1
|
Wydrych A, Pakuła B, Janikiewicz J, Dobosz AM, Jakubek-Olszewska P, Skowrońska M, Kurkowska-Jastrzębska I, Cwyl M, Popielarz M, Pinton P, Zavan B, Dobrzyń A, Lebiedzińska-Arciszewska M, Więckowski MR. Metabolic impairments in neurodegeneration with brain iron accumulation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149517. [PMID: 39366438 DOI: 10.1016/j.bbabio.2024.149517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a broad, heterogeneous group of rare inherited diseases (1-3 patients/1,000,000 people) characterized by progressive symptoms associated with excessive abnormal iron deposition in the brain. Approximately 15,000-20,000 individuals worldwide are estimated to be affected by NBIA. NBIA is usually associated with slowly progressive pyramidal and extrapyramidal symptoms, axonal motor neuropathy, optic nerve atrophy, cognitive impairment and neuropsychiatric disorders. To date, eleven subtypes of NBIA have been described and the most common ones include pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN). We present a comprehensive overview of the evidence for disturbed cellular homeostasis and metabolic alterations in NBIA variants, with a careful focus on mitochondrial bioenergetics and lipid metabolism which drives a new perspective in understanding the course of this infrequent malady.
Collapse
Affiliation(s)
- Agata Wydrych
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Barbara Pakuła
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Skowrońska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Maciej Cwyl
- Warsaw University of Technology, Warsaw, Poland; NBIA Poland Association, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | | | - Mariusz R Więckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
2
|
Barritt SA, DuBois-Coyne SE, Dibble CC. Coenzyme A biosynthesis: mechanisms of regulation, function and disease. Nat Metab 2024; 6:1008-1023. [PMID: 38871981 DOI: 10.1038/s42255-024-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
The tricarboxylic acid cycle, nutrient oxidation, histone acetylation and synthesis of lipids, glycans and haem all require the cofactor coenzyme A (CoA). Although the sources and regulation of the acyl groups carried by CoA for these processes are heavily studied, a key underlying question is less often considered: how is production of CoA itself controlled? Here, we discuss the many cellular roles of CoA and the regulatory mechanisms that govern its biosynthesis from cysteine, ATP and the essential nutrient pantothenate (vitamin B5), or from salvaged precursors in mammals. Metabolite feedback and signalling mechanisms involving acetyl-CoA, other acyl-CoAs, acyl-carnitines, MYC, p53, PPARα, PINK1 and insulin- and growth factor-stimulated PI3K-AKT signalling regulate the vitamin B5 transporter SLC5A6/SMVT and CoA biosynthesis enzymes PANK1, PANK2, PANK3, PANK4 and COASY. We also discuss methods for measuring CoA-related metabolites, compounds that target CoA biosynthesis and diseases caused by mutations in pathway enzymes including types of cataracts, cardiomyopathy and neurodegeneration (PKAN and COPAN).
Collapse
Affiliation(s)
- Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah E DuBois-Coyne
- Department of Medicine, Department of Biological Chemistry and Molecular Pharmacology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Santambrogio P, Cozzi A, Balestrucci C, Ripamonti M, Berno V, Cammarota E, Moro AS, Levi S. Mitochondrial iron deficiency triggers cytosolic iron overload in PKAN hiPS-derived astrocytes. Cell Death Dis 2024; 15:361. [PMID: 38796462 PMCID: PMC11128011 DOI: 10.1038/s41419-024-06757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
Disease models of neurodegeneration with brain iron accumulation (NBIA) offer the possibility to explore the relationship between iron dyshomeostasis and neurodegeneration. We analyzed hiPS-derived astrocytes from PANK2-associated neurodegeneration (PKAN), an NBIA disease characterized by progressive neurodegeneration and high iron accumulation in the globus pallidus. Previous data indicated that PKAN astrocytes exhibit alterations in iron metabolism, general impairment of constitutive endosomal trafficking, mitochondrial dysfunction and acquired neurotoxic features. Here, we performed a more in-depth analysis of the interactions between endocytic vesicles and mitochondria via superresolution microscopy experiments. A significantly lower number of transferrin-enriched vesicles were in contact with mitochondria in PKAN cells than in control cells, confirming the impaired intracellular fate of cargo endosomes. The investigation of cytosolic and mitochondrial iron parameters indicated that mitochondrial iron availability was substantially lower in PKAN cells compared to that in the controls. In addition, PKAN astrocytes exhibited defects in tubulin acetylation/phosphorylation, which might be responsible for unregulated vesicular dynamics and inappropriate iron delivery to mitochondria. Thus, the impairment of iron incorporation into these organelles seems to be the cause of cell iron delocalization, resulting in cytosolic iron overload and mitochondrial iron deficiency, triggering mitochondrial dysfunction. Overall, the data elucidate the mechanism of iron accumulation in CoA deficiency, highlighting the importance of mitochondrial iron deficiency in the pathogenesis of disease.
Collapse
Affiliation(s)
- Paolo Santambrogio
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Milan, Italy
| | - Anna Cozzi
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Milan, Italy
| | | | - Maddalena Ripamonti
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Berno
- IRCCS San Raffaele Scientific Institute, Advanced Light and Electron Microscopy Bioimaging Center ALEMBIC, Milan, Italy
| | - Eugenia Cammarota
- IRCCS San Raffaele Scientific Institute, Advanced Light and Electron Microscopy Bioimaging Center ALEMBIC, Milan, Italy
| | | | - Sonia Levi
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
4
|
Miallot R, Millet V, Galland F, Naquet P. The vitamin B5/coenzyme A axis: A target for immunomodulation? Eur J Immunol 2023; 53:e2350435. [PMID: 37482959 DOI: 10.1002/eji.202350435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Coenzyme A (CoA) serves as a vital cofactor in numerous enzymatic reactions involved in energy production, lipid metabolism, and synthesis of essential molecules. Dysregulation of CoA-dependent metabolic pathways can contribute to chronic diseases, such as inflammatory diseases, obesity, diabetes, cancer, and cardiovascular disorders. Additionally, CoA influences immune cell activation by modulating the metabolism of these cells, thereby affecting their proliferation, differentiation, and effector functions. Targeting CoA metabolism presents a promising avenue for therapeutic intervention, as it can potentially restore metabolic balance, mitigate chronic inflammation, and enhance immune cell function. This might ultimately improve the management and outcomes for these diseases. This review will more specifically focus on the contribution of pathways regulating the availability of the CoA precursor Vitamin B5/pantothenate in vivo and modulating the development of Th17-mediated inflammation, CD8-dependent anti-tumor immunity but also tissue repair processes in chronic inflammatory or degenerative diseases.
Collapse
|
5
|
Álvarez-Córdoba M, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Reche-López D, Munuera-Cabeza M, Suárez-Carrillo A, Romero-González A, Romero-Domínguez JM, López-Cabrera A, Armengol JÁ, Sánchez-Alcázar JA. Patient-Derived Cellular Models for Polytarget Precision Medicine in Pantothenate Kinase-Associated Neurodegeneration. Pharmaceuticals (Basel) 2023; 16:1359. [PMID: 37895830 PMCID: PMC10609847 DOI: 10.3390/ph16101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The term neurodegeneration with brain iron accumulation (NBIA) brings together a broad set of progressive and disabling neurological genetic disorders in which iron is deposited preferentially in certain areas of the brain. Among NBIA disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by pathologic variants in the PANK2 gene codifying the enzyme pantothenate kinase 2 (PANK2). To date, there are no effective treatments to stop the progression of these diseases. This review discusses the utility of patient-derived cell models as a valuable tool for the identification of pharmacological or natural compounds for implementing polytarget precision medicine in PKAN. Recently, several studies have described that PKAN patient-derived fibroblasts present the main pathological features associated with the disease including intracellular iron overload. Interestingly, treatment of mutant cell cultures with various supplements such as pantothenate, pantethine, vitamin E, omega 3, α-lipoic acid L-carnitine or thiamine, improved all pathophysiological alterations in PKAN fibroblasts with residual expression of the PANK2 enzyme. The information provided by pharmacological screenings in patient-derived cellular models can help optimize therapeutic strategies in individual PKAN patients.
Collapse
Affiliation(s)
- Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Ana Romero-González
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Jose Manuel Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - José Ángel Armengol
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, 41013 Seville, Spain;
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| |
Collapse
|
6
|
Zhao C, Chu P, Tang X, Yan J, Han X, Ji J, Ning X, Zhang K, Yin S, Wang T. Exposure to copper nanoparticles or copper sulfate dysregulated the hypothalamic-pituitary-gonadalaxis, gonadal histology, and metabolites in Pelteobagrus fulvidraco. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131719. [PMID: 37257385 DOI: 10.1016/j.jhazmat.2023.131719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
This study evaluated the effects of chronic exposure to copper nanoparticles (Cu-NPs) and waterborne copper (CuSO4) on the reproductive system of yellow catfish (Pelteobagrus fulvidraco). Juvenile yellow catfish were exposed to 100 and 200 μg Cu/L Cu-NPs and 100 μg Cu/L CuSO4 for 42 days. The results showed clear reproductive defects in both female and male yellow catfish in the 200 μg Cu/L Cu-NPs and 100 μg Cu/L CuSO4 groups. Exposure to Cu-NPs or CuSO4 inhibited folliculogenesis and vitellogenesis in the ovaries, and spermatogenesis in the testes, accompanied by elevation of the apoptotic signal. Ultrastructural observations also revealed damaged organelles of gonadal cells in both testes and ovaries. Most of the hypothalamic-pituitary-gonadal (HPG) axis genes examined and serum sex steroid hormones tended to be downregulated after Cu exposure. Metabolomic analysis suggested that gonadal estradiol level is sensitive to Cu-NPs or CuSO4. The heat map of gonadal metabolomics suggested a similar effect of 200 μg Cu/L Cu-NPs and 100 μg Cu/L CuSO4 in both the ovaries and testes. Additionally, metabolomics data showed that the reproductive toxicity due to Cu-NPs and CuSO4 may occur via different metabolic pathways. Cu-NPs tend to dysregulate the metabolic pathways of sphingolipid and linoleic acid metabolism in the ovary and the biosynthesis of amino acids and pantothenate and CoA in the testis. Overall, these findings revealed the toxicological effects of Cu-NPs and CuSO4 on the HPG axis and gonadal metabolism in yellow catfish.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Peng Chu
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Xiaodong Tang
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Jie Yan
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Xiaomen Han
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Jie Ji
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Xianhui Ning
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Kai Zhang
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Shaowu Yin
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| | - Tao Wang
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| |
Collapse
|
7
|
Cavestro C, Diodato D, Tiranti V, Di Meo I. Inherited Disorders of Coenzyme A Biosynthesis: Models, Mechanisms, and Treatments. Int J Mol Sci 2023; 24:ijms24065951. [PMID: 36983025 PMCID: PMC10054636 DOI: 10.3390/ijms24065951] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Coenzyme A (CoA) is a vital and ubiquitous cofactor required in a vast number of enzymatic reactions and cellular processes. To date, four rare human inborn errors of CoA biosynthesis have been described. These disorders have distinct symptoms, although all stem from variants in genes that encode enzymes involved in the same metabolic process. The first and last enzymes catalyzing the CoA biosynthetic pathway are associated with two neurological conditions, namely pantothenate kinase-associated neurodegeneration (PKAN) and COASY protein-associated neurodegeneration (CoPAN), which belong to the heterogeneous group of neurodegenerations with brain iron accumulation (NBIA), while the second and third enzymes are linked to a rapidly fatal dilated cardiomyopathy. There is still limited information about the pathogenesis of these diseases, and the knowledge gaps need to be resolved in order to develop potential therapeutic approaches. This review aims to provide a summary of CoA metabolism and functions, and a comprehensive overview of what is currently known about disorders associated with its biosynthesis, including available preclinical models, proposed pathomechanisms, and potential therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Cavestro
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Daria Diodato
- Unit of Muscular and Neurodegenerative Disorders, Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| |
Collapse
|
8
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
9
|
Bi-Allelic Mutations in Zebrafish pank2 Gene Lead to Testicular Atrophy and Perturbed Behavior without Signs of Neurodegeneration. Int J Mol Sci 2022; 23:ijms232112914. [DOI: 10.3390/ijms232112914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/01/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022] Open
Abstract
Coenzyme A (CoA) is an essential cofactor in all living organisms, being involved in a large number of chemical reactions. Sequence variations in pantothenate kinase 2 (PANK2), the first enzyme of CoA biosynthesis, are found in patients affected by Pantothenate Kinase Associated Neurodegeneration (PKAN), one of the most common forms of neurodegeneration, with brain iron accumulation. Knowledge about the biochemical and molecular features of this disorder has increased a lot in recent years. Nonetheless, the main culprit of the pathology is not well defined, and no treatment option is available yet. In order to contribute to the understanding of this disease and facilitate the search for therapies, we explored the potential of the zebrafish animal model and generated lines carrying biallelic mutations in the pank2 gene. The phenotypic characterization of pank2-mutant embryos revealed anomalies in the development of venous vascular structures and germ cells. Adult fish showed testicular atrophy and altered behavioral response in an anxiety test but no evident signs of neurodegeneration. The study suggests that selected cell and tissue types show a higher vulnerability to pank2 deficiency in zebrafish. Deciphering the biological basis of this phenomenon could provide relevant clues for better understanding and treating PKAN.
Collapse
|
10
|
Levkova M, Chervenkov T, Hachmeriyan M, Angelova L. Overview Of Current NGS Testing For Male Factor Infertility. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aim — Infertility is a global health problem. The next-generation sequencing and panel testing are offering new opportunities to further diagnose the reason for male infertility. The aim of this paper is to provide a better insight into the currently available panels for male infertility due to impaired spermatogenesis. Methods — We conducted research in the Genetic testing registry by using the keywords „infertility“, „male infertility“. We also gathered information about the number of tested genes, coverage of the panels, turnaround time, and any additional tests, which could be ordered. Results — As a result there were eleven laboratories, offering panel testing for male infertility, which tested for 230 different genes, but 65 genes (28.26%) from the different panels had an uncertain role for the tested condition. Cystic fibrosis transmembrane conductance regulator was the only gene, suggested by all laboratories. Conclusions — Next-generation sequencing could be extremely helpful in the diagnostic process of male infertility. However, clinicians should be aware that some of the included genes have an uncertain role for male infertility.
Collapse
Affiliation(s)
- Mariya Levkova
- Medical University Varna, Varna, Bulgaria; St. Marina Hospital, Varna, Bulgaria
| | - Trifon Chervenkov
- Medical University Varna, Varna, Bulgaria; St. Marina Hospital, Varna, Bulgaria
| | - Mari Hachmeriyan
- Medical University Varna, Varna, Bulgaria; St. Marina Hospital, Varna, Bulgaria
| | | |
Collapse
|
11
|
Li Y, Steinberg J, Coleman Z, Wang S, Subramanian C, Li Y, Patay Z, Akers W, Rock CO, Jackowski S, Bagga P. Proton magnetic resonance spectroscopy detects cerebral metabolic derangement in a mouse model of brain coenzyme a deficiency. J Transl Med 2022; 20:103. [PMID: 35197056 PMCID: PMC8867880 DOI: 10.1186/s12967-022-03304-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Pantothenate kinase (PANK) is the first and rate-controlling enzymatic step in the only pathway for cellular coenzyme A (CoA) biosynthesis. PANK-associated neurodegeneration (PKAN), formerly known as Hallervorden–Spatz disease, is a rare, life-threatening neurologic disorder that affects the CNS and arises from mutations in the human PANK2 gene. Pantazines, a class of small molecules containing the pantazine moiety, yield promising therapeutic effects in an animal model of brain CoA deficiency. A reliable technique to identify the neurometabolic effects of PANK dysfunction and to monitor therapeutic responses is needed. Methods We applied 1H magnetic resonance spectroscopy as a noninvasive technique to evaluate the therapeutic effects of the newly developed Pantazine BBP-671. Results 1H MRS reliably quantified changes in cerebral metabolites, including glutamate/glutamine, lactate, and N-acetyl aspartate in a neuronal Pank1 and Pank2 double-knockout (SynCre+Pank1,2 dKO) mouse model of brain CoA deficiency. The neuronal SynCre+Pank1,2 dKO mice had distinct decreases in Glx/tCr, NAA/tCr, and lactate/tCr ratios compared to the wildtype matched control mice that increased in response to BBP-671 treatment. Conclusions BBP-671 treatment completely restored glutamate/glutamine levels in the brains of the mouse model, suggesting that these metabolites are promising clinically translatable biomarkers for future therapeutic trials. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03304-y.
Collapse
Affiliation(s)
- Yanan Li
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics (CIVIT), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zane Coleman
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shubo Wang
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zoltan Patay
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Walter Akers
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
12
|
Munshi MI, Yao SJ, Ben Mamoun C. Redesigning therapies for pantothenate kinase-associated neurodegeneration. J Biol Chem 2022; 298:101577. [PMID: 35041826 PMCID: PMC8861153 DOI: 10.1016/j.jbc.2022.101577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Pantothenate Kinase-Associated Neurodegeneration (PKAN) is an incurable rare genetic disorder of children and young adults caused by mutations in the PANK2 gene, which encodes an enzyme critical for the biosynthesis of Coenzyme A. Although PKAN affects only a small number of patients, it shares several hallmarks of more common neurodegenerative diseases of older adults such as Alzheimer's and Parkinson's. Advances in etiological understanding and treatment of PKAN could therefore have implications for our understanding of more common diseases and may shed new lights on the physiological importance of Coenzyme A, a cofactor critical for the operation of various cellular metabolic processes. The large body of knowledge which accumulated over the years around PKAN pathology, including but not limited to studies of various PKAN models and therapies, has contributed not only to progress in our understanding of the disease, but as importantly, to the crystallization of key questions that guide future investigations of the disease. In this Review, we will summarize this knowledge and demonstrate how it forms the backdrop to new avenues of research.
Collapse
Affiliation(s)
- Muhammad I Munshi
- Department of Internal Medicine and Department of Microbial Pathogenesis, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sarah J Yao
- Department of Internal Medicine and Department of Microbial Pathogenesis, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine and Department of Microbial Pathogenesis, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Coenzyme a Biochemistry: From Neurodevelopment to Neurodegeneration. Brain Sci 2021; 11:brainsci11081031. [PMID: 34439650 PMCID: PMC8392065 DOI: 10.3390/brainsci11081031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
Coenzyme A (CoA) is an essential cofactor in all living organisms. It is involved in a large number of biochemical processes functioning either as an activator of molecules with carbonyl groups or as a carrier of acyl moieties. Together with its thioester derivatives, it plays a central role in cell metabolism, post-translational modification, and gene expression. Furthermore, recent studies revealed a role for CoA in the redox regulation by the S-thiolation of cysteine residues in cellular proteins. The intracellular concentration and distribution in different cellular compartments of CoA and its derivatives are controlled by several extracellular stimuli such as nutrients, hormones, metabolites, and cellular stresses. Perturbations of the biosynthesis and homeostasis of CoA and/or acyl-CoA are connected with several pathological conditions, including cancer, myopathies, and cardiomyopathies. In the most recent years, defects in genes involved in CoA production and distribution have been found in patients affected by rare forms of neurodegenerative and neurodevelopmental disorders. In this review, we will summarize the most relevant aspects of CoA cellular metabolism, their role in the pathogenesis of selected neurodevelopmental and neurodegenerative disorders, and recent advancements in the search for therapeutic approaches for such diseases.
Collapse
|
14
|
Tjhin ET, Howieson VM, Spry C, van Dooren GG, Saliba KJ. A novel heteromeric pantothenate kinase complex in apicomplexan parasites. PLoS Pathog 2021; 17:e1009797. [PMID: 34324601 PMCID: PMC8366970 DOI: 10.1371/journal.ppat.1009797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/16/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms.
Collapse
Affiliation(s)
- Erick T. Tjhin
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Vanessa M. Howieson
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
- Medical School, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
15
|
Thakur N, Klopstock T, Jackowski S, Kuscer E, Tricta F, Videnovic A, Jinnah HA. Rational Design of Novel Therapies for Pantothenate Kinase-Associated Neurodegeneration. Mov Disord 2021; 36:2005-2016. [PMID: 34002881 DOI: 10.1002/mds.28642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/09/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This review highlights the recent scientific advances that have enabled rational design of novel clinical trials for pantothenate kinase-associated neurodegeneration (PKAN), a rare autosomal recessive neurogenetic disorder associated with progressive neurodegenerative changes and functional impairment. PKAN is caused by genetic variants in the PANK2 gene that result in dysfunction in pantothenate kinase 2 (PANK2) enzyme activity, with consequent disruption of coenzyme A (CoA) synthesis, and subsequent accumulation of brain iron. The clinical phenotype is varied and may include dystonia, rigidity, bradykinesia, postural instability, spasticity, loss of ambulation and ability to communicate, feeding difficulties, psychiatric issues, and cognitive and visual impairment. There are several symptom-targeted treatments, but these do not provide sustained benefit as the disorder progresses. OBJECTIVES A detailed understanding of the molecular and biochemical pathogenesis of PKAN has opened the door for the design of novel rationally designed therapeutics that target the underlying mechanisms. METHODS Two large double-blind phase 3 clinical trials have been completed for deferiprone (an iron chelation treatment) and fosmetpantotenate (precursor replacement therapy). A pilot open-label trial of pantethine as a potential precursor replacement strategy has also been completed, and a trial of 4-phosphopantetheine has begun enrollment. Several other compounds have been evaluated in pre-clinical studies, and additional clinical trials may be anticipated. CONCLUSIONS Experience with these trials has encouraged a critical evaluation of optimal trial designs, as well as the development of PKAN-specific measures to monitor outcomes. PKAN provides a valuable example for understanding targeted drug development and clinical trial design for rare disorders. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nivedita Thakur
- Department of Pediatrics, Division of Child and Adolescent Neurology, University of Texas at Houston Medical School, Houston, Texas, USA
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institut, University Hospital LMU Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Enej Kuscer
- Comet Therapeutics, Cambridge, Massachusetts, USA
| | - Fernando Tricta
- Rare Diseases, Chiesi Canada Corporation, Toronto, Ontario, Canada
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hyder A Jinnah
- Departments of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Di Meo I, Cavestro C, Pedretti S, Fu T, Ligorio S, Manocchio A, Lavermicocca L, Santambrogio P, Ripamonti M, Levi S, Ayciriex S, Mitro N, Tiranti V. Neuronal Ablation of CoA Synthase Causes Motor Deficits, Iron Dyshomeostasis, and Mitochondrial Dysfunctions in a CoPAN Mouse Model. Int J Mol Sci 2020; 21:ijms21249707. [PMID: 33352696 PMCID: PMC7766928 DOI: 10.3390/ijms21249707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
COASY protein-associated neurodegeneration (CoPAN) is a rare but devastating genetic autosomal recessive disorder of inborn error of CoA metabolism, which shares with pantothenate kinase-associated neurodegeneration (PKAN) similar features, such as dystonia, parkinsonian traits, cognitive impairment, axonal neuropathy, and brain iron accumulation. These two disorders are part of the big group of neurodegenerations with brain iron accumulation (NBIA) for which no effective treatment is available at the moment. To date, the lack of a mammalian model, fully recapitulating the human disorder, has prevented the elucidation of pathogenesis and the development of therapeutic approaches. To gain new insights into the mechanisms linking CoA metabolism, iron dyshomeostasis, and neurodegeneration, we generated and characterized the first CoPAN disease mammalian model. Since CoA is a crucial metabolite, constitutive ablation of the Coasy gene is incompatible with life. On the contrary, a conditional neuronal-specific Coasy knock-out mouse model consistently developed a severe early onset neurological phenotype characterized by sensorimotor defects and dystonia-like movements, leading to premature death. For the first time, we highlighted defective brain iron homeostasis, elevation of iron, calcium, and magnesium, together with mitochondrial dysfunction. Surprisingly, total brain CoA levels were unchanged, and no signs of neurodegeneration were present.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
- Correspondence: (I.D.M.); (V.T.)
| | - Chiara Cavestro
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (S.L.); (N.M.)
| | - Tingting Fu
- Institut des Sciences Analytiques, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France; (T.F.); (S.A.)
| | - Simona Ligorio
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (S.L.); (N.M.)
| | - Antonello Manocchio
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
| | - Lucrezia Lavermicocca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
| | - Paolo Santambrogio
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (M.R.); (S.L.)
| | - Maddalena Ripamonti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (M.R.); (S.L.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sonia Levi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (M.R.); (S.L.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sophie Ayciriex
- Institut des Sciences Analytiques, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France; (T.F.); (S.A.)
| | - Nico Mitro
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (S.L.); (N.M.)
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (C.C.); (A.M.); (L.L.)
- Correspondence: (I.D.M.); (V.T.)
| |
Collapse
|
17
|
Hinarejos I, Machuca C, Sancho P, Espinós C. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel) 2020; 9:antiox9101020. [PMID: 33092153 PMCID: PMC7589120 DOI: 10.3390/antiox9101020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
The syndromes of neurodegeneration with brain iron accumulation (NBIA) encompass a group of invalidating and progressive rare diseases that share the abnormal accumulation of iron in the basal ganglia. The onset of NBIA disorders ranges from infancy to adulthood. Main clinical signs are related to extrapyramidal features (dystonia, parkinsonism and choreoathetosis), and neuropsychiatric abnormalities. Ten NBIA forms are widely accepted to be caused by mutations in the genes PANK2, PLA2G6, WDR45, C19ORF12, FA2H, ATP13A2, COASY, FTL1, CP, and DCAF17. Nonetheless, many patients remain without a conclusive genetic diagnosis, which shows that there must be additional as yet undiscovered NBIA genes. In line with this, isolated cases of known monogenic disorders, and also, new genetic diseases, which present with abnormal brain iron phenotypes compatible with NBIA, have been described. Several pathways are involved in NBIA syndromes: iron and lipid metabolism, mitochondrial dynamics, and autophagy. However, many neurodegenerative conditions share features such as mitochondrial dysfunction and oxidative stress, given the bioenergetics requirements of neurons. This review aims to describe the existing link between the classical ten NBIA forms by examining their connection with mitochondrial impairment as well as oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Isabel Hinarejos
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Candela Machuca
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Unit of Stem Cells Therapies in Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Department of Genetics, University of Valencia, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-963-289-680
| |
Collapse
|
18
|
Yang F, Wang J, Yang Z, Ren Z, Zeng F. PANK2 p.A170fs:a novel pathogenetic mutation, compound with PANK2 p.R440P, causing pantothenate kinase Associated neurodegeneration in a Chinese family. Int J Neurosci 2020; 132:582-588. [PMID: 33043782 DOI: 10.1080/00207454.2020.1828883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Pantothenate kinase associated neurodegeneration (PKAN) is a severe autosomal recessive rare disease and characterized by iron accumulation in the basal ganglia. To investigate the pathogenesis of this disease in two sibling patients with PANK in a Chinese family, whole-exome variant detection and functional analysis were performed. MATERIALS AND METHODS Clinical and radiographic investigations were performed in the two brother patients. Whole exome sequencing (WES) was used in mutation detection, and the mutations were confirmed by Sanger sequencing. A longevity cohort genetic database was applied as Chinese urban controls. Bioinformatic analysis was performed to predict the pathogenicity. RESULTS Compound heterozygous mutations of PANK2 were detected in two sibling brothers with PKAN in a Chinese family: c.510_522del (p.A170fs) and c.1319G > C (p.R440P) in the transcript NM_153638. PANK2: c.510_522del (p.A170fs) was absent in public data and the Chinese urban controls. Bioinformatics analysis showed that the above two variants were pathogenicity. CONCLUSIONS We identified a rare compound heterozygous combination of PANK2 mutations found in a Chinese family in which two sibling brothers suffered from PKAN. PANK2 c.510_522del (p.A170fs) was the first reported to be a PKAN pathogenic variant.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China
| | - Juan Wang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China
| | - Ze Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P. R. China
| | - Zhaorui Ren
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
19
|
D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020; 245:1444-1473. [PMID: 32878460 PMCID: PMC7553095 DOI: 10.1177/1535370220953065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.
Collapse
Affiliation(s)
| | - Mark C Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Affairs Medical Center, Tampa, FL 33612, USA
| |
Collapse
|
20
|
Wu H, Gao Y, Ma C, Shen Q, Wang J, Lv M, Liu C, Cheng H, Zhu F, Tian S, Elshewy N, Ni X, Tan Q, Xu X, Zhou P, Wei Z, Zhang F, He X, Cao Y. A novel hemizygous loss-of-function mutation in ADGRG2 causes male infertility with congenital bilateral absence of the vas deferens. J Assist Reprod Genet 2020; 37:1421-1429. [PMID: 32314195 PMCID: PMC7311603 DOI: 10.1007/s10815-020-01779-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Cystic fibrosis transmembrane conductance regulator (CFTR) and adhesion G protein-coupled receptor G2 (ADGRG2) have been identified as the main pathogenic genes in congenital bilateral absence of the vas deferens (CBAVD), which is an important cause of obstructive azoospermia. This study aimed to identify the disease-causing gene in two brothers with CBAVD from a Chinese consanguineous family and reveal the intracytoplasmic sperm injection (ICSI) outcomes in these patients. METHODS Whole-exome sequencing and Sanger sequencing were used to identify the candidate pathogenic genes. Real-time polymerase chain reaction, immunohistochemistry, and immunofluorescence were used to assess the expression of the mutant gene. Moreover, the ICSI results from both patients were retrospectively reviewed. RESULTS A novel hemizygous loss-of-function mutation (c.G118T: p.Glu40*) in ADGRG2 was identified in both patients with CBAVD. This mutation is absent from the human genome databases and causes an early translational termination in the third exon of ADGRG2. Expression analyses showed that both the ADGRG2 mRNA and the corresponding protein were undetectable in the proximal epididymal tissue of ADGRG2-mutated patients. ADGRG2 expression was restricted to the apical membranes of non-ciliated epithelia in human efferent ducts, which was consistent with a previous report in mice. Both ADGRG2-mutated patients had normal spermatogenesis and had successful clinical outcomes following ICSI. CONCLUSIONS Our study verifies the pathogenic role of ADGRG2 in X-linked CBAVD and broadens the spectrum of ADGRG2 mutations. In addition, we found positive ICSI outcomes in the two ADGRG2-mutated CBAVD patients.
Collapse
Affiliation(s)
- Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
| | - Jiajia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Huiru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, China
| | - Fuxi Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Shixiong Tian
- Obstetrics and Gynecology Hospital, School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Nagwa Elshewy
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
| | - Xiaoqing Ni
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
| | - Qing Tan
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
21
|
Bieth E, Hamdi SM, Mieusset R. Genetics of the congenital absence of the vas deferens. Hum Genet 2020; 140:59-76. [PMID: 32025909 PMCID: PMC7864840 DOI: 10.1007/s00439-020-02122-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/28/2020] [Indexed: 01/19/2023]
Abstract
Congenital absence of the vas deferens (CAVD) may have various clinical presentations depending on whether it is bilateral (CBAVD) or unilateral (CUAVD), complete or partial, and associated or not with other abnormalities of the male urogenital tract. CBAVD is usually discovered in adult men either during the systematic assessment of cystic fibrosis or other CFTR-related conditions, or during the exploration of isolated infertility with obstructive azoospermia. The prevalence of CAVDs in men is reported to be approximately 0.1%. However, this figure is probably underestimated, because unilateral forms of CAVD in asymptomatic fertile men are not usually diagnosed. The diagnosis of CAVDs is based on clinical, ultrasound, and sperm examinations. The majority of subjects with CAVD carry at least one cystic fibrosis-causing mutation that warrants CFTR testing and in case of a positive result, genetic counseling prior to conception. Approximately 2% of the cases of CAVD are hemizygous for a loss-of-function mutation in the ADGRG2 gene that may cause a familial form of X-linked infertility. However, despite this recent finding, 10–20% of CBAVDs and 60–70% of CUAVDs remain without a genetic diagnosis. An important proportion of these unexplained CAVDs coexist with a solitary kidney suggesting an early organogenesis disorder (Wolffian duct), unlike CAVDs related to CFTR or ADGRG2 mutations, which might be the result of progressive degeneration that begins later in fetal life and probably continues after birth. How the dysfunction of CFTR, ADGRG2, or other genes such as SLC29A3 leads to this involution is the subject of various pathophysiological hypotheses that are discussed in this review.
Collapse
Affiliation(s)
- Eric Bieth
- Service de Génétique Médicale, Hôpital Purpan, CHU, 31059, Toulouse, France.
| | - Safouane M Hamdi
- Service de Biochimie, Institut Fédératif de Biologie, CHU, 31059, Toulouse, France.,EA3694 (Groupe de Recherche en Fertilité Humaine), Université Toulouse III, 31059, Toulouse, France
| | - Roger Mieusset
- EA3694 (Groupe de Recherche en Fertilité Humaine), Université Toulouse III, 31059, Toulouse, France.,Département d'Andrologie (Groupe Activité Médecine de la Reproduction), CHU, 31059, Toulouse, France
| |
Collapse
|
22
|
Subramanian C, Yao J, Frank MW, Rock CO, Jackowski S. A pantothenate kinase-deficient mouse model reveals a gene expression program associated with brain coenzyme a reduction. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165663. [PMID: 31918006 DOI: 10.1016/j.bbadis.2020.165663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022]
Abstract
Pantothenate kinase (PanK) is the first enzyme in the coenzyme A (CoA) biosynthetic pathway. The differential expression of the four-active mammalian PanK isoforms regulates CoA levels in different tissues and PANK2 mutations lead to Pantothenate Kinase Associated Neurodegeneration (PKAN). The molecular mechanisms that potentially underlie PKAN pathophysiology are investigated in a mouse model of CoA deficiency in the central nervous system (CNS). Both PanK1 and PanK2 contribute to brain CoA levels in mice and so a mouse model with a systemic deletion of Pank1 together with neuronal deletion of Pank2 was generated. Neuronal Pank2 expression in double knockout mice decreased starting at P9-11 triggering a significant brain CoA deficiency. The depressed brain CoA in the mice correlates with abnormal forelimb flexing and weakness that, in turn, contributes to reduced locomotion and abnormal gait. Biochemical analysis reveals a reduction in short-chain acyl-CoAs, including acetyl-CoA and succinyl-CoA. Comparative gene expression analysis reveals that the CoA deficiency in brain is associated with a large elevation of Hif3a transcript expression and significant reduction of gene transcripts in heme and hemoglobin synthesis. Reduction of brain heme levels is associated with the CoA deficiency. The data suggest a response to oxygen/glucose deprivation and indicate a disruption of oxidative metabolism arising from a CoA deficiency in the CNS.
Collapse
Affiliation(s)
| | - Jiangwei Yao
- St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Matthew W Frank
- St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Charles O Rock
- St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | |
Collapse
|
23
|
Disruption of Spermatogenesis and Infertility in Ataxia with Oculomotor Apraxia Type 2 (AOA2). THE CEREBELLUM 2019; 18:448-456. [PMID: 30778901 DOI: 10.1007/s12311-019-01012-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive cerebellar ataxia characterized by onset between 10 and 20 years of age and a range of neurological features that include progressive cerebellar atrophy, axonal sensorimotor neuropathy, oculomotor apraxia in a majority of patients, and elevated serum alpha-fetoprotein (AFP). AOA2 is caused by mutation of the SETX gene which encodes senataxin, a DNA/RNA helicase involved in transcription regulation, RNA processing, and DNA maintenance. Disruption of senataxin in rodents led to defective spermatogenesis and sterility in males uncovering a key role for senataxin in male germ cell survival. Here, we report the first clinical and cellular evidence of impaired spermatogenesis in AOA2 patients. We assessed sperm production in three AOA2 patients and testicular pathology in one patient and compared the findings to those of Setx-knockout mice. Sperm production was impaired in all patients assessed (3/3, 100%). Analyses of testicular biopsies from an AOA2 patient recapitulate features of the histology seen in Setx-knockout mice, strongly suggesting an underlying mechanism centering on DNA-damage-mediated germ cell apoptosis. These findings support a role for senataxin in human reproductive function and highlight a novel clinical feature of AOA2 that extends the extra-neurological roles of senataxin. This raises an important reproductive counseling issue for clinicians, and fertility specialists should be aware of SETX mutations as a possible diagnosis in young male patients presenting with oligospermia or azoospermia since infertility may presage the later onset of neurological manifestations in some individuals.
Collapse
|
24
|
Zhao YG, Zhang H. Core autophagy genes and human diseases. Curr Opin Cell Biol 2019; 61:117-125. [DOI: 10.1016/j.ceb.2019.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023]
|
25
|
Jeong SY, Hogarth P, Placzek A, Gregory AM, Fox R, Zhen D, Hamada J, van der Zwaag M, Lambrechts R, Jin H, Nilsen A, Cobb J, Pham T, Gray N, Ralle M, Duffy M, Schwanemann L, Rai P, Freed A, Wakeman K, Woltjer RL, Sibon OCM, Hayflick SJ. 4'-Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN. EMBO Mol Med 2019; 11:e10489. [PMID: 31660701 PMCID: PMC6895607 DOI: 10.15252/emmm.201910489] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 11/19/2022] Open
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.
Collapse
Affiliation(s)
- Suh Young Jeong
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Penelope Hogarth
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
| | - Andrew Placzek
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Allison M Gregory
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Rachel Fox
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Dolly Zhen
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Jeffrey Hamada
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | | | - Roald Lambrechts
- Department of Cell BiologyUniversity Medical Center GroningenGroningenthe Netherlands
| | - Haihong Jin
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Aaron Nilsen
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Jared Cobb
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Thao Pham
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Nora Gray
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
| | - Martina Ralle
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Megan Duffy
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Leila Schwanemann
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Puneet Rai
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Alison Freed
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Katrina Wakeman
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Randall L Woltjer
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Ody CM Sibon
- Department of Cell BiologyUniversity Medical Center GroningenGroningenthe Netherlands
| | - Susan J Hayflick
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
- Department of PediatricsOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
26
|
Ghieh F, Mitchell V, Mandon-Pepin B, Vialard F. Genetic defects in human azoospermia. Basic Clin Androl 2019; 29:4. [PMID: 31024732 PMCID: PMC6477738 DOI: 10.1186/s12610-019-0086-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
As with many other diseases, genetic testing in human azoospermia was initially restricted to karyotype analyses (leading to diagnostic chromosome rearrangement tests for Klinefelter and other syndromes). With the advent of molecular biology in the 1980s, genetic screening was broadened to analyses of Y chromosome microdeletions and the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Decades later, the emergence of whole-genome techniques has led to the identification of other genetic defects associated with human azoospermia. Although TEX11 and ADGRG2 defects are frequently described in men with azoospermia, most of the causal gene defects found to date are private (i.e. identified in a small number of consanguineous families). Here, we provide an up-to-date overview of all the types of genetic defects known to be linked to human azoospermia and try to give clinical practice guidelines according to azoospermia phenotype. Along with homozygous mutations, polymorphisms and epigenetic defects are also briefly discussed. However, as these variations predispose to azoospermia, a specific review will be needed to compile data on all the particular genetic variations reported in the literature.
Collapse
Affiliation(s)
- Farah Ghieh
- 1EA7404-GIG, UFR des Sciences de la Santé Simone Veil, UVSQ, Montigny le Bretonneux, France
| | - Valérie Mitchell
- 2CHU Lille, Reproductive Biology Institute-Spermiologie-CECOS, Jeanne de Flandre Hospital, Lille, France.,3EA4308 "Gametogenesis and Gamete Quality", University of Lille, Lille, France
| | | | - François Vialard
- 1EA7404-GIG, UFR des Sciences de la Santé Simone Veil, UVSQ, Montigny le Bretonneux, France.,Genetics Division, CHI de Poissy St Germain en Laye, Poissy, France
| |
Collapse
|
27
|
Wang W, Zhang X, Zhou X, Zhang Y, La Y, Zhang Y, Li C, Zhao Y, Li F, Liu B, Jiang Z. Deep Genome Resequencing Reveals Artificial and Natural Selection for Visual Deterioration, Plateau Adaptability and High Prolificacy in Chinese Domestic Sheep. Front Genet 2019; 10:300. [PMID: 31001329 PMCID: PMC6454055 DOI: 10.3389/fgene.2019.00300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/19/2019] [Indexed: 01/02/2023] Open
Abstract
Sheep were one of the earliest domesticated animals. Both artificial and natural selection during domestication has resulted in remarkable changes in behavioral, physiological, and morphological phenotypes; however, the genetic mechanisms underpinning these changes remain unclear, particularly for indigenous Chinese sheep. In the present study, we performed pooled whole-genome resequencing of 338 sheep from five breeds representative of indigenous Chinese breeds and compared them to the wild ancestors of domestic sheep (Asian mouflon, Ovis orientalis) for detection of genome-wide selective sweeps. Comparative genomic analysis between domestic sheep and Asian mouflon showed that selected regions were enriched for genes involved in bone morphogenesis, growth regulation, and embryonic and neural development in domestic sheep. Moreover, we identified several vision-associated genes with funtional mutations, such as PDE6B (c.G2994C/p.A982P and c.C2284A/p.L762M mutations), PANK2, and FOXC1/GMSD in all five Chinese native breeds. Breed-specific selected regions were determined including genes such as CYP17 for hypoxia adaptability in Tibetan sheep and DNAJB5 for heat tolerance in Duolang sheep. Our findings provide insights into the genetic mechanisms underlying important phenotypic changes that have occurred during sheep domestication and subsequent selection.
Collapse
Affiliation(s)
- Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Yangzi Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Yongfu La
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yu Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Youzhang Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
28
|
Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition. Pharmaceuticals (Basel) 2019; 12:ph12010027. [PMID: 30744104 PMCID: PMC6469182 DOI: 10.3390/ph12010027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a set of neurodegenerative disorders, which includes very rare monogenetic diseases. They are heterogeneous in regard to the onset and the clinical symptoms, while the have in common a specific brain iron deposition in the region of the basal ganglia that can be visualized by radiological and histopathological examinations. Nowadays, 15 genes have been identified as causative for NBIA, of which only two code for iron-proteins, while all the other causative genes codify for proteins not involved in iron management. Thus, how iron participates to the pathogenetic mechanism of most NBIA remains unclear, essentially for the lack of experimental models that fully recapitulate the human phenotype. In this review we reported the recent data on new models of these disorders aimed at highlight the still scarce knowledge of the pathogenesis of iron deposition.
Collapse
|
29
|
Abstract
Two inborn errors of coenzyme A (CoA) metabolism are responsible for distinct forms of neurodegeneration with brain iron accumulation (NBIA), a heterogeneous group of neurodegenerative diseases having as a common denominator iron accumulation mainly in the inner portion of globus pallidus. Pantothenate kinase-associated neurodegeneration (PKAN), an autosomal recessive disorder with progressive impairment of movement, vision and cognition, is the most common form of NBIA and is caused by mutations in the pantothenate kinase 2 gene (PANK2), coding for a mitochondrial enzyme, which phosphorylates vitamin B5 in the first reaction of the CoA biosynthetic pathway. Another very rare but similar disorder, denominated CoPAN, is caused by mutations in coenzyme A synthase gene (COASY) coding for a bi-functional mitochondrial enzyme, which catalyzes the final steps of CoA biosynthesis. It still remains a mystery why dysfunctions in CoA synthesis lead to neurodegeneration and iron accumulation in specific brain regions, but it is now evident that CoA metabolism plays a crucial role in the normal functioning and metabolism of the nervous system.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, Milan 20126, Italy
| | - Miryam Carecchio
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, Milan 20126, Italy
- Department of Child Neurology, Foundation IRCCS Neurological Institute C. Besta, Via Celoria 11, Milan 20133, Italy
- Department of Medicine and Surgery, PhD Programme in Molecular and Translational Medicine, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, Milan 20126, Italy
| |
Collapse
|
30
|
Iron Pathophysiology in Neurodegeneration with Brain Iron Accumulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:153-177. [DOI: 10.1007/978-981-13-9589-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Alvarez-Cordoba M, Villanueva-Paz M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Talaverón-Rey M, Abril-Jaramillo J, Vintimilla-Tosi AB, Sánchez-Alcázar JA. Precision medicine in pantothenate kinase-associated neurodegeneration. Neural Regen Res 2019; 14:1177-1185. [PMID: 30804242 PMCID: PMC6425824 DOI: 10.4103/1673-5374.251203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neurodegeneration with brain iron accumulation is a broad term that describes a heterogeneous group of progressive and invalidating neurologic disorders in which iron deposits in certain brain areas, mainly the basal ganglia. The predominant clinical symptoms include spasticity, progressive dystonia, Parkinson’s disease-like symptoms, neuropsychiatric alterations, and retinal degeneration. Among the neurodegeneration with brain iron accumulation disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by defects in the gene encoding the enzyme pantothenate kinase 2 (PANK2) which catalyzed the first reaction of the coenzyme A biosynthesis pathway. Currently there is no effective treatment to prevent the inexorable course of these disorders. The aim of this review is to open up a discussion on the utility of using cellular models derived from patients as a valuable tool for the development of precision medicine in PKAN. Recently, we have described that dermal fibroblasts obtained from PKAN patients can manifest the main pathological changes of the disease such as intracellular iron accumulation accompanied by large amounts of lipofuscin granules, mitochondrial dysfunction and a pronounced increase of markers of oxidative stress. In addition, PKAN fibroblasts showed a morphological senescence-like phenotype. Interestingly, pantothenate supplementation, the substrate of the PANK2 enzyme, corrected all pathophysiological alterations in responder PKAN fibroblasts with low/residual PANK2 enzyme expression. However, pantothenate treatment had no favourable effect on PKAN fibroblasts harbouring mutations associated with the expression of a truncated/incomplete protein. The correction of pathological alterations by pantothenate in individual mutations was also verified in induced neurons obtained by direct reprograming of PKAN fibroblasts. Our observations indicate that pantothenate supplementation can increase/stabilize the expression levels of PANK2 in specific mutations. Fibroblasts and induced neurons derived from patients can provide a useful tool for recognizing PKAN patients who can respond to pantothenate treatment. The presence of low but significant PANK2 expression which can be increased in particular mutations gives valuable information which can support the treatment with high dose of pantothenate. The evaluation of personalized treatments in vitro of fibroblasts and neuronal cells derived from PKAN patients with a wide range of pharmacological options currently available, and monitoring its effect on the pathophysiological changes, can help for a better therapeutic strategy. In addition, these cell models will be also useful for testing the efficacy of new therapeutic options developed in the future.
Collapse
Affiliation(s)
- Mónica Alvarez-Cordoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | | | | | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| |
Collapse
|
32
|
Sharma LK, Subramanian C, Yun MK, Frank MW, White SW, Rock CO, Lee RE, Jackowski S. A therapeutic approach to pantothenate kinase associated neurodegeneration. Nat Commun 2018; 9:4399. [PMID: 30352999 PMCID: PMC6199309 DOI: 10.1038/s41467-018-06703-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022] Open
Abstract
Pantothenate kinase (PANK) is a metabolic enzyme that regulates cellular coenzyme A (CoA) levels. There are three human PANK genes, and inactivating mutations in PANK2 lead to pantothenate kinase associated neurodegeneration (PKAN). Here we performed a library screen followed by chemical optimization to produce PZ-2891, an allosteric PANK activator that crosses the blood brain barrier. PZ-2891 occupies the pantothenate pocket and engages the dimer interface to form a PANK•ATP•Mg2+•PZ-2891 complex. The binding of PZ-2891 to one protomer locks the opposite protomer in a catalytically active conformation that is refractory to acetyl-CoA inhibition. Oral administration of PZ-2891 increases CoA levels in mouse liver and brain. A knockout mouse model of brain CoA deficiency exhibited weight loss, severe locomotor impairment and early death. Knockout mice on PZ-2891 therapy gain weight, and have improved locomotor activity and life span establishing pantazines as novel therapeutics for the treatment of PKAN.
Collapse
Affiliation(s)
- Lalit Kumar Sharma
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Nurix, Inc, 1700 Owens Street, Suite 205, San Francisco, CA, 94158, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
33
|
Shu W, Dunaief JL. Potential Treatment of Retinal Diseases with Iron Chelators. Pharmaceuticals (Basel) 2018; 11:ph11040112. [PMID: 30360383 PMCID: PMC6316536 DOI: 10.3390/ph11040112] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022] Open
Abstract
Iron is essential for life, while excess iron can be toxic. Iron generates hydroxyl radical, which is the most reactive free radical, causing oxidative stress. Since iron is absorbed through the diet but not excreted from the body, it accumulates with age in tissues, including the retina, consequently leading to age-related toxicity. This accumulation is further promoted by inflammation. Hereditary diseases such as aceruloplasminemia, Friedreich’s ataxia, pantothenate kinase-associated neurodegeneration, and posterior column ataxia with retinitis pigmentosa involve retinal degeneration associated with iron dysregulation. In addition to hereditary causes, dietary or parenteral iron supplementation has been recently reported to elevate iron levels in the retinal pigment epithelium (RPE) and promote retinal degeneration. Ocular siderosis from intraocular foreign bodies or subretinal hemorrhage can also lead to retinopathy. Evidence from mice and humans suggests that iron toxicity may contribute to age-related macular degeneration pathogenesis. Iron chelators can protect photoreceptors and RPE in various mouse models. The therapeutic potential for iron chelators is under investigation.
Collapse
Affiliation(s)
- Wanting Shu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, Philadelphia, PA 19104, USA.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China.
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation. Mol Neurobiol 2018; 56:3638-3656. [PMID: 30173408 DOI: 10.1007/s12035-018-1333-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited neurologic disorders in which iron accumulates in the basal ganglia resulting in progressive dystonia, spasticity, parkinsonism, neuropsychiatric abnormalities, and optic atrophy or retinal degeneration. The most prevalent form of NBIA is pantothenate kinase-associated neurodegeneration (PKAN) associated with mutations in the gene of pantothenate kinase 2 (PANK2), which is essential for coenzyme A (CoA) synthesis. There is no cure for NBIA nor is there a standard course of treatment. In the current work, we describe that fibroblasts derived from patients harbouring PANK2 mutations can reproduce many of the cellular pathological alterations found in the disease, such as intracellular iron and lipofuscin accumulation, increased oxidative stress, and mitochondrial dysfunction. Furthermore, mutant fibroblasts showed a characteristic senescent morphology. Treatment with pantothenate, the PANK2 enzyme substrate, was able to correct all pathological alterations in responder mutant fibroblasts with residual PANK2 enzyme expression. However, pantothenate had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of pantothenate in particular mutations was also confirmed in induced neurons obtained by direct reprograming of mutant fibroblasts. Our results suggest that pantothenate treatment can stabilize the expression levels of PANK2 in selected mutations. These results encourage us to propose our screening model as a quick and easy way to detect pantothenate-responder patients with PANK2 mutations. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of pantothenate.
Collapse
|
35
|
Apostolakis S, Kypraiou AM. Iron in neurodegenerative disorders: being in the wrong place at the wrong time? Rev Neurosci 2018; 28:893-911. [PMID: 28792913 DOI: 10.1515/revneuro-2017-0020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022]
Abstract
Brain iron deposits have been reported consistently in imaging and histologic examinations of patients with neurodegenerative disorders. While the origins of this finding have not been clarified yet, it is speculated that impaired iron homeostasis or deficient transport mechanisms result in the accumulation of this highly toxic metal ultimately leading to formation of reactive oxygen species and cell death. On the other hand, there are also those who support that iron is just an incidental finding, a by product of neuronal loss. A literature review has been performed in order to present the key findings in support of the iron hypothesis of neurodegeneration, as well as to identify conditions causing or resulting from iron overload and compare and contrast their features with the most prominent neurodegenerative disorders. There is an abundance of experimental and observational findings in support of the hypothesis in question; however, as neurodegeneration is a rare incident of commonly encountered iron-associated disorders of the nervous system, and this metal is found in non-neurodegenerative disorders as well, it is possible that iron is the result or even an incidental finding in neurodegeneration. Understanding the underlying processes of iron metabolism in the brain and particularly its release during cell damage is expected to provide a deeper understanding of the origins of neurodegeneration in the years to come.
Collapse
|
36
|
Di Meo I, Tiranti V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol 2018; 22:272-284. [PMID: 29409688 DOI: 10.1016/j.ejpn.2018.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/06/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Brain iron accumulation is the hallmark of a group of seriously invalidating and progressive rare diseases collectively denominated Neurodegeneration with Brain Iron Accumulation (NBIA), characterized by movement disorder, painful dystonia, parkinsonism, mental disability and early death. Currently there is no established therapy available to slow down or reverse the progression of these conditions. Several genes have been identified as responsible for NBIA but only two encode for proteins playing a direct role in iron metabolism. The other genes encode for proteins either with various functions in lipid metabolism, lysosomal activity and autophagic processes or with still unknown roles. The different NBIA subtypes have been classified and denominated on the basis of the mutated genes and, despite genetic heterogeneity, some of them code for proteins, which share or converge on common metabolic pathways. In the last ten years, the implementation of genetic screening based on Whole Exome Sequencing has greatly accelerated gene discovery, nevertheless our knowledge of the pathogenic mechanisms underlying the NBIA syndromes is still largely incomplete.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy.
| |
Collapse
|
37
|
Di Meo I, Colombelli C, Srinivasan B, de Villiers M, Hamada J, Jeong SY, Fox R, Woltjer RL, Tepper PG, Lahaye LL, Rizzetto E, Harrs CH, de Boer T, van der Zwaag M, Jenko B, Čusak A, Pahor J, Kosec G, Grzeschik NA, Hayflick SJ, Tiranti V, Sibon OCM. Acetyl-4'-phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency. Sci Rep 2017; 7:11260. [PMID: 28900161 PMCID: PMC5595861 DOI: 10.1038/s41598-017-11564-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/09/2017] [Indexed: 01/22/2023] Open
Abstract
Coenzyme A is an essential metabolite known for its central role in over one hundred cellular metabolic reactions. In cells, Coenzyme A is synthesized de novo in five enzymatic steps with vitamin B5 as the starting metabolite, phosphorylated by pantothenate kinase. Mutations in the pantothenate kinase 2 gene cause a severe form of neurodegeneration for which no treatment is available. One therapeutic strategy is to generate Coenzyme A precursors downstream of the defective step in the pathway. Here we describe the synthesis, characteristics and in vivo rescue potential of the acetyl-Coenzyme A precursor S-acetyl-4′-phosphopantetheine as a possible treatment for neurodegeneration associated with pantothenate kinase deficiency.
Collapse
Affiliation(s)
- Ivano Di Meo
- Division of Molecular Neurogenetics, IRCCS Foundation Neurological Institute "C.Besta" Via Temolo 4, 20126, Milano, Italy
| | - Cristina Colombelli
- Division of Molecular Neurogenetics, IRCCS Foundation Neurological Institute "C.Besta" Via Temolo 4, 20126, Milano, Italy
| | - Balaji Srinivasan
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Jeffrey Hamada
- Departments of Molecular & Medical Genetics and Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Suh Y Jeong
- Departments of Molecular & Medical Genetics and Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Rachel Fox
- Departments of Molecular & Medical Genetics and Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Randall L Woltjer
- Departments of Molecular & Medical Genetics and Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Pieter G Tepper
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Liza L Lahaye
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Emanuela Rizzetto
- Clinical Pathology and Medical Genetics Unit, Foundation IRCCS-Neurological Institute "Carlo Besta", Milano, Italy
| | - Clara H Harrs
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Theo de Boer
- Analytical Biochemical Laboratory (ABL), WA Scholtenstraat 7, 9403 AJ, Assen, The Netherlands
| | - Marianne van der Zwaag
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Branko Jenko
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia
| | - Alen Čusak
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia
| | - Jerca Pahor
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia.,Laboratory of Organic and Bioorganic Chemistry, Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Gregor Kosec
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia
| | - Nicola A Grzeschik
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Susan J Hayflick
- Departments of Molecular & Medical Genetics and Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Valeria Tiranti
- Division of Molecular Neurogenetics, IRCCS Foundation Neurological Institute "C.Besta" Via Temolo 4, 20126, Milano, Italy
| | - Ody C M Sibon
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
38
|
Corbin DR, Rehg JE, Shepherd DL, Stoilov P, Percifield RJ, Horner L, Frase S, Zhang YM, Rock CO, Hollander JM, Jackowski S, Leonardi R. Excess coenzyme A reduces skeletal muscle performance and strength in mice overexpressing human PANK2. Mol Genet Metab 2017; 120:350-362. [PMID: 28189602 PMCID: PMC5382100 DOI: 10.1016/j.ymgme.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/23/2022]
Abstract
Coenzyme A (CoA) is a cofactor that is central to energy metabolism and CoA synthesis is controlled by the enzyme pantothenate kinase (PanK). A transgenic mouse strain expressing human PANK2 was derived to determine the physiological impact of PANK overexpression and elevated CoA levels. The Tg(PANK2) mice expressed high levels of the transgene in skeletal muscle and heart; however, CoA was substantially elevated only in skeletal muscle, possibly associated with the comparatively low endogenous levels of acetyl-CoA, a potent feedback inhibitor of PANK2. Tg(PANK2) mice were smaller, had less skeletal muscle mass and displayed significantly impaired exercise tolerance and grip strength. Skeletal myofibers were characterized by centralized nuclei and aberrant mitochondria. Both the content of fully assembled complex I of the electron transport chain and ATP levels were reduced, while markers of oxidative stress were elevated in Tg(PANK2) skeletal muscle. These abnormalities were not detected in the Tg(PANK2) heart muscle, with the exception of spotty loss of cristae organization in the mitochondria. The data demonstrate that excessively high CoA may be detrimental to skeletal muscle function.
Collapse
Affiliation(s)
- Deborah R Corbin
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Jerold E Rehg
- Department Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Danielle L Shepherd
- Department of Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Ryan J Percifield
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Linda Horner
- Cell and Tissue Imaging-Electron Microscopy Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharon Frase
- Cell and Tissue Imaging-Electron Microscopy Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Mei Zhang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John M Hollander
- Department of Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
39
|
Orellana DI, Santambrogio P, Rubio A, Yekhlef L, Cancellieri C, Dusi S, Giannelli SG, Venco P, Mazzara PG, Cozzi A, Ferrari M, Garavaglia B, Taverna S, Tiranti V, Broccoli V, Levi S. Coenzyme A corrects pathological defects in human neurons of PANK2-associated neurodegeneration. EMBO Mol Med 2016; 8:1197-1211. [PMID: 27516453 PMCID: PMC5048368 DOI: 10.15252/emmm.201606391] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pantothenate kinase‐associated neurodegeneration (PKAN) is an early onset and severely disabling neurodegenerative disease for which no therapy is available. PKAN is caused by mutations in PANK2, which encodes for the mitochondrial enzyme pantothenate kinase 2. Its function is to catalyze the first limiting step of Coenzyme A (CoA) biosynthesis. We generated induced pluripotent stem cells from PKAN patients and showed that their derived neurons exhibited premature death, increased ROS production, mitochondrial dysfunctions—including impairment of mitochondrial iron‐dependent biosynthesis—and major membrane excitability defects. CoA supplementation prevented neuronal death and ROS formation by restoring mitochondrial and neuronal functionality. Our findings provide direct evidence that PANK2 malfunctioning is responsible for abnormal phenotypes in human neuronal cells and indicate CoA treatment as a possible therapeutic intervention.
Collapse
Affiliation(s)
- Daniel I Orellana
- Proteomics of Iron Metabolism Unit, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Santambrogio
- Proteomics of Iron Metabolism Unit, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Alicia Rubio
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Latefa Yekhlef
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Cinzia Cancellieri
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Sabrina Dusi
- Molecular Neurogenetics Unit, Foundation IRCCS-Neurological Institute "Carlo Besta", Milan, Italy
| | - Serena G Giannelli
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Venco
- Molecular Neurogenetics Unit, Foundation IRCCS-Neurological Institute "Carlo Besta", Milan, Italy
| | - Pietro G Mazzara
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Cozzi
- Proteomics of Iron Metabolism Unit, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Maurizio Ferrari
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Garavaglia
- Molecular Neurogenetics Unit, Foundation IRCCS-Neurological Institute "Carlo Besta", Milan, Italy
| | - Stefano Taverna
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Tiranti
- Molecular Neurogenetics Unit, Foundation IRCCS-Neurological Institute "Carlo Besta", Milan, Italy
| | - Vania Broccoli
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy Institute of Neuroscience, National Research Council, Milan, Italy
| | - Sonia Levi
- Proteomics of Iron Metabolism Unit, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
40
|
Subramanian C, Yun MK, Yao J, Sharma LK, Lee RE, White SW, Jackowski S, Rock CO. Allosteric Regulation of Mammalian Pantothenate Kinase. J Biol Chem 2016; 291:22302-22314. [PMID: 27555321 DOI: 10.1074/jbc.m116.748061] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Pantothenate kinase is the master regulator of CoA biosynthesis and is feedback-inhibited by acetyl-CoA. Comparison of the human PANK3·acetyl-CoA complex to the structures of PANK3 in four catalytically relevant complexes, 5'-adenylyl-β,γ-imidodiphosphate (AMPPNP)·Mg2+, AMPPNP·Mg2+·pantothenate, ADP·Mg2+·phosphopantothenate, and AMP phosphoramidate (AMPPN)·Mg2+, revealed a large conformational change in the dimeric enzyme. The amino-terminal nucleotide binding domain rotates to close the active site, and this allows the P-loop to engage ATP and facilitates required substrate/product interactions at the active site. Biochemical analyses showed that the transition between the inactive and active conformations, as assessed by the binding of either ATP·Mg2+ or acyl-CoA to PANK3, is highly cooperative indicating that both protomers move in concert. PANK3(G19V) cannot bind ATP, and biochemical analyses of an engineered PANK3/PANK3(G19V) heterodimer confirmed that the two active sites are functionally coupled. The communication between the two protomers is mediated by an α-helix that interacts with the ATP-binding site at its amino terminus and with the substrate/inhibitor-binding site of the opposite protomer at its carboxyl terminus. The two α-helices within the dimer together with the bound ligands create a ring that stabilizes the assembly in either the active closed conformation or the inactive open conformation. Thus, both active sites of the dimeric mammalian pantothenate kinases coordinately switch between the on and off states in response to intracellular concentrations of ATP and its key negative regulators, acetyl(acyl)-CoA.
Collapse
Affiliation(s)
| | | | | | - Lalit Kumar Sharma
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Richard E Lee
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | | | |
Collapse
|
41
|
Zano SP, Pate C, Frank M, Rock CO, Jackowski S. Correction of a genetic deficiency in pantothenate kinase 1 using phosphopantothenate replacement therapy. Mol Genet Metab 2015; 116:281-8. [PMID: 26549575 PMCID: PMC4764103 DOI: 10.1016/j.ymgme.2015.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/03/2023]
Abstract
Coenzyme A (CoA) is a ubiquitous cofactor involved in numerous essential biochemical transformations, and along with its thioesters is a key regulator of intermediary metabolism. Pantothenate (vitamin B5) phosphorylation by pantothenate kinase (PanK) is thought to control the rate of CoA production. Pantothenate kinase associated neurodegeneration is a hereditary disease that arises from mutations that inactivate the human PANK2 gene. Aryl phosphoramidate phosphopantothenate derivatives were prepared to test the feasibility of using phosphopantothenate replacement therapy to bypass the genetic deficiency in the Pank1(-/-) mouse model. The efficacies of candidate compounds were first compared by measuring the ability to increase CoA levels in Pank1(-/-) mouse embryo fibroblasts. Administration of selected candidate compounds to Pank1(-/-) mice corrected their deficiency in hepatic CoA. The PanK bypass was confirmed by the incorporation of intact phosphopantothenate into CoA using triple-isotopically labeled compound. These results provide strong support for PanK as a master regulator of intracellular CoA and illustrate the feasibility of employing PanK bypass therapy to restore CoA levels in genetically deficient mice.
Collapse
Affiliation(s)
- Stephen P Zano
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Caroline Pate
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthew Frank
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles O Rock
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
42
|
Li A, Paudel R, Johnson R, Courtney R, Lees AJ, Holton JL, Hardy J, Revesz T, Houlden H. Pantothenate kinase-associated neurodegeneration is not a synucleinopathy. Neuropathol Appl Neurobiol 2015; 39:121-31. [PMID: 22416811 PMCID: PMC3712463 DOI: 10.1111/j.1365-2990.2012.01269.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aims: Mutations in the pantothenate kinase 2 gene (PANK2) are responsible for the most common type of neurodegeneration with brain iron accumulation (NBIA), known as pantothenate kinase-associated neurodegeneration (PKAN). Historically, NBIA is considered a synucleinopathy with numerous reports of NBIA cases with Lewy bodies and Lewy neurites and some cases reporting additional abnormal tau accumulation. However, clinicopathological correlations in genetically proven PKAN cases are rare. We describe the clinical, genetic and neuropathological features of three unrelated PKAN cases. Methods: All three cases were genetically screened for the PANK2 gene mutations using standard Sanger polymerase chain reaction sequencing. A detailed neuropathological assessment of the three cases was performed using histochemical and immunohistochemical preparations. Results: All cases had classical axonal swellings and Perls' positive iron deposition in the basal ganglia. In contrast to neuroaxonal dystrophies due to mutation of the phospholipase A2, group VI (PLA2G6) gene, in which Lewy body pathology is widespread, no α-synuclein accumulation was detected in any of our PKAN cases. In one case (20-year-old male) there was significant tau pathology comprising neurofibrillary tangles and neuropil threads, with very subtle tau pathology in another case. Conclusions: These findings indicate that PKAN is not a synucleinopathy and, hence the cellular pathways implicated in this disease are unlikely to be relevant for the pathomechanism of Lewy body disorders.
Collapse
Affiliation(s)
- A Li
- Department of Molecular NeuroscienceQueen Square Brain Bank, UCL Institute of NeurologyRita Lila Weston Institute of Neurological Studies, London, UKDepartment of Pediatrics, University of Maryland, Baltimore, MD, USA
| | - R Paudel
- Department of Molecular NeuroscienceQueen Square Brain Bank, UCL Institute of NeurologyRita Lila Weston Institute of Neurological Studies, London, UKDepartment of Pediatrics, University of Maryland, Baltimore, MD, USA
| | - R Johnson
- Department of Molecular NeuroscienceQueen Square Brain Bank, UCL Institute of NeurologyRita Lila Weston Institute of Neurological Studies, London, UKDepartment of Pediatrics, University of Maryland, Baltimore, MD, USA
| | - R Courtney
- Department of Molecular NeuroscienceQueen Square Brain Bank, UCL Institute of NeurologyRita Lila Weston Institute of Neurological Studies, London, UKDepartment of Pediatrics, University of Maryland, Baltimore, MD, USA
| | - A J Lees
- Department of Molecular NeuroscienceQueen Square Brain Bank, UCL Institute of NeurologyRita Lila Weston Institute of Neurological Studies, London, UKDepartment of Pediatrics, University of Maryland, Baltimore, MD, USA
| | - J L Holton
- Department of Molecular NeuroscienceQueen Square Brain Bank, UCL Institute of NeurologyRita Lila Weston Institute of Neurological Studies, London, UKDepartment of Pediatrics, University of Maryland, Baltimore, MD, USA
| | - J Hardy
- Department of Molecular NeuroscienceQueen Square Brain Bank, UCL Institute of NeurologyRita Lila Weston Institute of Neurological Studies, London, UKDepartment of Pediatrics, University of Maryland, Baltimore, MD, USA
| | - T Revesz
- Department of Molecular NeuroscienceQueen Square Brain Bank, UCL Institute of NeurologyRita Lila Weston Institute of Neurological Studies, London, UKDepartment of Pediatrics, University of Maryland, Baltimore, MD, USA
| | - H Houlden
- Department of Molecular NeuroscienceQueen Square Brain Bank, UCL Institute of NeurologyRita Lila Weston Institute of Neurological Studies, London, UKDepartment of Pediatrics, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
43
|
Shumar SA, Fagone P, Alfonso-Pecchio A, Gray JT, Rehg JE, Jackowski S, Leonardi R. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice. PLoS One 2015; 10:e0130013. [PMID: 26052948 PMCID: PMC4460045 DOI: 10.1371/journal.pone.0130013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/15/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK) isoforms. PanK initiates the synthesis of coenzyme A (CoA), an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease. OBJECTIVE, METHODS, RESULTS AND CONCLUSIONS Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn) promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt) exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN.
Collapse
Affiliation(s)
- Stephanie A. Shumar
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Paolo Fagone
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Adolfo Alfonso-Pecchio
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - John T. Gray
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Roberta Leonardi
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
44
|
Aoun M, Tiranti V. Mitochondria: A crossroads for lipid metabolism defect in neurodegeneration with brain iron accumulation diseases. Int J Biochem Cell Biol 2015; 63:25-31. [DOI: 10.1016/j.biocel.2015.01.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/15/2015] [Accepted: 01/29/2015] [Indexed: 11/16/2022]
|
45
|
Alteration of the coenzyme A biosynthetic pathway in neurodegeneration with brain iron accumulation syndromes. Biochem Soc Trans 2015; 42:1069-74. [PMID: 25110004 DOI: 10.1042/bst20140106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
NBIA (neurodegeneration with brain iron accumulation) comprises a heterogeneous group of neurodegenerative diseases having as a common denominator, iron overload in specific brain areas, mainly basal ganglia and globus pallidus. In the past decade a bunch of disease genes have been identified, but NBIA pathomechanisms are still not completely clear. PKAN (pantothenate kinase-associated neurodegeneration), an autosomal recessive disorder with progressive impairment of movement, vision and cognition, is the most common form of NBIA. It is caused by mutations in the PANK2 (pantothenate kinase 2) gene, coding for a mitochondrial enzyme that phosphorylates vitamin B5 in the first reaction of the CoA (coenzyme A) biosynthetic pathway. A distinct form of NBIA, denominated CoPAN (CoA synthase protein-associated neurodegeneration), is caused by mutations in the CoASY (CoA synthase) gene coding for a bifunctional mitochondrial enzyme, which catalyses the final steps of CoA biosynthesis. These two inborn errors of CoA metabolism further support the concept that dysfunctions in CoA synthesis may play a crucial role in the pathogenesis of NBIA.
Collapse
|
46
|
Abstract
In all organisms biomolecules play a vital role to enable proper cellular metabolism. Alteration of metabolite homoeostasis disrupts the physiology of cells, leading to various diseases [DeBerardinis and Thompson (2012) Cell, 148, 1132-1144]. Recent studies advances our understanding that some metabolites are not only involved in cellular metabolism, but also have other molecular functions. It has become evident that similar to multifunctional 'moonlighting proteins', 'moonlighting metabolites' also exists. One clear example is nicotinamide adenine dinucleotide (NAD). NAD is a ubiquitous molecule with a well-known function in many metabolic reactions, but it also has become clear that NAD is involved in the regulation of sirtuins. Sirtuins play a role in cancer, diabetes, and cardiovascular, neurodegenerative and other diseases [Donmez and Outeiro (2013) EMBO Mol. Med. 5, 344-352] and the deacetylation capacity of sirtuin proteins is NAD-dependent. This direct role of NAD in age-related diseases could not be anticipated when NAD was initially discovered as a metabolic cofactor [Donmez and Outeiro (2013) EMBO Mol. Med. 5, 344-352; Mouchiroud et al. (2013) Crit. Rev. Biochem. Mol. Biol. 48, 397-408]. Recent findings now also indicate that CoA (coenzyme A), another metabolic cofactor, can be considered as being more than 'just' a metabolic cofactor, and altered CoA levels lead to severe and complex effects.
Collapse
|
47
|
Meyer E, Kurian MA, Hayflick SJ. Neurodegeneration with Brain Iron Accumulation: Genetic Diversity and Pathophysiological Mechanisms. Annu Rev Genomics Hum Genet 2015; 16:257-79. [PMID: 25973518 DOI: 10.1146/annurev-genom-090314-025011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) comprises a heterogeneous group of progressive disorders with the common feature of excessive iron deposition in the brain. Over the last decade, advances in sequencing technologies have greatly facilitated rapid gene discovery, and several single-gene disorders are now included in this group. Identification of the genetic bases of the NBIA disorders has advanced our understanding of the disease processes caused by reduced coenzyme A synthesis, impaired lipid metabolism, mitochondrial dysfunction, and defective autophagy. The contribution of iron to disease pathophysiology remains uncertain, as does the identity of a putative final common pathway by which the iron accumulates. Ongoing elucidation of the pathogenesis of each NBIA disorder will have significant implications for the identification and design of novel therapies to treat patients with these disorders.
Collapse
Affiliation(s)
- Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences Programme, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; ,
| | | | | |
Collapse
|
48
|
Schiessl-Weyer J, Roa P, Laccone F, Kluge B, Tichy A, De Almeida Ribeiro E, Prohaska R, Stoeter P, Siegl C, Salzer U. Acanthocytosis and the c.680 A>G Mutation in the PANK2 Gene: A Study Enrolling a Cohort of PKAN Patients from the Dominican Republic. PLoS One 2015; 10:e0125861. [PMID: 25915509 PMCID: PMC4411072 DOI: 10.1371/journal.pone.0125861] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/24/2015] [Indexed: 11/29/2022] Open
Abstract
Pantothenate Kinase-Associated Neurodegeneration (PKAN) is a form of Neurodegeneration with Brain Iron Accumulation (NBIA) associated with mutations in the pantothenate kinase 2 gene (PANK2). Pantothenate kinases catalyze the rate-limiting step of coenzyme A synthesis and Pank2 is the only pantothenate kinase isoform in humans that is localized to mitochondria. Acanthocytosis, the occurrence of spiculated erythrocytes, is observed in about 10% of the PKAN patients. Therefore PKAN is also classified together with other rare neurodegenerative diseases like Chorea Acanthocytosis (ChAc) and McLeod syndrome (MLS) into the Neuroacanthocytosis (NA) syndromes. It has not been investigated yet whether acanthocytosis in PKAN is associated with a specific subset of Pank2 mutations. In this study, we analyzed acanthocytosis of a cohort of 25 PKAN patients from the Dominican Republic that are homozygous for the c.680 A>G mutation in the PANK2 gene as compared to control donors that are heterozygous or wild-type with respect to this mutation. 3D modeling of this mutation indicated that the replacement of a tyrosine by a cysteine at position 227 in Pank2 disrupts a polar interaction within the A domain of the enzyme. Mean acanthocyte count was elevated in the cohort of patients, however, acanthocytosis varied among the patients with nearly half of them showing high (>20%) or elevated acanthocytosis and the rest showing mild (6-10%) or no (<6%) acanthocytosis. Heterozygous control donors revealed a tendency to mild acanthocytosis. Based on the insight that Pank2 is a normal constituent of red blood cells and de novo biosynthesis of coenzyme A is likely to take place in the erythrocyte cytosol we propose a hypothetical model that accounts for the variability in the occurrence of acanthocytic cells in PKAN.
Collapse
Affiliation(s)
- Jasmin Schiessl-Weyer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Pedro Roa
- Centro de Diagnostico Medicina Avanzada, Laboratorio y Telemedicina, Santo Domingo, República Dominicana
| | - Franco Laccone
- Department of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Britta Kluge
- Department of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Alexander Tichy
- Platform Bioinformatics and Biostatistics, University of Veterinary Medicine, Vienna, Austria
| | - Euripedes De Almeida Ribeiro
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Rainer Prohaska
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Peter Stoeter
- Centro de Diagnostico Medicina Avanzada, Laboratorio y Telemedicina, Santo Domingo, República Dominicana
| | - Claudia Siegl
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Ulrich Salzer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
49
|
Ceccatelli Berti C, Dallabona C, Lazzaretti M, Dusi S, Tosi E, Tiranti V, Goffrini P. Modeling human Coenzyme A synthase mutation in yeast reveals altered mitochondrial function, lipid content and iron metabolism. MICROBIAL CELL 2015; 2:126-135. [PMID: 28357284 PMCID: PMC5348974 DOI: 10.15698/mic2015.04.196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in nuclear genes associated with defective coenzyme A biosynthesis have been identified as responsible for some forms of neurodegeneration with brain iron accumulation (NBIA), namely PKAN and CoPAN. PKAN are defined by mutations in PANK2, encoding the pantothenate kinase 2 enzyme, that account for about 50% of cases of NBIA, whereas mutations in CoA synthase COASY have been recently reported as the second inborn error of CoA synthesis leading to CoPAN. As reported previously, yeast cells expressing the pathogenic mutation exhibited a temperature-sensitive growth defect in the absence of pantothenate and a reduced CoA content. Additional characterization revealed decreased oxygen consumption, reduced activities of mitochondrial respiratory complexes, higher iron content, increased sensitivity to oxidative stress and reduced amount of lipid droplets, thus partially recapitulating the phenotypes found in patients and establishing yeast as a potential model to clarify the pathogenesis underlying PKAN and CoPAN diseases.
Collapse
Affiliation(s)
| | | | | | - Sabrina Dusi
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta", Milan, Italy
| | - Elena Tosi
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta", Milan, Italy
| | - Paola Goffrini
- Department of Life Sciences, University of Parma, Parma, Italy
| |
Collapse
|
50
|
Santambrogio P, Dusi S, Guaraldo M, Rotundo LI, Broccoli V, Garavaglia B, Tiranti V, Levi S. Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients. Neurobiol Dis 2015; 81:144-53. [PMID: 25836419 PMCID: PMC4642744 DOI: 10.1016/j.nbd.2015.02.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022] Open
Abstract
Pantothenate kinase-associated neurodegeneration is an early onset autosomal recessive movement disorder caused by mutation of the pantothenate kinase-2 gene, which encodes a mitochondrial enzyme involved in coenzyme A synthesis. The disorder is characterised by high iron levels in the brain, although the pathological mechanism leading to this accumulation is unknown. To address this question, we tested primary skin fibroblasts from three patients and three healthy subjects, as well as neurons induced by direct fibroblast reprogramming, for oxidative status, mitochondrial functionality and iron parameters. The patients' fibroblasts showed altered oxidative status, reduced antioxidant defence, and impaired cytosolic and mitochondrial aconitase activities compared to control cells. Mitochondrial iron homeostasis and functionality analysis of patient fibroblasts indicated increased labile iron pool content and reactive oxygen species development, altered mitochondrial shape, decreased membrane potential and reduced ATP levels. Furthermore, analysis of induced neurons, performed at a single cell level, confirmed some of the results obtained in fibroblasts, indicating an altered oxidative status and signs of mitochondrial dysfunction, possibly due to iron mishandling. Thus, for the first time, altered biological processes have been identified in vitro in live diseased neurons. Moreover, the obtained induced neurons can be considered a suitable human neuronal model for the identification of candidate therapeutic compounds for this disease.
Collapse
Affiliation(s)
- Paolo Santambrogio
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
| | - Sabrina Dusi
- Molecular Neurogenetics Unit, Foundation IRCCS-Neurological Institute "Carlo Besta", 20126 Milano, Italy
| | - Michela Guaraldo
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy; University Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Luisa Ida Rotundo
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
| | - Vania Broccoli
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
| | - Barbara Garavaglia
- Molecular Neurogenetics Unit, Foundation IRCCS-Neurological Institute "Carlo Besta", 20126 Milano, Italy
| | - Valeria Tiranti
- Molecular Neurogenetics Unit, Foundation IRCCS-Neurological Institute "Carlo Besta", 20126 Milano, Italy
| | - Sonia Levi
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy; University Vita-Salute San Raffaele, 20132 Milano, Italy.
| |
Collapse
|