1
|
Liang Z, Murugappan SK, Li Y, Lai MN, Qi Y, Wang Y, Chan HYE, Lee MM, Chan MK. Gene delivery of SUMO1-derived peptide rescues neuronal degeneration and motor deficits in a mouse model of Parkinson's disease. Mol Ther 2025:S1525-0016(25)00279-5. [PMID: 40189878 DOI: 10.1016/j.ymthe.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
Developing α-synuclein aggregation inhibitors is challenging because its aggregation process involves several microscopic steps and heterogeneous intermediates. Previously, we identified a SUMO1-derived peptide, SUMO1(15-55), that exhibits tight binding to monomeric α-synuclein via SUMO-SUMO-interacting motif (SIM) interactions, and effectively blocks the initiation of aggregation and formation of toxic aggregates in vitro. In cellular and Drosophila models, SUMO1(15-55) was efficacious in protecting neuronal cells from α-synuclein-induced neurotoxicity and neuronal degeneration. Given the demonstrated ability of SUMO1(15-55) to sequester α-synuclein monomers thereby blocking oligomer formation, we sought to evaluate whether it could be equally effective against the aggregation-prone familial mutant α-synuclein-A53T. Herein, we show that SUMO1(15-55) selectively binds to monomeric α-synuclein-A53T, inhibits primary nucleation, and prevents the formation of structured protofibrils in vitro, thereby protecting neuronal cells from protofibril-induced cell death. We further demonstrate that larval feeding of a designed His10-SUMO1(15-55) that exhibits enhanced sub-stoichiometric suppression of α-synuclein-A53T aggregation in vitro can ameliorate Parkinson's disease (PD)-related symptoms in α-synuclein-A53T transgenic Drosophila models, while its rAAV-mediated gene delivery can relieve the PD-related histological and behavioral deficiencies in an rAAV-α-synuclein-A53T mouse PD model. Our findings suggest that gene delivery of His10-SUMO1(15-55) may serve as a clinical therapy for a spectrum of α-synuclein-aggregation associated synucleinopathies.
Collapse
Affiliation(s)
- Zhaohui Liang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Suresh Kanna Murugappan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Yuxuan Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Man Nga Lai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Yajing Qi
- Department of Physics, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Marianne M Lee
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China.
| | - Michael K Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China.
| |
Collapse
|
2
|
Jans K, Lüersen K, von Frieling J, Roeder T, Rimbach G. Dietary lithium stimulates female fecundity in Drosophila melanogaster. Biofactors 2024; 50:326-346. [PMID: 37706424 DOI: 10.1002/biof.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
The trace element lithium exerts a versatile bioactivity in humans, to some extend overlapping with in vivo findings in the model organism Drosophila melanogaster. A potentially essential function of lithium in reproduction has been suggested since the 1980s and multiple studies have since been published postulating a regulatory role of lithium in female gametogenesis. However, the impact of lithium on fruit fly egg production has not been at the center of attention to date. In the present study, we report that dietary lithium (0.1-5.0 mM LiCl) substantially improved life time egg production in D. melanogaster w1118 females, with a maximum increase of plus 45% when supplementing 1.0 mM LiCl. This phenomenon was not observed in the insulin receptor mutant InRE19, indicating a potential involvement of insulin-like signaling in the lithium-mediated fecundity boost. Analysis of the whole-body and ovarian transcriptome revealed that dietary lithium affects the mRNA levels of genes encoding proteins related to processes of follicular maturation. To the best of our knowledge, this is the first report on dietary lithium acting as an in vivo fecundity stimulant in D. melanogaster, further supporting the suggested benefit of the trace element in female reproduction.
Collapse
Affiliation(s)
- Katharina Jans
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Jakob von Frieling
- Division of Molecular Physiology, Institute of Zoology, University of Kiel, Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
3
|
Wang R, Ma B, Shi K, Wu F, Zhou C. Effects of lithium on aggression in Drosophila. Neuropsychopharmacology 2023; 48:754-763. [PMID: 36253547 PMCID: PMC10066353 DOI: 10.1038/s41386-022-01475-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022]
Abstract
Lithium is a common medication used to treat mania and bipolar disorder, but the mechanisms by which lithium stabilizes mood and modifies aggression are still not fully understood. Here we found that acute but not chronic lithium significantly suppresses aggression without affecting locomotion in Drosophila melanogaster. Male flies treated with acute lithium are also less competitive than control males in establishing dominance. We also provided evidence that glycogen synthase kinase-3 (GSK-3), a well-known target of lithium, plays an important role in the anti-aggressive effect of lithium in Drosophila. Our genetic data showed that acute knockdown of GSK-3 in neurons can mimic the inhibitory effect of acute lithium on aggression, while specific overexpression of GSK-3 in a subset of P1 neurons profoundly promotes aggression which can be partially rescued by acute lithium application. Thus, these findings revealed the inhibitory effect of lithium on aggression in Drosophila and laid a groundwork for using Drosophila as a powerful model to investigate the mechanisms by which lithium reduces aggression.
Collapse
Affiliation(s)
- Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Baoxu Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100101, Beijing, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100101, Beijing, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
4
|
Drosophila melanogaster as a Model Organism to Study Lithium and Boron Bioactivity. Int J Mol Sci 2021; 22:ijms222111710. [PMID: 34769143 PMCID: PMC8584156 DOI: 10.3390/ijms222111710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
The fruit fly Drosophila melanogaster has become a valuable model organism in nutritional science, which can be applied to elucidate the physiology and the biological function of nutrients, including trace elements. Importantly, the application of chemically defined diets enables the supply of trace elements for nutritional studies under highly standardized dietary conditions. Thus, the bioavailability and bioactivity of trace elements can be systematically monitored in D. melanogaster. Numerous studies have already revealed that central aspects of trace element homeostasis are evolutionary conserved among the fruit fly and mammalian species. While there is sufficient evidence of vital functions of boron (B) in plants, there is also evidence regarding its bioactivity in animals and humans. Lithium (Li) is well known for its role in the therapy of bipolar disorder. Furthermore, recent findings suggest beneficial effects of Li regarding neuroprotection as well as healthy ageing and longevity in D. melanogaster. However, no specific essential function in the animal kingdom has been found for either of the two elements so far. Here, we summarize the current knowledge of Li and B bioactivity in D. melanogaster in the context of health and disease prevention.
Collapse
|
5
|
Assessing the cognitive status of Drosophila by the value-based feeding decision. NPJ Aging Mech Dis 2021; 7:24. [PMID: 34526491 PMCID: PMC8443761 DOI: 10.1038/s41514-021-00075-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Decision-making is considered an important aspect of cognitive function. Impaired decision-making is a consequence of cognitive decline caused by various physiological conditions, such as aging and neurodegenerative diseases. Here we exploited the value-based feeding decision (VBFD) assay, which is a simple sensory-motor task, to determine the cognitive status of Drosophila. Our results indicated the deterioration of VBFD is notably correlated with aging and neurodegenerative disorders. Restriction of the mushroom body (MB) neuronal activity partly blunted the proper VBFD. Furthermore, using the Drosophila polyQ disease model, we demonstrated the impaired VBFD is ameliorated by the dinitrosyl iron complex (DNIC-1), a novel and steady nitric oxide (NO)-releasing compound. Therefore we propose that the VBFD assay provides a robust assessment of Drosophila cognition and can be used to characterize additional neuroprotective interventions.
Collapse
|
6
|
Inhibition of GSK-3 ameliorates the pathogenesis of Huntington's disease. Neurobiol Dis 2021; 154:105336. [PMID: 33753290 DOI: 10.1016/j.nbd.2021.105336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In Huntington's disease (HD), the mutant huntingtin (mHtt) accumulates as toxic aggregates in the striatum tissue, with deleterious effects on motor-coordination and cognitive functions. Reducing the levels of mHtt is therefore a promising therapeutic strategy. We have previously reported that GSK-3 is a negative regulator of the autophagy/lysosome pathway, which is responsible for intracellular degradation, and is critically important for maintaining neuronal vitality. Thus, we hypothesized that inhibition of GSK-3 may trigger mHtt clearance thereby reducing mHtt cytotoxicity and improving HD symptoms. Here, we demonstrate that depletion or suppression of autophagy results in a massive accumulation of mHtt aggregates. Accordingly, mHtt aggregates were localized in lysosomes, but, mostly mislocalized from lysosomes in the absence of functional autophagy. Overexpression of GSK-3, particularly the α isozyme, increased the number of mHtt aggregates, while silencing GSK-3α/β, or treatment with a selective GSK-3 inhibitor, L807mts, previously described by us, reduced the amounts of mHtt aggregates. This effect was mediated by increased autophagic and lysosomal activity. Treating R6/2 mouse model of HD with L807mts, reduced striatal mHtt aggregates and elevated autophagic and lysosomal markers. The L807mts treatment also reduced hyperglycemia and improved motor-coordination functions in these mice. In addition, L807mts restored the expression levels of Sirt1, a critical neuroprotective factor in the HD striatum, along with its targets BDNF, DRPP-32, and active Akt, all provide neurotrophic/pro-survival support and typically decline in the HD brain. Our results provide strong evidence for a role for GSK-3 in the regulation of mHtt dynamics, and demonstrate the benefits of GSK-3 inhibition in reducing mHtt toxicity, providing neuroprotective support, and improving HD symptoms.
Collapse
|
7
|
Liang Z, Chan HYE, Lee MM, Chan MK. A SUMO1-Derived Peptide Targeting SUMO-Interacting Motif Inhibits α-Synuclein Aggregation. Cell Chem Biol 2021; 28:180-190.e6. [PMID: 33444530 DOI: 10.1016/j.chembiol.2020.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022]
Abstract
The accumulation of α-synuclein amyloid fibrils in the brain is linked to Parkinson's disease and other synucleinopathies. The intermediate species in the early aggregation phase of α-synuclein are involved in the emergence of amyloid toxicity and considered to be the most neurotoxic. The N-terminal region flanking the non-amyloid-β component domain of α-synuclein has been implicated in modulating its aggregation. Herein, we report the development of a SUMO1-derived peptide inhibitor (SUMO1(15-55)), which targets two SUMO-interacting motifs (SIMs) within this aggregation-regulating region and suppresses α-synuclein aggregation. Molecular modeling, site-directed mutagenesis, and binding studies are used to elucidate the mode of interaction, namely, via the binding of either of the two SIM sequences on α-synuclein to a putative hydrophobic binding groove on SUMO1(15-55). Subsequent studies show that SUMO1(15-55) also reduces α-synuclein-induced cytotoxicity in cell-based and Drosophila disease models.
Collapse
Affiliation(s)
- Zhaohui Liang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Marianne M Lee
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Michael K Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
8
|
Bombin A, Cunneely O, Eickman K, Bombin S, Ruesy A, Su M, Myers A, Cowan R, Reed L. Influence of Lab Adapted Natural Diet and Microbiota on Life History and Metabolic Phenotype of Drosophila melanogaster. Microorganisms 2020; 8:E1972. [PMID: 33322411 PMCID: PMC7763083 DOI: 10.3390/microorganisms8121972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/14/2023] Open
Abstract
Symbiotic microbiota can help its host to overcome nutritional challenges, which is consistent with a holobiont theory of evolution. Our project investigated the effects produced by the microbiota community, acquired from the environment and horizontal transfer, on metabolic traits related to obesity. The study applied a novel approach of raising Drosophila melanogaster, from ten wild-derived genetic lines on naturally fermented peaches, preserving genuine microbial conditions. Larvae raised on the natural and standard lab diets were significantly different in every tested phenotype. Frozen peach food provided nutritional conditions similar to the natural ones and preserved key microbial taxa necessary for survival and development. On the peach diet, the presence of parental microbiota increased the weight and development rate. Larvae raised on each tested diet formed microbial communities distinct from each other. The effect that individual microbial taxa produced on the host varied significantly with changing environmental and genetic conditions, occasionally to the degree of opposite correlations.
Collapse
Affiliation(s)
- Andrei Bombin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (O.C.); (K.E.); (S.B.); (A.R.); (M.S.); (A.M.); (R.C.)
| | | | | | | | | | | | | | | | - Laura Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (O.C.); (K.E.); (S.B.); (A.R.); (M.S.); (A.M.); (R.C.)
| |
Collapse
|
9
|
Jensen MP, Barker RA. Disease-Modification in Huntington's Disease: Moving Away from a Single-Target Approach. J Huntingtons Dis 2019; 8:9-22. [PMID: 30636742 DOI: 10.3233/jhd-180320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To date, no candidate intervention has demonstrated a disease-modifying effect in Huntington's disease, despite promising results in preclinical studies. In this commentary we discuss disease-modifying therapies that have been trialled in Huntington's disease and speculate that these failures may be attributed, in part, to the assumption that a single drug selectively targeting one aspect of disease pathology will be universally effective, regardless of disease stage or "subtype". We therefore propose an alternative approach for effective disease-modification that uses 1) a combination approach rather than monotherapy, and 2) targets the disease process early on - before it is clinically manifest. Finally, we will consider whether this change in approach that we propose will be relevant in the future given the recent shift to targeting more proximal disease processes-e.g., huntingtin gene expression; a timely question given Roche's recent decision to take on the clinical development of a promising new drug candidate in Huntington's disease, IONIS-HTTRx.
Collapse
Affiliation(s)
- Melanie P Jensen
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Cambridge Stem Cell Institute, Cambridge, UK
| |
Collapse
|
10
|
Esteves S, Duarte-Silva S, Maciel P. Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts. Med Res Rev 2016; 37:860-906. [PMID: 27870126 DOI: 10.1002/med.21425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.
Collapse
Affiliation(s)
- Sofia Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| |
Collapse
|
11
|
Lithium-Responsive Seizure-Like Hyperexcitability Is Caused by a Mutation in the Drosophila Voltage-Gated Sodium Channel Gene paralytic. eNeuro 2016; 3:eN-NWR-0221-16. [PMID: 27844061 PMCID: PMC5103163 DOI: 10.1523/eneuro.0221-16.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Shudderer (Shu) is an X-linked dominant mutation in Drosophila melanogaster identified more than 40 years ago. A previous study showed that Shu caused spontaneous tremors and defects in reactive climbing behavior, and that these phenotypes were significantly suppressed when mutants were fed food containing lithium, a mood stabilizer used in the treatment of bipolar disorder (Williamson, 1982). This unique observation suggested that the Shu mutation affects genes involved in lithium-responsive neurobiological processes. In the present study, we identified Shu as a novel mutant allele of the voltage-gated sodium (Nav) channel gene paralytic (para). Given that hypomorphic para alleles and RNA interference-mediated para knockdown reduced the severity of Shu phenotypes, Shu was classified as a para hypermorphic allele. We also demonstrated that lithium could improve the behavioral abnormalities displayed by other Nav mutants, including a fly model of the human generalized epilepsy with febrile seizures plus. Our electrophysiological analysis of Shu showed that lithium treatment did not acutely suppress Nav channel activity, indicating that the rescue effect of lithium resulted from chronic physiological adjustments to this drug. Microarray analysis revealed that lithium significantly alters the expression of various genes in Shu, including those involved in innate immune responses, amino acid metabolism, and oxidation-reduction processes, raising the interesting possibility that lithium-induced modulation of these biological pathways may contribute to such adjustments. Overall, our findings demonstrate that Nav channel mutants in Drosophila are valuable genetic tools for elucidating the effects of lithium on the nervous system in the context of neurophysiology and behavior.
Collapse
|
12
|
Herteleer L, Zwarts L, Hens K, Forero D, Del-Favero J, Callaerts P. Mood stabilizing drugs regulate transcription of immune, neuronal and metabolic pathway genes in Drosophila. Psychopharmacology (Berl) 2016; 233:1751-62. [PMID: 26852229 DOI: 10.1007/s00213-016-4223-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 01/28/2016] [Indexed: 12/29/2022]
Abstract
RATIONALE Lithium and valproate (VPA) are drugs used in the management of bipolar disorder. Even though they reportedly act on various pathways, the transcriptional targets relevant for disease mechanism and therapeutic effect remain unclear. Furthermore, multiple studies used lymphoblasts of bipolar patients as a cellular proxy, but it remains unclear whether peripheral cells provide a good readout for the effects of these drugs in the brain. OBJECTIVES We used Drosophila culture cells and adult flies to analyze the transcriptional effects of lithium and VPA and define mechanistic pathways. METHODS Transcriptional profiles were determined for Drosophila S2-cells and adult fly heads following lithium or VPA treatment. Gene ontology categories were identified using the DAVID functional annotation tool with a cut-off of p < 0.05. Significantly enriched GO terms were clustered using REVIGO and DAVID functional annotation clustering. Significance of overlap between transcript lists was determined with a Fisher's exact hypergeometric test. RESULTS Treatment of cultured cells and adult flies with lithium and VPA induces transcriptional responses in genes with similar ontology, with as most prominent immune response, neuronal development, neuronal function, and metabolism. CONCLUSIONS (i) Transcriptional effects of lithium and VPA in Drosophila S2 cells and heads show significant overlap. (ii) The overlap between transcriptional alterations in peripheral versus neuronal cells at the single gene level is negligible, but at the gene ontology and pathway level considerable overlap can be found. (iii) Lithium and VPA act on evolutionarily conserved pathways in Drosophila and mammalian models.
Collapse
Affiliation(s)
- L Herteleer
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
| | - L Zwarts
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
| | - K Hens
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Centre for Neural Circuits and Behavior, Oxford University, Oxford, UK
| | - D Forero
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Applied Molecular Genomics Group, VIB Department of Molecular Genetics, Leuven, Belgium
- University of Antwerp, Antwerp, Belgium
- Laboratory of Neuropsychiatric Genetics, School of Medicine, Antonio Narino University, Bogota, Colombia
| | - J Del-Favero
- Applied Molecular Genomics Group, VIB Department of Molecular Genetics, Leuven, Belgium
- University of Antwerp, Antwerp, Belgium
| | - P Callaerts
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium.
- KULeuven Department of Human Genetics, Leuven, Belgium.
- VIB Center for the Biology of Disease, Leuven, Belgium.
| |
Collapse
|
13
|
GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions. Cell Death Dis 2016; 7:e2206. [PMID: 27124580 PMCID: PMC4855649 DOI: 10.1038/cddis.2016.104] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD.
Collapse
|
14
|
Lazzara CA, Kim YH. Potential application of lithium in Parkinson's and other neurodegenerative diseases. Front Neurosci 2015; 9:403. [PMID: 26578864 PMCID: PMC4621308 DOI: 10.3389/fnins.2015.00403] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Lithium, the long-standing hallmark treatment for bipolar disorder, has recently been identified as a potential neuroprotective agent in neurodegeneration. Here we focus on introducing numerous in vitro and in vivo studies that have shown lithium treatment to be efficacious in reducing oxidative stress and inflammation, increasing autophagy, inhibiting apoptosis, and decreasing the accumulation of α-synulcein, with an emphasis on Parkinson's disease. A number of biological pathways have been shown to be involved in causing these neuroprotective effects. The inhibition of GSK-3β has been the mechanism most studied; however, other modes of action include the regulation of apoptotic proteins and glutamate excitotoxicity as well as down-regulation of calpain. This review provides a framework of the neuroprotective effects of lithium in neurodegenerative diseases and the putative mechanisms by which lithium provides the protection. Lithium-only treatment may not be a suitable therapeutic option for neurodegenerative diseases due to inconsistent efficacy and potential side-effects, however, the use of low dose lithium in combination with other potential or existing therapeutic compounds may be a promising approach to reduce symptoms and disease progression in neurodegenerative diseases.
Collapse
Affiliation(s)
- Carol A Lazzara
- Department of Biological Sciences, Delaware State University Dover, DE, USA
| | - Yong-Hwan Kim
- Department of Biological Sciences, Delaware State University Dover, DE, USA
| |
Collapse
|
15
|
Fernández-Nogales M, Hernández F, Miguez A, Alberch J, Ginés S, Pérez-Navarro E, Lucas JJ. Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease. Hum Mol Genet 2015; 24:5040-52. [DOI: 10.1093/hmg/ddv224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/11/2015] [Indexed: 01/01/2023] Open
|
16
|
Lőrincz P, Takáts S, Kárpáti M, Juhász G. iFly: The eye of the fruit fly as a model to study autophagy and related trafficking pathways. Exp Eye Res 2015; 144:90-8. [PMID: 26091788 DOI: 10.1016/j.exer.2015.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022]
Abstract
Autophagy is a process by which eukaryotic cells degrade and recycle their intracellular components within lysosomes. Autophagy is induced by starvation to ensure survival of individual cells, and it has evolved to fulfill numerous additional roles in animals. Autophagy not only provides nutrient supply through breakdown products during starvation, but it is also required for the elimination of damaged or surplus organelles, toxic proteins, aggregates, and pathogens, and is essential for normal organelle turnover. Because of these roles, defects in autophagy have pathological consequences. Here we summarize the current knowledge of autophagy and related trafficking pathways in a convenient model: the compound eye of the fruit fly Drosophila melanogaster. In our review, we present a general introduction of the development and structure of the compound eye. This is followed by a discussion of various neurodegeneration models including retinopathies, with special emphasis on the protective role of autophagy against these diseases.
Collapse
Affiliation(s)
- Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest H-1117, Hungary
| | - Szabolcs Takáts
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest H-1117, Hungary
| | - Manuéla Kárpáti
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest H-1117, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest H-1117, Hungary; Momentum Drosophila Autophagy Research Group, Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary.
| |
Collapse
|
17
|
Hayden L, Schlosser G, Arthur W. Functional analysis of centipede development supports roles for Wnt genes in posterior development and segment generation. Evol Dev 2015; 17:49-62. [PMID: 25627713 DOI: 10.1111/ede.12112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genes of the Wnt family play important and highly conserved roles in posterior growth and development in a wide range of animal taxa. Wnt genes also operate in arthropod segmentation, and there has been much recent debate regarding the relationship between arthropod and vertebrate segmentation mechanisms. Due to its phylogenetic position, body form, and possession of many (11) Wnt genes, the centipede Strigamia maritima is a useful system with which to examine these issues. This study takes a functional approach based on treatment with lithium chloride, which causes ubiquitous activation of canonical Wnt signalling. This is the first functional developmental study performed in any of the 15,000 species of the arthropod subphylum Myriapoda. The expression of all 11 Wnt genes in Strigamia was analyzed in relation to posterior development. Three of these genes, Wnt11, Wnt5, and WntA, were strongly expressed in the posterior region and, thus, may play important roles in posterior developmental processes. In support of this hypothesis, LiCl treatment of S. maritima embryos was observed to produce posterior developmental defects and perturbations in AbdB and Delta expression. The effects of LiCl differ depending on the developmental stage treated, with more severe effects elicited by treatment during germband formation than by treatment at later stages. These results support a role for Wnt signalling in conferring posterior identity in Strigamia. In addition, data from this study are consistent with the hypothesis of segmentation based on a "clock and wavefront" mechanism operating in this species.
Collapse
Affiliation(s)
- Luke Hayden
- Evolutionary Developmental Biology Laboratory, Zoology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
18
|
Shiraishi R, Tamura T, Sone M, Okazawa H. Systematic analysis of fly models with multiple drivers reveals different effects of ataxin-1 and huntingtin in neuron subtype-specific expression. PLoS One 2014; 9:e116567. [PMID: 25551764 PMCID: PMC4281079 DOI: 10.1371/journal.pone.0116567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, is a commonly used model organism for neurodegenerative diseases. Its major advantages include a short lifespan and its susceptibility to manipulation using sophisticated genetic techniques. Here, we report the systematic comparison of fly models of two polyglutamine (polyQ) diseases. We induced expression of the normal and mutant forms of full-length Ataxin-1 and Huntingtin exon 1 in cholinergic, dopaminergic, and motor neurons, and glial cells using cell type-specific drivers. We systematically analyzed their effects based on multiple phenotypes: eclosion rate, lifespan, motor performance, and circadian rhythms of spontaneous activity. This systematic assay system enabled us to quantitatively evaluate and compare the functional disabilities of different genotypes. The results suggest different effects of Ataxin-1 and Huntingtin on specific types of neural cells during development and in adulthood. In addition, we confirmed the therapeutic effects of LiCl and butyrate using representative models. These results support the usefulness of this assay system for screening candidate chemical compounds that modify the pathologies of polyQ diseases.
Collapse
Affiliation(s)
- Risa Shiraishi
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama, Funabashi, Chiba, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
From pathways to targets: understanding the mechanisms behind polyglutamine disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:701758. [PMID: 25309920 PMCID: PMC4189765 DOI: 10.1155/2014/701758] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/03/2014] [Indexed: 12/27/2022]
Abstract
The history of polyglutamine diseases dates back approximately 20 years to the discovery of a polyglutamine repeat in the androgen receptor of SBMA followed by the identification of similar expansion mutations in Huntington's disease, SCA1, DRPLA, and the other spinocerebellar ataxias. This common molecular feature of polyglutamine diseases suggests shared mechanisms in disease pathology and neurodegeneration of disease specific brain regions. In this review, we discuss the main pathogenic pathways including proteolytic processing, nuclear shuttling and aggregation, mitochondrial dysfunction, and clearance of misfolded polyglutamine proteins and point out possible targets for treatment.
Collapse
|
20
|
Dwyer DS, Aamodt E, Cohen B, Buttner EA. Drug elucidation: invertebrate genetics sheds new light on the molecular targets of CNS drugs. Front Pharmacol 2014; 5:177. [PMID: 25120487 PMCID: PMC4112795 DOI: 10.3389/fphar.2014.00177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/09/2014] [Indexed: 02/02/2023] Open
Abstract
Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents, and gap junctions. The general approach reviewed in this article has advanced our knowledge about important drugs for CNS disorders and can guide future drug discovery efforts.
Collapse
Affiliation(s)
- Donard S. Dwyer
- Department of Psychiatry–Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-ShreveportShreveport, LA, USA
| | - Eric Aamodt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-ShreveportShreveport, LA, USA
| | - Bruce Cohen
- Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA
- Mailman Research Center, McLean HospitalBelmont, MA, USA
| | - Edgar A. Buttner
- Mailman Research Center, McLean HospitalBelmont, MA, USA
- Department of Neurology–Department of Psychiatry, McLean Hospital, Harvard Medical SchoolBelmont, MA, USA
| |
Collapse
|
21
|
Jia DD, Zhang L, Chen Z, Wang CR, Huang FZ, Duan RH, Xia K, Tang BS, Jiang H. Lithium chloride alleviates neurodegeneration partly by inhibiting activity of GSK3β in a SCA3 Drosophila model. THE CEREBELLUM 2014; 12:892-901. [PMID: 23812869 DOI: 10.1007/s12311-013-0498-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucelotide repeat that encodes an abnormal polyglutamine (PolyQ) tract in the disease protein, ataxin-3. The formation of neuronal intranuclear inclusions in the specific brain regions is one of the pathological hallmarks of SCA3. Acceleration of the degradation of the mutant protein aggregates is proven to produce beneficial effects in SCA3 and other PolyQ diseases. Lithium is known to be neuroprotective in various models of neurodegenerative disease and can reduce the mutant protein aggregates by inducing autophagy. In this study, we explored the therapeutic potential of lithium in a SCA3 Drosophila model. We showed that chronic treatment with lithium chloride at specific doses notably prevented eye depigmentation, alleviated locomotor disability, and extended the median life spans of SCA3 transgenic Drosophila. By means of genetic approaches, we showed that co-expressing the mutant S9E, which mimicked the phosphorylated S9 state of Shaggy as done by lithium, also partly decreased toxicity of gmr-SCA3tr-Q78. Taken together, our findings suggest that lithium is a promising therapeutic agent for the treatment of SCA3 and other PolyQ diseases.
Collapse
Affiliation(s)
- Dan-Dan Jia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Neurodegenerative Aspects in Vulnerability to Schizophrenia Spectrum Disorders. Neurotox Res 2014; 26:400-13. [DOI: 10.1007/s12640-014-9473-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 01/20/2023]
|
23
|
Meffre D, Grenier J, Bernard S, Courtin F, Dudev T, Shackleford G, Jafarian-Tehrani M, Massaad C. Wnt and lithium: a common destiny in the therapy of nervous system pathologies? Cell Mol Life Sci 2014; 71:1123-48. [PMID: 23749084 PMCID: PMC11113114 DOI: 10.1007/s00018-013-1378-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 05/16/2013] [Indexed: 02/07/2023]
Abstract
Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.
Collapse
Affiliation(s)
- Delphine Meffre
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Julien Grenier
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Sophie Bernard
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Françoise Courtin
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, 11529 Taipei, Taiwan, R.O.C
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | | | | | - Charbel Massaad
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| |
Collapse
|
24
|
Saute JAM, de Castilhos RM, Monte TL, Schumacher-Schuh AF, Donis KC, D'Ávila R, Souza GN, Russo AD, Furtado GV, Gheno TC, de Souza DOG, Portela LVC, Saraiva-Pereira ML, Camey SA, Torman VBL, de Mello Rieder CR, Jardim LB. A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease. Mov Disord 2014; 29:568-73. [PMID: 24399647 DOI: 10.1002/mds.25803] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Because lithium exerts neuroprotective effects in preclinical models of polyglutamine disorders, our objective was to assess the safety and efficacy of lithium carbonate (0.5-0.8 milliequivalents per liter) in patients with Machado-Joseph disease (spinocerebellar ataxia type 3 [MJD/SCA3]). METHODS For this phase 2, single-center, double-blind, parallel, placebo-controlled trial (ClinicalTrials.gov identifier NCT01096082), 62 patients who had MJD/SCA3 with a disease duration ≤10 years and an independent gait were randomly assigned (1:1) to receive either lithium or placebo. RESULTS After 24 weeks, 169 adverse events were reported, including 50.3% in the lithium group (P = 1.00; primary safety outcome). Sixty patients (31 in the placebo group and 29 in the lithium group) were analyzed for efficacy (intention-to-treat analysis). Mean progression between groups did not differ according to scores on the Neurological Examination Score for the Assessment of Spinocerebellar Ataxia (NESSCA) after 48 weeks (-0.35; 95% confidence interval, -1.7 to 1.0; primary efficacy outcome). The lithium group exhibited minor progression on the PATA speech-rate (P = 0.002), the nondominant Click Test (P = 0.023), the Spinocerebellar Ataxia Functional Index (P = 0.003), and the Composite Cerebellar Functional Score (P = 0.029). CONCLUSIONS Lithium was safe and well tolerated, but it had no effect on progression when measured using the NESSCA in patients with MJD/SCA3. This slowdown in secondary outcomes deserves further clarification.
Collapse
Affiliation(s)
- Jonas Alex Morales Saute
- Postgraduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Medical Genetics, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Long Z, Tang B, Jiang H. Alleviating neurodegeneration in Drosophila models of PolyQ diseases. CEREBELLUM & ATAXIAS 2014; 1:9. [PMID: 26331033 PMCID: PMC4552282 DOI: 10.1186/2053-8871-1-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/06/2014] [Indexed: 11/23/2022]
Abstract
Polyglutamine (polyQ) diseases are a group of neurodegenerative conditions, induced from CAG trinucleotide repeat expansion within causative gene respectively. Generation of toxic proteins, containing polyQ-expanded tract, is the key process to cause neurodegeneration. Till now, although polyQ diseases remain uncurable, numerous therapeutic strategies with great potential have been examined and have been proven to be effective against polyQ diseases, including diverse small biological molecules and many pharmacological compounds mainly through prevention on formation of aggregates and inclusions, acceleration on degradation of toxic proteins and regulation of cellular function. We review promising therapeutic strategies by using Drosophila models of polyQ diseases including HD, SCA1, SCA3 and SBMA.
Collapse
Affiliation(s)
- Zhe Long
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, 410008 Hunan China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, 410008 Hunan China ; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 87 Xiangya road, Changsha, 410008 Hunan China ; State Key Laboratory of Medical Genetics, Central South University, 110 Xiangyaroad, Changsha, 410078 Hunan China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, 410008 Hunan China ; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 87 Xiangya road, Changsha, 410008 Hunan China ; State Key Laboratory of Medical Genetics, Central South University, 110 Xiangyaroad, Changsha, 410078 Hunan China
| |
Collapse
|
26
|
Lucanic M, Lithgow GJ, Alavez S. Pharmacological lifespan extension of invertebrates. Ageing Res Rev 2013; 12:445-58. [PMID: 22771382 DOI: 10.1016/j.arr.2012.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/11/2023]
Abstract
There is considerable interest in identifying small, drug-like compounds that slow aging in multiple species, particularly in mammals. Such compounds may prove to be useful in treating and retarding age-related disease in humans. Just as invertebrate models have been essential in helping us understand the genetic pathways that control aging, these model organisms are also proving valuable in discovering chemical compounds that influence longevity. The nematode Caenorhabditis elegans has numerous advantages for such studies including its short lifespan and has been exploited by a number of investigators to find compounds that impact aging. Here, we summarize the progress being made in identifying compounds that extend the lifespan of invertebrates, and introduce the challenges we face in translating this research into human therapies.
Collapse
|
27
|
Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 2013; 65:105-42. [PMID: 23300133 PMCID: PMC3565922 DOI: 10.1124/pr.111.005512] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs' primary targets--glycogen synthase kinase-3 for lithium and histone deacetylases for VPA--induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA's beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
28
|
Pouladi MA, Brillaud E, Xie Y, Conforti P, Graham RK, Ehrnhoefer DE, Franciosi S, Zhang W, Poucheret P, Compte E, Maurel JC, Zuccato C, Cattaneo E, Néri C, Hayden MR. NP03, a novel low-dose lithium formulation, is neuroprotective in the YAC128 mouse model of Huntington disease. Neurobiol Dis 2012; 48:282-9. [DOI: 10.1016/j.nbd.2012.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 11/28/2022] Open
|
29
|
Integration of β-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. J Neurosci 2012; 32:12630-40. [PMID: 22956852 DOI: 10.1523/jneurosci.0277-12.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the current challenges of neurodegenerative disease research is to determine whether signaling pathways that are essential to cellular homeostasis might contribute to neuronal survival and modulate the pathogenic process in human disease. In Caenorhabditis elegans, sir-2.1/SIRT1 overexpression protects neurons from the early phases of expanded polyglutamine (polyQ) toxicity, and this protection requires the longevity-promoting factor daf-16/FOXO. Here, we show that this neuroprotective effect also requires the DAF-16/FOXO partner bar-1/β-catenin and putative DAF-16-regulated gene ucp-4, the sole mitochondrial uncoupling protein (UCP) in nematodes. These results fit with a previously proposed mechanism in which the β-catenin FOXO and SIRT1 proteins may together regulate gene expression and cell survival. Knockdown of β-catenin enhanced the vulnerability to cell death of mutant-huntingtin striatal cells derived from the HdhQ111 knock-in mice. In addition, this effect was compensated by SIRT1 overexpression and accompanied by the modulation of neuronal UCP expression levels, further highlighting a cross-talk between β-catenin and SIRT1 in the modulation of mutant polyQ cytoxicity. Taken together, these results suggest that integration of β-catenin, sirtuin and FOXO signaling protects from the early phases of mutant huntingtin toxicity.
Collapse
|
30
|
Kalathur RKR, Hernández-Prieto MA, Futschik ME. Huntington's disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database. BMC Neurol 2012; 12:47. [PMID: 22741533 PMCID: PMC3492045 DOI: 10.1186/1471-2377-12-47] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/05/2012] [Indexed: 01/09/2023] Open
Abstract
Background Huntington’s disease (HD) is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. Methods To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. Results Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling), but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling). For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are associated with HD, at http://hdtt.sysbiolab.eu Additionally, we derived a candidate set of 24 novel genetic modifiers, including histone deacetylase 3 (HDAC3), metabotropic glutamate receptor 1 (GRM1), CDK5 regulatory subunit 2 (CDK5R2), and coactivator 1ß of the peroxisome proliferator-activated receptor gamma (PPARGC1B). Conclusions The results of our study give us an intriguing picture of the molecular complexity of HD. Our analyses can be seen as a first step towards a comprehensive list of biological processes, molecular functions, and pathways involved in HD, and may provide a basis for the development of more holistic disease models and new therapeutics.
Collapse
Affiliation(s)
- Ravi Kiran Reddy Kalathur
- Centro de Biomedicina Molecular e Estrutural, Campus de Gambelas, Universidade do Algarve, Faro, Portugal
| | | | | |
Collapse
|
31
|
Alavez S, Lithgow GJ. Pharmacological maintenance of protein homeostasis could postpone age-related disease. Aging Cell 2012; 11:187-91. [PMID: 22226190 DOI: 10.1111/j.1474-9726.2012.00789.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Over the last 10 years, various screens of small molecules have been conducted to find long sought interventions in aging. Most of these studies were performed in invertebrates but the demonstration of pharmacological lifespan extension in the mouse has created considerable excitement. Since aging is a common risk factor for several chronic diseases, there is a reasonable expectation that some compounds capable of extending lifespan will be useful for preventing a range of age-related diseases. One of the potential targets is protein aggregation which is associated with several age-related diseases. Genetic studies have long indicated that protein homeostasis is a critical component of longevity but recently a series of chemicals have been identified in the nematode Caenorhabditis elegans that lead to the maintenance of the homeostatic network and extend lifespan. Herein we review these interventions in C. elegans and consider the potential of improving health by enhancing protein homeostasis.
Collapse
|
32
|
Gómez-Sintes R, Hernández F, Lucas JJ, Avila J. GSK-3 Mouse Models to Study Neuronal Apoptosis and Neurodegeneration. Front Mol Neurosci 2011; 4:45. [PMID: 22110426 PMCID: PMC3217194 DOI: 10.3389/fnmol.2011.00045] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/31/2011] [Indexed: 11/19/2022] Open
Abstract
Increased GSK-3 activity is believed to contribute to the etiology of chronic disorders like Alzheimer’s disease (AD), schizophrenia, diabetes, and some types of cancer, thus supporting therapeutic potential of GSK-3 inhibitors. Numerous mouse models with modified GSK-3 have been generated in order to study the physiology of GSK-3, its implication in diverse pathologies and the potential effect of GSK-3 inhibitors. In this review we have focused on the relevance of these mouse models for the study of the role of GSK-3 in apoptosis. GSK-3 is involved in two apoptotic pathways, intrinsic and extrinsic pathways, and plays opposite roles depending on the apoptotic signaling process that is activated. It promotes cell death when acting through intrinsic pathway and plays an anti-apoptotic role if the extrinsic pathway is occurring. It is important to dissect this duality since, among the diseases in which GSK-3 is involved, excessive cell death is crucial in some illnesses like neurodegenerative diseases, while a deficient apoptosis is occurring in others such as cancer or autoimmune diseases. The clinical application of a classical GSK-3 inhibitor, lithium, is limited by its toxic consequences, including motor side effects. Recently, the mechanism leading to activation of apoptosis following chronic lithium administration has been described. Understanding this mechanism could help to minimize side effects and to improve application of GSK-3 inhibitors to the treatment of AD and to extend the application to other diseases.
Collapse
Affiliation(s)
- Raquel Gómez-Sintes
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Jimenez-Sanchez M, Thomson F, Zavodszky E, Rubinsztein DC. Autophagy and polyglutamine diseases. Prog Neurobiol 2011; 97:67-82. [PMID: 21930185 PMCID: PMC3712188 DOI: 10.1016/j.pneurobio.2011.08.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 01/16/2023]
Abstract
In polyglutamine diseases, an abnormally elongated polyglutamine tract results in protein misfolding and accumulation of intracellular aggregates. The length of the polyglutamine expansion correlates with the tendency of the mutant protein to aggregate, as well as with neuronal toxicity and earlier disease onset. Although currently there is no effective cure to prevent or slow down the progression of these neurodegenerative disorders, increasing the clearance of mutant proteins has been proposed as a potential therapeutic approach. The ubiquitin–proteasome system and autophagy are the two main degradative pathways responsible for eliminating misfolded and unnecessary proteins in the cell. We will review some of the studies that have proposed autophagy as a strategy to reduce the accumulation of polyglutamine-expanded protein aggregates and protect against mutant protein neurotoxicity. We will also discuss some of the currently known mechanisms that induce autophagy, which may be beneficial for the treatment of these and other neurodegenerative disorders.
Collapse
|
34
|
Di Zanni E, Ceccherini I, Bachetti T. Toward a therapeutic strategy for polyalanine expansions disorders: in vivo and in vitro models for drugs analysis. Eur J Paediatr Neurol 2011; 15:449-52. [PMID: 21388845 DOI: 10.1016/j.ejpn.2011.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/05/2011] [Indexed: 11/26/2022]
Abstract
Molecular pathogenesis of congenital disorders associated with polyalanine expansions has been investigated for several years. Despite different pathological hallmarks characterize each polyalanine disease, they share common features, mainly represented by aggregates containing the mutant proteins, usually mislocated inside the cellular compartments, along with ubiquitin and proteasome components. Recently, particular interest has been raised by investigations on molecules able to restore both correct localization and function of the expanded proteins. Here we report a list of drugs whose effects have been assayed both in in vitro and in vivo models of polyalanine disorders, such as the oculopharyingeal muscular dystrophy, congenital central hypoventilation syndrome, synpolydactyly and in cell and animal models carrying specific artificial mutations. In particular, we have reviewed, for each polyalanine mutant protein, the molecules tested, cellular models under investigation, drugs effects on aggregation and underlying mechanisms.
Collapse
Affiliation(s)
- Eleonora Di Zanni
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, Genova, Italy
| | | | | |
Collapse
|
35
|
Chiu CT, Chuang DM. Neuroprotective action of lithium in disorders of the central nervous system. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2011; 36:461-76. [PMID: 21743136 PMCID: PMC3172812 DOI: 10.3969/j.issn.1672-7347.2011.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Substantial in vitro and in vivo evidence of neurotrophic and neuroprotective effects of lithium suggests that it may also have considerable potential for the treatment of neurodegenerative conditions. Lithium's main mechanisms of action appear to stem from its ability to inhibit glycogen synthase kinase-3 activity and also to induce signaling mediated by brain-derived neurotrophic factor. This in turn alters a wide variety of downstream effectors, with the ultimate effect of enhancing pathways to cell survival. In addition, lithium contributes to calcium homeostasis. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, for instance, it suppresses the calcium-dependent activation of pro-apoptotic signaling pathways. By inhibiting the activity of phosphoinositol phosphatases, it decreases levels of inositol 1,4,5-trisphosphate, a process recently identified as a novel mechanism for inducing autophagy. These mechanisms allow therapeutic doses of lithium to protect neuronal cells from diverse insults that would otherwise lead to massive cell death. Lithium, moreover, has been shown to improve behavioral and cognitive deficits in animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, and Huntington's, Alzheimer's, and Parkinson's diseases. Since lithium is already FDA-approved for the treatment of bipolar disorder, our conclusions support the notion that its clinical relevance can be expanded to include the treatment of several neurological and neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Section on Molecular Neurobiology, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | | |
Collapse
|
36
|
Chiu CT, Chuang DM. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 2010; 128:281-304. [PMID: 20705090 PMCID: PMC3167234 DOI: 10.1016/j.pharmthera.2010.07.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium's therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium's main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington's, Alzheimer's, and Parkinson's diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium's neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | | |
Collapse
|
37
|
Messing A, LaPash Daniels CM, Hagemann TL. Strategies for treatment in Alexander disease. Neurotherapeutics 2010; 7:507-15. [PMID: 20880512 PMCID: PMC2948554 DOI: 10.1016/j.nurt.2010.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/07/2010] [Accepted: 05/10/2010] [Indexed: 02/07/2023] Open
Abstract
Alexander disease is a rare and generally fatal disorder of the CNS, originally classified among the leukodystrophies because of the prominent myelin deficits found in young patients. The most common form of this disease affects infants, who often have profound mental retardation and a variety of developmental delays, but later onset forms also occur, sometimes with little or no white matter pathology at all. The pathological hallmark of Alexander disease is the inclusion body, known as Rosenthal fiber, within the cell bodies and processes of astrocytes. Recent genetic studies identified heterozygous missense mutations in glial fibrillary acidic protein (GFAP), the major intermediate filament protein in astrocytes, as the cause of nearly all cases of Alexander disease. These studies have transformed our view of this disorder and opened new directions for investigation and clinical practice, particularly with respect to diagnosis. Mechanisms by which expression of mutant forms of glial fibrillary acidic protein (GFAP) lead to the pleiotropic manifestations of disease (afflicting cell types beyond the ones expressing the mutant gene) are slowly coming into focus. Ideas are beginning to emerge that suggest several compelling therapeutic targets for interventions that might slow or arrest the evolution of the disease. This review will outline the rationale for pursuing these strategies, and highlight some of the critical issues that must be addressed in the planning of future clinical trials.
Collapse
Affiliation(s)
- Albee Messing
- Waisman Center, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| | | | | |
Collapse
|
38
|
Pasco MY, Catoire H, Parker JA, Brais B, Rouleau GA, Néri C. Cross-talk between canonical Wnt signaling and the sirtuin-FoxO longevity pathway to protect against muscular pathology induced by mutant PABPN1 expression in C. elegans. Neurobiol Dis 2010; 38:425-33. [PMID: 20227501 DOI: 10.1016/j.nbd.2010.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/24/2010] [Accepted: 03/04/2010] [Indexed: 10/19/2022] Open
Abstract
Developmental pathways may be play a role in adult cell survival. However, whether they interact with longevity/cell survival pathways to confer protection against disease-associated proteotoxicity remains largely unknown. We previously reported that the inhibition of key longevity modulators such as the deacetylase sir-2.1/SIRT1 (Sir2) and its target daf-16/FoxO protects transgenics nematodes from muscle cell decline and abnormal motility produced by the expression of mutant (polyalanine-expanded) PABPN1, the oculopharyngeal muscular dystrophy (OPMD) protein. Here, we report that canonical Wnt signaling (i) modulates muscular pathology in mutant PABPN1 nematodes, and (ii) cooperates with the Sir2-FoxO longevity pathway to confer protection against mutant PABPN1 toxicity at the cellular and behavioral levels. Mutant PABPN1 toxicity was modified by genes along the canonical Wnt pathway, several of which depend on daf-16 for activity. ss-catenin and pop-1/TCF RNAi suppressed the protection from mutant PABPN1 confered by loss-of-function mutations in sir-2.1 and daf-16. Moreover, the aggravation of muscle cell pathology by increased sir-2.1 dosage was reversed by ss-catenin and pop-1 RNAi. The chemical inhibition of GSK-3ss, a repressor of ss-catenin activity, protected against mutant PABPN1 toxicity in a daf-16-dependent manner, which is consistent with a cross-talk between ss-catenin signaling and Sir2-FoxO signaling in protecting from mutant PABPN1 toxicity. Our data reveal that canonical Wnt signaling and Sir2-FoxO signaling interact to modulate diseased muscle survival, and indicate that GSK-3ss inhibitors and sirtuin inhibitors both have therapeutic potential for muscle protection in OPMD.
Collapse
Affiliation(s)
- Matthieu Y Pasco
- Inserm, Unit 894, Laboratory of Neuronal Cell Biology and Pathology, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
39
|
Pauls D, Pfitzenmaier JER, Krebs-Wheaton R, Selcho M, Stocker RF, Thum AS. Electric shock-induced associative olfactory learning in Drosophila larvae. Chem Senses 2010; 35:335-46. [PMID: 20212010 DOI: 10.1093/chemse/bjq023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Associative plasticity is a basic essential attribute of nervous systems. As shown by numerous reports, Drosophila is able to establish simple forms of appetitive and aversive olfactory associations at both larval and adult stages. Whereas most adult studies on aversive learning employed electric shock as a negative reinforcer, larval paradigms essentially utilized gustatory stimuli to create negative associations, a discrepancy that limits the comparison of data. To overcome this drawback, we critically revisited larval odor-electric shock conditioning. First, we show that lithium chloride (LiCl), which was used in all previous larval electric shock paradigms, is not required per se in larval odor-electric shock learning. This is of considerable practical advantage because beside its peculiar effects LiCl is attractive to larvae at low concentration that renders comparative learning studies on genetically manipulated larvae complicated. Second, we confirm that in both a 2-odor reciprocal and a 1-odor nonreciprocal conditioning regimen, larvae are able to associate an odor with electric shock. In the latter experiments, initial learning scores reach an asymptote after 5 training trials, and aversive memory is still detectable after 60 min. Our experiments provide a comprehensive basis for future comparisons of larval olfactory conditioning reinforced by different modalities, for studies aimed at analyzing odor-electric shock learning in the larva and the adult, and for investigations of the cellular and molecular substrate of aversive olfactory learning in the simple Drosophila model.
Collapse
Affiliation(s)
- Dennis Pauls
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Song L, Li Y, Wang K, Wang YZ, Molotkov A, Gao L, Zhao T, Yamagami T, Wang Y, Gan Q, Pleasure DE, Zhou CJ. Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion. Development 2009; 136:3161-71. [PMID: 19700620 DOI: 10.1242/dev.037440] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neither the mechanisms that govern lip morphogenesis nor the cause of cleft lip are well understood. We report that genetic inactivation of Lrp6, a co-receptor of the Wnt/beta-catenin signaling pathway, leads to cleft lip with cleft palate. The activity of a Wnt signaling reporter is blocked in the orofacial primordia by Lrp6 deletion in mice. The morphological dynamic that is required for normal lip formation and fusion is disrupted in these mutants. The expression of the homeobox genes Msx1 and Msx2 is dramatically reduced in the mutants, which prevents the outgrowth of orofacial primordia, especially in the fusion site. We further demonstrate that Msx1 and Msx2 (but not their potential regulator Bmp4) are the downstream targets of the Wnt/beta-catenin signaling pathway during lip formation and fusion. By contrast, a ;fusion-resistant' gene, Raldh3 (also known as Aldh1a3), that encodes a retinoic acid-synthesizing enzyme is ectopically expressed in the upper lip primordia of Lrp6-deficient embryos, indicating a region-specific role of the Wnt/beta-catenin signaling pathway in repressing retinoic acid signaling. Thus, the Lrp6-mediated Wnt signaling pathway is required for lip development by orchestrating two distinctively different morphogenetic movements.
Collapse
Affiliation(s)
- Lanying Song
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kasuya J, Kaas GA, Kitamoto T. A putative amino acid transporter of the solute carrier 6 family is upregulated by lithium and is required for resistance to lithium toxicity in Drosophila. Neuroscience 2009; 163:825-37. [PMID: 19619614 PMCID: PMC2746873 DOI: 10.1016/j.neuroscience.2009.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/12/2009] [Accepted: 07/13/2009] [Indexed: 11/25/2022]
Abstract
Lithium is an efficacious drug for the treatment of mood disorders, and its application is also considered a potential therapy for brain damage. However, the mechanisms underlying lithium's therapeutic action and toxic effects in the nervous system remain largely elusive. Here we report on the use of a versatile genetic model, the fruit fly Drosophila melanogaster, to discover novel molecular components involved in the lithium-responsive neurobiological process. We previously identified CG15088, which encodes a putative nutrient amino acid transporter of the solute carrier 6 (SLC6) family, as one of the genes most significantly upregulated in response to lithium treatment. This gene was the only SLC6 gene induced by lithium, and was thus designated as Lithium-inducible SLC6 transporter or List. Either RNA interference (RNAi)-mediated knockdown or complete deletion of List resulted in a remarkable increase in the susceptibility of adult flies to lithium's toxic effects, whereas transgenic expression of wild-type List significantly suppressed the lithium hypersensitive phenotype of List-deficient flies. Other ions such as sodium, potassium and chloride did not induce List upregulation, nor did they affect the viability of flies with suppressed List expression. These results indicate that lithium's biochemical or physical properties, rather than general osmotic responses, are responsible for the lithium-induced upregulation of List, as well as for the lithium-susceptible phenotype observed in List knockdown flies. Interestingly, flies became significantly more susceptible to lithium toxicity when List RNAi was specifically expressed in glia than when it was expressed in neurons or muscles, which is consistent with potential glial expression of List. These results show that the List transporter confers resistance to lithium toxicity, possibly as a consequence of its amino acid transporter activity in CNS glia. Our results have provided a new avenue of investigation toward a better understanding of the molecular and cellular mechanisms that underlie lithium-responsive neurobiological process.
Collapse
Affiliation(s)
- Junko Kasuya
- Department of Anesthesia, Carver College of Medicine, University of Iowa
| | - Garrett A. Kaas
- Interdisciplinary Graduate Program in Genetics, University of Iowa
| | - Toshihiro Kitamoto
- Department of Anesthesia, Carver College of Medicine, University of Iowa
- Interdisciplinary Graduate Program in Genetics, University of Iowa
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa
| |
Collapse
|
42
|
Kasuya J, Kaas G, Kitamoto T. Effects of lithium chloride on the gene expression profiles in Drosophila heads. Neurosci Res 2009; 64:413-20. [PMID: 19410610 PMCID: PMC2743107 DOI: 10.1016/j.neures.2009.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/03/2009] [Accepted: 04/23/2009] [Indexed: 01/13/2023]
Abstract
To gain insight into the basic neurobiological processes regulated by lithium--an effective drug for bipolar disorder--we used Affymetrix Genome Arrays to examine lithium-induced changes in genome-wide gene expression profiles of head mRNA from the genetic model organism Drosophila melanogaster. First, to identify the individual genes whose transcript levels are most significantly altered by lithium, we analyzed the microarray data with stringent criteria (fold change>2; p<0.001) and evaluated the results by RT-PCR. This analysis identified 12 genes that encode proteins with various biological functions, including an enzyme responsible for amino acid metabolism and a putative amino acid transporter. Second, to uncover the biological pathways involved in lithium's action in the nervous system, we used less stringent criteria (fold change>1.2; FDR<0.05) and assigned the identified 66 lithium-responsive genes to biological pathways using DAVID (Database for Annotation, Visualization and Integrated Discovery). The gene ontology categories most significantly affected by lithium were amino acid metabolic processes. Taken together, these data suggest that amino acid metabolism is important for lithium's actions in the nervous system, and lay a foundation for future functional studies of lithium-responsive neurobiological processes using the versatile molecular and genetic tools that are available in Drosophila.
Collapse
Affiliation(s)
| | - Garrett Kaas
- Interdisciplinary Graduate Program in Genetics, University of Iowa
| | - Toshihiro Kitamoto
- Department of Anesthesia, University of Iowa
- Interdisciplinary Graduate Program in Genetics, University of Iowa
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa
| |
Collapse
|
43
|
Lee FKM, Wong AKY, Lee YW, Wan OW, Edwin Chan HY, Chung KKK. The role of ubiquitin linkages on α-synuclein induced-toxicity in aDrosophilamodel of Parkinson’s disease. J Neurochem 2009; 110:208-19. [DOI: 10.1111/j.1471-4159.2009.06124.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Abstract
Clinicians have long used lithium to treat manic depression. They have also observed that lithium causes granulocytosis and lymphopenia while it enhances immunological activities of monocytes and lymphocytes. In fact, clinicians have long used lithium to treat granulocytopenia resulting from radiation and chemotherapy, to boost immunoglobulins after vaccination, and to enhance natural killer activity. Recent studies revealed a mechanism that ties together these disparate effects of lithium. Lithium acts through multiple pathways to inhibit glycogen synthetase kinase-3beta (GSK3 beta). This enzyme phosphorylates and inhibits nuclear factors that turn on cell growth and protection programs, including the nuclear factor of activated T cells (NFAT) and WNT/beta-catenin. In animals, lithium upregulates neurotrophins, including brain-derived neurotrophic factor (BDNF), nerve growth factor, neurotrophin-3 (NT3), as well as receptors to these growth factors in brain. Lithium also stimulates proliferation of stem cells, including bone marrow and neural stem cells in the subventricular zone, striatum, and forebrain. The stimulation of endogenous neural stem cells may explain why lithium increases brain cell density and volume in patients with bipolar disorders. Lithium also increases brain concentrations of the neuronal markers n-acetyl-aspartate and myoinositol. Lithium also remarkably protects neurons against glutamate, seizures, and apoptosis due to a wide variety of neurotoxins. The effective dose range for lithium is 0.6-1.0 mM in serum and >1.5 mM may be toxic. Serum lithium levels of 1.5-2.0 mM may have mild and reversible toxic effects on kidney, liver, heart, and glands. Serum levels of >2 mM may be associated with neurological symptoms, including cerebellar dysfunction. Prolonged lithium intoxication >2 mM can cause permanent brain damage. Lithium has low mutagenic and carcinogenic risk. Lithium is still the most effective therapy for depression. It "cures" a third of the patients with manic depression, improves the lives of about a third, and is ineffective in about a third. Recent studies suggest that some anticonvulsants (i.e., valproate, carbamapazine, and lamotrigene) may be useful in patients that do not respond to lithium. Lithium has been reported to be beneficial in animal models of brain injury, stroke, Alzheimer's, Huntington's, and Parkinson's diseases, amyotrophic lateral sclerosis (ALS), spinal cord injury, and other conditions. Clinical trials assessing the effects of lithium are under way. A recent clinical trial suggests that lithium stops the progression of ALS.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
45
|
Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 2009; 16:46-56. [PMID: 18636076 DOI: 10.1038/cdd.2008.110] [Citation(s) in RCA: 428] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The formation of intra-neuronal mutant protein aggregates is a characteristic of several human neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease (PD) and polyglutamine disorders, including Huntington's disease (HD). Autophagy is a major clearance pathway for the removal of mutant huntingtin associated with HD, and many other disease-causing, cytoplasmic, aggregate-prone proteins. Autophagy is negatively regulated by the mammalian target of rapamycin (mTOR) and can be induced in all mammalian cell types by the mTOR inhibitor rapamycin. It can also be induced by a recently described cyclical mTOR-independent pathway, which has multiple drug targets, involving links between Ca(2+)-calpain-G(salpha) and cAMP-Epac-PLC-epsilon-IP(3) signalling. Both pathways enhance the clearance of mutant huntingtin fragments and attenuate polyglutamine toxicity in cell and animal models. The protective effects of rapamycin in vivo are autophagy-dependent. In Drosophila models of various diseases, the benefits of rapamycin are lost when the expression of different autophagy genes is reduced, implicating that its effects are not mediated by autophagy-independent processes (like mild translation suppression). Also, the mTOR-independent autophagy enhancers have no effects on mutant protein clearance in autophagy-deficient cells. In this review, we describe various drugs and pathways inducing autophagy, which may be potential therapeutic approaches for HD and related conditions.
Collapse
Affiliation(s)
- S Sarkar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | |
Collapse
|
46
|
Winslow AR, Rubinsztein DC. Autophagy in neurodegeneration and development. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:723-9. [PMID: 18644437 PMCID: PMC2597715 DOI: 10.1016/j.bbadis.2008.06.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/09/2008] [Accepted: 06/23/2008] [Indexed: 12/12/2022]
Abstract
Efficient protein turnover is essential for the maintenance of cellular health. Here we review how autophagy has fundamental functions in cellular homeostasis and possible uses as a therapeutic strategy for neurodegenerative diseases associated with intracytosolic aggregate formation, like Huntington's disease (HD). Drugs like rapamycin, that induce autophagy, increase the clearance of mutant huntingtin fragments and ameliorate the pathology in cell and animal models of HD and related conditions. In Drosophila, the beneficial effects of rapamycin in diseases related to HD are autophagy-dependent. We will also discuss the importance of autophagy in early stages of development and its possible contribution as a secondary disease mechanism in forms of fronto-temporal dementias, motor neuron disease, and lysosomal storage disorders.
Collapse
Affiliation(s)
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
47
|
Abstract
Autophagy is a nonspecific bulk degradation pathway for long-lived cytoplasmic proteins, protein complexes, or damaged organelles. This process is also a major degradation pathway for many aggregate-prone, disease-causing proteins associated with neurodegenerative disorders, such as mutant huntingtin in Huntington's disease. In this review, we discuss factors regulating the degradation of mutant huntingtin by autophagy. We also report the growing list of new drugs/pathways that upregulate autophagy to enhance the clearance of this mutant protein, as autophagy upregulation may be a tractable strategy for the treatment of Huntington's disease.
Collapse
Affiliation(s)
- Sovan Sarkar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, UK.
| | | |
Collapse
|
48
|
Sarkar S, Rubinsztein DC. Small molecule enhancers of autophagy for neurodegenerative diseases. MOLECULAR BIOSYSTEMS 2008; 4:895-901. [PMID: 18704227 DOI: 10.1039/b804606a] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, prion diseases and polyglutamine disorders, including Huntington's disease and various spinocerebellar ataxias, are associated with the formation of protein aggregates. These aggregates and/or their precursors are thought to be toxic disease-causing species. Autophagy is a major degradation pathway for intracytosolic aggregate-prone proteins, including those associated with neurodegeneration. It is a constitutive self-degradative process involved both in the basal turnover of cellular components and in response to nutrient starvation in eukaryotes. Enhancing autophagy may be a possible therapeutic strategy for neurodegenerative disorders where the mutant proteins are autophagy substrates. In cell and animal models, chemical induction of autophagy protects against the toxic insults of these mutant aggregate-prone proteins by enhancing their clearance. We will discuss various autophagy-inducing small molecules that have emerged in the past few years that may be leads towards the treatment of such devastating diseases.
Collapse
Affiliation(s)
- Sovan Sarkar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, UK.
| | | |
Collapse
|
49
|
Wong SLA, Chan WM, Chan HYE. Sodium dodecyl sulfate-insoluble oligomers are involved in polyglutamine degeneration. FASEB J 2008; 22:3348-57. [PMID: 18559990 DOI: 10.1096/fj.07-103887] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In polyglutamine (polyQ) degeneration, disease protein that carries an expanded polyQ tract is neurotoxic. Expanded polyQ protein exists in different conformations that display distinct solubility properties. In this study, an inducible transgenic Drosophila model is established to define the pathogenic form of polyQ protein at an early stage of degeneration in vivo. We show that microscopic polyQ aggregates are neither pathogenic nor protective. Further, no toxic effect of sodium dodecyl sulfate (SDS) -soluble polyQ protein is observed in our model. By means of filtration, 2 forms of SDS-insoluble protein species are identified according to their size. Coexpression of an ATPase-defective form of the molecular chaperone Hsc70 (Hsc70-K71S) selectively reduces the abundance of the large SDS-insoluble polyQ species, but such modulation has no modifying effects on degeneration. Notably, we detect a distinct Hsc70-K71S-resistant, small, SDS-insoluble polyQ oligomeric species that is closely correlated with degeneration. Our data highlight the toxic role of SDS-insoluble oligomers in polyQ degeneration in vivo.
Collapse
Affiliation(s)
- S L Alan Wong
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | | | | |
Collapse
|
50
|
Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum Mol Genet 2008; 17:170-8. [PMID: 17921520 DOI: 10.1093/hmg/ddm294] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Huntington's disease (HD) is caused by a polyglutamine expansion mutation in the huntingtin protein that confers a toxic gain-of-function and causes the protein to become aggregate-prone. Aggregate-prone proteins are cleared by macroautophagy, and upregulating this process by rapamycin, which inhibits the mammalian target of rapamycin (mTOR), attenuates their toxicity in various HD models. Recently, we demonstrated that lithium induces mTOR-independent autophagy by inhibiting inositol monophosphatase (IMPase) and reducing inositol and IP3 levels. Here we show that glycogen synthase kinase-3beta (GSK-3beta), another enzyme inhibited by lithium, has opposite effects. In contrast to IMPase inhibition that enhances autophagy, GSK3beta inhibition attenuates autophagy and mutant huntingtin clearance by activating mTOR. In order to counteract the autophagy inhibitory effects of mTOR activation resulting from lithium treatment, we have used the mTOR inhibitor rapamycin in combination with lithium. This combination enhances macroautophagy by mTOR-independent (IMPase inhibition by lithium) and mTOR-dependent (mTOR inhibition by rapamycin) pathways. We provide proof-of-principle for this rational combination treatment approach in vivo by showing greater protection against neurodegeneration in an HD fly model with TOR inhibition and lithium, or in HD flies treated with rapamycin and lithium, compared with either pathway alone.
Collapse
Affiliation(s)
- Sovan Sarkar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | | | |
Collapse
|