1
|
Rubio C, López-Landa A, Romo-Parra H, Rubio-Osornio M. Impact of the Ketogenic Diet on Neurological Diseases: A Review. Life (Basel) 2025; 15:71. [PMID: 39860011 PMCID: PMC11767209 DOI: 10.3390/life15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The ketogenic diet (KD), high in fat and low in carbohydrates, was introduced in the 1920s as a non-pharmacological treatment for refractory epilepsy. Although its mechanism of action is not fully understood, beneficial effects have been observed in neurological diseases such as epilepsy, Alzheimer's disease, and Parkinson's disease. OBJECTIVE This review examines the impact of the ketogenic diet and its molecular and neuroglial effects as a complementary therapy for neurological diseases. DISCUSSION KD is associated with neuroprotective and antioxidant effects that improve mitochondrial function, regulate neurotransmitter flow, and reduce neuroinflammation and oxidative stress. Glial cells play an essential role in the utilization of ketone bodies (KBs) within the central nervous system's metabolism, particularly during ketosis induced by the KD. Thus, the KD represents a broad and promising strategy that involves both neurons and glial cells, with a molecular impact on brain metabolism and neuroinflammatory homeostasis. CONCLUSION Multiple molecular mechanisms have been identified to explain the benefits of the KD in neurological diseases; however, further experimental and clinical studies are needed to address various molecular pathways in order to achieve conclusive results.
Collapse
Affiliation(s)
- Carmen Rubio
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
| | - Alejandro López-Landa
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla City 72000, Mexico
| | - Hector Romo-Parra
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- Psychology Department, Universidad Iberoamericana, Mexico City 01376, Mexico
| | - Moisés Rubio-Osornio
- Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
2
|
Wu Y, Wang Y, Lu Y, Yan J, Zhao H, Yang R, Pan J. Research advances in huntingtin-associated protein 1 and its application prospects in diseases. Front Neurosci 2024; 18:1402996. [PMID: 38975245 PMCID: PMC11224548 DOI: 10.3389/fnins.2024.1402996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
3
|
Shacham T, Offen D, Lederkremer GZ. Efficacy of therapy by MK-28 PERK activation in the Huntington's disease R6/2 mouse model. Neurotherapeutics 2024; 21:e00335. [PMID: 38368172 PMCID: PMC10937961 DOI: 10.1016/j.neurot.2024.e00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
There is currently no disease-modifying therapy for Huntington's disease (HD). We recently described a small molecule, MK-28, which restored homeostasis in HD models by specifically activating PKR-like ER kinase (PERK). This activation boosts the unfolded protein response (UPR), thereby reducing endoplasmic reticulum (ER) stress, a central cytotoxic mechanism in HD and other neurodegenerative diseases. Here, we have tested the long-term effects of MK-28 in HD model mice. R6/2 CAG (160) mice were treated by lifetime intraperitoneal injections 3 times a week. CatWalk measurements of motor function showed strong improvement compared to untreated mice after only two weeks of MK-28 treatment and continued with time, most significantly at 1 mg/kg MK-28, approaching WT values. Seven weeks treatment significantly improved paw grip strength. Body weight recovered and glucose levels, which are elevated in HD mice, were significantly reduced. Treatment with another PERK activator, CCT020312 at 1 mg/kg, also caused amelioration, consistent with PERK activation. Lifespan, measured in more resilient R6/2 CAG (120) mice with daily IP injection, was much extended by 16 days (20%) with 0.3 mg/kg MK-28, and by 38 days (46%) with 1 mg/kg MK-28. No toxicity, measured by weight, blood glucose levels and blood liver function markers, was detectable in WT mice treated for 6 weeks with 6 mg/kg MK-28. Boosting of PERK activity by long-term treatment with MK-28 could be a safe and promising therapeutic approach for HD.
Collapse
Affiliation(s)
- Talya Shacham
- The Shmunis School of Biomedicine and Cancer Research, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Offen
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Department of Human Molecular Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Department of Human Molecular Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
4
|
Ahamad S, Bano N, Khan S, Hussain MK, Bhat SA. Unraveling the Puzzle of Therapeutic Peptides: A Promising Frontier in Huntington's Disease Treatment. J Med Chem 2024; 67:783-815. [PMID: 38207096 DOI: 10.1021/acs.jmedchem.3c01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder characterized by a mutation in the huntingtin (HTT) gene, resulting in the production of a mutant huntingtin protein (mHTT). The accumulation of mHTT leads to the development of toxic aggregates in neurons, causing cell dysfunction and, eventually, cell death. Peptide therapeutics target various aspects of HD pathology, including mHTT reduction and aggregation inhibition, extended CAG mRNA degradation, and modulation of dysregulated signaling pathways, such as BDNF/TrkB signaling. In addition, these peptide therapeutics also target the detrimental interactions of mHTT with InsP3R1, CaM, or Caspase-6 proteins to mitigate HD. This Perspective provides a detailed perspective on anti-HD therapeutic peptides, highlighting their design, structural characteristics, neuroprotective effects, and specific mechanisms of action. Peptide therapeutics for HD exhibit promise in preclinical models, but further investigation is required to confirm their effectiveness as viable therapeutic strategies, recognizing that no approved peptide therapy for HD currently exists.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Speziale R, Montesano C, Di Pietro G, Cicero DO, Summa V, Monteagudo E, Orsatti L. The Urine Metabolome of R6/2 and zQ175DN Huntington's Disease Mouse Models. Metabolites 2023; 13:961. [PMID: 37623904 PMCID: PMC10456449 DOI: 10.3390/metabo13080961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Huntington's disease (HD) is caused by the expansion of a polyglutamine (polyQ)-encoding tract in exon 1 of the huntingtin gene to greater than 35 CAG repeats. It typically has a disease course lasting 15-20 years, and there are currently no disease-modifying therapies available. Thus, there is a need for faithful mouse models of HD to use in preclinical studies of disease mechanisms, target validation, and therapeutic compound testing. A large variety of mouse models of HD were generated, none of which fully recapitulate human disease, complicating the selection of appropriate models for preclinical studies. Here, we present the urinary liquid chromatography-high-resolution mass spectrometry analysis employed to identify metabolic alterations in transgenic R6/2 and zQ175DN knock-in mice. In R6/2 mice, the perturbation of the corticosterone metabolism and the accumulation of pyrraline, indicative of the development of insulin resistance and the impairment of pheromone excretion, were observed. Differently from R6/2, zQ175DN mice showed the accumulation of oxidative stress metabolites. Both genotypes showed alterations in the tryptophan metabolism. This approach aims to improve our understanding of the molecular mechanisms involved in HD neuropathology, facilitating the selection of appropriate mouse models for preclinical studies. It also aims to identify potential biomarkers specific to HD.
Collapse
Affiliation(s)
- Roberto Speziale
- Experimental Pharmacology Department, IRBM SpA, Via Pontina km 30.600, 00071 Pomezia, Italy;
| | - Camilla Montesano
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Giulia Di Pietro
- Department of Chemical Sciences and Technology, University of Rome “Tor Vergata”, Via Cracovia 50, 00133 Roma, Italy; (G.D.P.); (D.O.C.)
| | - Daniel Oscar Cicero
- Department of Chemical Sciences and Technology, University of Rome “Tor Vergata”, Via Cracovia 50, 00133 Roma, Italy; (G.D.P.); (D.O.C.)
| | - Vincenzo Summa
- Department of Pharmacy, University of Napoli “Federico II”, Corso Umberto I 40, 80138 Napoli, Italy;
| | - Edith Monteagudo
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, CA 90045, USA;
| | - Laura Orsatti
- Experimental Pharmacology Department, IRBM SpA, Via Pontina km 30.600, 00071 Pomezia, Italy;
| |
Collapse
|
6
|
Fernández A, Martínez-Ramírez C, Gómez A, de Diego AMG, Gandía L, Casarejos MJ, García AG. Mitochondrial dysfunction in chromaffin cells from the R6/1 mouse model of Huntington's disease: Impact on exocytosis and calcium current regulation. Neurobiol Dis 2023; 179:106046. [PMID: 36806818 DOI: 10.1016/j.nbd.2023.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023] Open
Abstract
From a pathogenic perspective, Huntington's disease (HD) is being considered as a synaptopathy. As such, alterations in brain neurotransmitter release occur. As the activity of the sympathoadrenal axis is centrally controlled, deficits in the exocytotic release of catecholamine release may also occur. In fact, in chromaffin cells (CCs) of the adrenal medulla of the R6/1 model of HD, decrease of secretion and altered kinetics of the exocytotic fusion pore have been reported. Those alterations could be linked to mitochondrial deficits occurring in peripheral CCs, similar to those described in brain mitochondria. Here we have inquired about alterations in mitochondrial structure and function and their impact on exocytosis and calcium channel currents (ICa). We have monitored various parameters linked to those events, in wild type (WT) and the R6/1 mouse model of HD at a pre-disease stage (2 months age, 2 m), and when motor deficits are present (7 months age, 7 m). In isolated CCs from 7 m and in the adrenal medulla of R6/1 mice, we found the following alterations (with respect 7 m WT mice): (i) augmented fragmented mitochondria and oxidative stress with increased oxidized glutathione; (ii) decreased basal and maximal respiration; (iii) diminution of ATP cell levels; (iv) mitochondrial depolarization; (v) drastic decrease of catecholamine release with poorer potentiation by protonophore FCCP; (vi) decreased ICa inhibition by FCCP; and (vii) lesser potentiation by BayK8644 of ICa and smaller prolongation of current deactivation. Of note was the fact several of these alterations were already manifested in CCs from 2 m R6/1 mice at pre-disease stages. Based on those results, a plausible hypothesis can be raised in the sense that altered mitochondrial function seems to be an early primary event in HD pathogenesis. This is in line with an increasing number of mitochondrial, metabolic, and inflammatory alterations being recently reported in various HD peripheral tissues.
Collapse
Affiliation(s)
- Ana Fernández
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Fundación Teófilo Hernando, Parque científico de Madrid, Cantoblanco, Madrid, Spain
| | - Carmen Martínez-Ramírez
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Fundación Teófilo Hernando, Parque científico de Madrid, Cantoblanco, Madrid, Spain
| | - Ana Gómez
- Servicio de Neurobiología, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Antonio M G de Diego
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Gandía
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Fundación Teófilo Hernando, Parque científico de Madrid, Cantoblanco, Madrid, Spain
| | - María José Casarejos
- Servicio de Neurobiología, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Fundación Teófilo Hernando, Parque científico de Madrid, Cantoblanco, Madrid, Spain.
| |
Collapse
|
7
|
McDonald TS, Lerskiatiphanich T, Woodruff TM, McCombe PA, Lee JD. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders. J Cereb Blood Flow Metab 2023; 43:26-43. [PMID: 36281012 PMCID: PMC9875350 DOI: 10.1177/0271678x221135061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
Neurodegeneration refers to the selective and progressive loss-of-function and atrophy of neurons, and is present in disorders such as Alzheimer's, Huntington's, and Parkinson's disease. Although each disease presents with a unique pattern of neurodegeneration, and subsequent disease phenotype, increasing evidence implicates alterations in energy usage as a shared and core feature in the onset and progression of these disorders. Indeed, disturbances in energy metabolism may contribute to the vulnerability of neurons to apoptosis. In this review we will outline these disturbances in glucose metabolism, and how fatty acids are able to compensate for this impairment in energy production in neurodegenerative disorders. We will also highlight underlying mechanisms that could contribute to these alterations in energy metabolism. A greater understanding of these metabolism-neurodegeneration processes could lead to improved treatment options for neurodegenerative disease patients.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Queensland Brain Institute, The University of Queensland, St.
Lucia, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Department of Neurology, Royal Brisbane & Women’s Hospital,
Herston, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| |
Collapse
|
8
|
Dickson E, Fryklund C, Soylu-Kucharz R, Sjögren M, Stenkula KG, Björkqvist M. Altered Adipocyte Cell Size Distribution Prior to Weight Loss in the R6/2 Model of Huntington's Disease. J Huntingtons Dis 2023; 12:253-266. [PMID: 37718850 DOI: 10.3233/jhd-230587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Metabolic alterations contribute to disease onset and prognosis of Huntington's disease (HD). Weight loss in the R6/2 mouse model of HD is a consistent feature, with onset in mid-to-late stage of disease. OBJECTIVE In the present study, we aimed to investigate molecular and functional changes in white adipose tissue (WAT) that occur at weight loss in R6/2 mice. We further elaborated on the effect of leptin-deficiency and early obesity in R6/2 mice. METHODS We performed analyses at 12 weeks of age; a time point that coincides with the start of weight loss in our R6/2 mouse colony. Gonadal (visceral) and inguinal (subcutaneous) WAT depot weights were monitored, as well as adipocyte size distribution. Response to isoprenaline-stimulated glycerol release and insulin-stimulated glucose uptake in adipocytes from gonadal WAT was assessed. RESULTS In R6/2 mice, WAT depot weights were comparable to wildtype (WT) mice, and the response to insulin and isoprenaline in gonadal adipocytes was unaltered. Leptin-deficient R6/2 mice exhibited distinct changes compared to leptin-deficient WT mice. At 12 weeks, female leptin-deficient R6/2 mice had reduced body weight accompanied by an increased proportion of smaller adipocytes, while in contrast; male mice displayed a shift towards larger adipocyte sizes without a significant body weight reduction at this timepoint. CONCLUSIONS We here show that there are early sex-specific changes in adipocyte cell size distribution in WAT of R6/2 mice and leptin-deficient R6/2 mice.
Collapse
Affiliation(s)
- Elna Dickson
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Claes Fryklund
- Glucose Transport and Protein Trafficking, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rana Soylu-Kucharz
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marie Sjögren
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karin G Stenkula
- Glucose Transport and Protein Trafficking, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Singh A, Agrawal N. Metabolism in Huntington's disease: a major contributor to pathology. Metab Brain Dis 2022; 37:1757-1771. [PMID: 34704220 DOI: 10.1007/s11011-021-00844-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a progressively debilitating neurodegenerative disease exhibiting autosomal-dominant inheritance. It is caused by an unstable expansion in the CAG repeat tract of HD gene, which transforms the disease-specific Huntingtin protein (HTT) to a mutant form (mHTT). The profound neuronal death in cortico-striatal circuits led to its identification and characterisation as a neurodegenerative disease. However, equally disturbing are the concomitant whole-body manifestations affecting nearly every organ of the diseased individuals, at varying extents. Altered central and peripheral metabolism of energy, proteins, nucleic acids, lipids and carbohydrates encompass the gross pathology of the disease. Intense fluctuation of body weight, glucose homeostasis and organ-specific subcellular abnormalities are being increasingly recognised in HD. Many of these metabolic abnormalities exist years before the neuropathological manifestations such as chorea, cognitive decline and behavioural abnormalities develop, and prove to be reliable predictors of the disease progression. In this review, we provide a consolidated overview of the central and peripheral metabolic abnormalities associated with HD, as evidenced from clinical and experimental studies. Additionally, we have discussed the potential of metabolic biomolecules to translate into efficient biomarkers for the disease onset as well as progression. Finally, we provide a brief outlook on the efficacy of existing therapies targeting metabolic remediation. While it is clear that components of altered metabolic pathways can mark many aspects of the disease, it is only conceivable that combinatorial therapies aiming for neuronal protection in consort with metabolic upliftment will prove to be more efficient than the existing symptomatic treatment options.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
10
|
Temporal Characterization of Behavioral and Hippocampal Dysfunction in the YAC128 Mouse Model of Huntington’s Disease. Biomedicines 2022; 10:biomedicines10061433. [PMID: 35740454 PMCID: PMC9219853 DOI: 10.3390/biomedicines10061433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington’s disease (HD) is a genetic neurodegenerative disease characterized by motor, psychiatric, and cognitive symptoms. Emerging evidence suggests that emotional and cognitive deficits seen in HD may be related to hippocampal dysfunction. We used the YAC128 HD mouse model to perform a temporal characterization of the behavioral and hippocampal dysfunctions. Early and late symptomatic YAC128 mice exhibited depressive-like behavior, as demonstrated by increased immobility times in the Tail Suspension Test. In addition, YAC128 mice exhibited cognitive deficits in the Swimming T-maze Test during the late symptomatic stage. Except for a reduction in basal mitochondrial respiration, no significant deficits in the mitochondrial respiratory rates were observed in the hippocampus of late symptomatic YAC128 mice. In agreement, YAC128 animals did not present robust alterations in mitochondrial ultrastructural morphology. However, light and electron microscopy analysis revealed the presence of dark neurons characterized by the intense staining of granule cell bodies and shrunken nuclei and cytoplasm in the hippocampal dentate gyrus (DG) of late symptomatic YAC128 mice. Furthermore, structural alterations in the rough endoplasmic reticulum and Golgi apparatus were detected in the hippocampal DG of YAC128 mice by electron microscopy. These results clearly show a degenerative process in the hippocampal DG in late symptomatic YAC128 animals.
Collapse
|
11
|
Gómez-Jaramillo L, Cano-Cano F, González-Montelongo MDC, Campos-Caro A, Aguilar-Diosdado M, Arroba AI. A New Perspective on Huntington's Disease: How a Neurological Disorder Influences the Peripheral Tissues. Int J Mol Sci 2022; 23:6089. [PMID: 35682773 PMCID: PMC9181740 DOI: 10.3390/ijms23116089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a toxic, aggregation-prone expansion of CAG repeats in the HTT gene with an age-dependent progression that leads to behavioral, cognitive and motor symptoms. Principally affecting the frontal cortex and the striatum, mHTT disrupts many cellular functions. In fact, increasing evidence shows that peripheral tissues are affected by neurodegenerative diseases. It establishes an active crosstalk between peripheral tissues and the brain in different neurodegenerative diseases. This review focuses on the current knowledge of peripheral tissue effects in HD animal and cell experimental models and identifies biomarkers and mechanisms involved or affected in the progression of the disease as new therapeutic or early diagnostic options. The particular changes in serum/plasma, blood cells such as lymphocytes, immune blood cells, the pancreas, the heart, the retina, the liver, the kidney and pericytes as a part of the blood-brain barrier are described. It is important to note that several changes in different mouse models of HD present differences between them and between the different ages analyzed. The understanding of the impact of peripheral organ inflammation in HD may open new avenues for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Laura Gómez-Jaramillo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Fátima Cano-Cano
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - María del Carmen González-Montelongo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Antonio Campos-Caro
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Manuel Aguilar-Diosdado
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Departamento de Endocrinología y Nutrición, Hospital Universitario Puerta del Mar, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Ana I. Arroba
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| |
Collapse
|
12
|
Talman LS, Pfeiffer RF. Movement Disorders and the Gut: A Review. Mov Disord Clin Pract 2022; 9:418-428. [PMID: 35586541 PMCID: PMC9092751 DOI: 10.1002/mdc3.13407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022] Open
Abstract
There is a close link between multiple movement disorders and gastrointestinal dysfunction. Gastrointestinal symptoms may precede the development of the neurologic syndrome or may arise following the neurologic presentation. This review will provide an overview of gastrointestinal accompaniments to several well-known as well as lesser known movement disorders. It will also highlight several disorders which may not be considered primary movement disorders but have an overlapping presentation of both gastrointestinal and movement abnormalities.
Collapse
Affiliation(s)
- Lauren S. Talman
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Ronald F. Pfeiffer
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
13
|
Dickson E, Soylu-Kucharz R, Petersén Å, Björkqvist M. Hypothalamic expression of huntingtin causes distinct metabolic changes in Huntington's disease mice. Mol Metab 2022; 57:101439. [PMID: 35007790 PMCID: PMC8814380 DOI: 10.1016/j.molmet.2022.101439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE In Huntington's disease (HD), the disease-causing huntingtin (HTT) protein is ubiquitously expressed and causes both central and peripheral pathology. In clinical HD, a higher body mass index has been associated with slower disease progression, indicating the role of metabolic changes in disease pathogenesis. Underlying mechanisms of metabolic changes in HD remain poorly understood, but recent studies suggest the involvement of hypothalamic dysfunction. The present study aimed to investigate whether modulation of hypothalamic HTT levels would affect metabolic phenotype and disease features in HD using mouse models. METHODS We used the R6/2 and BACHD mouse models that express different lengths of mutant HTT to develop lean- and obese phenotypes, respectively. We utilized adeno-associated viral vectors to overexpress either mutant or wild-type HTT in the hypothalamus of R6/2, BACHD, and their wild-type littermates. The metabolic phenotype was assessed by body weight measurements over time and body composition analysis using dual-energy x-ray absorptiometry at the endpoint. R6/2 mice were further characterized using behavioral analyses, including rotarod, nesting-, and hindlimb clasping tests during early- and late-time points of disease progression. Finally, gene expression analysis was performed in R6/2 mice and wild-type littermates in order to assess transcriptional changes in the hypothalamus and adipose tissue. RESULTS Hypothalamic overexpression of mutant HTT induced significant gender-affected body weight gain in all models, including wild-type mice. In R6/2 females, early weight gain shifted to weight loss during the corresponding late stage of disease despite increased fat accumulation. Body weight changes were accompanied by behavioral alterations. During the period of early weight gain, R6/2 mice displayed a comparable locomotor capacity to wild-type mice. When assessing behavior just prior to weight loss onset in R6/2 mice, decreased locomotor performance was observed in R6/2 females with hypothalamic overexpression of mutant HTT. Transcriptional downregulation of beta-3 adrenergic receptor (B3AR), adipose triglyceride lipase (ATGL), and peroxisome proliferator-activated receptor-gamma (PPARγ) in gonadal white adipose tissue was accompanied by distinct alterations in hypothalamic gene expression profiles in R6/2 females after mutant HTT overexpression. No significant effect on metabolic phenotype in R6/2 was seen in response to wild-type HTT overexpression. CONCLUSIONS Taken together, our findings provide further support for the role of HTT in metabolic control via hypothalamic neurocircuits. Understanding the specific central neurocircuits and their peripheral link underlying metabolic imbalance in HD may open up avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
- Elna Dickson
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden.
| | - Rana Soylu-Kucharz
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, BMC D11, 221 84 Lund, Sweden
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| |
Collapse
|
14
|
Blázquez E, Hurtado-Carneiro V, LeBaut-Ayuso Y, Velázquez E, García-García L, Gómez-Oliver F, Ruiz-Albusac J, Ávila J, Pozo MÁ. Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases. Front Endocrinol (Lausanne) 2022; 13:873301. [PMID: 35615716 PMCID: PMC9125423 DOI: 10.3389/fendo.2022.873301] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Several neurological diseases share pathological alterations, even though they differ in their etiology. Neuroinflammation, altered brain glucose metabolism, oxidative stress, mitochondrial dysfunction and amyloidosis are biological events found in those neurological disorders. Altered insulin-mediated signaling and brain glucose hypometabolism are characteristic signs observed in the brains of patients with certain neurological diseases, but also others such as type 2 diabetes mellitus and vascular diseases. Thus, significant reductions in insulin receptor autophosphorylation and Akt kinase activity, and increased GSK-3 activity and insulin resistance, have been reported in these neurological diseases as contributing to the decline in cognitive function. Supporting this relationship is the fact that nasal and hippocampal insulin administration has been found to improve cognitive function. Additionally, brain glucose hypometabolism precedes the unmistakable clinical manifestations of some of these diseases by years, which may become a useful early biomarker. Deficiencies in the major pathways of oxidative energy metabolism have been reported in patients with several of these neurological diseases, which supports the hypothesis of their metabolic background. This review remarks on the significance of insulin and brain glucose metabolism alterations as keystone common pathogenic substrates for certain neurological diseases, highlighting new potential targets.
Collapse
Affiliation(s)
- Enrique Blázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- *Correspondence: Enrique Blázquez,
| | | | - Yannick LeBaut-Ayuso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Luis García-García
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Francisca Gómez-Oliver
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Jesús Ávila
- Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, Madrid, Spain
| | - Miguel Ángel Pozo
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
| |
Collapse
|
15
|
Pradeep S, Mehanna R. Gastrointestinal disorders in hyperkinetic movement disorders and ataxia. Parkinsonism Relat Disord 2021; 90:125-133. [PMID: 34544654 DOI: 10.1016/j.parkreldis.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gastrointestinal (GI) disorders have been thoroughly investigated in hypokinetic disorders such as Parkinson's disease, but much less is known about GI disorders in hyperkinetic movement disorders and ataxia. The aim of this review is to draw attention to the GI disorders that are associated with these movement disorders. METHODS References for this systematic review were identified by searches of PubMed through May 2020. Only publications in English were reviewed. RESULTS Data from 249 articles were critically reviewed, compared, and integrated. The most frequently reported GI symptoms overall in hyperkinetic movement disorders and ataxia are dysphagia, sialorrhea, weight changes, esophago-gastritis, gastroparesis, constipation, diarrhea, and malabsorption. We report in detail on the frequency, characteristics, pathophysiology, and management of GI symptoms in essential tremor, restless legs syndrome, chorea, and spinocerebellar ataxias. The limited available data on GI disorders in dystonias, paroxysmal movement disorders, tardive dyskinesias, myoclonus, and non-SCA ataxias are also summarized. CONCLUSION The purpose of our systematic review is to draw attention that, although primarily motor disorders, hyperkinetic movement disorders and ataxia can involve the GI system. Raising awareness about the GI symptom burden in hyperkinetic movement disorders and ataxia could contribute to a new research interest in that field, as well as improved patient care.
Collapse
Affiliation(s)
- Swati Pradeep
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Raja Mehanna
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
16
|
Chuang CL, Demontis F. Systemic manifestation and contribution of peripheral tissues to Huntington's disease pathogenesis. Ageing Res Rev 2021; 69:101358. [PMID: 33979693 DOI: 10.1016/j.arr.2021.101358] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease that is caused by expansion of cytosine/adenosine/guanine repeats in the huntingtin (HTT) gene, which leads to a toxic, aggregation-prone, mutant HTT-polyQ protein. Beyond the well-established mechanisms of HD progression in the central nervous system, growing evidence indicates that also peripheral tissues are affected in HD and that systemic signaling originating from peripheral tissues can influence the progression of HD in the brain. Herein, we review the systemic manifestation of HD in peripheral tissues, and the impact of systemic signaling on HD pathogenesis. Mutant HTT induces a body wasting syndrome (cachexia) primarily via its activity in skeletal muscle, bone, adipose tissue, and heart. Additional whole-organism effects induced by mutant HTT include decline in systemic metabolic homeostasis, which stems from derangement of pancreas, liver, gut, hypothalamic-pituitary-adrenal axis, and circadian functions. In addition to spreading via the bloodstream and a leaky blood brain barrier, HTT-polyQ may travel long distance via its uptake by neurons and its axonal transport from the peripheral to the central nervous system. Lastly, signaling factors that are produced and/or secreted in response to therapeutic interventions such as exercise or in response to mutant HTT activity in peripheral tissues may impact HD. In summary, these studies indicate that HD is a systemic disease that is influenced by intertissue signaling and by the action of pathogenic HTT in peripheral tissues. We propose that treatment strategies for HD should include the amelioration of HD symptoms in peripheral tissues. Moreover, harnessing signaling between peripheral tissues and the brain may provide a means for reducing HD progression in the central nervous system.
Collapse
|
17
|
Li L, Sun Y, Zhang Y, Wang W, Ye C. Mutant Huntingtin Impairs Pancreatic β-cells by Recruiting IRS-2 and Disturbing the PI3K/AKT/FoxO1 Signaling Pathway in Huntington's Disease. J Mol Neurosci 2021; 71:2646-2658. [PMID: 34331233 DOI: 10.1007/s12031-021-01869-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
Abstract
Patients with Huntington's disease (HD) have an increased incidence of diabetes. However, the molecular mechanisms of pancreatic β-cell dysfunction have not been entirely clarified. Revealing the pathogenesis of diabetes can provide a novel understanding of the onset and progression of HD, as well as potential clues for the development of new therapeutics. Here, we demonstrated that the mouse pancreatic insulinoma cell line NIT-1 expressing N-terminal mutant huntingtin (mHTT) containing 160 polyglutamine (160Q cells) displayed lower cell proliferative ability than the cells expressing N-terminal wild-type HTT containing 20 polyglutamine (20Q cells). In addition, 160Q cells were more prone to apoptosis and exhibited deficient glucose-stimulated insulin expression and secretion. Furthermore, insulin signaling molecule insulin receptor substrate 2 (IRS-2) expression decreased and was recruited into mHTT aggregates. Consequently, glucose stimulation failed to activate the downstream molecule phosphatidylinositol-3 kinase (PI3K) in 160Q cells, leading to reduced phosphorylation levels of serine-threonine protein kinase AKT and forkhead box protein O1 (FoxO1). These data indicate that activation of the glucose-stimulated PI3K/AKT/FoxO1 signaling pathway is significantly blocked in pancreatic β-cells in HD. Importantly, insulin treatment inhibited the aggregation of mHTT and significantly improved the activation of PI3K/AKT/FoxO1 signaling in 160Q cells. These results suggest that the inhibition of the PI3K/AKT/FoxO1 pathway might be due to the recruitment of IRS-2 into mHTT aggregates in HD β-cells, ultimately contributing to the impairment of pancreatic β-cells. In conclusion, our work provides new insight into the underlying mechanisms of the high incidence of diabetes and abnormal glucose homeostasis in HD.
Collapse
Affiliation(s)
- Li Li
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong S.A.R., P.R. of China
| | - Yun Sun
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China
| | - Yinong Zhang
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China
| | - Weixi Wang
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China
| | - Cuifang Ye
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China.
| |
Collapse
|
18
|
Singh A, Agrawal N. Deciphering the key mechanisms leading to alteration of lipid metabolism in Drosophila model of Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166127. [PMID: 33722743 DOI: 10.1016/j.bbadis.2021.166127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/27/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Huntington's disease (HD) is an inherited, progressively debilitating disorder marked by prominent degeneration in striatal and cortical brain regions. HD is caused by (CAG)n repeat expansion in huntingtin (HTT) gene that translates into a mutant form of the ubiquitously present Huntingtin (HTT) protein. Extensive metabolic dysfunction coexisting with overt neuropathies has been evidenced in clinical and experimental settings of HD. Body weight loss despite normal to high caloric intake remains a critical determinant of the disease progression and a challenge for therapeutic interventions. In the present study, we intended to monitor the cellular and molecular perturbations in Drosophila, caused by pan-neuronal expression of mHTT (mutant Huntingtin) protein. We found aberrant transcription profile of key lipolytic and lipogenic genes in whole-body of the fly with disease progression. Interestingly, fatbody undergoes extensive alteration of vital cellular processes and eventually surrenders to increased apoptotic cell death in terminal stage of the disease. Extensive mitochondrial dysfunction from early disease stage along with calcium derangement at terminal stage were observed in fatbody, which contribute to its deteriorating integrity. All the mechanisms were monitored progressively, at different disease stages, and many alterations were documented in the early stage itself. Our study hence provides insight into the mechanisms through which neuronal expression of mHTT might be inflicting the profound systemic effects, specifically on lipid metabolism, and may open new therapeutic avenues for alleviation of the multidimensional disease.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
19
|
Increased intestinal permeability and gut dysbiosis in the R6/2 mouse model of Huntington's disease. Sci Rep 2020; 10:18270. [PMID: 33106549 PMCID: PMC7589489 DOI: 10.1038/s41598-020-75229-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease (HD) is a progressive, multifaceted neurodegenerative disease associated with weight loss and gut problems. Under healthy conditions, tight junction (TJ) proteins maintain the intestinal barrier integrity preventing bacterial translocation from the intestinal lumen to the systemic circulation. Reduction of TJs expression in Parkinson's disease patients has been linked with increased intestinal permeability-leaky gut syndrome. The intestine contains microbiota, most dominant phyla being Bacteroidetes and Firmicutes; in pathogenic or disease conditions the balance between these bacteria might be disrupted. The present study investigated whether there is evidence for an increased intestinal permeability and dysbiosis in the R6/2 mouse model of HD. Our data demonstrate that decreased body weight and body length in R6/2 mice is accompanied by a significant decrease in colon length and increased gut permeability compared to wild type littermates, without any significant changes in the protein levels of the tight junction proteins (occludin, zonula occludens). Moreover, we found an altered gut microbiota in R6/2 mice with increased relative abundance of Bacteroidetes and decreased of Firmicutes. Our results indicate an increased intestinal permeability and dysbiosis in R6/2 mice and further studies investigating the clinical relevance of these findings are warranted.
Collapse
|
20
|
Brás IC, König A, Outeiro TF. Glycation in Huntington's Disease: A Possible Modifier and Target for Intervention. J Huntingtons Dis 2020; 8:245-256. [PMID: 31322580 PMCID: PMC6839463 DOI: 10.3233/jhd-190366] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycation is the non-enzymatic reaction between reactive dicarbonyls and amino groups, and gives rise to a variety of different reaction products known as advanced glycation end products (AGEs). Accumulation of AGEs on proteins is inevitable, and is associated with the aging process. Importantly, glycation is highly relevant in diabetic patients that experience periods of hyperglycemia. AGEs also play an important role in neurodegenerative diseases including Alzheimer’s (AD) and Parkinson’s disease (PD). Huntington’s disease (HD) is a hereditary neurodegenerative disease caused by an expansion of a CAG repeat in the huntingtin gene. The resulting expanded polyglutamine stretch in the huntingtin (HTT) protein induces its misfolding and aggregation, leading to neuronal dysfunction and death. HD patients exhibit chorea and psychiatric disturbances, along with abnormalities in glucose and energy homeostasis. Interestingly, an increased prevalence of diabetes mellitus has been reported in HD and in other CAG triplet repeat disorders. However, the mechanisms underlying the connection between glycation and HD progression remain unclear. In this review, we explore the possible connection between glycation and proteostasis imbalances in HD, and posit that it may contribute to disease progression, possibly by accelerating protein aggregation and deposition. Finally, we review therapeutic interventions that might be able to alleviate the negative impact of glycation in HD.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
21
|
A novel specific PERK activator reduces toxicity and extends survival in Huntington's disease models. Sci Rep 2020; 10:6875. [PMID: 32327686 PMCID: PMC7181660 DOI: 10.1038/s41598-020-63899-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/02/2020] [Indexed: 01/11/2023] Open
Abstract
One of the pathways of the unfolded protein response, initiated by PKR-like endoplasmic reticulum kinase (PERK), is key to neuronal homeostasis in neurodegenerative diseases. PERK pathway activation is usually accomplished by inhibiting eIF2α-P dephosphorylation, after its phosphorylation by PERK. Less tried is an approach involving direct PERK activation without compromising long-term recovery of eIF2α function by dephosphorylation. Here we show major improvement in cellular (STHdhQ111/111) and mouse (R6/2) Huntington's disease (HD) models using a potent small molecule PERK activator that we developed, MK-28. MK-28 showed PERK selectivity in vitro on a 391-kinase panel and rescued cells (but not PERK-/- cells) from ER stress-induced apoptosis. Cells were also rescued by the commercial PERK activator CCT020312 but MK-28 was significantly more potent. Computational docking suggested MK-28 interaction with the PERK activation loop. MK-28 exhibited remarkable pharmacokinetic properties and high BBB penetration in mice. Transient subcutaneous delivery of MK-28 significantly improved motor and executive functions and delayed death onset in R6/2 mice, showing no toxicity. Therefore, PERK activation can treat a most aggressive HD model, suggesting a possible approach for HD therapy and worth exploring for other neurodegenerative disorders.
Collapse
|
22
|
Genetic deletion of S6k1 does not rescue the phenotypic deficits observed in the R6/2 mouse model of Huntington's disease. Sci Rep 2019; 9:16133. [PMID: 31695068 PMCID: PMC6834565 DOI: 10.1038/s41598-019-52391-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 01/14/2023] Open
Abstract
Huntington’s disease (HD) is a fatal inherited autosomal dominant neurodegenerative disorder caused by an expansion in the number of CAG trinucleotide repeats in the huntingtin gene. The disease is characterized by motor, behavioural and cognitive symptoms for which at present there are no disease altering treatments. It has been shown that manipulating the mTOR (mammalian target of rapamycin) pathway using rapamycin or its analogue CCI-779 can improve the cellular and behavioural phenotypes of HD models. Ribosomal protein S6 kinase 1 (S6K1) is a major downstream signalling molecule of mTOR, and its activity is reduced by rapamycin suggesting that deregulation of S6K1 activity may be beneficial in HD. Furthermore, S6k1 knockout mice have increased lifespan and improvement in age-related phenotypes. To evalute the potential benefit of S6k1 loss on HD-related phenotypes, we crossed the R6/2 HD model with the long-lived S6k1 knockout mouse line. We found that S6k1 knockout does not ameliorate behavioural or physiological phenotypes in the R6/2 mouse model. Additionally, no improvements were seen in brain mass reduction or mutant huntingtin protein aggregate levels. Therefore, these results suggest that while a reduction in S6K1 signalling has beneficial effects on ageing it is unlikely to be a therapeutic strategy for HD patients.
Collapse
|
23
|
Sjögren M, Soylu-Kucharz R, Dandunna U, Stan TL, Cavalera M, Sandelius Å, Zetterberg H, Björkqvist M. Leptin deficiency reverses high metabolic state and weight loss without affecting central pathology in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2019; 132:104560. [PMID: 31419548 DOI: 10.1016/j.nbd.2019.104560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 11/18/2022] Open
Abstract
Body weight has been shown to be a predictor of clinical progression in Huntington's disease (HD). Alongside widespread neuronal pathology, both HD patients and the R6/2 mouse model of HD exhibit weight loss and increased energy expenditure, providing a rationale for targeting whole-body energy metabolism in HD. Leptin-deficient mice display low energy expenditure and increased body weight. We therefore hypothesized that normalizing energy metabolism in R6/2 mice, utilizing leptin- deficiency, would lead to a slower disease progression in the R6/2 mouse. In this study, we show that R6/2 mice on a leptin-deficient genetic background display increased body weight and increased fat mass compared to R6/2 mice, as well as wild type littermates. The increased body weight was accompanied by low energy expenditure, illustrated by a reduction in respiratory exchange rate. Leptin-deficient R6/2 mice had large white adipocytes with white adipocyte gene expression characteristics, in contrast to white adipose tissue in R6/2 mice, where white adipose tissue showed signs of browning. Leptin-deficient R6/2 mice did not exhibit improved neuropathological measures. Our results indicate that lowering energy metabolism in HD, by increasing fat mass and reducing respiratory exchange rate, is not sufficient to affect neuropathology. Further studies targeting energy metabolism in HD are warranted.
Collapse
Affiliation(s)
- Marie Sjögren
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.
| | - Rana Soylu-Kucharz
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Unali Dandunna
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Tiberiu Loredan Stan
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Michele Cavalera
- Department of Clinical Sciences, Cardiovascular Research, Translational Studies, Lund University, Malmö, Sweden
| | - Åsa Sandelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Maria Björkqvist
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Nasrolahi A, Mahmoudi J, Noori-Zadeh A, Haghani K, Bakhtiyari S, Darabi S. Shared Pathological Mechanisms Between Diabetes Mellitus and Neurodegenerative Diseases. CURRENT PHARMACOLOGY REPORTS 2019; 5:219-231. [DOI: 10.1007/s40495-019-00191-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Martínez-Ramírez C, Baraibar AM, Nanclares C, Méndez-López I, Gómez A, Muñoz MP, de Diego AMG, Gandía L, Casarejos MJ, García AG. Altered excitability and exocytosis in chromaffin cells from the R6/1 mouse model of Huntington's disease is linked to over-expression of mutated huntingtin. J Neurochem 2018; 147:454-476. [PMID: 30182387 DOI: 10.1111/jnc.14585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 01/28/2023]
Abstract
As the peripheral sympathoadrenal axis is tightly controlled by the cortex via hypothalamus and brain stem, the central pathological features of Hunting's disease, (HD) that is, deposition of mutated huntingtin and synaptic dysfunctions, could also be expressed in adrenal chromaffin cells. To test this hypothesis we here present a thorough investigation on the pathological and functional changes undergone by chromaffin cells (CCs) from 2-month (2 m) to 7-month (7 m) aged wild-type (WT) and R6/1 mouse model of Huntington's disease (HD), stimulated with acetylcholine (ACh) or high [K+ ] (K+ ). In order to do this, we used different techniques such as inmunohistochemistry, patch-clamp, and amperometric recording. With respect to WT cells, some of the changes next summarized were already observed in HD mice at a pre-disease stage (2 m); however, they were more pronounced at 7 m when motor deficits were clearly established, as follows: (i) huntingtin over-expression as nuclear aggregates in CCs; (ii) smaller CC size with decreased dopamine β-hydroxylase expression, indicating lesser number of chromaffin secretory vesicles; (iii) reduced adrenal tissue catecholamine content; (iv) reduced Na+ currents with (v) membrane hyperpolarization and reduced ACh-evoked action potentials; (v) reduced [Ca2+ ]c transients with faster Ca2+ clearance; (vi) diminished quantal secretion with smaller vesicle quantal size; (vii) faster kinetics of the exocytotic fusion pore, pore expansion, and closure. On the basis of these data, the hypothesis is here raised in the sense that nuclear deposition of mutated huntingtin in adrenal CCs of R6/1 mice could be primarily responsible for poorer Na+ channel expression and function, giving rise to profound depression of cell excitability, altered Ca2+ handling and exocytosis. OPEN PRACTICES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14201.
Collapse
Affiliation(s)
- Carmen Martínez-Ramírez
- Instituto Teófilo Hernando, C/Faraday, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| | - Andrés M Baraibar
- Instituto Teófilo Hernando, C/Faraday, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Nanclares
- Instituto Teófilo Hernando, C/Faraday, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Iago Méndez-López
- Instituto Teófilo Hernando, C/Faraday, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| | - Ana Gómez
- Instituto de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mᵃ Paz Muñoz
- Instituto de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Antonio M G de Diego
- Instituto Teófilo Hernando, C/Faraday, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain.,DNS Neuroscience, Parque Científico de Madrid, C/Faraday, Madrid, Spain
| | - Luis Gandía
- Instituto Teófilo Hernando, C/Faraday, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - María José Casarejos
- Instituto de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando, C/Faraday, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain.,DNS Neuroscience, Parque Científico de Madrid, C/Faraday, Madrid, Spain
| |
Collapse
|
26
|
Normalizing glucocorticoid levels attenuates metabolic and neuropathological symptoms in the R6/2 mouse model of huntington's disease. Neurobiol Dis 2018; 121:214-229. [PMID: 30292559 DOI: 10.1016/j.nbd.2018.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/13/2018] [Accepted: 09/30/2018] [Indexed: 02/08/2023] Open
Abstract
Huntington's disease (HD) is a fatal genetic neurological disorder caused by a mutation in the human Huntingtin (HTT) gene. This mutation confers a toxic gain of function of the encoded mutant huntingtin (mHTT) protein, leading to widespread neuropathology including the formation of mHTT-positive inclusion bodies, gene dysregulation, reduced levels of adult dentate gyrus neurogenesis and neuron loss throughout many regions of the brain. Additionally, because HTT is ubiquitously expressed, several peripheral tissues are also affected. HD patients suffer from progressive motor, cognitive, psychiatric, and metabolic symptoms, including weight loss and skeletal muscle wasting. HD patients also show neuroendocrine changes including a robust, significant elevation in circulating levels of the glucocorticoid, cortisol. Previously, we confirmed that the R6/2 mouse model of HD exhibits elevated corticosterone (the rodent homolog of cortisol) levels and demonstrated that experimentally elevated corticosterone exacerbates R6/2 HD symptomology, resulting in severe and rapid weight loss and a shorter latency to death. Given that efficacious therapeutics are lacking for HD, here we investigated whether normalizing glucocorticoid levels could serve as a viable therapeutic approach for this disease. We tested the hypothesis that normalizing glucocorticoids to wild-type levels would ameliorate HD symptomology. Wild-type (WT) and transgenic R6/2 mice were allocated to three treatment groups: 1) adrenalectomy with normalized, WT-level corticosterone replacement (10 μg/ml), 2) adrenalectomy with high HD-level corticosterone replacement (35 μg/ml), or 3) sham surgery with no corticosterone replacement. Normalizing corticosterone to WT levels led to an improvement in metabolic rate in male R6/2 mice, as indicated by indirect calorimetry, including a reduction in oxygen consumption and normalization of respiratory exchange ratio values (p < .05 for both). Normalizing corticosterone also ameliorated brain atrophy in female R6/2 mice and skeletal muscle wasting in both male and female R6/2 mice (p < .05 for all). Female R6/2 mice given WT-level corticosterone replacement also showed a reduction in HD neuropathological markers, including a reduction in mHTT inclusion burden in the striatum, cortex, and hippocampus (p < .05 for all). This data illustrates that ameliorating glucocorticoid dysregulation leads to a significant improvement in HD symptomology in the R6/2 mouse model and suggests that cortisol-reducing therapeutics may be of value in improving HD patient quality of life.
Collapse
|
27
|
Costa de Miranda R, Di Lorenzo N, Andreoli A, Romano L, De Santis GL, Gualtieri P, De Lorenzo A. Body composition and bone mineral density in Huntington's disease. Nutrition 2018; 59:145-149. [PMID: 30468934 DOI: 10.1016/j.nut.2018.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/28/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Understanding the body composition (BC) of patients with Huntington's disease (HD) could help to delay disease progression and improve treatment efficacy. The aim of this study was to assess BC parameters, including bone mineral density (BMD), and to find new biomarkers that can be early indicators for weight loss in patients with HD. METHODS Twenty-one age- and sex-matched patients with HD and 29 healthy controls (CT) were enrolled. For each patient, body weight (BW), height, and body mass index (BMI) were evaluated. BC and BMD were measured by dual-energy x-ray absorptiometry. Subsamples were created according to sex and percent fat mass (FM) (obese and nonobese). All analyses were carried out using SPSS version 23. RESULTS In all comparisons, BMD and T-score were lower in the HD group, but were not correlated with lean body mass (LBM) or FM. In the HD group, LBM and truncal fat were mostly reduced, except in women with HD whose BC appeared to be less affected by the disease than men. Furthermore, LBM (r = 0.80) and truncal fat (r = 0.68) were better correlated with BW than BMI (r = 0.56). CONCLUSION Complete BC assessment can be crucial for preventive interventions and prognosis definition in patients with HD. New biomarkers such as BMD, LBM, and truncal fat can be early indicators of weight loss in patients with HD.
Collapse
Affiliation(s)
- Renata Costa de Miranda
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Rome, Italy; CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Nicola Di Lorenzo
- Department of Surgical Sciences, University of Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| | - Angela Andreoli
- Department of System Medicine, Human Physiology and Nutrition Unit, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Romano
- Specialisation School of Food Science, University of Rome Tor Vergata, Rome, Italy
| | - Gemma Lou De Santis
- Specialisation School of Food Science, University of Rome Tor Vergata, Rome, Italy
| | - Paola Gualtieri
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and prevention, University of Rome Tor Vergata, Rome, Italy; Casa di Cura Madonna dello Scoglio, Cotronei, Italy.
| |
Collapse
|
28
|
Duarte AI, Sjögren M, Santos MS, Oliveira CR, Moreira PI, Björkqvist M. Dual Therapy with Liraglutide and Ghrelin Promotes Brain and Peripheral Energy Metabolism in the R6/2 Mouse Model of Huntington's Disease. Sci Rep 2018; 8:8961. [PMID: 29895889 PMCID: PMC5997749 DOI: 10.1038/s41598-018-27121-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
Neuronal loss alongside altered energy metabolism, are key features of Huntington’s disease (HD) pathology. The orexigenic gut-peptide hormone ghrelin is known to stimulate appetite and affect whole body energy metabolism. Liraglutide is an efficient anti-type 2 diabetes incretin drug, with neuroprotective effects alongside anorectic properties. Combining liraglutide with the orexigenic peptide ghrelin may potentially promote brain/cognitive function in HD. The R6/2 mouse model of HD exhibits progressive central pathology, weight loss, deranged glucose metabolism, skeletal muscle atrophy and altered body composition. In this study, we targeted energy metabolism in R6/2 mice using a co-administration of liraglutide and ghrelin. We investigated their effect on brain cortical hormone-mediated intracellular signalling pathways, metabolic and apoptotic markers, and the impact on motor function in HD. We here demonstrate that liraglutide, alone or together with ghrelin (subcutaneous daily injections of 150 µg/kg (ghrelin) and 0.2 mg/kg (liraglutide), for 2 weeks), normalized glucose homeostatic features in the R6/2 mouse, without substantially affecting body weight or body composition. Liraglutide alone decreased brain cortical active GLP-1 and IGF-1 levels in R6/2 mice, alongside higher ADP levels. Liraglutide plus ghrelin decreased brain insulin, lactate, AMP and cholesterol levels in R6/2 mice. Taken together, our findings encourage further studies targeting energy metabolism in HD.
Collapse
Affiliation(s)
- Ana I Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal. .,Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| | - Marie Sjögren
- Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Maria S Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Life Sciences Department, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Catarina R Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Laboratory of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Montojo MT, Aganzo M, González N. Huntington's Disease and Diabetes: Chronological Sequence of its Association. J Huntingtons Dis 2018; 6:179-188. [PMID: 28968242 PMCID: PMC5676851 DOI: 10.3233/jhd-170253] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although Huntington’s disease (HD) is primarily considered a rare neurodegenerative disorder, it has been linked to glucose metabolism alterations and diabetes, as has been described in other neuro syndromes such as Friedreich’s ataxia or Alzheimer’s disease. This review surveys the existing literature on HD and its potential relationship with diabetes, glucose metabolism-related indexes and pancreas morphology, in humans and in animal’s models. The information is reported in chronological sequence. That is, studies performed before and after the identification of the genetic defect underlying HD (CAG: encoding glutamine ≥36 repeats located in exon 1 of the HTT gene) and with the development and evolution of HD animal models. The aim of the review is to evaluate whether impaired glucose metabolism contributes to the development of HD, and whether optimized glycemic control may ameliorate the symptoms of HD.
Collapse
Affiliation(s)
- María Teresa Montojo
- Department of Neurology, Movement Disorders Unit, Fundación Jiménez Díaz, Madrid, Spain
| | - Miguel Aganzo
- Division of Endocrinology, Fundación Jiménez Díaz, Madrid, Spain
| | - Nieves González
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain
| |
Collapse
|
30
|
Polyzos AA, Wood NI, Williams P, Wipf P, Morton AJ, McMurray CT. XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington's disease is age- and sex- dependent. PLoS One 2018; 13:e0194580. [PMID: 29630611 PMCID: PMC5890981 DOI: 10.1371/journal.pone.0194580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/06/2018] [Indexed: 11/18/2022] Open
Abstract
We have reported that the radical scavenger XJB-5-131 attenuates or reverses progression of the disease phenotype in the HdhQ(150/150) mouse, a slow onset model of HD. Here, we tested whether XJB-5-131 has beneficial effects in R6/2 mice, a severe early onset model of HD. We found that XJB-5-131 has beneficial effects in R6/2 mice, by delaying features of the motor and histological phenotype. The impact was sex-dependent, with a stronger effect in male mice. XJB-5-131 treatment improved some locomotor deficits in female R6/2 mice, but the effects were, in general, greater in male mice. Chronic treatment of male R6/2 mice with XJB-5-1-131 reduced weight loss, and improved the motor and temperature regulation deficits, especially in male mice. Treatment with XJB-5-131 had no effect on the lifespan of R6/2 mice. Nevertheless, it significantly slowed somatic expansion at 90 days, and reduced the density of inclusions. Our data show that while treatment with XJB-5-131 had complex effects on the phenotype of R6/2 mice, it produced a number of significant improvements in this severe model of HD.
Collapse
Affiliation(s)
- Aris A. Polyzos
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Nigel I. Wood
- Department of Physiology, Development, and Neuroscience, Anatomy Building, University of Cambridge, Cambridge, United Kingdom
| | - Paul Williams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - A. Jennifer Morton
- Department of Physiology, Development, and Neuroscience, Anatomy Building, University of Cambridge, Cambridge, United Kingdom
| | - Cynthia T. McMurray
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
31
|
Somvanshi RK, Jhajj A, Heer M, Kumar U. Characterization of somatostatin receptors and associated signaling pathways in pancreas of R6/2 transgenic mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:359-373. [DOI: 10.1016/j.bbadis.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 01/12/2023]
|
32
|
Sjögren M, Duarte AI, McCourt AC, Shcherbina L, Wierup N, Björkqvist M. Ghrelin rescues skeletal muscle catabolic profile in the R6/2 mouse model of Huntington's disease. Sci Rep 2017; 7:13896. [PMID: 29066728 PMCID: PMC5654969 DOI: 10.1038/s41598-017-13713-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests altered energy metabolism as a key feature in Huntington’s disease (HD) pathology. Hyper-catabolism, including weight loss and muscle atrophy, is seen in HD patients and HD mouse models. Metabolic hormones are key players, not only in energy metabolism, but also in neurodegenerative processes. Ghrelin, a gut peptide-hormone, plays an important role in regulating energy metabolism, stimulating appetite, and affects brain function and increases neuronal survival. The R6/2 mouse model of HD has previously been shown to exhibit progressive weight loss, dysregulated glucose metabolism, skeletal muscle atrophy and altered body composition. In this study, we targeted energy metabolism in R6/2 mice using ghrelin administration, with the primary aim to delay weight loss and reduce muscle atrophy. We also evaluated glucose metabolism and behaviour. We here demonstrate that ghrelin administration (subcutaneous 150 μg/kg daily injections) for 4 weeks, reversed the catabolic gene expression profile (increased expression of Caspase 8, Traf-5 and Creb1) seen in R6/2 mouse skeletal muscle. Skeletal muscle morphology was also improved with ghrelin, and importantly, ghrelin administration normalized behavioural deficits in R6/2 mice. Taken together, our findings encourage further studies targeting metabolism in HD.
Collapse
Affiliation(s)
- Marie Sjögren
- Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Brain Disease Biomarker Unit, Lund University, Lund, Sweden.
| | - Ana I Duarte
- Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Brain Disease Biomarker Unit, Lund University, Lund, Sweden.,CNC - Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Andrew C McCourt
- Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Brain Disease Biomarker Unit, Lund University, Lund, Sweden
| | - Liliya Shcherbina
- Lund University Diabetes Centre, Neuroendocrine Cell Biology, Department of Clinical Sciences in Malmö, Clinical research center, Lund University, Malmö, Sweden
| | - Nils Wierup
- Lund University Diabetes Centre, Neuroendocrine Cell Biology, Department of Clinical Sciences in Malmö, Clinical research center, Lund University, Malmö, Sweden
| | - Maria Björkqvist
- Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Brain Disease Biomarker Unit, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Chen JY, Tran C, Hwang L, Deng G, Jung ME, Faull KF, Levine MS, Cepeda C. Partial Amelioration of Peripheral and Central Symptoms of Huntington's Disease via Modulation of Lipid Metabolism. J Huntingtons Dis 2016; 5:65-81. [PMID: 27031732 DOI: 10.3233/jhd-150181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder characterized by uncontrollable dance-like movements, as well as cognitive deficits and mood changes. A feature of HD is a metabolic disturbance that precedes neurological symptoms. In addition, brain cholesterol synthesis is significantly reduced, which could hamper synaptic transmission. OBJECTIVE Alterations in lipid metabolism as a potential target for therapeutic intervention in the R6/2 mouse model of HD were examined. METHODS Electrophysiological recordings in vitro examined the acute effects of cholesterol-modifying drugs. In addition, behavioral testing, effects on synaptic activity, and measurements of circulating and brain tissue concentrations of cholesterol and the ketone β-hydroxybutyrate (BHB), were examined in symptomatic R6/2 mice and littermate controls raised on normal chow or a ketogenic diet (KD). RESULTS Whole-cell voltage clamp recordings of striatal medium-sized spiny neurons (MSNs) from symptomatic R6/2 mice showed increased frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) compared with littermate controls. Incubation of slices in cholesterol reduced the frequency of large-amplitude sIPSCs. Addition of BHB or the Liver X Receptor (LXR) agonist T0901317 reduced the frequency and amplitude of sIPSCs. Surprisingly, incubation in simvastatin to reduce cholesterol levels also decreased the frequency of sIPSCs. HD mice fed the KD lost weight more gradually, performed better in an open field, had fewer stereotypies and lower brain levels of cholesterol than mice fed a regular diet. CONCLUSIONS Lipid metabolism represents a potential target for therapeutic intervention in HD. Modifying cholesterol or ketone levels acutely in the brain can partially rescue synaptic alterations, and the KD can prevent weight loss and improve some behavioral abnormalities.
Collapse
Affiliation(s)
- Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Conny Tran
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Lin Hwang
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Gang Deng
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, CA, USA.,Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA.,Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| |
Collapse
|
34
|
Miranda DR, Wong M, Romer SH, McKee C, Garza-Vasquez G, Medina AC, Bahn V, Steele AD, Talmadge RJ, Voss AA. Progressive Cl- channel defects reveal disrupted skeletal muscle maturation in R6/2 Huntington's mice. J Gen Physiol 2016; 149:55-74. [PMID: 27899419 PMCID: PMC5217084 DOI: 10.1085/jgp.201611603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/03/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022] Open
Abstract
The R6/2 mouse model of Huntington’s disease exhibits reduced skeletal muscle ClC-1 currents. Miranda et al. investigate early stages of disease in these mice and find an early and progressive disruption of ClC-1 as well as altered muscle maturation based on myosin heavy chain isoform expression. Huntington’s disease (HD) patients suffer from progressive and debilitating motor dysfunction. Previously, we discovered reduced skeletal muscle chloride channel (ClC-1) currents, inwardly rectifying potassium (Kir) channel currents, and membrane capacitance in R6/2 transgenic HD mice. The ClC-1 loss-of-function correlated with increased aberrant mRNA processing and decreased levels of full-length ClC-1 mRNA (Clcn1 gene). Physiologically, the resulting muscle hyperexcitability may help explain involuntary contractions of HD. In this study, the onset and progression of these defects are investigated in R6/2 mice, ranging from 3 wk old (presymptomatic) to 9–13 wk old (late-stage disease), and compared with age-matched wild-type (WT) siblings. The R6/2 ClC-1 current density and level of aberrantly spliced Clcn1 mRNA remain constant with age. In contrast, the ClC-1 current density increases, and the level of aberrantly spliced Clcn1 mRNA decreases with age in WT mice. The R6/2 ClC-1 properties diverge from WT before the onset of motor symptoms, which occurs at 5 wk of age. The relative decrease in R6/2 muscle capacitance also begins in 5-wk-old mice and is independent of fiber atrophy. Kir current density is consistently lower in R6/2 compared with WT muscle. The invariable R6/2 ClC-1 properties suggest a disruption in muscle maturation, which we confirm by measuring elevated levels of neonatal myosin heavy chain (MyHC) in late-stage R6/2 skeletal muscle. Similar changes in ClC-1 and MyHC isoforms in the more slowly developing Q175 HD mice suggest an altered maturational state is relevant to adult-onset HD. Finally, we find nuclear aggregates of muscleblind-like protein 1 without predominant CAG repeat colocalization in R6/2 muscle. This is unlike myotonic dystrophy, another trinucleotide repeat disorder with similar ClC-1 defects, and suggests a novel mechanism of aberrant mRNA splicing in HD. These early and progressive skeletal muscle defects reveal much needed peripheral biomarkers of disease progression and better elucidate the mechanism underlying HD myopathy.
Collapse
Affiliation(s)
- Daniel R Miranda
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768.,Department of Biological Sciences, Wright State University, Dayton, OH 45435
| | - Monica Wong
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Shannon H Romer
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| | - Cynthia McKee
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Gabriela Garza-Vasquez
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Alyssa C Medina
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Volker Bahn
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| | - Andrew D Steele
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Robert J Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| |
Collapse
|
35
|
Vicente Miranda H, Gomes MA, Branco-Santos J, Breda C, Lázaro DF, Lopes LV, Herrera F, Giorgini F, Outeiro TF. Glycation potentiates neurodegeneration in models of Huntington's disease. Sci Rep 2016; 6:36798. [PMID: 27857176 PMCID: PMC5114697 DOI: 10.1038/srep36798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Protein glycation is an age-dependent posttranslational modification associated with several neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. By modifying amino-groups, glycation interferes with folding of proteins, increasing their aggregation potential. Here, we studied the effect of pharmacological and genetic manipulation of glycation on huntingtin (HTT), the causative protein in Huntington’s disease (HD). We observed that glycation increased the aggregation of mutant HTT exon 1 fragments associated with HD (HTT72Q and HTT103Q) in yeast and mammalian cell models. We found that glycation impairs HTT clearance thereby promoting its intracellular accumulation and aggregation. Interestingly, under these conditions autophagy increased and the levels of mutant HTT released to the culture medium decreased. Furthermore, increased glycation enhanced HTT toxicity in human cells and neurodegeneration in fruit flies, impairing eclosion and decreasing life span. Overall, our study provides evidence that glycation modulates HTT exon-1 aggregation and toxicity, and suggests it may constitute a novel target for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Hugo Vicente Miranda
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marcos António Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Branco-Santos
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Estação Agronomica Nacional, Av. da República, Oeiras 2780-157, Portugal
| | - Carlo Breda
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Diana F Lázaro
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Luísa Vaqueiro Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Federico Herrera
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Estação Agronomica Nacional, Av. da República, Oeiras 2780-157, Portugal
| | - Flaviano Giorgini
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Tiago Fleming Outeiro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
36
|
Pan JY, Yuan S, Yu T, Su CL, Liu XL, He J, Li H. Regulation of L-type Ca2+ Channel Activity and Insulin Secretion by Huntingtin-associated Protein 1. J Biol Chem 2016; 291:26352-26363. [PMID: 27624941 DOI: 10.1074/jbc.m116.727990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
Huntingtin-associated protein 1 (Hap1) was originally identified as a protein that binds to the Huntington disease protein, huntingtin. Growing evidence has shown that Hap1 participates in intracellular trafficking via its association with various microtubule-dependent transporters and organelles. Recent studies also revealed that Hap1 is involved in exocytosis such as insulin release from pancreatic β-cells. However, the mechanism underlying the action of Hap1 on insulin release remains to be investigated. We found that Hap1 knock-out mice had a lower plasma basal insulin level than control mice. Using cultured pancreatic β-cell lines, INS-1 cells, we confirmed that decreasing Hap1 reduces the number of secreted vesicles and inhibits vesicle exocytosis. Electrophysiology and imaging of intracellular Ca2+ measurements demonstrated that Hap1 depletion significantly reduces the influx of Ca2+ mediated by L-type Ca2+ channels (Cav). This decrease is not due to reduced expression of Cav1.2 channel mRNA but results from the decreased distribution of Cav1.2 on the plasma membrane of INS-1 cells. Fluorescence recovery after photobleaching showed a defective movement of Cav1.2 in Hap1 silencing INS-1 cells. Our findings suggest that Hap1 is important for insulin secretion of pancreatic β-cells via regulating the intracellular trafficking and plasma membrane localization of Cav1.2, providing new insight into the mechanisms that regulate insulin release from pancreatic β-cells.
Collapse
Affiliation(s)
- Jing-Ying Pan
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Shijin Yuan
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Tao Yu
- the Clinic Laboratory, Wuhan Children's Hospital, Wuhan 430016, China
| | - Cong-Lin Su
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Xiao-Long Liu
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Jun He
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - He Li
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| |
Collapse
|
37
|
Altered lipid metabolism in Drosophila model of Huntington's disease. Sci Rep 2016; 6:31411. [PMID: 27506601 PMCID: PMC4979013 DOI: 10.1038/srep31411] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 07/21/2016] [Indexed: 11/20/2022] Open
Abstract
Huntington’s disease (HD) is late-onset, progressive neurodegenerative disorder caused by expansion of polyglutamine (polyQ) repeat within Huntingtin (Htt) protein. In HD patients, energy-related manifestations such as modulation of weight during entire course of disease with energy deficit at terminal stage have been reported, however, underlying reason remains elusive till date. Lipids, carbohydrate and protein constitute a predominant fraction of body’s energy reservoir and perturbation in their homeostasis may influence weight. To discern role of these energy molecules in weight alteration, we quantified them in an in vivo transgenic Drosophila model of HD. We document that diseased flies exhibit change in weight due to an altered lipid metabolism, as evident from considerably high lipid levels at the time of disease onset followed by a pathologic decline at end-stage. An alteration in intracellular lipid droplet size suggested altered cellular lipid turnover. Furthermore, diseased flies displayed substantial changes in carbohydrate and protein content. Interestingly, alteration in weight and lipid levels are independent of the feeding pattern in diseased condition and exhibit weak correlation with insulin-like peptide or adipokinetic hormone producing cells. We propose that therapeutic intervention aimed at restoring lipid levels and associated metabolic pathways may improve longevity and quality of patient’s life.
Collapse
|
38
|
McCourt AC, Jakobsson L, Larsson S, Holm C, Piel S, Elmér E, Björkqvist M. White Adipose Tissue Browning in the R6/2 Mouse Model of Huntington's Disease. PLoS One 2016; 11:e0159870. [PMID: 27486903 PMCID: PMC4972251 DOI: 10.1371/journal.pone.0159870] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
Huntington’s disease (HD) is a fatal, autosomal dominantly inherited neurodegenerative disorder, characterised not only by progressive cognitive, motor and psychiatric impairments, but also of peripheral pathology. In both human HD and in mouse models of HD there is evidence of increased energy expenditure and weight loss, alongside altered body composition. Unlike white adipose tissue (WAT), brown adipose tissue (BAT), as well as brown-like cells within WAT, expresses the mitochondrial protein, uncoupling protein 1 (UCP1). UCP1 enables dissociation of cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Hyperplasia of brown/beige cells in WAT has been suggested to enhance energy expenditure. In this study, we therefore investigated the gene expression profile, histological appearance, response to cold challenge and functional aspects of WAT in the R6/2 HD mouse model and selected WAT gene expression in the full-length Q175 mouse model of HD. WAT from R6/2 mice contained significantly more brown-like adipocyte regions and had a gene profile suggestive of the presence of brown-like adipocytes, such as higher Ucp1 expression. Cold exposure induced Ucp1 expression in R6/2 inguinal WAT to a markedly higher degree as compared to the thermogenic response in WT WAT. Alongside this, gene expression of transcription factors (Zfp516 and Pparα), important inducers of WAT browning, were increased in R6/2 inguinal WAT, and Creb1 was highlighted as a key transcription factor in HD. In addition to increased WAT Ucp1 expression, a trend towards increased mitochondrial oxygen consumption due to enhanced uncoupling activity was found in inguinal R6/2 WAT. Key gene expressional changes (increased expression of (Zfp516 and Pparα)) were replicated in inguinal WAT obtained from Q175 mice. In summary, for the first time, we here show that HD mouse WAT undergoes a process of browning, resulting in molecular and functional alterations that may contribute to the weight loss and altered metabolism observed with disease progression.
Collapse
Affiliation(s)
- Andrew C. McCourt
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Lund University, BMC A10, 22184 Lund, Sweden
| | - Lovisa Jakobsson
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Lund University, BMC A10, 22184 Lund, Sweden
| | - Sara Larsson
- Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, BMC C11, 221 84 Lund, Sweden
| | - Cecilia Holm
- Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, BMC C11, 221 84 Lund, Sweden
| | - Sarah Piel
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, 221 84 Lund, Sweden
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, 221 84 Lund, Sweden
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Lund University, BMC A10, 22184 Lund, Sweden
- * E-mail:
| |
Collapse
|
39
|
Dufour BD, McBride JL. Corticosterone dysregulation exacerbates disease progression in the R6/2 transgenic mouse model of Huntington's disease. Exp Neurol 2016; 283:308-17. [PMID: 27381424 DOI: 10.1016/j.expneurol.2016.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/28/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022]
Abstract
Huntington's disease (HD) is a genetic neurological disorder that causes severe and progressive motor, cognitive, psychiatric, and metabolic symptoms. There is a robust, significant elevation in circulating levels of the stress hormone, cortisol, in HD patients; however, the causes and consequences of this elevation are largely uncharacterized. Here, we evaluated whether elevated levels of corticosterone, the rodent homolog of cortisol, contributed to the development of symptomology in transgenic HD mice. Wild-type (WT) and transgenic R6/2 mice were given either 1) adrenalectomy with WT-level corticosterone replacement (10ng/ml), 2) adrenalectomy with high HD-level corticosterone replacement (60ng/ml), or 3) sham surgery without replacement. R6/2 mice on HD-level replacement showed severe and rapid weight loss (p<0.05) and a shorter latency to death (p<0.01) relative to the HD mice on WT-level replacement. We further evaluated basal and stress-induced levels of circulating corticosterone in R6/2 mice throughout the course of their life. We found that R6/2 transgenic HD mice display a spontaneous elevation in circulating corticosterone levels that became significant at 10weeks of age. Furthermore, we identified significant dysregulation of circadian rhythmicity of corticosterone release measured over a 24h period compared to wild-type controls. Unexpectedly, we found that R6/2 transgenic mice show a blunted corticosterone response to restraint stress, compared to wild-type mice. Together, these data provide further evidence that HPA-axis activity is abnormal in R6/2 mice, and highlight the important role that cortisol plays in HD symptom development. Our findings suggest that cortisol-reducing therapeutics may be of value in improving HD patient quality of life.
Collapse
Affiliation(s)
- Brett D Dufour
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Jodi L McBride
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA; Department of Neurology, Oregon Health and Science University, Portland, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA.
| |
Collapse
|
40
|
Nielsen SMB, Vinther-Jensen T, Nielsen JE, Nørremølle A, Hasholt L, Hjermind LE, Josefsen K. Liver function in Huntington's disease assessed by blood biochemical analyses in a clinical setting. J Neurol Sci 2016; 362:326-32. [DOI: 10.1016/j.jns.2016.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/12/2022]
|
41
|
Naranjo JR, Zhang H, Villar D, González P, Dopazo XM, Morón-Oset J, Higueras E, Oliveros JC, Arrabal MD, Prieto A, Cercós P, González T, De la Cruz A, Casado-Vela J, Rábano A, Valenzuela C, Gutierrez-Rodriguez M, Li JY, Mellström B. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease. J Clin Invest 2016; 126:627-38. [PMID: 26752648 DOI: 10.1172/jci82670] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/25/2015] [Indexed: 01/11/2023] Open
Abstract
Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD.
Collapse
|
42
|
Abstract
Background Huntington’s disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington’s disease gene carriers (premanifest and moderate stage II/III) and controls. Methods Control (n = 15), premanifest (n = 14) and stage II/III (n = 13) participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a), fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test. Results We found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington’s disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine) there is a suggestion (p values between 0.02 and 0.05) that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious. Conclusions Contrary to previous studies that showed altered levels of metabolic markers in patients with Huntington’s disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington’s disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results, despite many being tested, suggests that the majority of these markers do not differ markedly by disease status.
Collapse
|
43
|
Kalliolia E, Silajdžić E, Nambron R, Costelloe SJ, Martin NG, Hill NR, Frost C, Watt HC, Hindmarsh P, Björkqvist M, Warner TT. A 24-Hour Study of the Hypothalamo-Pituitary Axes in Huntington's Disease. PLoS One 2015; 10:e0138848. [PMID: 26431314 PMCID: PMC4592185 DOI: 10.1371/journal.pone.0138848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background Huntington’s disease is an inherited neurodegenerative disorder characterised by motor, cognitive and psychiatric disturbances. Patients exhibit other symptoms including sleep and mood disturbances, muscle atrophy and weight loss which may be linked to hypothalamic pathology and dysfunction of hypothalamo-pituitary axes. Methods We studied neuroendocrine profiles of corticotropic, somatotropic and gonadotropic hypothalamo-pituitary axes hormones over a 24-hour period in controlled environment in 15 healthy controls, 14 premanifest and 13 stage II/III Huntington’s disease subjects. We also quantified fasting levels of vasopressin, oestradiol, testosterone, dehydroepiandrosterone sulphate, thyroid stimulating hormone, free triiodothyronine, free total thyroxine, prolactin, adrenaline and noradrenaline. Somatotropic axis hormones, growth hormone releasing hormone, insulin-like growth factor-1 and insulin-like factor binding protein-3 were quantified at 06:00 (fasting), 15:00 and 23:00. A battery of clinical tests, including neurological rating and function scales were performed. Results 24-hour concentrations of adrenocorticotropic hormone, cortisol, luteinizing hormone and follicle-stimulating hormone did not differ significantly between the Huntington’s disease group and controls. Daytime growth hormone secretion was similar in control and Huntington’s disease subjects. Stage II/III Huntington’s disease subjects had lower concentration of post-sleep growth hormone pulse and higher insulin-like growth factor-1:growth hormone ratio which did not reach significance. In Huntington’s disease subjects, baseline levels of hypothalamo-pituitary axis hormones measured did not significantly differ from those of healthy controls. Conclusions The relatively small subject group means that the study may not detect subtle perturbations in hormone concentrations. A targeted study of the somatotropic axis in larger cohorts may be warranted. However, the lack of significant results despite many variables being tested does imply that the majority of them do not differ substantially between HD and controls.
Collapse
Affiliation(s)
- Eirini Kalliolia
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, United Kingdom
| | - Edina Silajdžić
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | - Rajasree Nambron
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, United Kingdom
| | - Seán J Costelloe
- Biochemistry Department, Royal Free Hospital, London, United Kingdom
| | - Nicholas G Martin
- Biochemistry Department, Royal Free Hospital, London, United Kingdom
| | - Nathan R Hill
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Chris Frost
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hilary C Watt
- Department of Public Health and Primary Care, Imperial College, London, United Kingdom
| | - Peter Hindmarsh
- Developmental Endocrinology Research Group, UCL Institute of Child Health, London, United Kingdom
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | - Thomas T Warner
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, United Kingdom; Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
44
|
Lu M, Boschetti C, Tunnacliffe A. Long Term Aggresome Accumulation Leads to DNA Damage, p53-dependent Cell Cycle Arrest, and Steric Interference in Mitosis. J Biol Chem 2015; 290:27986-8000. [PMID: 26408200 DOI: 10.1074/jbc.m115.676437] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 11/06/2022] Open
Abstract
Juxtanuclear aggresomes form in cells when levels of aggregation-prone proteins exceed the capacity of the proteasome to degrade them. It is widely believed that aggresomes have a protective function, sequestering potentially damaging aggregates until these can be removed by autophagy. However, most in-cell studies have been carried out over a few days at most, and there is little information on the long term effects of aggresomes. To examine these long term effects, we created inducible, single-copy cell lines that expressed aggregation-prone polyglutamine proteins over several months. We present evidence that, as perinuclear aggresomes accumulate, they are associated with abnormal nuclear morphology and DNA double-strand breaks, resulting in cell cycle arrest via the phosphorylated p53 (Ser-15)-dependent pathway. Further analysis reveals that aggresomes can have a detrimental effect on mitosis by steric interference with chromosome alignment, centrosome positioning, and spindle formation. The incidence of apoptosis also increased in aggresome-containing cells. These severe defects developed gradually after juxtanuclear aggresome formation and were not associated with small cytoplasmic aggregates alone. Thus, our findings demonstrate that, in dividing cells, aggresomes are detrimental over the long term, rather than protective. This suggests a novel mechanism for polyglutamine-associated developmental and cell biological abnormalities, particularly those with early onset and non-neuronal pathologies.
Collapse
Affiliation(s)
- Meng Lu
- From the Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, United Kingdom
| | - Chiara Boschetti
- From the Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, United Kingdom
| | - Alan Tunnacliffe
- From the Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, United Kingdom
| |
Collapse
|
45
|
Gizaw ST, Koda T, Amano M, Kamimura K, Ohashi T, Hinou H, Nishimura SI. A comprehensive glycome profiling of Huntington's disease transgenic mice. Biochim Biophys Acta Gen Subj 2015; 1850:1704-18. [DOI: 10.1016/j.bbagen.2015.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/28/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
|
46
|
Diabetes and stem cell function. BIOMED RESEARCH INTERNATIONAL 2015; 2015:592915. [PMID: 26075247 PMCID: PMC4449886 DOI: 10.1155/2015/592915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment.
Collapse
|
47
|
Capuani B, Della-Morte D, Donadel G, Caratelli S, Bova L, Pastore D, De Canio M, D'Aguanno S, Coppola A, Pacifici F, Arriga R, Bellia A, Ferrelli F, Tesauro M, Federici M, Neri A, Bernardini S, Sbraccia P, Di Daniele N, Sconocchia G, Orlandi A, Urbani A, Lauro D. Liver protein profiles in insulin receptor-knockout mice reveal novel molecules involved in the diabetes pathophysiology. Am J Physiol Endocrinol Metab 2015; 308:E744-E755. [PMID: 25714671 DOI: 10.1152/ajpendo.00447.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/19/2015] [Indexed: 02/08/2023]
Abstract
Liver has a principal role in glucose regulation and lipids homeostasis. It is under a complex control by substrates such as hormones, nutrients, and neuronal impulses. Insulin promotes glycogen synthesis, lipogenesis, and lipoprotein synthesis and inhibits gluconeogenesis, glycogenolysis, and VLDL secretion by modifying the expression and enzymatic activity of specific molecules. To understand the pathophysiological mechanisms leading to metabolic liver disease, we analyzed liver protein patterns expressed in a mouse model of diabetes by proteomic approaches. We used insulin receptor-knockout (IR(-/-)) and heterozygous (IR(+/-)) mice as a murine model of liver metabolic dysfunction associated with diabetic ketoacidosis and insulin resistance. We evaluated liver fatty acid levels by microscopic examination and protein expression profiles by orthogonal experimental strategies using protein 2-DE MALDI-TOF/TOF and peptic nLC-MS/MS shotgun profiling. Identified proteins were then loaded into Ingenuity Pathways Analysis to find possible molecular networks. Twenty-eight proteins identified by 2-DE analysis and 24 identified by nLC-MS/MS shotgun were differentially expressed among the three genotypes. Bioinformatic analysis revealed a central role of high-mobility group box 1/2 and huntigtin never reported before in association with metabolic and related liver disease. A different modulation of these proteins in both blood and hepatic tissue further suggests their role in these processes. These results provide new insight into pathophysiology of insulin resistance and hepatic steatosis and could be useful in identifying novel biomarkers to predict risk for diabetes and its complications.
Collapse
Affiliation(s)
- Barbara Capuani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS San Raffaele Pisana, Rome, Italy; and
| | - Giulia Donadel
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sara Caratelli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca Bova
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Michele De Canio
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy; Laboratory of Proteomics and Metabonomics, S. Lucia Foundation-Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simona D'Aguanno
- Laboratory of Proteomics and Metabonomics, S. Lucia Foundation-Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Coppola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Francesca Ferrelli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Anna Neri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Sergio Bernardini
- Policlinico Tor Vergata Foundation, Rome, Italy; Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Traslational Pharmacology, National Research Council, Rome, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Urbani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy; Laboratory of Proteomics and Metabonomics, S. Lucia Foundation-Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy;
| |
Collapse
|
48
|
Süssmuth SD, Müller VM, Geitner C, Landwehrmeyer GB, Iff S, Gemperli A, Orth M. Fat-free mass and its predictors in Huntington's disease. J Neurol 2015; 262:1533-40. [PMID: 25904208 DOI: 10.1007/s00415-015-7753-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022]
Abstract
The causes of weight loss in Huntington's disease (HD) are not entirely clear. The aim was to identify risk factors that are associated with a loss of metabolically active tissues, i.e. fat-free mass. A consecutive cohort of non-diabetic HD participants (manifest HD, n = 43; CAG: mean 43.6.0 ± 3.6; preHD, n = 10; CAG: mean 41.4 ± 1.4) and 36 healthy controls was recruited. Twenty-five HD participants were early-stage HD (UHDRS Total Functional Capacity [TFC] stages I and II), 12 mid-stage HD (TFC stage III), and 6 participants were in late-stage HD (TFC stages IV and V). Food intake, basic metabolic rate and glucose homeostasis were assessed. In addition, fat-free mass was determined using bioelectric impedance analysis, and leptin, insulin and ghrelin as key metabolic regulators. Sex ratio and age were similar in HD participants (71 % women; age 50.6 ± 10.9) and controls (66 % women; age 46.4 ± 14.5). Body mass index (BMI) was lower in HD participants than controls (median 24.1 vs. 25.9, p = 0.04). However, fat-free mass and basic metabolic rate were not statistically different between groups and showed no association with disease burden. In controls and HD participants, leptin was the most important predictor of fat-free mass. While BMI was lower in HD participants, fat-free mass was similar to controls with leptin as its most important predictor. Leptin levels and fat-free mass measurements using bioelectric impedance analysis may be good screening tools to identify HD patients at risk for weight loss.
Collapse
Affiliation(s)
- S D Süssmuth
- Department of Neurology, Ulm University, Oberer Eselsberg 45/1, 89081, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Huntington’s disease (HD) is a neurodegenerative illness, where selective neuronal loss in the brain caused by expression of mutant huntingtin protein leads to motor dysfunction and cognitive decline in addition to peripheral metabolic changes. In this study we confirm our previous observation of impairment of lactate-based hepatic gluconeogenesis in the transgenic HD mouse model R6/2 and determine that the defect manifests very early and progresses in severity with disease development, indicating a potential to explore this defect in a biomarker context. Moreover, R6/2 animals displayed lower blood glucose levels during prolonged fasting compared to wild type animals.
Collapse
|
50
|
HAP1 helps to regulate actin-based transport of insulin-containing granules in pancreatic β cells. Histochem Cell Biol 2015; 144:39-48. [PMID: 25744490 DOI: 10.1007/s00418-015-1311-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
Abstract
Huntingtin-associated protein 1 (HAP1) is enriched in neurons and binds to polyglutamine-expanded huntingtin. It consists of two alternatively spliced isoforms, HAP1A and HAP1B, which differ only in their short C-terminal sequences. Both HAP1A and HAP1B have been also detected in pancreatic β cells, where the loss of HAP1 impairs glucose-stimulated insulin secretion. Here, we use time-lapse laser scanning confocal microscopy to provide direct evidence that HAP1A, but not HAP1B, co-localizes and co-migrates with insulin-containing vesicles and actin-based myosin Va motor protein in the INS-1 pancreatic β cell line. Knocking down HAP1 expression using small interfering RNA significantly inhibited actin-based transport of insulin vesicles following glucose stimulation. Co-immunoprecipitation experiments demonstrated interaction between HAP1A, myosin Va, and phogrin, a transmembrane protein in insulin-containing vesicles. Stimulating INS-1 cells with glucose increased the association of HAP1A with myosin Va, while silencing HAP1 expression reduced the association of myosin Va with phogrin after glucose stimulation, without affecting levels of myosin Va or actin. Our results provide real-time evidence in living cells that HAP1 may help regulate transport of insulin-containing secretory granules along cortical actin filaments. This also raises the possibility that HAP1 may play an important role in actin-based secretory vesicle trafficking in neurons.
Collapse
|