Yacoubi
- Laboratory of Immunology, Infectious Disease and Tropical Biotechnology, Faculty of Pharmacy, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Medical and Pharmacy School, University Mohammed V, Rabat, Morocco
| | - Mohamed Oukabli
- Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Rabat Medical and Pharmacy School, University Mohammed V, Rabat, Morocco
- Centre Mohammed VI for Research & Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Hassan Kisra
- Medical and Pharmacy School, University Mohammed V, Rabat, Morocco
- Center of Child Psychiatry, Arrazi Hospital, Salé, Morocco
| | - Mounia Bensaid
- Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco
- Royal School of Military Health Service. Rabat, Morocco
| |
Collapse
|
6
|
Diamanti T, Trobiani L, Mautone L, Serafini F, Gioia R, Ferrucci L, Lauro C, Bianchi S, Perfetto C, Guglielmo S, Sollazzo R, Giorda E, Setini A, Ragozzino D, Miranda E, Comoletti D, Di Angelantonio S, Cacci E, De Jaco A. Glucocorticoids rescue cell surface trafficking of R451C Neuroligin3 and enhance synapse formation. Traffic 2024; 25:e12930. [PMID: 38272450 DOI: 10.1111/tra.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Neuroligins are synaptic cell adhesion proteins with a role in synaptic function, implicated in neurodevelopmental disorders. The autism spectrum disorder-associated substitution Arg451Cys (R451C) in NLGN3 promotes a partial misfolding of the extracellular domain of the protein leading to retention in the endoplasmic reticulum (ER) and the induction of the unfolded protein response (UPR). The reduced trafficking of R451C NLGN3 to the cell surface leads to altered synaptic function and social behavior. A screening in HEK-293 cells overexpressing NLGN3 of 2662 compounds (FDA-approved small molecule drug library), led to the identification of several glucocorticoids such as alclometasone dipropionate, desonide, prednisolone sodium phosphate, and dexamethasone (DEX), with the ability to favor the exit of full-length R451C NLGN3 from the ER. DEX improved the stability of R451C NLGN3 and trafficking to the cell surface, reduced the activation of the UPR, and increased the formation of artificial synapses between HEK-293 and hippocampal primary neurons. The effect of DEX was validated on a novel model system represented by neural stem progenitor cells and differentiated neurons derived from the R451C NLGN3 knock-in mouse, expressing the endogenous protein. This work shows a potential rescue strategy for an autism-linked mutation affecting cell surface trafficking of a synaptic protein.
Collapse
Affiliation(s)
- Tamara Diamanti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Laura Trobiani
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lorenza Mautone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Federica Serafini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Laura Ferrucci
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Sara Bianchi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Camilla Perfetto
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Stefano Guglielmo
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Raimondo Sollazzo
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Ezio Giorda
- Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Andrea Setini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Silvia Di Angelantonio
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
- D-tails s.r.l. Via di Torre Rossa, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Wang N, Zhu B, Allnutt MA, Grijalva RM, Zhao H, Chandra SS. Decoding transcriptomic signatures of Cysteine String Protein alpha-mediated synapse maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560611. [PMID: 37873460 PMCID: PMC10592922 DOI: 10.1101/2023.10.02.560611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Synapse maintenance is essential for generating functional circuitry and decrement in this process is a hallmark of neurodegenerative disease. While we are beginning to understand the basis of synapse formation, much less is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in CSPα KO brain. Significantly all neurons in CSPα KO brains show strong signatures of repression in synaptic pathways, while upregulating autophagy related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, including the classical Neurexin1-Neuroligin 1 pair, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice in an attempt to achieve synapse maintenance. Together, this study reveals unique cellular and molecular transcriptional changes in CSPα KO cortex and provides new insights into synapse maintenance and neurodegeneration.
Collapse
Affiliation(s)
- Na Wang
- Departments of Neurology and Neuroscience, Yale University, New Haven, CT, USA
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Mary Alice Allnutt
- Departments of Neurology and Neuroscience, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | | | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | | |
Collapse
|
8
|
Sindi IA. Implications of Cell Adhesion Molecules in Autism Spectrum Disorder Pathogenesis. J Microsc Ultrastruct 2023; 11:199-205. [PMID: 38213654 PMCID: PMC10779445 DOI: 10.4103/jmau.jmau_15_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 11/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental illness that leads to repetitive behavior and debilitates social communication. Genetic changes such as susceptible genes and environmental factors promote ASD pathogenesis. Mutations in neuroligins (NLGNs) and neurexin (NRXNs) complex which encode cell adhesion molecules have a significant part in synapses formation, transcription, and excitatory-inhibitory balance. The ASD pathogenesis could partly, at the least, be related to synaptic dysfunction. Here, the NRXNs and NLGNs genes and signaling pathways involved in the synaptic malfunction that causes ASD have been reviewed. Besides, a new insight of NLGNs and NRXNs genes in ASD will be conferred.
Collapse
Affiliation(s)
- Ikhlas A. Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Yun EJ, Kim D, Kim S, Hsieh JT, Baek ST. Targeting Wnt/β-catenin-mediated upregulation of oncogenic NLGN3 suppresses cancer stem cells in glioblastoma. Cell Death Dis 2023; 14:423. [PMID: 37443071 PMCID: PMC10344874 DOI: 10.1038/s41419-023-05967-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Glioblastoma (GBM) is the most malignant tumor in brain and is highly resistant to therapy. Clinical evidence suggests increased number of cancer stem cells (CSCs) may contribute to the failure of conventional therapies, but the mechanisms associated with acquisition of CSC properties in GBM are not fully understood. We found that DAB2IP suppresses CSC properties by targeting the synaptic proteins neuroligin 3 (NLGN3) in GBM. Furthermore, we showed that GBM-derived NLGN3 has an oncogenic function by inducing CSC properties within GBM. Moreover, elevated NLGN3 transcription mediated by Wnt/β-catenin signaling pathway resulted in increased secretion of NLGN3 into the surrounding tumor microenvironment. Both condition media containing NLGN3 and recombinant NLGN3 transformed neighboring cells to CSCs, suggesting NLGN3 as a critical component inducing CSC properties. Furthermore, targeting NLGN3-bearing CSCs using upstream Wnt/β-catenin inhibitors synergistically enhances the efficacy of conventional treatment. Hence, we unveiled the series of regulatory mechanisms for acquisition of CSC properties in GBM progression by Wnt/β-catenin-mediated NLGN3. These results may provide a new targeting strategy to improve the therapeutic efficacy of GBM treatments.
Collapse
Affiliation(s)
- Eun-Jin Yun
- POSTECH Biotech Center, POSTECH, Pohang, Republic of Korea
| | - Donghwi Kim
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jer-Tsong Hsieh
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seung Tae Baek
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea.
| |
Collapse
|
10
|
Oleari R, Lettieri A, Manzini S, Paganoni A, André V, Grazioli P, Busnelli M, Duminuco P, Vitobello A, Philippe C, Bizaoui V, Storr HL, Amoruso F, Memi F, Vezzoli V, Massa V, Scheiffele P, Howard SR, Cariboni A. Autism-linked NLGN3 is a key regulator of gonadotropin-releasing hormone deficiency. Dis Model Mech 2023; 16:dmm049996. [PMID: 36810932 PMCID: PMC10110398 DOI: 10.1242/dmm.049996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) deficiency (GD) is a disorder characterized by absent or delayed puberty, with largely unknown genetic causes. The purpose of this study was to obtain and exploit gene expression profiles of GnRH neurons during development to unveil novel biological mechanisms and genetic determinants underlying GD. Here, we combined bioinformatic analyses of immortalized and primary embryonic GnRH neuron transcriptomes with exome sequencing from GD patients to identify candidate genes implicated in the pathogenesis of GD. Among differentially expressed and filtered transcripts, we found loss-of-function (LoF) variants of the autism-linked neuroligin 3 (NLGN3) gene in two unrelated patients co-presenting with GD and neurodevelopmental traits. We demonstrated that NLGN3 is upregulated in maturing GnRH neurons and that NLGN3 wild-type, but not mutant, protein promotes neuritogenesis when overexpressed in developing GnRH cells. Our data represent proof of principle that this complementary approach can identify new candidate GD genes and demonstrate that LoF NLGN3 variants can contribute to GD. This novel genotype-phenotype correlation implies common genetic mechanisms underlying neurodevelopmental disorders, such as GD and autistic spectrum disorder.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan 20142, Italy
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Valentina André
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Paolo Grazioli
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Paolo Duminuco
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Cusano Milanino 20095, Italy
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire (FHU) TRANSLAD, CHU Dijon Bourgogne, Dijon 21079, France
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon 21070, France
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire (FHU) TRANSLAD, CHU Dijon Bourgogne, Dijon 21079, France
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon 21070, France
| | - Varoona Bizaoui
- Genetics and Neurodevelopment, Centre Hospitalier de l'Estran, Pontorson 50170, France
| | - Helen L. Storr
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Royal London Children's Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Fani Memi
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Valeria Vezzoli
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Cusano Milanino 20095, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan 20142, Italy
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | | | - Sasha R. Howard
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Royal London Children's Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| |
Collapse
|
11
|
Boxer EE, Aoto J. Neurexins and their ligands at inhibitory synapses. Front Synaptic Neurosci 2022; 14:1087238. [PMID: 36618530 PMCID: PMC9812575 DOI: 10.3389/fnsyn.2022.1087238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of neurexins (Nrxns) as essential and evolutionarily conserved synaptic adhesion molecules, focus has largely centered on their functional contributions to glutamatergic synapses. Recently, significant advances to our understanding of neurexin function at GABAergic synapses have revealed that neurexins can play pleiotropic roles in regulating inhibitory synapse maintenance and function in a brain-region and synapse-specific manner. GABAergic neurons are incredibly diverse, exhibiting distinct synaptic properties, sites of innervation, neuromodulation, and plasticity. Different classes of GABAergic neurons often express distinct repertoires of Nrxn isoforms that exhibit differential alternative exon usage. Further, Nrxn ligands can be differentially expressed and can display synapse-specific localization patterns, which may contribute to the formation of a complex trans-synaptic molecular code that establishes the properties of inhibitory synapse function and properties of local circuitry. In this review, we will discuss how Nrxns and their ligands sculpt synaptic inhibition in a brain-region, cell-type and synapse-specific manner.
Collapse
Affiliation(s)
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| |
Collapse
|
12
|
Anstey NJ, Kapgal V, Tiwari S, Watson TC, Toft AKH, Dando OR, Inkpen FH, Baxter PS, Kozić Z, Jackson AD, He X, Nawaz MS, Kayenaat A, Bhattacharya A, Wyllie DJA, Chattarji S, Wood ER, Hardt O, Kind PC. Imbalance of flight-freeze responses and their cellular correlates in the Nlgn3 -/y rat model of autism. Mol Autism 2022; 13:34. [PMID: 35850732 PMCID: PMC9290228 DOI: 10.1186/s13229-022-00511-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the postsynaptic transmembrane protein neuroligin-3 are highly correlative with autism spectrum disorders (ASDs) and intellectual disabilities (IDs). Fear learning is well studied in models of these disorders, however differences in fear response behaviours are often overlooked. We aim to examine fear behaviour and its cellular underpinnings in a rat model of ASD/ID lacking Nlgn3. METHODS This study uses a range of behavioural tests to understand differences in fear response behaviour in Nlgn3-/y rats. Following this, we examined the physiological underpinnings of this in neurons of the periaqueductal grey (PAG), a midbrain area involved in flight-or-freeze responses. We used whole-cell patch-clamp recordings from ex vivo PAG slices, in addition to in vivo local-field potential recordings and electrical stimulation of the PAG in wildtype and Nlgn3-/y rats. We analysed behavioural data with two- and three-way ANOVAS and electrophysiological data with generalised linear mixed modelling (GLMM). RESULTS We observed that, unlike the wildtype, Nlgn3-/y rats are more likely to response with flight rather than freezing in threatening situations. Electrophysiological findings were in agreement with these behavioural outcomes. We found in ex vivo slices from Nlgn3-/y rats that neurons in dorsal PAG (dPAG) showed intrinsic hyperexcitability compared to wildtype. Similarly, stimulating dPAG in vivo revealed that lower magnitudes sufficed to evoke flight behaviour in Nlgn3-/y than wildtype rats, indicating the functional impact of the increased cellular excitability. LIMITATIONS Our findings do not examine what specific cell type in the PAG is likely responsible for these phenotypes. Furthermore, we have focussed on phenotypes in young adult animals, whilst the human condition associated with NLGN3 mutations appears during the first few years of life. CONCLUSIONS We describe altered fear responses in Nlgn3-/y rats and provide evidence that this is the result of a circuit bias that predisposes flight over freeze responses. Additionally, we demonstrate the first link between PAG dysfunction and ASD/ID. This study provides new insight into potential pathophysiologies leading to anxiety disorders and changes to fear responses in individuals with ASD.
Collapse
Affiliation(s)
- Natasha J Anstey
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India
| | - Vijayakumar Kapgal
- Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India.,The University of Transdisciplinary Health Sciences and Technology, Bangalore, Karnataka, 560065, India
| | - Shashank Tiwari
- Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India
| | - Thomas C Watson
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK
| | - Anna K H Toft
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India
| | - Owen R Dando
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India.,Dementia Research Institute, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Felicity H Inkpen
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK
| | - Paul S Baxter
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK.,Dementia Research Institute, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Zrinko Kozić
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK
| | - Adam D Jackson
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India
| | - Xin He
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK
| | - Mohammad Sarfaraz Nawaz
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India
| | - Aiman Kayenaat
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India.,The University of Transdisciplinary Health Sciences and Technology, Bangalore, Karnataka, 560065, India
| | - Aditi Bhattacharya
- Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India.,Dementia Research Institute, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Sumantra Chattarji
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India
| | - Emma R Wood
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India
| | - Oliver Hardt
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India.,Department of Psychology, McGill University, Montréal, QC, H3A 1B1, Canada
| | - Peter C Kind
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, 5 George Square, Edinburgh, EH8 9XD, UK. .,Centre for Brain Development and Repair, InStem, National Centre for Biological Sciences, Bangalore, Karnataka, 560065, India.
| |
Collapse
|
13
|
Halff EF, Hannan S, Kwanthongdee J, Lesept F, Smart TG, Kittler JT. Phosphorylation of neuroligin-2 by PKA regulates its cell surface abundance and synaptic stabilization. Sci Signal 2022; 15:eabg2505. [PMID: 35727864 DOI: 10.1126/scisignal.abg2505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The trans-synaptic adhesion molecule neuroligin-2 (NL2) is essential for the development and function of inhibitory synapses. NL2 recruits the postsynaptic scaffold protein gephyrin, which, in turn, stabilizes γ-aminobutyric acid type A receptors (GABAARs) in the postsynaptic domain. Thus, the amount of NL2 at the synapse can control synaptic GABAAR concentration to tune inhibitory neurotransmission efficacy. Here, using biochemistry, imaging, single-particle tracking, and electrophysiology, we uncovered a key role for cAMP-dependent protein kinase (PKA) in the synaptic stabilization of NL2. We found that PKA-mediated phosphorylation of NL2 at Ser714 caused its dispersal from the synapse and reduced NL2 surface amounts, leading to a loss of synaptic GABAARs. Conversely, enhancing the stability of NL2 at synapses by abolishing PKA-mediated phosphorylation led to increased inhibitory signaling. Thus, PKA plays a key role in regulating NL2 function and GABA-mediated synaptic inhibition.
Collapse
Affiliation(s)
- Els F Halff
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Saad Hannan
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Jaturon Kwanthongdee
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK.,Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Flavie Lesept
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
14
|
Napolitano A, Schiavi S, La Rosa P, Rossi-Espagnet MC, Petrillo S, Bottino F, Tagliente E, Longo D, Lupi E, Casula L, Valeri G, Piemonte F, Trezza V, Vicari S. Sex Differences in Autism Spectrum Disorder: Diagnostic, Neurobiological, and Behavioral Features. Front Psychiatry 2022; 13:889636. [PMID: 35633791 PMCID: PMC9136002 DOI: 10.3389/fpsyt.2022.889636] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a worldwide prevalence of about 1%, characterized by impairments in social interaction, communication, repetitive patterns of behaviors, and can be associated with hyper- or hypo-reactivity of sensory stimulation and cognitive disability. ASD comorbid features include internalizing and externalizing symptoms such as anxiety, depression, hyperactivity, and attention problems. The precise etiology of ASD is still unknown and it is undoubted that the disorder is linked to some extent to both genetic and environmental factors. It is also well-documented and known that one of the most striking and consistent finding in ASD is the higher prevalence in males compared to females, with around 70% of ASD cases described being males. The present review looked into the most significant studies that attempted to investigate differences in ASD males and females thus trying to shade some light on the peculiar characteristics of this prevalence in terms of diagnosis, imaging, major autistic-like behavior and sex-dependent uniqueness. The study also discussed sex differences found in animal models of ASD, to provide a possible explanation of the neurological mechanisms underpinning the different presentation of autistic symptoms in males and females.
Collapse
Affiliation(s)
- Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- NESMOS, Neuroradiology Department, S. Andrea Hospital Sapienza University, Rome, Italy
| | - Sara Petrillo
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Bottino
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisabetta Lupi
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Casula
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanni Valeri
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Stefano Vicari
- Child Neuropsychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Life Sciences and Public Health Department, Catholic University, Rome, Italy
| |
Collapse
|
15
|
Gatford NJF, Deans PJM, Duarte RRR, Chennell G, Sellers KJ, Raval P, Srivastava DP. Neuroligin-3 and neuroligin-4X form nanoscopic clusters and regulate growth cone organization and size. Hum Mol Genet 2022; 31:674-691. [PMID: 34542148 PMCID: PMC8895740 DOI: 10.1093/hmg/ddab277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022] Open
Abstract
The cell-adhesion proteins neuroligin-3 and neuroligin-4X (NLGN3/4X) have well described roles in synapse formation. NLGN3/4X are also expressed highly during neurodevelopment. However, the role these proteins play during this period is unknown. Here we show that NLGN3/4X localized to the leading edge of growth cones where it promoted neuritogenesis in immature human neurons. Super-resolution microscopy revealed that NLGN3/4X clustering induced growth cone enlargement and influenced actin filament organization. Critically, these morphological effects were not induced by autism spectrum disorder (ASD)-associated NLGN3/4X variants. Finally, actin regulators p21-activated kinase 1 and cofilin were found to be activated by NLGN3/4X and involved in mediating the effects of these adhesion proteins on actin filaments, growth cones and neuritogenesis. These data reveal a novel role for NLGN3 and NLGN4X in the development of neuronal architecture, which may be altered in the presence of ASD-associated variants.
Collapse
Affiliation(s)
- Nicholas J F Gatford
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - P J Michael Deans
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rodrigo R R Duarte
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - George Chennell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
16
|
Durand N, Aguilar P, Demondion E, Bourgeois T, Bozzolan F, Debernard S. Neuroligin 1 expression is linked to plasticity of behavioral and neuronal responses to sex pheromone in the male moth Agrotis ipsilon. J Exp Biol 2021; 224:273481. [PMID: 34647597 DOI: 10.1242/jeb.243184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and following a prior exposure to sex pheromone, whereas it is temporally inhibited after the onset of mating. This behavioral flexibility is paralleled with changes in neuronal sensitivity to pheromone signal within the primary olfactory centers, the antennal lobes. In the present study, we tested the hypothesis that neuroligins, post-synaptic transmembrane proteins known to act as mediators of neuronal remodeling, are involved in the olfactory modulation in A. ipsilon males. We cloned a full-length cDNA encoding neuroligin 1, which is expressed predominantly in brain and especially in antennal lobes. The level of neuroligin 1 expression in antennal lobes gradually raised from day-2 until day-4 of adult life, as well as at 24 h, 48 h and 72 h following pre-exposure to sex pheromone, and the temporal dynamic of these changes correlated with increased sex pheromone responsiveness. By contrast, there was no significant variation in antennal lobe neuroligin 1 expression during the post-mating refractory period. Taken together, these results highlight that age- and odor experience-related increase in sex pheromone responsiveness is linked to the overexpression of neuroligin 1 in antennal lobes, thus suggesting a potential role played by this post-synaptic cell-adhesion molecule in mediating the plasticity of the central olfactory system in A. ipsilon.
Collapse
Affiliation(s)
- Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
17
|
Uchigashima M, Cheung A, Futai K. Neuroligin-3: A Circuit-Specific Synapse Organizer That Shapes Normal Function and Autism Spectrum Disorder-Associated Dysfunction. Front Mol Neurosci 2021; 14:749164. [PMID: 34690695 PMCID: PMC8526735 DOI: 10.3389/fnmol.2021.749164] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
Chemical synapses provide a vital foundation for neuron-neuron communication and overall brain function. By tethering closely apposed molecular machinery for presynaptic neurotransmitter release and postsynaptic signal transduction, circuit- and context- specific synaptic properties can drive neuronal computations for animal behavior. Trans-synaptic signaling via synaptic cell adhesion molecules (CAMs) serves as a promising mechanism to generate the molecular diversity of chemical synapses. Neuroligins (Nlgns) were discovered as postsynaptic CAMs that can bind to presynaptic CAMs like Neurexins (Nrxns) at the synaptic cleft. Among the four (Nlgn1-4) or five (Nlgn1-3, Nlgn4X, and Nlgn4Y) isoforms in rodents or humans, respectively, Nlgn3 has a heterogeneous expression and function at particular subsets of chemical synapses and strong association with non-syndromic autism spectrum disorder (ASD). Several lines of evidence have suggested that the unique expression and function of Nlgn3 protein underlie circuit-specific dysfunction characteristic of non-syndromic ASD caused by the disruption of Nlgn3 gene. Furthermore, recent studies have uncovered the molecular mechanism underlying input cell-dependent expression of Nlgn3 protein at hippocampal inhibitory synapses, in which trans-synaptic signaling of specific alternatively spliced isoforms of Nlgn3 and Nrxn plays a critical role. In this review article, we overview the molecular, anatomical, and physiological knowledge about Nlgn3, focusing on the circuit-specific function of mammalian Nlgn3 and its underlying molecular mechanism. This will provide not only new insight into specific Nlgn3-mediated trans-synaptic interactions as molecular codes for synapse specification but also a better understanding of the pathophysiological basis for non-syndromic ASD associated with functional impairment in Nlgn3 gene.
Collapse
Affiliation(s)
- Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Amy Cheung
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| | - Kensuke Futai
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
18
|
Connecting the Neurobiology of Developmental Brain Injury: Neuronal Arborisation as a Regulator of Dysfunction and Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22158220. [PMID: 34360985 PMCID: PMC8348801 DOI: 10.3390/ijms22158220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders can derive from a complex combination of genetic variation and environmental pressures on key developmental processes. Despite this complex aetiology, and the equally complex array of syndromes and conditions diagnosed under the heading of neurodevelopmental disorder, there are parallels in the neuropathology of these conditions that suggest overlapping mechanisms of cellular injury and dysfunction. Neuronal arborisation is a process of dendrite and axon extension that is essential for the connectivity between neurons that underlies normal brain function. Disrupted arborisation and synapse formation are commonly reported in neurodevelopmental disorders. Here, we summarise the evidence for disrupted neuronal arborisation in these conditions, focusing primarily on the cortex and hippocampus. In addition, we explore the developmentally specific mechanisms by which neuronal arborisation is regulated. Finally, we discuss key regulators of neuronal arborisation that could link to neurodevelopmental disease and the potential for pharmacological modification of arborisation and the formation of synaptic connections that may provide therapeutic benefit in the future.
Collapse
|
19
|
Yoshida T, Yamagata A, Imai A, Kim J, Izumi H, Nakashima S, Shiroshima T, Maeda A, Iwasawa-Okamoto S, Azechi K, Osaka F, Saitoh T, Maenaka K, Shimada T, Fukata Y, Fukata M, Matsumoto J, Nishijo H, Takao K, Tanaka S, Okabe S, Tabuchi K, Uemura T, Mishina M, Mori H, Fukai S. Canonical versus non-canonical transsynaptic signaling of neuroligin 3 tunes development of sociality in mice. Nat Commun 2021; 12:1848. [PMID: 33758193 PMCID: PMC7988105 DOI: 10.1038/s41467-021-22059-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Neuroligin 3 (NLGN3) and neurexins (NRXNs) constitute a canonical transsynaptic cell-adhesion pair, which has been implicated in autism. In autism spectrum disorder (ASD) development of sociality can be impaired. However, the molecular mechanism underlying NLGN3-mediated social development is unclear. Here, we identify non-canonical interactions between NLGN3 and protein tyrosine phosphatase δ (PTPδ) splice variants, competing with NRXN binding. NLGN3-PTPδ complex structure revealed a splicing-dependent interaction mode and competition mechanism between PTPδ and NRXNs. Mice carrying a NLGN3 mutation that selectively impairs NLGN3-NRXN interaction show increased sociability, whereas mice where the NLGN3-PTPδ interaction is impaired exhibit impaired social behavior and enhanced motor learning, with imbalance in excitatory/inhibitory synaptic protein expressions, as reported in the Nlgn3 R451C autism model. At neuronal level, the autism-related Nlgn3 R451C mutation causes selective impairment in the non-canonical pathway. Our findings suggest that canonical and non-canonical NLGN3 pathways compete and regulate the development of sociality.
Collapse
Affiliation(s)
- Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan. .,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan. .,JST PRESTO, Saitama, Japan.
| | | | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Juhyon Kim
- Division of Bio-Information Engineering, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shogo Nakashima
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Asami Maeda
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shiho Iwasawa-Okamoto
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kenji Azechi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Fumina Osaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takashi Saitoh
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takashi Shimada
- SHIMADZU Bioscience Research Partnership, Innovation Center, Shimadzu Scientific Instruments, Bothell, WA, USA
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Jumpei Matsumoto
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| | - Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Tabuchi
- JST PRESTO, Saitama, Japan.,Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.,Division of Gene Research, Research Center for Supports to Advanced Science, Shinshu University, Nagano, Japan
| | - Masayoshi Mishina
- Brain Science Laboratory, Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
20
|
Comoletti D, Trobiani L, Chatonnet A, Bourne Y, Marchot P. Comparative mapping of selected structural determinants on the extracellular domains of cholinesterase-like cell-adhesion molecules. Neuropharmacology 2020; 184:108381. [PMID: 33166544 DOI: 10.1016/j.neuropharm.2020.108381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022]
Abstract
Cell adhesion generally involves formation of homophilic or heterophilic protein complexes between two cells to form transcellular junctions. Neural cell-adhesion members of the α/β-hydrolase fold superfamily of proteins use their extracellular or soluble cholinesterase-like domain to bind cognate partners across cell membranes, as illustrated by the neuroligins. These cell-adhesion molecules currently comprise the synaptic organizers neuroligins found in all animal phyla, along with three proteins found only in invertebrates: the guidance molecule neurotactin, the glia-specific gliotactin, and the basement membrane protein glutactin. Although these proteins share a cholinesterase-like fold, they lack one or more residues composing the catalytic triad responsible for the enzymatic activity of the cholinesterases. Conversely, they are found in various subcellular localisations and display specific disulfide bonding and N-glycosylation patterns, along with individual surface determinants possibly associated with recognition and binding of protein partners. Formation of non-covalent dimers typical of the cholinesterases is documented for mammalian neuroligins, yet whether invertebrate neuroligins and their neurotactin, gliotactin and glutactin relatives also form dimers in physiological conditions is unknown. Here we provide a brief overview of the localization, function, evolution, and conserved versus individual structural determinants of these cholinesterase-like cell-adhesion proteins. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand; Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Laura Trobiani
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Arnaud Chatonnet
- Lab 'Dynamique Musculaire et Métabolisme', Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE) / Université Montpellier, Montpellier, France
| | - Yves Bourne
- Lab 'Architecture et Fonction des Macromolécules Biologiques (AFMB)', Centre National de la Recherche Scientifique (CNRS)/Aix-Marseille Univ, Faculté des Sciences - Campus Luminy, Marseille, France
| | - Pascale Marchot
- Lab 'Architecture et Fonction des Macromolécules Biologiques (AFMB)', Centre National de la Recherche Scientifique (CNRS)/Aix-Marseille Univ, Faculté des Sciences - Campus Luminy, Marseille, France.
| |
Collapse
|
21
|
Trobiani L, Meringolo M, Diamanti T, Bourne Y, Marchot P, Martella G, Dini L, Pisani A, De Jaco A, Bonsi P. The neuroligins and the synaptic pathway in Autism Spectrum Disorder. Neurosci Biobehav Rev 2020; 119:37-51. [PMID: 32991906 DOI: 10.1016/j.neubiorev.2020.09.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022]
Abstract
The genetics underlying autism spectrum disorder (ASD) is complex and heterogeneous, and de novo variants are found in genes converging in functional biological processes. Neuronal communication, including trans-synaptic signaling involving two families of cell-adhesion proteins, the presynaptic neurexins and the postsynaptic neuroligins, is one of the most recurrently affected pathways in ASD. Given the role of these proteins in determining synaptic function, abnormal synaptic plasticity and failure to establish proper synaptic contacts might represent mechanisms underlying risk of ASD. More than 30 mutations have been found in the neuroligin genes. Most of the resulting residue substitutions map in the extracellular, cholinesterase-like domain of the protein, and impair protein folding and trafficking. Conversely, the stalk and intracellular domains are less affected. Accordingly, several genetic animal models of ASD have been generated, showing behavioral and synaptic alterations. The aim of this review is to discuss the current knowledge on ASD-linked mutations in the neuroligin proteins and their effect on synaptic function, in various brain areas and circuits.
Collapse
Affiliation(s)
- Laura Trobiani
- Dept. Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Maria Meringolo
- Lab. Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Dept. Systems Medicine, University Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Tamara Diamanti
- Dept. Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Yves Bourne
- Lab. "Architecture et Fonction des Macromolécules Biologiques", CNRS/Aix Marseille Univ, Faculté des Sciences - Campus Luminy, 163 Avenue de Luminy, 13288 Marseille cedex 09, France
| | - Pascale Marchot
- Lab. "Architecture et Fonction des Macromolécules Biologiques", CNRS/Aix Marseille Univ, Faculté des Sciences - Campus Luminy, 163 Avenue de Luminy, 13288 Marseille cedex 09, France
| | - Giuseppina Martella
- Lab. Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Dept. Systems Medicine, University Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Luciana Dini
- Dept. Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonio Pisani
- Lab. Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Dept. Systems Medicine, University Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella De Jaco
- Dept. Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Paola Bonsi
- Lab. Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
22
|
Yumoto T, Kimura M, Nagatomo R, Sato T, Utsunomiya S, Aoki N, Kitaura M, Takahashi K, Takemoto H, Watanabe H, Okano H, Yoshida F, Nao Y, Tomita T. Autism-associated variants of neuroligin 4X impair synaptogenic activity by various molecular mechanisms. Mol Autism 2020; 11:68. [PMID: 32873342 PMCID: PMC7465329 DOI: 10.1186/s13229-020-00373-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several genetic alterations, including point mutations and copy number variations in NLGN genes, have been associated with psychiatric disorders, such as autism spectrum disorder (ASD) and X-linked mental retardation (XLMR). NLGN genes encode neuroligin (NL) proteins, which are adhesion molecules that are important for proper synaptic formation and maturation. Previously, we and others found that the expression level of murine NL1 is regulated by proteolytic processing in a synaptic activity-dependent manner. METHODS In this study, we analyzed the effects of missense variants associated with ASD and XLMR on the metabolism and function of NL4X, a protein which is encoded by the NLGN4X gene and is expressed only in humans, using cultured cells, primary neurons from rodents, and human induced pluripotent stem cell-derived neurons. RESULTS NL4X was found to undergo proteolytic processing in human neuronal cells. Almost all NL4X variants caused a substantial decrease in the levels of mature NL4X and its synaptogenic activity in a heterologous culture system. Intriguingly, the L593F variant of NL4X accelerated the proteolysis of mature NL4X proteins located on the cell surface. In contrast, other variants decreased the cell-surface trafficking of NL4X. Notably, protease inhibitors as well as chemical chaperones rescued the expression of mature NL4X. LIMITATIONS Our study did not reveal whether these dysfunctional phenotypes occurred in individuals carrying NLGN4X variant. Moreover, though these pathological mechanisms could be exploited as potential drug targets for ASD, it remains unclear whether these compounds would have beneficial effects on ASD model animals and patients. CONCLUSIONS These data suggest that reduced amounts of the functional NL4X protein on the cell surface is a common mechanism by which point mutants of the NL4X protein cause psychiatric disorders, although different molecular mechanisms are thought to be involved. Furthermore, these results highlight that the precision medicine approach based on genetic and cell biological analyses is important for the development of therapeutics for psychiatric disorders.
Collapse
Affiliation(s)
- Takafumi Yumoto
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Misaki Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryota Nagatomo
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shun Utsunomiya
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Natsue Aoki
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Motoji Kitaura
- Research Administration SPRC, R&D General Administration Unit, General Administration Division, Shionogi Administration Service, Osaka, Japan
| | - Koji Takahashi
- Drug Discovery Technology 3, Laboratory for Innovative Therapy Research, Shionogi, Osaka, Japan
| | - Hiroshi Takemoto
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Fumiaki Yoshida
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yosuke Nao
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
23
|
Nguyen TA, Lehr AW, Roche KW. Neuroligins and Neurodevelopmental Disorders: X-Linked Genetics. Front Synaptic Neurosci 2020; 12:33. [PMID: 32848696 PMCID: PMC7431521 DOI: 10.3389/fnsyn.2020.00033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that results in social-communication impairments, as well as restricted and repetitive behaviors. Moreover, ASD is more prevalent in males, with a male to female ratio of 4 to 1. Although the underlying etiology of ASD is generally unknown, recent advances in genome sequencing have facilitated the identification of a host of associated genes. Among these, synaptic proteins such as cell adhesion molecules have been strongly linked with ASD. Interestingly, many large genome sequencing studies exclude sex chromosomes, which leads to a shift in focus toward autosomal genes as targets for ASD research. However, there are many genes on the X chromosome that encode synaptic proteins, including strong candidate genes. Here, we review findings regarding two members of the neuroligin (NLGN) family of postsynaptic adhesion molecules, NLGN3 and NLGN4. Neuroligins have multiple isoforms (NLGN1-4), which are both autosomal and sex-linked. The sex-linked genes, NLGN3 and NLGN4, are both on the X chromosome and were among the first few genes to be linked with ASD and intellectual disability (ID). In addition, there is a less studied human neuroligin on the Y chromosome, NLGN4Y, which forms an X-Y pair with NLGN4X. We will discuss recent findings of these neuroligin isoforms regarding function at the synapse in both rodent models and human-derived differentiated neurons, and highlight the exciting challenges moving forward to a better understanding of ASD/ID.
Collapse
Affiliation(s)
- Thien A. Nguyen
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Alexander W. Lehr
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Complex Interactions between Genes and Social Environment Cause Phenotypes Associated with Autism Spectrum Disorders in Mice. eNeuro 2020; 7:ENEURO.0124-20.2020. [PMID: 32669345 PMCID: PMC7418534 DOI: 10.1523/eneuro.0124-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
The etiology of autism spectrum disorders (ASDs) is a complex combination of genetic and environmental factors. Neuroligin3, a synaptic adhesion protein, and cytoplasmic FMR1 interacting protein 1 (CYFIP1), a regulator of protein translation and actin polymerization, are two proteins associated with ASDs that interact in neurons in vivo Here, we investigated the role of the Neuroligin3/CYFIP1 pathway in behavioral functioning and synapse formation in mice and found that it contributes to motor learning and synapse formation in males. Similar investigation in female mice revealed an absence of such phenotypes, suggesting that females are protected against mutations affecting this pathway. Previously, we showed that the social environment influences the behavior of male mice. We extended this finding and found that the transcriptome of wild-type mice housed with their mutant littermates, lacking Neuroligin3, differed from the transcriptome of wild-type mice housed together. Altogether, these results identify the role of the Neuroligin3/CYFIP1 pathway in male mouse behavior and highlight its sensitivity to social environment.
Collapse
|
25
|
Rescue of oxytocin response and social behaviour in a mouse model of autism. Nature 2020; 584:252-256. [PMID: 32760004 PMCID: PMC7116741 DOI: 10.1038/s41586-020-2563-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
Abstract
One of the most fundamental challenges in developing treatments for autism-spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of autism cases1–3. Subsets of risk genes can be grouped into functionally-related pathways, most prominently synaptic proteins, translational regulation, and chromatin modifications. To possibly circumvent this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4–6 which regulate aspects of social behavior in mammals7. However, whether genetic risk factors might predispose to autism due to modification of oxytocinergic signaling remains largely unknown. Here, we report that an autism-associated mutation in the synaptic adhesion molecule neuroligin-3 (Nlgn3) results in impaired oxytocin signaling in dopaminergic neurons and in altered social novelty responses in mice. Surprisingly, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3KO mice with a novel, highly specific, brain-penetrant inhibitor of MAP-kinase interacting kinases resets mRNA translation and restores oxytocin and social novelty responses. Thus, this work identifies an unexpected convergence between the genetic autism risk factor Nlgn3, translational regulation, and oxytocinergic signaling. Focus on such common core plasticity elements might provide a pragmatic approach to reduce the heterogeneity of autism. Ultimately, this would allow for mechanism-based stratification of patient populations to increase the success of therapeutic interventions.
Collapse
|
26
|
Kirrel3-Mediated Synapse Formation Is Attenuated by Disease-Associated Missense Variants. J Neurosci 2020; 40:5376-5388. [PMID: 32503885 DOI: 10.1523/jneurosci.3058-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Missense variants in Kirrel3 are repeatedly identified as risk factors for autism spectrum disorder and intellectual disability, but it has not been reported if or how these variants disrupt Kirrel3 function. Previously, we studied Kirrel3 loss of function using KO mice and showed that Kirrel3 is a synaptic adhesion molecule necessary to form one specific type of hippocampal synapse in vivo Here, we developed an in vitro, gain-of-function assay for Kirrel3 using neuron cultures prepared from male and female mice and rats. We find that WT Kirrel3 induces synapse formation selectively between Kirrel3-expressing neurons via homophilic, transcellular binding. We tested six disease-associated Kirrel3 missense variants and found that five attenuate this synaptogenic function. All variants tested traffic to the cell surface and localize to synapses similar to WT Kirrel3. Two tested variants lack homophilic transcellular binding, which likely accounts for their reduced synaptogenic function. Interestingly, we also identified variants that bind in trans but cannot induce synapses, indicating that Kirrel3 transcellular binding is necessary but not sufficient for its synaptogenic function. Collectively, these results suggest Kirrel3 functions as a synaptogenic, cell-recognition molecule, and this function is attenuated by missense variants associated with autism spectrum disorder and intellectual disability. Thus, we provide critical insight to the mechanism of Kirrel3 function and the consequences of missense variants associated with autism and intellectual disability.SIGNIFICANCE STATEMENT Here, we advance our understanding of mechanisms mediating target-specific synapse formation by providing evidence that Kirrel3 transcellular interactions mediate target recognition and signaling to promote synapse development. Moreover, this study tests the effects of disease-associated Kirrel3 missense variants on synapse formation, and thereby, increases understanding of the complex etiology of neurodevelopmental disorders arising from rare missense variants in synaptic genes.
Collapse
|
27
|
Fantuzzo JA, Robles DA, Mirabella VR, Hart RP, Pang ZP, Zahn JD. Development of a high-throughput arrayed neural circuitry platform using human induced neurons for drug screening applications. LAB ON A CHIP 2020; 20:1140-1152. [PMID: 32064487 PMCID: PMC7339603 DOI: 10.1039/c9lc01179j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Proper brain function relies on the precise arrangement and flow of information between diverse neural subtypes. Developing improved human cell-based models which faithfully mimic biologically relevant connectivity patterns may improve drug screening efforts given the limited success of animal models to predict safety and efficacy of therapeutics in human clinical trials. To address this need, we have developed experimental models of defined neural circuitries through the compartmentalization of neuronal cell subtypes in a 96 well plate-based platform where each microwell is divided into two compartments connected by microchannels allowing high-throughput screening (HTS) of small molecules. We demonstrate that we can generate subtype-specific excitatory and inhibitory induced neuronal cells (iNs) from human stem cell lines and that these neurons form robust functional circuits with defined connectivity. Through the use of the genetically encoded calcium indicator GCaMP6f, we monitor calcium ion transients generated during neuronal firing between and within compartments. We further demonstrate functionality of the circuit by perturbing network activity through the addition of glutamate receptor blockers using automated liquid handling. Lastly, we show that we can stimulate network activity in defined neuronal subtypes through the expression of the designer receptor exclusively activated by designer drugs (DREADD) hM3Dq and application of the ligand clozapine-N-oxide (CNO). Our results demonstrate the formation of functional neural circuits in a high-throughput platform that is compatible with compound screening, representing an important step towards developing new screening platforms for studying and ultimately treating psychiatric brain disorders that arise from disordered neural circuit function.
Collapse
Affiliation(s)
- Joseph A Fantuzzo
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA. and Child Health Institute of New Jersey, Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, USA
| | - Denise A Robles
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| | - Vincent R Mirabella
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, USA and Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Research Tower, Third Floor, Piscataway, NJ 08854, USA and Pediatrics, Robert Wood Johnson Medical School, Rutgers University, One Robert Wood Johnson Place, MEB Third, PO Box 19, New Brunswick, NJ 08903, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, USA and Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Research Tower, Third Floor, Piscataway, NJ 08854, USA and Pediatrics, Robert Wood Johnson Medical School, Rutgers University, One Robert Wood Johnson Place, MEB Third, PO Box 19, New Brunswick, NJ 08903, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
28
|
Al-Ayadhi LY, Qasem HY, Alghamdi HAM, Elamin NE. Elevated Plasma X-Linked Neuroligin 4 Expression Is Associated with Autism Spectrum Disorder. Med Princ Pract 2020; 29:480-485. [PMID: 32155636 PMCID: PMC7511674 DOI: 10.1159/000507081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 03/09/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES In this study, we compared plasma levels of neuroligin 4 (NLGN4) in children with autism versus matched healthy controls to examine a possible correlation between plasma NLGN4 and degree of autism severity as well as social impairment in autistic patients. SUBJECTS AND METHODS 88 autistic patients aged 3-12 years and 33 age- and sex-matched controls aged 3-9 years were recruited. Plasma levels of NLGN4 were determined using a commercial enzyme-linked immunoassay (ELISA). The Childhood Autism Rating Scale (CARS) and the Social Responsiveness Scale (SRS) were used to assess cognitive dysfunction and social impairment in autistic patients. RESULTS Plasma levels of NLGN4 were significantly higher (p = 0.001) in autistic children than in healthy controls. Despite alterations in the levels of NLGN4 in the subgroups of the autistic children, no correlation between plasma concentration of NLGN4 and cognitive problems or social impairment was observed (p> 0.05). CONCLUSION Increased plasma concentrations of NLGN4 may play a role in the pathogenesis of autism, and it could be a valuable biomarker for autism. Further studies with larger sample sizes are warranted to validate this finding and also to explore the potential links between NLGN4 and the features of autism.
Collapse
Affiliation(s)
- Laila Y Al-Ayadhi
- Autism Research and Treatment Center, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia,
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia,
| | - Hanan Y Qasem
- Autism Research and Treatment Center, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Nadra E Elamin
- Autism Research and Treatment Center, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Evidence for a Contribution of the Nlgn3/Cyfip1/Fmr1 Pathway in the Pathophysiology of Autism Spectrum Disorders. Neuroscience 2019; 445:31-41. [PMID: 31705895 DOI: 10.1016/j.neuroscience.2019.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022]
Abstract
Autism Spectrum Disorders (ASD) are characterized by heterogeneity both in their presentation and their genetic aetiology. In order to discover points of convergence common to different cases of ASD, attempts were made to identify the biological pathways genes associated with ASD contribute to. Many of these genes were found to play a role in neuronal and synaptic development and function. Among these genes are FMR1, CYFIP1 and NLGN3, all present at the synapse and reliably linked to ASD. In this review, we evaluate the evidence for the contribution of these genes to the same biological pathway responsible for the regulation of structural and physiological plasticity. Alterations in dendritic spine density and turnover, as well as long-term depression (LTD), were found in mouse models of mutations of all three genes. This overlap in the phenotypes associated with these mouse models likely arises from the molecular interaction between the protein products of FMR1, CYFIP1, and NLG3. A number of other proteins linked to ASD are also likely to participate in these pathways, resulting in further downstream effects. Overall, a synaptic pathway centered around FMR1, CYFIP1, and NLG3 is likely to contribute to the phenotypes associated with structural and physiological plasticity characteristic of ASD.
Collapse
|
30
|
Quartier A, Courraud J, Thi Ha T, McGillivray G, Isidor B, Rose K, Drouot N, Savidan MA, Feger C, Jagline H, Chelly J, Shaw M, Laumonnier F, Gecz J, Mandel JL, Piton A. Novel mutations in NLGN3 causing autism spectrum disorder and cognitive impairment. Hum Mutat 2019; 40:2021-2032. [PMID: 31184401 DOI: 10.1002/humu.23836] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022]
Abstract
The X-linked NLGN3 gene, encoding a postsynaptic cell adhesion molecule, was involved in a nonsyndromic monogenic form of autism spectrum disorder (ASD) by the description of one unique missense variant, p.Arg451Cys (Jamain et al. 2003). We investigated here the pathogenicity of additional missense variants identified in two multiplex families with intellectual disability (ID) and ASD: c.1789C>T, p.Arg597Trp, previously reported by our group (Redin et al. 2014) and present in three affected cousins and c.1540C>T, p.Pro514Ser, identified in two affected brothers. Overexpression experiments in HEK293 and HeLa cell lines revealed that both variants affect the level of the mature NLGN3 protein, its localization at the plasma membrane and its presence as a cleaved form in the extracellular environment, even more drastically than what was reported for the initial p.Arg451Cys mutation. The variants also induced an unfolded protein response, probably due to the retention of immature NLGN3 proteins in the endoplasmic reticulum. In comparison, the c.1894A>G, p.Ala632Thr and c.1022T>C, p.Val341Ala variants, present in males from the general population, have no effect. Our report of two missense variants affecting the normal localization of NLGN3 in a total of five affected individuals reinforces the involvement of the NLGN3 gene in a neurodevelopmental disorder characterized by ID and ASD.
Collapse
Affiliation(s)
- Angélique Quartier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Jérémie Courraud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Thuong Thi Ha
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Katherine Rose
- Monash Genetics, Monash Health, Clayton, Victoria, Australia
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Marie-Armel Savidan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Claire Feger
- Molecular Genetic Unit, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hélène Jagline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Molecular Genetic Unit, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marie Shaw
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Frédéric Laumonnier
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Génétique, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Jozef Gecz
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France.,University of Strasbourg Institute of Advanced Studies, Strasbourg, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Molecular Genetic Unit, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Li Z, Gao W, Fei Y, Gao P, Xie Q, Xie J, Xu Z. NLGN3 promotes neuroblastoma cell proliferation and growth through activating PI3K/AKT pathway. Eur J Pharmacol 2019; 857:172423. [PMID: 31150649 DOI: 10.1016/j.ejphar.2019.172423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood, previous studies show synaptic protein neuroligin-3 (NLGN3) promotes glioma proliferation and growth, However, no investigation about the role of NLGN3 in neuroblastoma was reported. Here, we found NGLGN3 was significantly upregulated in neuroblastoma cells and tissues, its overexpression significantly promoted neuroblastoma cell proliferation and growth determined by MTT analysis, colony formation assay, cell cycle progression analysis, BrdU incorporation assay and animal model, while its knockdown inhibited cell proliferation and growth. Then we found NLGN3 could increase the phosphorylation level of AKT and the transcription activity of FOXO family, suggesting NLGN3 activated PI3K/AKT pathway, inhibition of PI3K/AKT pathway in NLGN3 overexpressing cells inhibited cell proliferation, confirming NLGN3 promoted neuroblastoma proliferation through activating PI3K/AKT pathway. In summary, we found NLGN3 promoted neuroblastoma cell proliferation and growth through activating PI3K/AKT pathway and providing a new target for neuroblastoma therapy.
Collapse
Affiliation(s)
- Zuoqing Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Wenzong Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yingchun Fei
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Pengfei Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Qigen Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Juntao Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Zhe Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
32
|
Catae AF, da Silva Menegasso AR, Pratavieira M, Palma MS, Malaspina O, Roat TC. MALDI-imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. PEST MANAGEMENT SCIENCE 2019; 75:607-615. [PMID: 30393944 DOI: 10.1002/ps.5226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Toxicological studies evaluating the possible harmful effects of pesticides on bees are important and allow the emergence of protection and pollinator conservation strategies. This study aimed to evaluate the effects of exposure to a sublethal concentration of imidacloprid (LC50/100 : 0.014651 ng imidacloprid µL-1 diet) on the distribution of certain proteins identified in the brain of Apis mellifera worker bees using a MALDI-imaging approach. This technique enables proteomic analysis of tissues in situ by monitoring the spatiotemporal dynamics of the biochemical processes occurring at a specific time in specific brain neuropils. For this purpose, foraging bees were exposed to an 8-day diet containing a sublethal concentration of imidacloprid corresponding to the LC50/100 . Bees were collected on day 8 of exposure, and their brains analyzed using protein density maps. RESULTS The results showed that exposure to imidacloprid led to a series of biochemical changes, including alterations in synapse regulation, apoptosis regulation and oxidative stress, which may adversely impair the physiology of these colony bees. CONCLUSION Worker bee contact with even tiny amounts of imidacloprid had potent effects leading to the overexpression of a series of proteins related to important cellular processes that were possibly damaged by the insecticide. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aline F Catae
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Anally R da Silva Menegasso
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Marcel Pratavieira
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Mario S Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Osmar Malaspina
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Thaisa C Roat
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
33
|
Guang S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J. Synaptopathology Involved in Autism Spectrum Disorder. Front Cell Neurosci 2018; 12:470. [PMID: 30627085 PMCID: PMC6309163 DOI: 10.3389/fncel.2018.00470] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) encompasses a group of multifactorial neurodevelopmental disorders characterized by impaired social communication, social interaction and repetitive behaviors. ASD affects 1 in 59 children, and is about 4 times more common among boys than among girls. Strong genetic components, together with environmental factors in the early stage of development, contribute to the pathogenesis of ASD. Multiple studies have revealed that mutations in genes like NRXN, NLGN, SHANK, TSC1/2, FMR1, and MECP2 converge on common cellular pathways that intersect at synapses. These genes encode cell adhesion molecules, scaffolding proteins and proteins involved in synaptic transcription, protein synthesis and degradation, affecting various aspects of synapses including synapse formation and elimination, synaptic transmission and plasticity. This suggests that the pathogenesis of ASD may, at least in part, be attributed to synaptic dysfunction. In this article, we will review major genes and signaling pathways implicated in synaptic abnormalities underlying ASD, and discuss molecular, cellular and functional studies of ASD experimental models.
Collapse
Affiliation(s)
- Shiqi Guang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Liwen Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
34
|
Gorlewicz A, Kaczmarek L. Pathophysiology of Trans-Synaptic Adhesion Molecules: Implications for Epilepsy. Front Cell Dev Biol 2018; 6:119. [PMID: 30298130 PMCID: PMC6160742 DOI: 10.3389/fcell.2018.00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Chemical synapses are specialized interfaces between neurons in the brain that transmit and modulate information, thereby integrating cells into multiplicity of interacting neural circuits. Cell adhesion molecules (CAMs) might form trans-synaptic complexes that are crucial for the appropriate identification of synaptic partners and further for the establishment, properties, and dynamics of synapses. When affected, trans-synaptic adhesion mechanisms play a role in synaptopathies in a variety of neuropsychiatric disorders including epilepsy. This review recapitulates current understanding of trans-synaptic interactions in pathophysiology of interneuronal connections. In particular, we discuss here the possible implications of trans-synaptic adhesion dysfunction for epilepsy.
Collapse
Affiliation(s)
- Adam Gorlewicz
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
35
|
Trobiani L, Favaloro FL, Di Castro MA, Di Mattia M, Cariello M, Miranda E, Canterini S, De Stefano ME, Comoletti D, Limatola C, De Jaco A. UPR activation specifically modulates glutamate neurotransmission in the cerebellum of a mouse model of autism. Neurobiol Dis 2018; 120:139-150. [PMID: 30201312 DOI: 10.1016/j.nbd.2018.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/01/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
An increasing number of rare mutations linked to autism spectrum disorders have been reported in genes encoding for proteins involved in synapse formation and maintenance, such as the post-synaptic cell adhesion proteins neuroligins. Most of the autism-linked mutations in the neuroligin genes map on the extracellular protein domain. The autism-linked substitution R451C in Neuroligin3 (NLGN3) induces a local misfolding of the extracellular domain, causing defective trafficking and retention of the mutant protein in the endoplasmic reticulum (ER). The activation of the unfolded protein response (UPR), due to misfolded proteins accumulating in the ER, has been implicated in pathological and physiological conditions of the nervous system. It was previously shown that the over-expression of R451C NLGN3 in a cellular system leads to the activation of the UPR. Here, we have investigated whether this protective cellular response is detectable in the knock-in mouse model of autism endogenously expressing R451C NLGN3. Our data showed up-regulation of UPR markers uniquely in the cerebellum of the R451C mice compared to WT littermates, at both embryonic and adult stages, but not in other brain regions. Miniature excitatory currents in the Purkinje cells of the R451C mice showed higher frequency than in the WT, which was rescued inhibiting the PERK branch of UPR. Taken together, our data indicate that the R451C mutation in neuroligin3 elicits UPR in vivo, which appears to trigger alterations of synaptic function in the cerebellum of a mouse model expressing the R451C autism-linked mutation.
Collapse
Affiliation(s)
- L Trobiani
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - F L Favaloro
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - M A Di Castro
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - M Di Mattia
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - M Cariello
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - E Miranda
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy.; Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Italy
| | - S Canterini
- Department of Psychology, Section of Neuroscience, Center for Research in Neurobiology 'Daniel Bovet', Sapienza University of Rome, 00185 Rome, Italy
| | - M E De Stefano
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - D Comoletti
- Department of Neuroscience and Cell Biology, Department of Pediatrics, Child Health Institute of New Jersey, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - C Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy.; Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Italy.; IRCCS Neuromed, Pozzilli (IS), Italy
| | - A De Jaco
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy..
| |
Collapse
|
36
|
Neuroligin 1, 2, and 3 Regulation at the Synapse: FMRP-Dependent Translation and Activity-Induced Proteolytic Cleavage. Mol Neurobiol 2018; 56:2741-2759. [PMID: 30056576 PMCID: PMC6459971 DOI: 10.1007/s12035-018-1243-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Abstract
Neuroligins (NLGNs) are cell adhesion molecules located on the postsynaptic side of the synapse that interact with their presynaptic partners neurexins to maintain trans-synaptic connection. Fragile X syndrome (FXS) is a common neurodevelopmental disease that often co-occurs with autism and is caused by the lack of fragile X mental retardation protein (FMRP) expression. To gain an insight into the molecular interactions between the autism-related genes, we sought to determine whether FMRP controls the synaptic levels of NLGNs. We show evidences that FMRP associates with Nlgn1, Nlgn2, and Nlgn3 mRNAs in vitro in both synaptoneurosomes and neuronal cultures. Next, we confirm local translation of Nlgn1, Nlgn2, and Nlgn3 mRNAs to be synaptically regulated by FMRP. As a consequence of elevated Nlgns mRNA translation Fmr1 KO mice exhibit increased incorporation of NLGN1 and NLGN3 into the postsynaptic membrane. Finally, we show that neuroligins synaptic level is precisely and dynamically regulated by their rapid proteolytic cleavage upon NMDA receptor stimulation in both wild type and Fmr1 KO mice. In aggregate, our study provides a novel approach to understand the molecular basis of FXS by linking the dysregulated synaptic expression of NLGNs with FMRP.
Collapse
|
37
|
Wang X, Kery R, Xiong Q. Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:398-415. [PMID: 28986278 DOI: 10.1016/j.pnpbp.2017.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Xinxing Wang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rachel Kery
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
38
|
Ribeiro LF, Verpoort B, de Wit J. Trafficking mechanisms of synaptogenic cell adhesion molecules. Mol Cell Neurosci 2018; 91:34-47. [PMID: 29631018 DOI: 10.1016/j.mcn.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023] Open
Abstract
Nearly every aspect of neuronal function, from wiring to information processing, critically depends on the highly polarized architecture of neurons. Establishing and maintaining the distinct molecular composition of axonal and dendritic compartments requires precise control over the trafficking of the proteins that make up these cellular domains. Synaptic cell adhesion molecules (CAMs), membrane proteins with a critical role in the formation, differentiation and plasticity of synapses, require targeting to the correct pre- or postsynaptic compartment for proper functioning of neural circuits. However, the mechanisms that control the polarized trafficking, synaptic targeting, and synaptic abundance of CAMs are poorly understood. Here, we summarize current knowledge about the sequential trafficking events along the secretory pathway that control the polarized surface distribution of synaptic CAMs, and discuss how their synaptic targeting and abundance is additionally influenced by post-secretory determinants. The identification of trafficking-impairing mutations in CAMs associated with various neurodevelopmental disorders underscores the importance of correct protein trafficking for normal brain function.
Collapse
Affiliation(s)
- Luís F Ribeiro
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Ben Verpoort
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
39
|
The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders. Mol Psychiatry 2018; 23:400-412. [PMID: 28070120 PMCID: PMC5794872 DOI: 10.1038/mp.2016.231] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 01/13/2023]
Abstract
Major mood disorders, which primarily include bipolar disorder and major depressive disorder, are the leading cause of disability worldwide and pose a major challenge in identifying robust risk genes. Here, we present data from independent large-scale clinical data sets (including 29 557 cases and 32 056 controls) revealing brain expressed protocadherin 17 (PCDH17) as a susceptibility gene for major mood disorders. Single-nucleotide polymorphisms (SNPs) spanning the PCDH17 region are significantly associated with major mood disorders; subjects carrying the risk allele showed impaired cognitive abilities, increased vulnerable personality features, decreased amygdala volume and altered amygdala function as compared with non-carriers. The risk allele predicted higher transcriptional levels of PCDH17 mRNA in postmortem brain samples, which is consistent with increased gene expression in patients with bipolar disorder compared with healthy subjects. Further, overexpression of PCDH17 in primary cortical neurons revealed significantly decreased spine density and abnormal dendritic morphology compared with control groups, which again is consistent with the clinical observations of reduced numbers of dendritic spines in the brains of patients with major mood disorders. Given that synaptic spines are dynamic structures which regulate neuronal plasticity and have crucial roles in myriad brain functions, this study reveals a potential underlying biological mechanism of a novel risk gene for major mood disorders involved in synaptic function and related intermediate phenotypes.
Collapse
|
40
|
Xu X, Hu Z, Zhang L, Liu H, Cheng Y, Xia K, Zhang X. Not all neuroligin 3 and 4X missense variants lead to significant functional inactivation. Brain Behav 2017; 7:e00793. [PMID: 28948087 PMCID: PMC5607556 DOI: 10.1002/brb3.793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/14/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Neuroligins are postsynaptic cell adhesion molecules that interact with neurexins to regulate the fine balance between excitation and inhibition of synapses. Recently, accumulating evidence, involving mutation analysis, cellular assays, and mouse models, has suggested that neuroligin (NLGN) mutations affect synapse maturation and function. Previously, four missense variations [p.G426S (NLGN3), p.G84R (NLGN4X), p.Q162K (NLGN4X), and p.A283T (NLGN4X)] in four different unrelated patients have been identified by PCR and direct sequencing. METHODS In this study, we analyzed the functional effect of these missense variations by in vitro experiment via the stable HEK293 cells expressing wild-type and mutant neuroligin. RESULTS We found that the four mutations did not significantly impair the expression of neuroligin 3 and neuroligin 4X, and also did not measurably inhibit the neurexin 1-neuroligin interaction. These variants might play a modest role in the pathogenesis of autism or might simply be unreported infrequent polymorphisms. CONCLUSION Our data suggest that these four previously described neuroligin mutations are not primary risk factors for autism.
Collapse
Affiliation(s)
- Xiaojuan Xu
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University Lanzhou Gansu China.,The Key Laboratory for Reproductive Medicine and Embryo Lanzhou Gansu China
| | - Zhengmao Hu
- The State Key Laboratory of Medical Genetics and School of Life Science Central South University Changsha Hunan China
| | - Lusi Zhang
- Department of Ophthalmology Second Xiangya Hospital Central South University Changsha Hunan China
| | - Hongfang Liu
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University Lanzhou Gansu China.,The Key Laboratory for Reproductive Medicine and Embryo Lanzhou Gansu China
| | - Yuemei Cheng
- Second School of Clinical Medicine of Lanzhou University Lanzhou Gansu China
| | - Kun Xia
- The State Key Laboratory of Medical Genetics and School of Life Science Central South University Changsha Hunan China
| | - Xuehong Zhang
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University Lanzhou Gansu China.,The Key Laboratory for Reproductive Medicine and Embryo Lanzhou Gansu China
| |
Collapse
|
41
|
Functional significance of rare neuroligin 1 variants found in autism. PLoS Genet 2017; 13:e1006940. [PMID: 28841651 PMCID: PMC5571902 DOI: 10.1371/journal.pgen.1006940] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations contribute to the etiology of autism spectrum disorder (ASD), a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior. Since neuroligin3 (NLGN3), a cell adhesion molecule at the neuronal synapse, was first identified as a risk gene for ASD, several additional variants in NLGN3 and NLGN4 were found in ASD patients. Moreover, synaptopathies are now known to cause several neuropsychiatric disorders including ASD. In humans, NLGNs consist of five family members, and neuroligin1 (NLGN1) is a major component forming a complex on excitatory glutamatergic synapses. However, the significance of NLGN1 in neuropsychiatric disorders remains unknown. Here, we systematically examine five missense variants of NLGN1 that were detected in ASD patients, and show molecular and cellular alterations caused by these variants. We show that a novel NLGN1 Pro89Leu (P89L) missense variant found in two ASD siblings leads to changes in cellular localization, protein degradation, and to the impairment of spine formation. Furthermore, we generated the knock-in P89L mice, and we show that the P89L heterozygote mice display abnormal social behavior, a core feature of ASD. These results, for the first time, implicate rare variants in NLGN1 as functionally significant and support that the NLGN synaptic pathway is of importance in the etiology of neuropsychiatric disorders. Autism spectrum disorder (ASD) is a childhood disorder manifested by abnormal social behavior, interests, and activities. The genetic contribution to ASD is higher than in other psychiatric disorders such as schizophrenia and mood disorders. Here, we found a novel mutation in NLGN1, a gene encoding a synaptic protein, in patients with ASD. We also developed a mouse model with this mutation, and showed that the model mouse exhibits abnormal social behavior. These results suggest that a rare variant in NLGN1 is functionally significant and support that the NLGN synaptic pathway may be important in the etiology of neuropsychiatric disorders. This humanized mouse model recapitulates some of the symptoms of patients with ASD and will serve as a valuable tool for therapeutic development.
Collapse
|
42
|
Elegheert J, Cvetkovska V, Clayton AJ, Heroven C, Vennekens KM, Smukowski SN, Regan MC, Jia W, Smith AC, Furukawa H, Savas JN, de Wit J, Begbie J, Craig AM, Aricescu AR. Structural Mechanism for Modulation of Synaptic Neuroligin-Neurexin Signaling by MDGA Proteins. Neuron 2017; 95:896-913.e10. [PMID: 28817804 PMCID: PMC5563082 DOI: 10.1016/j.neuron.2017.07.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 06/22/2017] [Accepted: 07/28/2017] [Indexed: 01/30/2023]
Abstract
Neuroligin-neurexin (NL-NRX) complexes are fundamental synaptic organizers in the central nervous system. An accurate spatial and temporal control of NL-NRX signaling is crucial to balance excitatory and inhibitory neurotransmission, and perturbations are linked with neurodevelopmental and psychiatric disorders. MDGA proteins bind NLs and control their function and interaction with NRXs via unknown mechanisms. Here, we report crystal structures of MDGA1, the NL1-MDGA1 complex, and a spliced NL1 isoform. Two large, multi-domain MDGA molecules fold into rigid triangular structures, cradling a dimeric NL to prevent NRX binding. Structural analyses guided the discovery of a broad, splicing-modulated interaction network between MDGA and NL family members and helped rationalize the impact of autism-linked mutations. We demonstrate that expression levels largely determine whether MDGAs act selectively or suppress the synapse organizing function of multiple NLs. These results illustrate a potentially brain-wide regulatory mechanism for NL-NRX signaling modulation.
Collapse
Affiliation(s)
- Jonathan Elegheert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Vedrana Cvetkovska
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Amber J Clayton
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christina Heroven
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Kristel M Vennekens
- VIB Center for Brain and Disease Research, Herestraat 49, B-3000 Leuven, Belgium; Department of Neurosciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Samuel N Smukowski
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michael C Regan
- Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Wanyi Jia
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Alexandra C Smith
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Hiro Furukawa
- Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joris de Wit
- VIB Center for Brain and Disease Research, Herestraat 49, B-3000 Leuven, Belgium; Department of Neurosciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Jo Begbie
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
43
|
Synapse Formation in Monosynaptic Sensory-Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42. J Neurosci 2017; 36:5724-35. [PMID: 27225763 DOI: 10.1523/jneurosci.2146-15.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/13/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory-motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory-motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory-motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory-motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory-motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro These data suggest that Cdc42 in presynaptic sensory neurons is essential for proper synapse formation in the development of monosynaptic sensory-motor circuits.
Collapse
|
44
|
Deans PM, Raval P, Sellers KJ, Gatford NJ, Halai S, Duarte RR, Shum C, Warre-Cornish K, Kaplun VE, Cocks G, Hill M, Bray NJ, Price J, Srivastava DP. Psychosis Risk Candidate ZNF804A Localizes to Synapses and Regulates Neurite Formation and Dendritic Spine Structure. Biol Psychiatry 2017; 82:49-61. [PMID: 27837918 PMCID: PMC5482321 DOI: 10.1016/j.biopsych.2016.08.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Variation in the gene encoding zinc finger binding protein 804A (ZNF804A) is associated with schizophrenia and bipolar disorder. Evidence suggests that ZNF804A is a regulator of gene transcription and is present in nuclear and extranuclear compartments. However, a detailed examination of ZNF804A distribution and its neuronal functions has yet to be performed. METHODS The localization of ZNF804A protein was examined in neurons derived from human neural progenitor cells, human induced pluripotent stem cells, or in primary rat cortical neurons. In addition, small interfering RNA-mediated knockdown of ZNF804A was conducted to determine its role in neurite formation, maintenance of dendritic spine morphology, and responses to activity-dependent stimulations. RESULTS Endogenous ZNF804A protein localized to somatodendritic compartments and colocalized with the putative synaptic markers in young neurons derived from human neural progenitor cells and human induced pluripotent stem cells. In mature rat neurons, Zfp804A, the homolog of ZNF804A, was present in a subset of dendritic spines and colocalized with synaptic proteins in specific nanodomains, as determined by super-resolution microscopy. Interestingly, knockdown of ZNF804A attenuated neurite outgrowth in young neurons, an effect potentially mediated by reduced neuroligin-4 expression. Furthermore, knockdown of ZNF804A in mature neurons resulted in the loss of dendritic spine density and impaired responses to activity-dependent stimulation. CONCLUSIONS These data reveal a novel subcellular distribution for ZNF804A within somatodendritic compartments and a nanoscopic organization at excitatory synapses. Moreover, our results suggest that ZNF804A plays an active role in neurite formation, maintenance of dendritic spines, and activity-dependent structural plasticity.
Collapse
Affiliation(s)
- P.J. Michael Deans
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Katherine J. Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Nicholas J.F. Gatford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Sanjay Halai
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Rodrigo R.R. Duarte
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Carole Shum
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Victoria E. Kaplun
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Graham Cocks
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London
| | - Matthew Hill
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff, United Kingdom,Neuroscience and Mental Health Research Institute, College of Biomedical and Life Sciences, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicholas J. Bray
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff, United Kingdom
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London,MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London; United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London,MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London; United Kingdom,Address correspondence to: Deepak P. Srivastava, Ph.D., Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, SE5 9RT, United KingdomDepartment of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College LondonLondonSE5 9RTUnited Kingdom
| |
Collapse
|
45
|
Unbalance between Excitation and Inhibition in Phenylketonuria, a Genetic Metabolic Disease Associated with Autism. Int J Mol Sci 2017; 18:ijms18050941. [PMID: 28468253 PMCID: PMC5454854 DOI: 10.3390/ijms18050941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 02/06/2023] Open
Abstract
Phenylketonuria (PKU) is the most common genetic metabolic disease with a well-documented association with autism spectrum disorders. It is characterized by the deficiency of the phenylalanine hydroxylase activity, causing plasmatic hyperphenylalaninemia and variable neurological and cognitive impairments. Among the potential pathophysiological mechanisms implicated in autism spectrum disorders is the excitation/inhibition (E/I) imbalance which might result from alterations in excitatory/inhibitory synapse development, synaptic transmission and plasticity, downstream signalling pathways, and intrinsic neuronal excitability. Here, we investigated functional and molecular alterations in the prefrontal cortex (pFC) of BTBR-Pahenu2 (ENU2) mice, the animal model of PKU. Our data show higher frequency of inhibitory transmissions and significant reduced frequency of excitatory transmissions in the PKU-affected mice in comparison to wild type. Moreover, in the pFC of ENU2 mice, we reported higher levels of the post-synaptic cell-adhesion proteins neuroligin1 and 2. Altogether, our data point toward an imbalance in the E/I neurotransmission favouring inhibition in the pFC of ENU2 mice, along with alterations of the molecular components involved in the organization of cortical synapse. In addition to being the first evidence of E/I imbalance within cortical areas of a mouse model of PKU, our study provides further evidence of E/I imbalance in animal models of pathology associated with autism spectrum disorders.
Collapse
|
46
|
Social Isolation Alters Social and Mating Behavior in the R451C Neuroligin Mouse Model of Autism. Neural Plast 2017; 2017:8361290. [PMID: 28255463 PMCID: PMC5307131 DOI: 10.1155/2017/8361290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/28/2016] [Accepted: 11/22/2016] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder typified by impaired social communication and restrictive and repetitive behaviors. Mice serve as an ideal candidate organism for studying the neural mechanisms that subserve these symptoms. The Neuroligin-3 (NL3) mouse, expressing a R451C mutation discovered in two Swedish brothers with ASD, exhibits impaired social interactions and heightened aggressive behavior towards male mice. Social interactions with female mice have not been characterized and in the present study were assessed in male NL3R451C and WT mice. Mice were housed in social and isolation conditions to test for isolation-induced increases in social interaction. Tests were repeated to investigate potential differences in interaction in naïve and experienced mice. We identified heightened interest in mating and atypical aggressive behavior in NL3R451C mice. NL3R451C mice exhibited normal social interaction with WT females, indicating that abnormal aggressive behavior towards females is not due to altered motivation to engage. Social isolation rearing heightened interest in social behavior in all mice. Isolation housing selectively modulated the response to female pheromones in NL3R451C mice. This study is the first to show altered mating behavior in the NL3R451C mouse and has provided new insights into the aggressive phenotype in this model.
Collapse
|
47
|
Association Analysis of Noncoding Variants in Neuroligins 3 and 4X Genes with Autism Spectrum Disorder in an Italian Cohort. Int J Mol Sci 2016; 17:ijms17101765. [PMID: 27782075 PMCID: PMC5085789 DOI: 10.3390/ijms17101765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Abstract
Since involved in synaptic transmission and located on X-chromosome, neuroligins 3 and 4X have been studied as good positional and functional candidate genes for autism spectrum disorder pathogenesis, although contradictory results have been reported. Here, we performed a case-control study to assess the association between noncoding genetic variants in NLGN3 and NLGN4X genes and autism, in an Italian cohort of 202 autistic children analyzed by high-resolution melting. The results were first compared with data from 379 European healthy controls (1000 Genomes Project) and then with those from 1061 Italian controls genotyped by Illumina single nucleotide polymorphism (SNP) array 1M-duo. Statistical evaluations were performed using Plink v1.07, with the Omnibus multiple loci approach. According to both the European and the Italian control groups, a 6-marker haplotype on NLGN4X (rs6638575(G), rs3810688(T), rs3810687(G), rs3810686(C), rs5916269(G), rs1882260(T)) was associated with autism (odd ratio = 3.58, p-value = 2.58 × 10−6 for the European controls; odds ratio = 2.42, p-value = 6.33 × 10−3 for the Italian controls). Furthermore, several haplotype blocks at 5-, 4-, 3-, and 2-, including the first 5, 4, 3, and 2 SNPs, respectively, showed a similar association with autism. We provide evidence that noncoding polymorphisms on NLGN4X may be associated to autism, suggesting the key role of NLGN4X in autism pathophysiology and in its male prevalence.
Collapse
|
48
|
Sexual divergence in microtubule function: the novel intranasal microtubule targeting SKIP normalizes axonal transport and enhances memory. Mol Psychiatry 2016; 21:1467-76. [PMID: 26782054 DOI: 10.1038/mp.2015.208] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
Abstract
Activity-dependent neuroprotective protein (ADNP), essential for brain formation, is a frequent autism spectrum disorder (ASD)-mutated gene. ADNP associates with microtubule end-binding proteins (EBs) through its SxIP motif, to regulate dendritic spine formation and brain plasticity. Here, we reveal SKIP, a novel four-amino-acid peptide representing an EB-binding site, as a replacement therapy in an outbred Adnp-deficient mouse model. We discovered, for the first time, axonal transport deficits in Adnp(+/-) mice (measured by manganese-enhanced magnetic resonance imaging), with significant male-female differences. RNA sequencing evaluations showed major age, sex and genotype differences. Function enrichment and focus on major gene expression changes further implicated channel/transporter function and the cytoskeleton. In particular, a significant maturation change (1 month-five months) was observed in beta1 tubulin (Tubb1) mRNA, only in Adnp(+/+) males, and sex-dependent increase in calcium channel mRNA (Cacna1e) in Adnp(+/+) males compared with females. At the protein level, the Adnp(+/-) mice exhibited impaired hippocampal expression of the calcium channel (voltage-dependent calcium channel, Cacnb1) as well as other key ASD-linked genes including the serotonin transporter (Slc6a4), and the autophagy regulator, BECN1 (Beclin1), in a sex-dependent manner. Intranasal SKIP treatment normalized social memory in 8- to 9-month-old Adnp(+/-)-treated mice to placebo-control levels, while protecting axonal transport and ameliorating changes in ASD-like gene expression. The control, all d-amino analog D-SKIP, did not mimic SKIP activity. SKIP presents a novel prototype for potential ASD drug development, a prevalent unmet medical need.
Collapse
|
49
|
Cao X, Tabuchi K. Functions of synapse adhesion molecules neurexin/neuroligins and neurodevelopmental disorders. Neurosci Res 2016; 116:3-9. [PMID: 27664583 DOI: 10.1016/j.neures.2016.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
Neurexins and neuroligins are two distinct families of single-pass transmembrane proteins localized at pre- and postsynapses, respectively. They trans-synaptically interact with each other and induce synapse formation and maturation. Common variants and rare mutations, including copy number variations, short deletions, and single or small nucleotide changes in neurexin and neuroligin genes have been linked to the neurodevelopmental disorders, such as autism spectrum disorders (ASDs). In this review, we summarize the structure and basic synaptic function of neurexins and neuroligins, followed by behaviors and synaptic phenotypes of knock-in and knock-out mouse of these family genes. From the studies of these mice, it turns out that the effects of neurexins and neuroligins are amazingly neural circuit dependent, even within the same brain region. In addition, neurexins and neuroligins are commonly involved in the endocannabinoid signaling. These finding may provide not only insight into understanding the pathophysiology, but also the concept for strategy of therapeutic intervention for ASDs.
Collapse
Affiliation(s)
- Xueshan Cao
- Department of Molecular & Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular & Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan.
| |
Collapse
|
50
|
Devi U, Kumar V, Gupta PS, Dubey S, Singh M, Gautam S, Rawat JK, Roy S, Yadav RK, Ansari MN, Saeedan AS, Kaithwas G. Experimental Models for Autism Spectrum Disorder Follow-Up for the Validity. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2016. [DOI: 10.1007/s40489-016-0088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|