1
|
Li WH, Wang F, Song GY, Yu QH, Du RP, Xu P. PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Front Pharmacol 2023; 14:1198948. [PMID: 37351512 PMCID: PMC10283042 DOI: 10.3389/fphar.2023.1198948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Since its discovery, poly (ADP-ribose) polymerase 1 (PARP-1) has been extensively studied due to its regulatory role in numerous biologically crucial pathways. PARP inhibitors have opened new therapeutic avenues for cancer patients and have gained approval as standalone treatments for certain types of cancer. With continued advancements in the research of PARP inhibitors, we can fully realize their potential as therapeutic targets for various diseases. Purpose: To assess the current understanding of PARP-1 mechanisms in radioprotection and radiotherapy based on the literature. Methods: We searched the PubMed database and summarized information on PARP inhibitors, the interaction of PARP-1 with DNA, and the relationships between PARP-1 and p53/ROS, NF-κB/DNA-PK, and caspase3/AIF, respectively. Results: The enzyme PARP-1 plays a crucial role in repairing DNA damage and modifying proteins. Cells exposed to radiation can experience DNA damage, such as single-, intra-, or inter-strand damage. This damage, associated with replication fork stagnation, triggers DNA repair mechanisms, including those involving PARP-1. The activity of PARP-1 increases 500-fold on DNA binding. Studies on PARP-1-knockdown mice have shown that the protein regulates the response to radiation. A lack of PARP-1 also increases the organism's sensitivity to radiation injury. PARP-1 has been found positively or negatively regulate the expression of specific genes through its modulation of key transcription factors and other molecules, including NF-κB, p53, Caspase 3, reactive oxygen species (ROS), and apoptosis-inducing factor (AIF). Conclusion: This review provides a comprehensive analysis of the physiological and pathological roles of PARP-1 and examines the impact of PARP-1 inhibitors under conditions of ionizing radiation exposure. The review also emphasizes the challenges and opportunities for developing PARP-1 inhibitors to improve the clinical outcomes of ionizing radiation damage.
Collapse
Affiliation(s)
- Wen-Hao Li
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fei Wang
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Gui-Yuan Song
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Qing-Hua Yu
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Rui-Peng Du
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ping Xu
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Attenuation of Tumor Burden in Response to Rucaparib in Lung Adenocarcinoma: The Contribution of Oxidative Stress, Apoptosis, and DNA Damage. Int J Mol Sci 2023; 24:ijms24032580. [PMID: 36768904 PMCID: PMC9916668 DOI: 10.3390/ijms24032580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
In cancer, overactivation of poly (ADPribose) polymerases (PARP) plays a relevant role in DNA repair. We hypothesized that treatment with the PARP inhibitor rucaparib may reduce tumor burden via several biological mechanisms (apoptosis and oxidative stress) in mice. In lung tumors (LP07 lung adenocarcinoma) of mice treated/non-treated (control animals) with PARP inhibitor (rucaparib,150 mg/kg body weight/24 h for 20 day), PARP activity and expression, DNA damage, apoptotic nuclei, cell proliferation, and redox balance were measured using immunoblotting and immunohistochemistry. In lung tumors of rucaparib-treated mice compared to non-treated animals, tumor burden, PARP activity, and cell proliferation decreased, while DNA damage, TUNEL-positive nuclei, protein oxidation, and superoxide dismutase content (SOD)2 increased. In this experiment on lung adenocarcinoma, the pharmacological PARP inhibitor rucaparib elicited a significant improvement in tumor size, probably through a reduction in cell proliferation as a result of a rise in DNA damage and apoptosis. Oxidative stress and SOD2 also increased in response to treatment with rucaparib within the tumor cells of the treated mice. These results put the line forward to the contribution of PARP inhibitors to reduced tumor burden in lung adenocarcinoma. The potential implications of these findings should be tested in clinical settings of patients with lung tumors.
Collapse
|
3
|
WRN promotes bone development and growth by unwinding SHOX-G-quadruplexes via its helicase activity in Werner Syndrome. Nat Commun 2022; 13:5456. [PMID: 36114168 PMCID: PMC9481537 DOI: 10.1038/s41467-022-33012-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractWerner Syndrome (WS) is an autosomal recessive disorder characterized by premature aging due to mutations of the WRN gene. A classical sign in WS patients is short stature, but the underlying mechanisms are not well understood. Here we report that WRN is indispensable for chondrogenesis, which is the engine driving the elongation of bones and determines height. Zebrafish lacking wrn exhibit impairment of bone growth and have shorter body stature. We pinpoint the function of WRN to its helicase domain. We identify short-stature homeobox (SHOX) as a crucial and direct target of WRN and find that the WRN helicase core regulates the transcriptional expression of SHOX via unwinding G-quadruplexes. Consistent with this, shox−/− zebrafish exhibit impaired bone growth, while genetic overexpression of SHOX or shox expression rescues the bone developmental deficiency induced in WRN/wrn-null mutants both in vitro and in vivo. Collectively, we have identified a previously unknown function of WRN in regulating bone development and growth through the transcriptional regulation of SHOX via the WRN helicase domain, thus illuminating a possible approach for new therapeutic strategies.
Collapse
|
4
|
Maluchenko NV, Koshkina DO, Feofanov AV, Studitsky VM, Kirpichnikov MP. Poly(ADP-Ribosyl) Code Functions. Acta Naturae 2021; 13:58-69. [PMID: 34377556 PMCID: PMC8327145 DOI: 10.32607/actanaturae.11089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/10/2020] [Indexed: 01/14/2023] Open
Abstract
Poly(ADP-ribosyl)ation plays a key role in cellular metabolism. Covalent poly(ADP-ribosyl)ation affects the activity of the proteins engaged in DNA repair, chromatin structure regulation, gene expression, RNA processing, ribosome biogenesis, and protein translation. Non-covalent PAR-dependent interactions are involved in the various types of cellular response to stress and viral infection, such as inflammation, hormonal signaling, and the immune response. The review discusses how structurally different poly(ADP-ribose) (PAR) molecules composed of identical monomers can differentially participate in various cellular processes acting as the so-called "PAR code." The article describes the ability of PAR polymers to form functional biomolecular clusters through a phase-separation in response to various signals. This phase-separation contributes to rapid spatial segregation of biochemical processes and effective recruitment of the necessary components. The cellular PAR level is tightly controlled by a network of regulatory proteins: PAR code writers, readers, and erasers. Impaired PAR metabolism is associated with the development of pathological processes causing oncological, cardiovascular, and neurodegenerative diseases. Pharmacological correction of the PAR level may represent a new approach to the treatment of various diseases.
Collapse
Affiliation(s)
- N. V. Maluchenko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - D. O. Koshkina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - A. V. Feofanov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. M. Studitsky
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Fox Chase Cancer Center, Philadelphia, PA, 19111-2497 USA
| | - M. P. Kirpichnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
5
|
Xu SJ, Wang X, Wang TY, Lin ZZ, Hu YJ, Huang ZL, Yang XJ, Xu P. Flavonoids from Rosaroxburghii Tratt prevent reactive oxygen species-mediated DNA damage in thymus cells both combined with and without PARP-1 expression after exposure to radiation in vivo. Aging (Albany NY) 2020; 12:16368-16389. [PMID: 32862153 PMCID: PMC7485694 DOI: 10.18632/aging.103688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/13/2020] [Indexed: 11/25/2022]
Abstract
This study aimed to evaluate the role of FRT in ROS/DNA regulation with or without PARP-1 in radiation-injured thymus cells. The administration of FRT to PARP-1-/- (KO) mice demonstrated that FRT significantly increased the viability of thymus cells and decreased their rate of apoptosis through PARP-1. Radiation increased the levels of ROS, γ-H2AX and 53BP1, and induced DNA double strand breaks. Compared with wild type (WT) mice, levels of ROS, γ-H2AX and 53BP1 in KO mice were much less elevated. The FRT treatment groups also showed little reduction in these indicators in KO mice compared with WT mice. The results of the KO mice study indicated that FRT reduced ROS activation through inhibition of PARP-1. Furthermore, FRT reduced the concentrations of γ-H2AX by decreasing ROS activation. However, we found that FRT did not regulate 53BP1, a marker of DNA damage, because of its elimination of ROS. Levels of apoptosis-inducing factor (AIF), exhibited no significant difference after irradiation in KO mice. To summarize, ROS suppression by PARP-1 knockout in KO mice highlights potential therapeutic target either by PARP-1 inhibition combined with radiation or by treatment with a drug therapy alone. AIF-induced apoptosis could not be activated in KO mice.
Collapse
Affiliation(s)
- Sai-Juan Xu
- Department of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xia Wang
- College of Medical Laboratory, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tao-Yang Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Zheng-Zhan Lin
- Department of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yong-Jian Hu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Zhong-Lin Huang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xian-Jun Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Ping Xu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
6
|
Marcar L, Bardhan K, Gheorghiu L, Dinkelborg P, Pfäffle H, Liu Q, Wang M, Piotrowska Z, Sequist LV, Borgmann K, Settleman JE, Engelman JA, Hata AN, Willers H. Acquired Resistance of EGFR-Mutated Lung Cancer to Tyrosine Kinase Inhibitor Treatment Promotes PARP Inhibitor Sensitivity. Cell Rep 2020; 27:3422-3432.e4. [PMID: 31216465 PMCID: PMC6624074 DOI: 10.1016/j.celrep.2019.05.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Lung cancers with oncogenic mutations in the epidermal growth factor receptor (EGFR) invariably acquire resistance to tyrosine kinase inhibitor (TKI) treatment. Vulnerabilities of EGFR TKI-resistant cancer cells that could be therapeutically exploited are incompletely understood. Here, we describe a poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor-sensitive phenotype that is conferred by TKI treatment in vitro and in vivo and appears independent of any particular TKI resistance mechanism. We find that PARP-1 protects cells against cytotoxic reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). Compared to TKI-naive cells, TKI-resistant cells exhibit signs of increased RAC1 activity. PARP-1 catalytic function is required for PARylation of RAC1 at evolutionarily conserved sites in TKI-resistant cells, which restricts NOX-mediated ROS production. Our data identify a role of PARP-1 in controlling ROS levels upon EGFR TKI treatment, with potentially broad implications for therapeutic targeting of the mechanisms that govern the survival of oncogene-driven cancer cells.
Collapse
Affiliation(s)
- Lynnette Marcar
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kankana Bardhan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Liliana Gheorghiu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Patrick Dinkelborg
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Eppendorf, Hamburg 20251, Germany
| | - Heike Pfäffle
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meng Wang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zofia Piotrowska
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lecia V Sequist
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Eppendorf, Hamburg 20251, Germany
| | - Jeffrey E Settleman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jeffrey A Engelman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Aaron N Hata
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Wang X, Tu W, Chen D, Fu J, Wang J, Shao C, Zhang J. Autophagy suppresses radiation damage by activating PARP-1 and attenuating reactive oxygen species in hepatoma cells. Int J Radiat Biol 2019; 95:1051-1057. [PMID: 30964366 DOI: 10.1080/09553002.2019.1605461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: To investigate the relationship between autophagy and radiation damage of human hepatoma cells and to explore the role of reactive oxygen species (ROS). Materials and methods: HepG2 cells were exposed to X-rays, then the protein expressions of microtubule-associated protein 1 light chain 3 (LC3) and poly ADP-ribose polymerase-1 (PARP-1) were measured by Western blot assay, the formation of autophagosomes was detected by an autophagy detection kit, the intracellular ROS level was measured by flow cytometer, and DNA damage was evaluated by the incidence of micronuclei (MN). A CCK-8 kit was used to measure the proliferation ability of irradiated cells with or without N-acetyl-l-cysteine (NAC) treatment. In some experiments, the hepatoma cells were transferred with LC3 siRNA or PARP-1 siRNA before irradiation. Results: The protein expressions of LC3 and PARP-1 and the inductions of autophagosomes and intracellular ROS were increased in the irradiated HepG2 cells. Pretreatment of cells with NAC relieved the irradiation-induced inhibition of cell proliferation. When HepG2 cells were transfected with the LC3 siRNA, the over-expression of PARP-1 was diminished in the irradiated cells. Compared with the control group, the inhibitions of LC3 and PARP-1 increased ROS level in the irradiated HepG2 cells and hence sensitized radiation responses of both proliferation inhibition and MN induction. Conclusion: Autophagy upregulates the expression of PARP-1 and relieves radiation damage by reducing the generation of ROS.
Collapse
Affiliation(s)
- Xiangdong Wang
- a Department of Radiation Biology, Institute of Radiation Medicine, Fudan University , Shanghai , China
| | - Wenzhi Tu
- a Department of Radiation Biology, Institute of Radiation Medicine, Fudan University , Shanghai , China
| | - Dong Chen
- a Department of Radiation Biology, Institute of Radiation Medicine, Fudan University , Shanghai , China
| | - Jiamei Fu
- a Department of Radiation Biology, Institute of Radiation Medicine, Fudan University , Shanghai , China
| | - Juan Wang
- a Department of Radiation Biology, Institute of Radiation Medicine, Fudan University , Shanghai , China
| | - Chunlin Shao
- a Department of Radiation Biology, Institute of Radiation Medicine, Fudan University , Shanghai , China
| | - Jianghong Zhang
- a Department of Radiation Biology, Institute of Radiation Medicine, Fudan University , Shanghai , China
| |
Collapse
|
8
|
PARP-1 inhibition with or without ionizing radiation confers reactive oxygen species-mediated cytotoxicity preferentially to cancer cells with mutant TP53. Oncogene 2018; 37:2793-2805. [PMID: 29511347 PMCID: PMC5970015 DOI: 10.1038/s41388-018-0130-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/13/2017] [Accepted: 11/24/2017] [Indexed: 01/05/2023]
Abstract
Biomarkers and mechanisms of poly (ADP-ribose) polymerase (PARP) inhibitor-mediated cytotoxicity in tumor cells lacking a BRCA-mutant or BRCA-like phenotype are poorly defined. We sought to explore the utility of PARP-1 inhibitor (PARPi) treatment with/without ionizing radiation in muscle-invasive bladder cancer (MIBC), which has poor therapeutic outcomes. We assessed the DNA damaging and cytotoxic effects of the PARPi olaparib in nine bladder cancer cell lines. Olaparib radiosensitized all cell lines with dose enhancement factors from 1.22 to 2.27. Radiosensitization was correlated with the induction of potentially lethal DNA double-strand breaks (DSB) but not with RAD51 foci formation. The ability of olaparib to radiosensitize MIBC cells was linked to the extent of cell kill achieved with drug alone. Unexpectedly, increased levels of reactive oxygen species (ROS) resulting from PARPi treatment were the cause of DSB throughout the cell cycle in-vitro and in-vivo. ROS originated from mitochondria and were required for the radiosensitizing effects of olaparib. Consistent with the role of TP53 in ROS regulation, loss of p53 function enhanced radiosensitization by olaparib in non-isogenic and isogenic cell line models and was associated with increased PARP-1 expression in bladder cancer cell lines and tumors. Impairment of ATM in addition to p53 loss resulted in an even more pronounced radiosensitization. In conclusion, ROS suppression by PARP-1 in MIBC is a potential therapeutic target either for PARPi combined with radiation or drug alone treatment. The TP53 and ATM genes, commonly mutated in MIBC and other cancers, are candidate biomarkers of PARPi-mediated radiosensitization.
Collapse
|
9
|
Aumailley L, Dubois MJ, Brennan TA, Garand C, Paquet ER, Pignolo RJ, Marette A, Lebel M. Serum vitamin C levels modulate the lifespan and endoplasmic reticulum stress response pathways in mice synthesizing a nonfunctional mutant WRN protein. FASEB J 2018; 32:3623-3640. [PMID: 29452565 DOI: 10.1096/fj.201701176r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase (WRN). Mice lacking part of the helicase domain of the WRN ortholog exhibit several phenotypic features of WS. In this study, we generated a Wrn mutant line that, like humans, relies entirely on dietary sources of vitamin C (ascorbate) to survive, by crossing them to mice that lack the gulonolactone oxidase enzyme required for ascorbate synthesis. In the presence of 0.01% ascorbate (w/v) in drinking water, double-mutant mice exhibited a severe reduction in lifespan, small size, sterility, osteopenia, and metabolic profiles different from wild-type (WT) mice. Although increasing the dose of ascorbate to 0.4% improved dramatically the phenotypes of double-mutant mice, the metabolic and cytokine profiles were different from age-matched WT mice. Finally, double-mutant mice treated with 0.01% ascorbate revealed a permanent activation of all the 3 branches of the ER stress response pathways due to a severe chronic oxidative stress in the ER compartment. In addition, markers associated with the ubiquitin-proteasome-dependent ER-associated degradation pathway were increased. Augmenting the dose of ascorbate reversed the activation of this pathway to WT levels rendering this pathway a potential therapeutic target in WS.-Aumailley, L., Dubois, M. J., Brennan, T. A., Garand, C., Paquet, E. R., Pignolo, R. J., Marette, A., Lebel, M. Serum vitamin C levels modulate the lifespan and endoplasmic reticulum stress response pathways in mice synthesizing a nonfunctional mutant WRN protein.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de Recherche du Centre Hospitalier de l'Université (CHU) de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Marie Julie Dubois
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Tracy A Brennan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chantal Garand
- Centre de Recherche du Centre Hospitalier de l'Université (CHU) de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Eric R Paquet
- Centre de Recherche sur le Cancer de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Quebec City, Quebec, Canada
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - André Marette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Michel Lebel
- Centre de Recherche du Centre Hospitalier de l'Université (CHU) de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
10
|
Aumailley L, Garand C, Dubois MJ, Johnson FB, Marette A, Lebel M. Metabolic and Phenotypic Differences between Mice Producing a Werner Syndrome Helicase Mutant Protein and Wrn Null Mice. PLoS One 2015; 10:e0140292. [PMID: 26447695 PMCID: PMC4598085 DOI: 10.1371/journal.pone.0140292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022] Open
Abstract
Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter mean life span. In contrast, mice lacking the entire Wrn protein (i.e. Wrn null mice) do not exhibit a premature aging phenotype. In this study, we used a targeted mass spectrometry-based metabolomic approach to identify serum metabolites that are differentially altered in young Wrn helicase mutant and Wrn null mice. An antibody-based quantification of 43 serum cytokines and markers of cardiovascular disease risk complemented this study. We found that Wrn helicase mutants exhibited elevated and decreased levels, respectively, of the anti-inflammatory cytokine IL-10 and the pro-inflammatory cytokine IL-18. Wrn helicase mutants also exhibited an increase in serum hydroxyproline and plasminogen activator inhibitor-1, markers of extracellular matrix remodeling of the vascular system and inflammation in aging. We also observed an abnormal increase in the ratio of very long chain to short chain lysophosphatidylcholines in the Wrn helicase mutants underlying a peroxisome perturbation in these mice. Remarkably, the Wrn mutant helicase protein was mislocalized to the endoplasmic reticulum and the peroxisomal fractions in liver tissues. Additional analyses with mouse embryonic fibroblasts indicated a severe defect of the autophagy flux in cells derived from Wrn helicase mutants compared to wild type and Wrn null animals. These results indicate that the deleterious effects of the helicase-deficient Wrn protein are mediated by the dysfunction of several cellular organelles.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Chantal Garand
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Marie Julie Dubois
- Quebec Heart and Lung Institute, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - F. Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - André Marette
- Quebec Heart and Lung Institute, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Michel Lebel
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
11
|
RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res Rev 2015; 23:12-28. [PMID: 25555679 DOI: 10.1016/j.arr.2014.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/04/2023]
Abstract
Genome instability represents a primary hallmark of aging and cancer. RecQL helicases (i.e., RECQL1, WRN, BLM, RECQL4, RECQL5) as well as poly(ADP-ribose) polymerases (PARPs, in particular PARP1) represent two central quality control systems to preserve genome integrity in mammalian cells. Consistently, both enzymatic families have been linked to mechanisms of aging and carcinogenesis in mice and humans. This is in accordance with clinical and epidemiological findings demonstrating that defects in three RecQL helicases, i.e., WRN, BLM, RECQL4, are related to human progeroid and cancer predisposition syndromes, i.e., Werner, Bloom, and Rothmund Thomson syndrome, respectively. Moreover, PARP1 hypomorphy is associated with a higher risk for certain types of cancer. On a molecular level, RecQL helicases and PARP1 are involved in the control of DNA repair, telomere maintenance, and replicative stress. Notably, over the last decade, it became apparent that all five RecQL helicases physically or functionally interact with PARP1 and/or its enzymatic product poly(ADP-ribose) (PAR). Furthermore, a profound body of evidence revealed that the cooperative function of RECQLs and PARP1 represents an important factor for maintaining genome integrity. In this review, we summarize the status quo of this molecular cooperation and discuss open questions that provide a basis for future studies to dissect the cooperative functions of RecQL helicases and PARP1 in aging and carcinogenesis.
Collapse
|
12
|
Li XL, Lu X, Parvathaneni S, Bilke S, Zhang H, Thangavel S, Vindigni A, Hara T, Zhu Y, Meltzer PS, Lal A, Sharma S. Identification of RECQ1-regulated transcriptome uncovers a role of RECQ1 in regulation of cancer cell migration and invasion. Cell Cycle 2015; 13:2431-45. [PMID: 25483193 DOI: 10.4161/cc.29419] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The RECQ protein family of helicases has critical roles in protecting and stabilizing the genome. Three of the 5 known members of the human RecQ family are genetically linked with cancer susceptibility syndromes, but the association of the most abundant human RecQ homolog, RECQ1, with cellular transformation is yet unclear. RECQ1 is overexpressed in a variety of human cancers, indicating oncogenic functions. Here, we assessed genome-wide changes in gene expression upon knockdown of RECQ1 in HeLa and MDA-MB-231 cells. Pathway analysis suggested that RECQ1 enhances the expression of multiple genes that play key roles in cell migration, invasion, and metastasis, including EZR, ITGA2, ITGA3, ITGB4, SMAD3, and TGFBR2. Consistent with these results, silencing RECQ1 significantly reduced cell migration and invasion. In comparison to genome-wide annotated promoter regions, the promoters of genes downregulated upon RECQ1 silencing were significantly enriched for a potential G4 DNA forming sequence motif. Chromatin immunoprecipitation assays demonstrated binding of RECQ1 to the G4 motifs in the promoters of select genes downregulated upon RECQ1 silencing. In breast cancer patients, the expression of a subset of RECQ1-activated genes positively correlated with RECQ1 expression. Moreover, high RECQ1 expression was associated with poor prognosis in breast cancer. Collectively, our findings identify a novel function of RECQ1 in gene regulation and indicate that RECQ1 contributes to tumor development and progression, in part, by regulating the expression of key genes that promote cancer cell migration, invasion and metastasis.
Collapse
Affiliation(s)
- Xiao Ling Li
- a Regulatory RNAs and Cancer Section; Genetics Branch; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zinc finger protein 637 protects cells against oxidative stress-induced premature senescence by mTERT-mediated telomerase activity and telomere maintenance. Cell Death Dis 2014; 5:e1334. [PMID: 25032857 PMCID: PMC4123090 DOI: 10.1038/cddis.2014.298] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 02/05/2023]
Abstract
Oxidative stress is believed to be an important inducer of cellular senescence and aging. Zinc finger protein 637 (Zfp637), which belongs to the Krüppel-like protein family, has been hypothesized to play a role in oxidative stress. Nevertheless, the precise function of Zfp637 has seldom been reported, and it remains unclear whether Zfp637 is involved in oxidative stress-induced premature senescence. In this study, we show that the endogenous expression levels of Zfp637 and mouse telomerase reverse transcriptase (mTERT) are downregulated during oxidative stress-induced premature senescence and in senescent tissues from naturally aged mice. The overexpression of Zfp637 markedly increases mTERT expression and telomerase activity, maintains telomere length, and inhibits both H2O2 and D-galactose-induced senescence accompanied by a reduction in the production of reactive oxygen species (ROS). In contrast, the knockdown of Zfp637 significantly aggravates cellular senescence by downregulating mTERT and telomerase activity, accelerating telomere shortening, and increasing ROS accumulation. In addition, the protective effect of Zfp637 against premature senescence is abrogated in the absence of mTERT. We further confirm that Zfp637 binds to and transactivates the mTERT promoter (−535/−502) specifically. As a result, the mTERT-mediated telomerase activity and telomere maintenance are responsible for the protective effect of Zfp637 against oxidative stress-induced senescence. We therefore propose that Zfp637 prevents oxidative stress-induced premature senescence in an mTERT-dependent manner, and these results provide a new foundation for the investigation of cellular senescence and aging.
Collapse
|
14
|
Shilovsky GA, Khokhlov AN, Shram SI. The protein poly(ADP-ribosyl)ation system: its role in genome stability and lifespan determination. BIOCHEMISTRY (MOSCOW) 2013; 78:433-44. [PMID: 23848145 DOI: 10.1134/s0006297913050015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The processes that lead to violation of genome integrity are known to increase with age. This phenomenon is caused both by increased production of reactive oxygen species and a decline in the efficiency of antioxidant defense system as well as systems maintaining genome stability. Accumulation of different unrepairable genome damage with age may be the cause of many age-related diseases and the development of phenotypic and physiological signs of aging. It is also clear that there is a close connection between the mechanisms of the maintenance of genome stability, on one hand, and the processes of spontaneous tumor formation and lifespan, on the other. In this regard, the system of protein poly(ADP-ribosyl)ation activated in response to a variety of DNA damage seems to be of particular interest. Data accumulated to date suggest it to be a kind of focal point of cellular processes, guiding the path of cell survival or death depending on the degree of DNA damage. This review summarizes and analyzes data on the involvement of poly(ADP-ribosyl)ation in various mechanisms of DNA repair, its interaction with progeria proteins, and the possible role in the development of spontaneous tumors and lifespan determination. Special attention is given to the relationship between various polymorphisms of the human poly(ADP-ribose) polymerase-1 gene and longevity.
Collapse
Affiliation(s)
- G A Shilovsky
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | |
Collapse
|
15
|
Popp O, Veith S, Fahrer J, Bohr VA, Bürkle A, Mangerich A. Site-specific noncovalent interaction of the biopolymer poly(ADP-ribose) with the Werner syndrome protein regulates protein functions. ACS Chem Biol 2013; 8:179-88. [PMID: 23082994 PMCID: PMC3549037 DOI: 10.1021/cb300363g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Werner syndrome is a premature aging disorder that is caused by defects in the Werner protein (WRN). WRN is a member of the RecQ helicase family and possesses helicase and exonuclease activities. It is involved in various aspects of DNA metabolism such as DNA repair, telomere maintenance, and replication. Poly(ADP-ribose) polymerase 1 (PARP1) is also involved in these processes by catalyzing the formation of the nucleic-acid-like biopolymer poly(ADP-ribose) (PAR). It was previously shown that WRN interacts with PARP1 and that WRN activity is inhibited by PARP1. Using several bioanalytical approaches, here we demonstrate that the enzymatic product of PARP1, i.e., PAR, directly interacts with WRN physically and functionally. First, WRN binds HPLC-size-fractionated short and long PAR in a noncovalent manner. Second, we identified and characterized a PAR-binding motif (PBM) within the WRN sequence and showed that several basic and hydrophobic amino acids are of critical importance for mediating the PAR binding. Third, PAR-binding inhibits the DNA-binding, the helicase and the exonuclease activities of WRN in a concentration-dependent manner. On the basis of our results we propose that the transient nature of PAR produced by living cells would provide a versatile and swiftly reacting control system for WRN's function. More generally, our work underscores the important role of noncovalent PAR-protein interactions as a regulatory mechanism of protein function.
Collapse
Affiliation(s)
- Oliver Popp
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sebastian Veith
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Research Training Group 1331, University of Konstanz, 78457 Konstanz, Germany
| | - Jörg Fahrer
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
16
|
Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:321653. [PMID: 23050038 PMCID: PMC3459245 DOI: 10.1155/2012/321653] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/25/2012] [Indexed: 02/06/2023]
Abstract
Aging is a multifactorial process that depends on diverse molecular and cellular mechanisms, such as genome maintenance and inflammation. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1), which catalyzes the synthesis of the biopolymer poly(ADP-ribose), exhibits an essential role in both processes. On the one hand, PARP1 serves as a genomic caretaker as it participates in chromatin remodelling, DNA repair, telomere maintenance, resolution of replicative stress, and cell cycle control. On the other hand, PARP1 acts as a mediator of inflammation due to its function as a regulator of NF-κB and other transcription factors and its potential to induce cell death. Consequently, PARP1 represents an interesting player in several aging mechanisms and is discussed as a longevity assurance factor on the one hand and an aging-promoting factor on the other hand. Here, we review the molecular mechanisms underlying the various roles of PARP1 in longevity and aging with special emphasis on cellular studies and we briefly discuss the results in the context of in vivo studies in mice and humans.
Collapse
|
17
|
Cytoplasmic expression, antibody production, and characterization of the novel zinc finger protein 637. Appl Microbiol Biotechnol 2012; 97:741-9. [PMID: 22733115 DOI: 10.1007/s00253-012-4235-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 02/05/2023]
Abstract
Zinc finger protein 637 (zfp637), belonging to the Kruppel-like protein family, comprises one atypical C(2)H(2) and six consecutive typical zinc finger motifs. Based on the structural characterization of zfp637 and its location in the cell nucleus, we predict that zfp637 might function as a DNA-binding protein to regulate gene transcription. However, the absence of both a purified zfp637 protein and any commercial antibody for detecting it in cells and tissues has limited functional studies of zfp637 to date. Here, we developed and optimized an expression system by fusing zfp637 with glutathione S-transferase (GST) to achieve a maximal yield of soluble GST-zfp637 fusion protein in Escherichia coli BL21(DE3) cells. The yield was about 10 mg/l of the original bacterial culture. The recombinant GST-zfp637 fusion protein was purified and used for polyclonal antibody production in rabbits. In addition, we developed a method to remove the anti-GST antibody component and obtained a highly purified anti-zfp637 antibody, as demonstrated by an enzyme-linked immunosorbent assay. Western blotting showed that the anti-zfp637 antibody recognized not only the recombinant zfp637 protein but also endogenous zfp637 in several cell lines. The protein was localized mainly in the cell nucleus by immunofluorescence and immunohistochemistry. The expression levels of zfp637 mRNA and protein were significantly increased in NIH3T3 cells treated with 200 μM of H(2)O(2) in a time-dependent manner. The recombinant GST-zfp637 fusion protein and our purified anti-zfp637 antibody will help in elucidating the function of zfp637.
Collapse
|
18
|
Bacolla A, Wang G, Jain A, Chuzhanova NA, Cer RZ, Collins JR, Cooper DN, Bohr VA, Vasquez KM. Non-B DNA-forming sequences and WRN deficiency independently increase the frequency of base substitution in human cells. J Biol Chem 2011; 286:10017-26. [PMID: 21285356 PMCID: PMC3060453 DOI: 10.1074/jbc.m110.176636] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/31/2011] [Indexed: 01/01/2023] Open
Abstract
Although alternative DNA secondary structures (non-B DNA) can induce genomic rearrangements, their associated mutational spectra remain largely unknown. The helicase activity of WRN, which is absent in the human progeroid Werner syndrome, is thought to counteract this genomic instability. We determined non-B DNA-induced mutation frequencies and spectra in human U2OS osteosarcoma cells and assessed the role of WRN in isogenic knockdown (WRN-KD) cells using a supF gene mutation reporter system flanked by triplex- or Z-DNA-forming sequences. Although both non-B DNA and WRN-KD served to increase the mutation frequency, the increase afforded by WRN-KD was independent of DNA structure despite the fact that purified WRN helicase was found to resolve these structures in vitro. In U2OS cells, ∼70% of mutations comprised single-base substitutions, mostly at G·C base-pairs, with the remaining ∼30% being microdeletions. The number of mutations at G·C base-pairs in the context of NGNN/NNCN sequences correlated well with predicted free energies of base stacking and ionization potentials, suggesting a possible origin via oxidation reactions involving electron loss and subsequent electron transfer (hole migration) between neighboring bases. A set of ∼40,000 somatic mutations at G·C base pairs identified in a lung cancer genome exhibited similar correlations, implying that hole migration may also be involved. We conclude that alternative DNA conformations, WRN deficiency and lung tumorigenesis may all serve to increase the mutation rate by promoting, through diverse pathways, oxidation reactions that perturb the electron orbitals of neighboring bases. It follows that such "hole migration" is likely to play a much more widespread role in mutagenesis than previously anticipated.
Collapse
Affiliation(s)
- Albino Bacolla
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Guliang Wang
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Aklank Jain
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Nadia A. Chuzhanova
- the School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom
| | - Regina Z. Cer
- the Advanced Biomedical Computing Center, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Jack R. Collins
- the Advanced Biomedical Computing Center, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - David N. Cooper
- the Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom, and
| | - Vilhelm A. Bohr
- the Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Karen M. Vasquez
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| |
Collapse
|
19
|
Lebel M, Massip L, Garand C, Thorin E. Ascorbate improves metabolic abnormalities in Wrn mutant mice but not the free radical scavenger catechin. Ann N Y Acad Sci 2010; 1197:40-4. [PMID: 20536831 PMCID: PMC3693984 DOI: 10.1111/j.1749-6632.2010.05189.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN homologue exhibit many phenotypic features of WS. Importantly, mutant Wrn(Deltahel/Deltahel) mice show abnormal increases in visceral fat deposition and fasting blood triglyceride levels followed by insulin resistance and high blood glucose levels. These mice also exhibit increased heart and liver tissue reactive oxygen species concomitantly with oxidative DNA damage, indicating a pro-oxidant status. We treated mice with either ascorbate or catechin hydrate for 9 months. Vitamin C supplementation reduced oxidative stress in liver and heart tissues and reversed hypertriglyceridemia, hyperglycemia, and insulin resistance and reduced fat weight in mutant Wrn(Deltahel/Deltahel) mice. Although the free scavenger catechin hydrate also reduced oxidative DNA damage in heart and liver tissues, it did not reverse any of the metabolic phenotype aspects in treated mutant mice. Finally, vitamin C and catechin hydrate did not affect the metabolic status of wild-type mice. These results indicate that vitamin C supplementation could be beneficial for WS patients.
Collapse
Affiliation(s)
- Michel Lebel
- Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Quebec City, Canada.
| | | | | | | |
Collapse
|
20
|
Mitochondrial dysfunction in some oxidative stress-related genetic diseases: Ataxia-Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. Biogerontology 2010; 11:401-19. [PMID: 20237955 DOI: 10.1007/s10522-010-9269-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/26/2010] [Indexed: 12/26/2022]
Abstract
Oxidative stress is a phenotypic hallmark in several genetic disorders characterized by cancer predisposition and/or propensity to premature ageing. Here we review the published evidence for the involvement of oxidative stress in the phenotypes of Ataxia-Telangiectasia (A-T), Down Syndrome (DS), Fanconi Anaemia (FA), and Werner Syndrome (WS), from the viewpoint of mitochondrial dysfunction. Mitochondria are recognized as both the cell compartment where energetic metabolism occurs and as the first and most susceptible target of reactive oxygen species (ROS) formation. Thus, a critical evaluation of the basic mechanisms leading to an in vivo pro-oxidant state relies on elucidating the features of mitochondrial impairment in each disorder. The evidence for different mitochondrial dysfunctions reported in A-T, DS, and FA is reviewed. In the case of WS, clear-cut evidence linking human WS phenotype to mitochondrial abnormalities is lacking so far in the literature. Nevertheless, evidence relating mitochondrial dysfunctions to normal ageing suggests that WS, as a progeroid syndrome, is likely to feature mitochondrial abnormalities. Hence, ad hoc research focused on elucidating the nature of mitochondrial dysfunction in WS pathogenesis is required. Based on the recognized, or reasonably suspected, role of mitochondrial abnormalities in the pathogenesis of these disorders, studies of chemoprevention with mitochondria-targeted supplements are warranted.
Collapse
|
21
|
Labbé A, Turaga RVN, Paquet ER, Garand C, Lebel M. Expression profiling of mouse embryonic fibroblasts with a deletion in the helicase domain of the Werner Syndrome gene homologue treated with hydrogen peroxide. BMC Genomics 2010; 11:127. [PMID: 20175907 PMCID: PMC2838845 DOI: 10.1186/1471-2164-11-127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 02/22/2010] [Indexed: 12/13/2022] Open
Abstract
Background Werner Syndrome (WS) is a rare disorder characterized by the premature onset of a number of age-related diseases. The gene responsible for WS encodes a DNA helicase/exonuclease protein believed to affect different aspects of transcription, replication, and/or DNA repair. In addition to genomic instability, human WS cells exhibit oxidative stress. In this report, we have examined the impact of exogenous hydrogen peroxide on the expression profile of mouse embryonic fibroblasts lacking part of the helicase domain of the WRN homologue (here referred to as WrnΔhel/Δhel). Results WrnΔhel/Δhel mutant mouse embryonic fibroblasts exhibit increased oxidative stress. This was reflected by increased intracellular reactive oxygen species (ROS), increased oxidative damage in genomic DNA, changes in ATP/ADP ratios, and a disruption of the inner mitochondrial transmembrane potential when compared to wild type mouse embryonic fibroblasts. Expression profile analyses of hydrogen peroxide-treated wild type cells have indicated significant decreases in the expression of genes involved in mitosis, glycolysis, fatty acid metabolism, nucleic acid metabolism, and cell cycle control, as well as protein modification and stability. Such decreases in these biological processes were not observed in hydrogen peroxide-treated WrnΔhel/Δhel cells. Importantly, untreated WrnΔhel/Δhel cells already exhibited down regulation of several biological processes decreased in wild type cells that had been treated with hydrogen peroxide. Conclusion Expression profiling of WrnΔhel/Δhel mutant cells revealed a very different response to exogenous addition of hydrogen peroxide in culture compared to wild type cells. This is due in part to the fact that WrnΔhel/Δhel mutant cells already exhibited a modest chronic intracellular oxidative stress.
Collapse
Affiliation(s)
- Adam Labbé
- Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
22
|
Abstract
Werner's syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast, different DNA-damaging treatments known to activate PKCs did not induce RACK1/PKCs association in cells. Overall, our results indicate that a depletion of the WRN protein in normal fibroblasts causes the activation of several PKCs through translocation and association of RACK1 with such kinases.
Collapse
|
23
|
Massip L, Garand C, Paquet ER, Cogger VC, O'Reilly JN, Tworek L, Hatherell A, Taylor CG, Thorin E, Zahradka P, Le Couteur DG, Lebel M. Vitamin C restores healthy aging in a mouse model for Werner syndrome. FASEB J 2009; 24:158-72. [PMID: 19741171 DOI: 10.1096/fj.09-137133] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN homologue exhibit many phenotypic features of WS, including a prooxidant status and a shorter mean life span compared to wild-type animals. Here, we show that Wrn mutant mice also develop premature liver sinusoidal endothelial defenestration along with inflammation and metabolic syndrome. Vitamin C supplementation rescued the shorter mean life span of Wrn mutant mice and reversed several age-related abnormalities in adipose tissues and liver endothelial defenestration, genomic integrity, and inflammatory status. At the molecular level, phosphorylation of age-related stress markers like Akt kinase-specific substrates and the transcription factor NF-kappaB, as well as protein kinase Cdelta and Hif-1alpha transcription factor levels, which are increased in the liver of Wrn mutants, were normalized by vitamin C. Vitamin C also increased the transcriptional regulator of lipid metabolism PPARalpha. Finally, microarray and gene set enrichment analyses on liver tissues revealed that vitamin C decreased genes normally up-regulated in human WS fibroblasts and cancers, and it increased genes involved in tissue injury response and adipocyte dedifferentiation in obese mice. Vitamin C did not have such effect on wild-type mice. These results indicate that vitamin C supplementation could be beneficial for patients with WS.
Collapse
Affiliation(s)
- Laurent Massip
- Centre de Recherche en Cancérologie, Hôpital Hôtel-Dieu de Québec, 9 McMahon St., Québec, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Malanga M, Czubaty A, Girstun A, Staron K, Althaus FR. Poly(ADP-ribose) binds to the splicing factor ASF/SF2 and regulates its phosphorylation by DNA topoisomerase I. J Biol Chem 2008; 283:19991-8. [PMID: 18495665 DOI: 10.1074/jbc.m709495200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human DNA topoisomerase I plays a dual role in transcription, by controlling DNA supercoiling and by acting as a specific kinase for the SR-protein family of splicing factors. The two activities are mutually exclusive, but the identity of the molecular switch is unknown. Here we identify poly(ADP-ribose) as a physiological regulator of the two topoisomerase I functions. We found that, in the presence of both DNA and the alternative splicing factor/splicing factor 2 (ASF/SF2, a prototypical SR-protein), poly(ADP-ribose) affected topoisomerase I substrate selection and gradually shifted enzyme activity from protein phosphorylation to DNA cleavage. A likely mechanistic explanation was offered by the discovery that poly(ADP-ribose) forms a high affinity complex with ASF/SF2 thereby leaving topoisomerase I available for directing its action onto DNA. We identified two functionally important domains, RRM1 and RS, as specific poly(ADP-ribose) binding targets. Two independent lines of evidence emphasize the potential biological relevance of our findings: (i) in HeLa nuclear extracts, ASF/SF2, but not histone, phosphorylation was inhibited by poly(ADP-ribose); (ii) an in silico study based on gene expression profiling data revealed an increased incidence of alternative splicing within a subset of inflammatory response genes that are dysregulated in cells lacking a functional poly(ADP-ribose) polymerase-1. We propose that poly(ADP-ribose) targeting of topoisomerase I and ASF/SF2 functions may participate in the regulation of gene expression.
Collapse
Affiliation(s)
- Maria Malanga
- Department of Structural and Functional Biology, University Federico II, Via Cinthia, Monte S Angelo, Naples, Italy.
| | | | | | | | | |
Collapse
|
25
|
Saenz L, Lozano JJ, Valdor R, Baroja-Mazo A, Ramirez P, Parrilla P, Aparicio P, Sumoy L, Yélamos J. Transcriptional regulation by poly(ADP-ribose) polymerase-1 during T cell activation. BMC Genomics 2008; 9:171. [PMID: 18412984 PMCID: PMC2375913 DOI: 10.1186/1471-2164-9-171] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 04/16/2008] [Indexed: 12/23/2022] Open
Abstract
Background Accumulating evidence suggests an important role for the enzyme poly(ADP-ribose) polymerase-1 (PARP-1) as an integral part of the gene expression regulatory machinery during development and in response to specific cellular signals. PARP-1 might modulate gene expression through its catalytic activity leading to poly(ADP-ribosyl)ation of nuclear proteins or by its physical association with relevant proteins. Recently, we have shown that PARP-1 is activated during T cell activation. However, the proposed role of PARP-1 in reprogramming T cell gene expression upon activation remains largely unexplored. Results In the present study we use oligonucleotide microarray analysis to gain more insight into the role played by PARP-1 during the gene expression reprogramming that takes place in T cells upon activation with anti-CD3 stimulation alone, or in combination with anti-CD28 co-stimulation. We have identified several groups of genes with expression modulated by PARP-1. The expression of 129 early-response genes to anti-CD3 seems to be regulated by PARP-1 either in a positive (45 genes) or in a negative manner (84 genes). Likewise, in the presence of co-stimulation (anti-CD3 + anti-CD28 stimulation), the expression of 203 genes is also regulated by PARP-1 either up (173 genes) or down (30 genes). Interestingly, PARP-1 deficiency significantly alters expression of genes associated with the immune response such as chemokines and genes involved in the Th1/Th2 balance. Conclusion This study provides new insights into changes in gene expression mediated by PARP-1 upon T cell activation. Pathway analysis of PARP-1 as a nuclear signalling molecule in T cells would be of relevance for the future development of new therapeutic approaches targeting PARP-1 in the acquired immune response.
Collapse
Affiliation(s)
- Luis Saenz
- Transplant Unit, Department of Surgery, University Hospital Virgen de Arrixaca, University of Murcia, Ciberehd, Murcia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Turaga RVN, Massip L, Chavez A, Johnson FB, Lebel M. Werner syndrome protein prevents DNA breaks upon chromatin structure alteration. Aging Cell 2007; 6:471-81. [PMID: 17521388 DOI: 10.1111/j.1474-9726.2007.00301.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Werner syndrome is a rare disorder characterized by genome instability and the premature onset of several pathologies associated with aging. The gene responsible for Werner syndrome codes for a RecQ-type DNA helicase and is believed to be involved in different aspects of DNA repair, replication, and transcription. The human Werner protein (WRN) translocates from nucleoli to the nucleoplasm upon DNA damage. Here, for the first time we show WRN translocation following treatment with chloroquine (CHL) or trichostatin A (TSA), agents that alter chromatin structure without producing DNA breaks. In contrast to normal cells, WRN deficient human and murine cells incurred extensive DNA breaks upon CHL or TSA treatment, indicating a functional role for WRN in the proper response to these agents. Cells deficient for another RecQ-type helicase, Bloom syndrome, were not sensitive to these agents. WRN is known from in vitro studies to bind and stimulate the activity of topoisomerase I (Topol). CHL enhanced the association between WRN and Topol, suggesting that topological stress elicits a requirement for the stimulation of Topol by WRN. Supporting this idea, overexpression of Topol reduced CHL and TSA-induced DNA breaks in WRN null cells. We thus describe a novel function for WRN in ensuring genome stability to act in concert with Topol to prevent DNA breaks, following alterations in chromatin topology.
Collapse
Affiliation(s)
- Ramachander V N Turaga
- Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
27
|
Suraweera A, Becherel OJ, Chen P, Rundle N, Woods R, Nakamura J, Gatei M, Criscuolo C, Filla A, Chessa L, Fusser M, Epe B, Gueven N, Lavin MF. Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. ACTA ACUST UNITED AC 2007; 177:969-79. [PMID: 17562789 PMCID: PMC2064358 DOI: 10.1083/jcb.200701042] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adefective response to DNA damage is observed in several human autosomal recessive ataxias with oculomotor apraxia, including ataxia-telangiectasia. We report that senataxin, defective in ataxia oculomotor apraxia (AOA) type 2, is a nuclear protein involved in the DNA damage response. AOA2 cells are sensitive to H2O2, camptothecin, and mitomycin C, but not to ionizing radiation, and sensitivity was rescued with full-length SETX cDNA. AOA2 cells exhibited constitutive oxidative DNA damage and enhanced chromosomal instability in response to H2O2. Rejoining of H2O2-induced DNA double-strand breaks (DSBs) was significantly reduced in AOA2 cells compared to controls, and there was no evidence for a defect in DNA single-strand break repair. This defect in DSB repair was corrected by full-length SETX cDNA. These results provide evidence that an additional member of the autosomal recessive AOA is also characterized by a defective response to DNA damage, which may contribute to the neurodegeneration seen in this syndrome.
Collapse
Affiliation(s)
- Amila Suraweera
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD 4029, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang X, Liu L, Montagna C, Ried T, Deng CX. Haploinsufficiency of Parp1 accelerates Brca1-associated centrosome amplification, telomere shortening, genetic instability, apoptosis, and embryonic lethality. Cell Death Differ 2007; 14:924-31. [PMID: 17318223 DOI: 10.1038/sj.cdd.4402105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The breast tumor associated gene-1 (BRCA1) and poly(ADP-ribose) polymerase-1 (PARP1) are both involved in DNA-damage response and DNA-damage repair. Recent investigations have suggested that inhibition of PARP1 represents a promising chemopreventive/therapeutic approach for specifically treating BRCA1- and BRCA2-associated breast cancer. However, studies in mouse models reveal that Parp1-null mutation results in genetic instability and mammary tumor formation, casting significant doubt on the safety of PARP1 inhibition as a therapy for the breast cancer. To study the genetic interactions between Brca1 and Parp1, we interbred mice carrying a heterozygous deletion of full-length Brca1 (Brca1(+/Delta11)) with Parp1-null mice. We show that Brca1(Delta11/Delta11);Parp1(-/-) embryos die before embryonic (E) day 6.5, whereas Brca1(Delta11/Delta11) embryos die after E12.5, indicating that absence of Parp1 dramatically accelerates lethality caused by Brca1 deficiency. Surprisingly, haploinsufficiency of Parp1 in Brca1(Delta11/Delta11) embryos induces a severe chromosome aberrations, centrosome amplification, and telomere dysfunction, leading to apoptosis and accelerated embryonic lethality. Notably, telomere shortening in Brca1(Delta11/Delta11);Parp1(+/-) MEFs was correlated with decreased expression of Ku70, which plays an important role in telomere maintenance. Thus, haploid loss of Parp1 is sufficient to induce lethality of Brca1-deficient cells, suggesting that partial inhibition of PARP1 may represent a practical chemopreventive/therapeutic approach for BRCA1-associated breast cancer.
Collapse
Affiliation(s)
- X Wang
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
29
|
Sharma S, Doherty K, Brosh R. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 2006; 398:319-37. [PMID: 16925525 PMCID: PMC1559444 DOI: 10.1042/bj20060450] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer.
Collapse
Affiliation(s)
- Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Kevin M. Doherty
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|