1
|
Liu Y. Zebrafish as a Model Organism for Studying Pathologic Mechanisms of Neurodegenerative Diseases and other Neural Disorders. Cell Mol Neurobiol 2023; 43:2603-2620. [PMID: 37004595 PMCID: PMC11410131 DOI: 10.1007/s10571-023-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
Zebrafish are widely considered an excellent vertebrate model for studying the pathogenesis of human diseases because of their transparency of embryonic development, easy breeding, high similarity with human genes, and easy gene manipulation. Previous studies have shown that zebrafish as a model organism provides an ideal operating platform for clarifying the pathological and molecular mechanisms of neurodegenerative diseases and related human diseases. This review mainly summarizes the achievements and prospects of zebrafish used as model organisms in the research of neurodegenerative diseases and other human diseases related to the nervous system in recent years. In the future study of human disease mechanisms, the application of the zebrafish model will continue to provide a valuable operating platform and technical support for investigating and finding better prevention and treatment of these diseases, which has broad application prospects and practical significance. Zebrafish models used in neurodegenerative diseases and other diseases related to the nervous system.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Basic Medicine, School of Nursing and Health, Qingdao Huanghai University, Qingdao, 266427, China.
| |
Collapse
|
2
|
Zhu Y, Auer F, Gelnaw H, Davis SN, Hamling KR, May CE, Ahamed H, Ringstad N, Nagel KI, Schoppik D. SAMPL is a high-throughput solution to study unconstrained vertical behavior in small animals. Cell Rep 2023; 42:112573. [PMID: 37267107 PMCID: PMC10592459 DOI: 10.1016/j.celrep.2023.112573] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
Balance and movement are impaired in many neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics but without the throughput and scalability necessary to screen candidate genes/potential therapeutics. Here, we present a scalable apparatus to measure posture and locomotion (SAMPL). SAMPL includes extensible hardware and open-source software with real-time processing and can acquire data from D. melanogaster, C. elegans, and D. rerio as they move vertically. Using SAMPL, we define how zebrafish balance as they navigate vertically and discover small but systematic variations among kinematic parameters between genetic backgrounds. We demonstrate SAMPL's ability to resolve differences in posture and navigation as a function of effect size and data gathered, providing key data for screens. SAMPL is therefore both a tool to model balance and locomotor disorders and an exemplar of how to scale apparatus to support screens.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Franziska Auer
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hannah Gelnaw
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Samantha N Davis
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kyla R Hamling
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christina E May
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hassan Ahamed
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Katherine I Nagel
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David Schoppik
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
Kamitsuka PJ, Ghanem MM, Ziar R, McDonald SE, Thomas MG, Kwakye GF. Defective Mitochondrial Dynamics and Protein Degradation Pathways Underlie Cadmium-Induced Neurotoxicity and Cell Death in Huntington's Disease Striatal Cells. Int J Mol Sci 2023; 24:ijms24087178. [PMID: 37108341 PMCID: PMC10139096 DOI: 10.3390/ijms24087178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure to heavy metals, including cadmium (Cd), can induce neurotoxicity and cell death. Cd is abundant in the environment and accumulates in the striatum, the primary brain region selectively affected by Huntington's disease (HD). We have previously reported that mutant huntingtin protein (mHTT) combined with chronic Cd exposure induces oxidative stress and promotes metal dyshomeostasis, resulting in cell death in a striatal cell model of HD. To understand the effect of acute Cd exposure on mitochondrial health and protein degradation pathways, we hypothesized that expression of mHTT coupled with acute Cd exposure would cooperatively alter mitochondrial bioenergetics and protein degradation mechanisms in striatal STHdh cells to reveal novel pathways that augment Cd cytotoxicity and HD pathogenicity. We report that mHTT cells are significantly more susceptible to acute Cd-induced cell death as early as 6 h after 40 µM CdCl2 exposure compared with wild-type (WT). Confocal microscopy, biochemical assays, and immunoblotting analysis revealed that mHTT and acute Cd exposure synergistically impair mitochondrial bioenergetics by reducing mitochondrial potential and cellular ATP levels and down-regulating the essential pro-fusion proteins MFN1 and MFN2. These pathogenic effects triggered cell death. Furthermore, Cd exposure increases the expression of autophagic markers, such as p62, LC3, and ATG5, and reduces the activity of the ubiquitin-proteasome system to promote neurodegeneration in HD striatal cells. Overall, these results reveal a novel mechanism to further establish Cd as a pathogenic neuromodulator in striatal HD cells via Cd-triggered neurotoxicity and cell death mediated by an impairment in mitochondrial bioenergetics and autophagy with subsequent alteration in protein degradation pathways.
Collapse
Affiliation(s)
- Paul J Kamitsuka
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Marwan M Ghanem
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Rania Ziar
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Sarah E McDonald
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Morgan G Thomas
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Gunnar F Kwakye
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| |
Collapse
|
4
|
Zhu Y, Auer F, Gelnaw H, Davis SN, Hamling KR, May CE, Ahamed H, Ringstad N, Nagel KI, Schoppik D. Scalable Apparatus to Measure Posture and Locomotion (SAMPL): a high-throughput solution to study unconstrained vertical behavior in small animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523102. [PMID: 36712122 PMCID: PMC9881893 DOI: 10.1101/2023.01.07.523102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Balance and movement are impaired in a wide variety of neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics, but without the throughput and scalability necessary to screen candidate genes / potential therapeutics. We present a powerful solution: a Scalable Apparatus to Measure Posture and Locomotion (SAMPL). SAMPL includes extensible imaging hardware and low-cost open-source acquisition software with real-time processing. We first demonstrate that SAMPL's hardware and acquisition software can acquire data from from D. melanogaster, C. elegans, and D. rerio as they move vertically. Next, we leverage SAMPL's throughput to rapidly (two weeks) gather a new zebrafish dataset. We use SAMPL's analysis and visualization tools to replicate and extend our current understanding of how zebrafish balance as they navigate through a vertical environment. Next, we discover (1) that key kinematic parameters vary systematically with genetic background, and (2) that such background variation is small relative to the changes that accompany early development. Finally, we simulate SAMPL's ability to resolve differences in posture or vertical navigation as a function of affect size and data gathered -- key data for screens. Taken together, our apparatus, data, and analysis provide a powerful solution for labs using small animals to investigate balance and locomotor disorders at scale. More broadly, SAMPL is both an adaptable resource for labs looking process videographic measures of behavior in real-time, and an exemplar of how to scale hardware to enable the throughput necessary for screening.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Franziska Auer
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hannah Gelnaw
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Samantha N. Davis
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Kyla R. Hamling
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Christina E. May
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hassan Ahamed
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Katherine I. Nagel
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - David Schoppik
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
- Lead Contact
| |
Collapse
|
5
|
Chia K, Klingseisen A, Sieger D, Priller J. Zebrafish as a model organism for neurodegenerative disease. Front Mol Neurosci 2022; 15:940484. [PMID: 36311026 PMCID: PMC9606821 DOI: 10.3389/fnmol.2022.940484] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The zebrafish is increasingly recognized as a model organism for translational research into human neuropathology. The zebrafish brain exhibits fundamental resemblance with human neuroanatomical and neurochemical pathways, and hallmarks of human brain pathology such as protein aggregation, neuronal degeneration and activation of glial cells, for example, can be modeled and recapitulated in the fish central nervous system. Genetic manipulation, imaging, and drug screening are areas where zebrafish excel with the ease of introducing mutations and transgenes, the expression of fluorescent markers that can be detected in vivo in the transparent larval stages overtime, and simple treatment of large numbers of fish larvae at once followed by automated screening and imaging. In this review, we summarize how zebrafish have successfully been employed to model human neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. We discuss advantages and disadvantages of choosing zebrafish as a model for these neurodegenerative conditions.
Collapse
Affiliation(s)
- Kelda Chia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Klingseisen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
| | - Dirk Sieger
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Dirk Sieger,
| | - Josef Priller
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, DZNE, Berlin, Germany
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Josef Priller,
| |
Collapse
|
6
|
Haver HN, Scaglione KM. Dictyostelium discoideum as a Model for Investigating Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:759532. [PMID: 34776869 PMCID: PMC8578527 DOI: 10.3389/fncel.2021.759532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
The social amoeba Dictyostelium discoideum is a model organism that is used to investigate many cellular processes including chemotaxis, cell motility, cell differentiation, and human disease pathogenesis. While many single-cellular model systems lack homologs of human disease genes, Dictyostelium's genome encodes for many genes that are implicated in human diseases including neurodegenerative diseases. Due to its short doubling time along with the powerful genetic tools that enable rapid genetic screening, and the ease of creating knockout cell lines, Dictyostelium is an attractive model organism for both interrogating the normal function of genes implicated in neurodegeneration and for determining pathogenic mechanisms that cause disease. Here we review the literature involving the use of Dictyostelium to interrogate genes implicated in neurodegeneration and highlight key questions that can be addressed using Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Holly N. Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, United States
| |
Collapse
|
7
|
Kumar V, Singh C, Singh A. Zebrafish an experimental model of Huntington's disease: molecular aspects, therapeutic targets and current challenges. Mol Biol Rep 2021; 48:8181-8194. [PMID: 34665402 DOI: 10.1007/s11033-021-06787-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a lethal autosomal dominant neurodegenerative disease whose exact causative mechanism is still unknown. It can transform from one generation to another generation. The CAG triplet expansion on polyglutamine (PolyQ) tract on Huntingtin protein primarily contributes in HD pathogenesis. Apart from this some another molecular mechanisms are also involved in HD pathology such as loss of Brain derived neurotrophic factor in medium spiny neurons, mitochondrial dysfunction, and alterations in synaptic plasticity are briefly discussed in this review. However, several chemicals (3-nitropropionic acid, and Quinolinic acid) and genetic (mHTT-ΔN17-97Q over expression) experimental models are used to explore the exact pathogenic mechanism and finding of new drug targets for the development of novel therapeutic approaches. The zebrafish (Danio rerio) is widely used in in-vivo screening of several central nervous system (CNS) diseases such as HD, Alzheimer's disease (AD), Parkinson's disease (PD), and in memory deficits. Thus, this makes zebrafish as an excellent animal model for the development of new therapeutic strategies against various CNS disorders. We had reviewed several publications utilizing zebrafish and rodents to explore the disease pathology. Studies suggested that zebrafish genes and their human homologues have conserved functions. Zebrafish advantages and their characteristics over the other experimental animals make it an excellent tool for the disease study. This review explains the possible pathogenic mechanism of HD and also discusses about possible treatment therapies, apart from this we also discussed about possible potential therapeutic targets which will helps in designing of novel therapeutic approaches to overcome the disease progression. Diagrammatic depiction shows prevention of HD pathogenesis through attenuation of various biochemical alterations.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
8
|
Wang J, Cao H. Zebrafish and Medaka: Important Animal Models for Human Neurodegenerative Diseases. Int J Mol Sci 2021; 22:10766. [PMID: 34639106 PMCID: PMC8509648 DOI: 10.3390/ijms221910766] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Animal models of human neurodegenerative disease have been investigated for several decades. In recent years, zebrafish (Danio rerio) and medaka (Oryzias latipes) have become popular in pathogenic and therapeutic studies about human neurodegenerative diseases due to their small size, the optical clarity of embryos, their fast development, and their suitability to large-scale therapeutic screening. Following the emergence of a new generation of molecular biological technologies such as reverse and forward genetics, morpholino, transgenesis, and gene knockout, many human neurodegenerative disease models, such as Parkinson's, Huntington's, and Alzheimer's, were constructed in zebrafish and medaka. These studies proved that zebrafish and medaka genes are functionally conserved in relation to their human homologues, so they exhibit similar neurodegenerative phenotypes to human beings. Therefore, fish are a suitable model for the investigation of pathologic mechanisms of neurodegenerative diseases and for the large-scale screening of drugs for potential therapy. In this review, we summarize the studies in modelling human neurodegenerative diseases in zebrafish and medaka in recent years.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7#, Wuhan 430072, China;
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7#, Wuhan 430072, China;
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Seefelder M, Alva V, Huang B, Engler T, Baumeister W, Guo Q, Fernández-Busnadiego R, Lupas AN, Kochanek S. The evolution of the huntingtin-associated protein 40 (HAP40) in conjunction with huntingtin. BMC Evol Biol 2020; 20:162. [PMID: 33297953 PMCID: PMC7725122 DOI: 10.1186/s12862-020-01705-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The huntingtin-associated protein 40 (HAP40) abundantly interacts with huntingtin (HTT), the protein that is altered in Huntington's disease (HD). Therefore, we analysed the evolution of HAP40 and its interaction with HTT. RESULTS We found that in amniotes HAP40 is encoded by a single-exon gene, whereas in all other organisms it is expressed from multi-exon genes. HAP40 co-occurs with HTT in unikonts, including filastereans such as Capsaspora owczarzaki and the amoebozoan Dictyostelium discoideum, but both proteins are absent from fungi. Outside unikonts, a few species, such as the free-living amoeboflagellate Naegleria gruberi, contain putative HTT and HAP40 orthologs. Biochemically we show that the interaction between HTT and HAP40 extends to fish, and bioinformatic analyses provide evidence for evolutionary conservation of this interaction. The closest homologue of HAP40 in current protein databases is the family of soluble N-ethylmaleimide-sensitive factor attachment proteins (SNAPs). CONCLUSION Our results indicate that the transition from a multi-exon to a single-exon gene appears to have taken place by retroposition during the divergence of amphibians and amniotes, followed by the loss of the parental multi-exon gene. Furthermore, it appears that the two proteins probably originated at the root of eukaryotes. Conservation of the interaction between HAP40 and HTT and their likely coevolution strongly indicate functional importance of this interaction.
Collapse
Affiliation(s)
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Bin Huang
- Department of Gene Therapy, Ulm University, 89081, Ulm, Germany
| | - Tatjana Engler
- Department of Gene Therapy, Ulm University, 89081, Ulm, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Qiang Guo
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Rubén Fernández-Busnadiego
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Institute of Neuropathology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines To Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
10
|
Vaz RL, Outeiro TF, Ferreira JJ. Zebrafish as an Animal Model for Drug Discovery in Parkinson's Disease and Other Movement Disorders: A Systematic Review. Front Neurol 2018; 9:347. [PMID: 29910763 PMCID: PMC5992294 DOI: 10.3389/fneur.2018.00347] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Movement disorders can be primarily divided into hypokinetic and hyperkinetic. Most of the hypokinetic syndromes are associated with the neurodegenerative disorder Parkinson’s disease (PD). By contrast, hyperkinetic syndromes encompass a broader array of diseases, including dystonia, essential tremor, or Huntington’s disease. The discovery of effective therapies for these disorders has been challenging and has also involved the development and characterization of accurate animal models for the screening of new drugs. Zebrafish constitutes an alternative vertebrate model for the study of movement disorders. The neuronal circuitries involved in movement in zebrafish are well characterized, and most of the associated molecular mechanisms are highly conserved. Particularly, zebrafish models of PD have contributed to a better understanding of the role of several genes implicated in the disease. Furthermore, zebrafish is a vertebrate model particularly suited for large-scale drug screenings. The relatively small size of zebrafish, optical transparency, and lifecycle, are key characteristics that facilitate the study of multiple compounds at the same time. Several transgenic, knockdown, and mutant zebrafish lines have been generated and characterized. Therefore, it is central to critically analyze these zebrafish lines and understand their suitability as models of movement disorders. Here, we revise the pathogenic mechanisms, phenotypes, and responsiveness to pharmacotherapies of zebrafish lines of the most common movement disorders. A systematic review of the literature was conducted by including all studies reporting the characterization of zebrafish models of the movement disorders selected from five bibliographic databases. A total of 63 studies were analyzed, and the most relevant data within the scope of this review were gathered. The majority (62%) of the studies were focused in the characterization of zebrafish models of PD. Overall, the zebrafish models included display conserved biochemical and neurobehavioral features of the phenomenology in humans. Nevertheless, in light of what is known for all animal models available, the use of zebrafish as a model for drug discovery requires further optimization. Future technological developments alongside with a deeper understanding of the molecular bases of these disorders should enable the development of novel zebrafish lines that can prove useful for drug discovery for movement disorders.
Collapse
Affiliation(s)
- Rita L Vaz
- TechnoPhage, SA, Lisboa, Portugal.,Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,CEDOC, Chronic Diseases Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal.,The Medical School, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joaquim J Ferreira
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,CNS-Campus Neurológico Sénior, Torres Vedras, Portugal
| |
Collapse
|
11
|
Dragatsis I, Dietrich P, Ren H, Deng YP, Del Mar N, Wang HB, Johnson IM, Jones KR, Reiner A. Effect of early embryonic deletion of huntingtin from pyramidal neurons on the development and long-term survival of neurons in cerebral cortex and striatum. Neurobiol Dis 2017; 111:102-117. [PMID: 29274742 PMCID: PMC5821111 DOI: 10.1016/j.nbd.2017.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
We evaluated the impact of early embryonic deletion of huntingtin (htt) from pyramidal neurons on cortical development, cortical neuron survival and motor behavior, using a cre-loxP strategy to inactivate the mouse htt gene (Hdh) in emx1-expressing cell lineages. Western blot confirmed substantial htt reduction in cerebral cortex of these Emx-httKO mice, with residual cortical htt in all likelihood restricted to cortical interneurons of the subpallial lineage and/or vascular endothelial cells. Despite the loss of htt early in development, cortical lamination was normal, as revealed by layer-specific markers. Cortical volume and neuron abundance were, however, significantly less than normal, and cortical neurons showed reduced brain-derived neurotrophic factor (BDNF) expression and reduced activation of BDNF signaling pathways. Nonetheless, cortical volume and neuron abundance did not show progressive age-related decline in Emx-httKO mice out to 24 months. Although striatal neurochemistry was normal, reductions in striatal volume and neuron abundance were seen in Emx-httKO mice, which were again not progressive. Weight maintenance was normal in Emx-httKO mice, but a slight rotarod deficit and persistent hyperactivity were observed throughout the lifespan. Our results show that embryonic deletion of htt from developing pallium does not substantially alter migration of cortical neurons to their correct laminar destinations, but does yield reduced cortical and striatal size and neuron numbers. The Emx-httKO mice were persistently hyperactive, possibly due to defects in corticostriatal development. Importantly, deletion of htt from cortical pyramidal neurons did not yield age-related progressive cortical or striatal pathology.
Collapse
Affiliation(s)
- I Dragatsis
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - P Dietrich
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - H Ren
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Y P Deng
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - N Del Mar
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - H B Wang
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - I M Johnson
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - K R Jones
- Department of Molecular, Cellular, & Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309, United States
| | - A Reiner
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
12
|
Abstract
Huntingtin (HTT) is an essential protein during early embryogenesis and the development of the central nervous system (CNS). Conditional knock-out of mouse Huntingtin (Htt) expression in the CNS beginning during neural development, as well as reducing Htt expression only during embryonic and early postnatal stages, results in neurodegeneration in the adult brain. These findings suggest that HTT is important for the development and/or maintenance of the CNS, but they do not address the question of whether HTT is required specifically in the adult CNS for its normal functions and/or homeostasis. Recently, it was reported that although removing Htt expression in young adult mice causes lethality due to acute pancreatitis, loss of Htt expression in the adult brain is well tolerated and does not result in either motor deficits or neurodegeneration for up to 7 months after Htt inactivation. However, recent studies have also demonstrated that HTT participates in several cellular functions that are important for neuronal homeostasis and survival including sensing reactive oxygen species (ROS), DNA damage repair, and stress responses, in addition to its role in selective macroautophagy. In this review, HTT's functions in development and in the adult CNS will be discussed in the context of these recent discoveries, together with a discussion of their potential impact on the design of therapeutic strategies for Huntington's disease (HD) aimed at lowering total HTT expression.
Collapse
Affiliation(s)
| | - Scott O. Zeitlin
- Correspondence to: Scott O. Zeitlin, Ph.D., Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Rd., Box 801392, MR4-5022, Charlottesville, VA 22908, USA. Tel.: +1 434 924 5011; Fax: +1 434 982 4380; E-mail:
| |
Collapse
|
13
|
Wear MP, Kryndushkin D, O’Meally R, Sonnenberg JL, Cole RN, Shewmaker FP. Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates. PLoS One 2015; 10:e0136362. [PMID: 26317359 PMCID: PMC4552826 DOI: 10.1371/journal.pone.0136362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Maggie P. Wear
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Dmitry Kryndushkin
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Robert O’Meally
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Jason L. Sonnenberg
- Chemistry department, School of Sciences, Stevenson University, Stevenson, Maryland, 21153, United States of America
| | - Robert N. Cole
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Frank P. Shewmaker
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
- * E-mail:
| |
Collapse
|
14
|
Huntingtin is required for ciliogenesis and neurogenesis during early Xenopus development. Dev Biol 2015; 408:305-15. [PMID: 26192473 DOI: 10.1016/j.ydbio.2015.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/09/2015] [Accepted: 07/13/2015] [Indexed: 11/21/2022]
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder that results from the abnormal expansion of poly-glutamine (polyQ) repeats in the Huntingtin (HTT) gene. Although HTT has been linked to a variety of cellular events, it is still not clear what the physiological functions of the protein are. Because of its critical role during mouse embryonic mouse development, we investigated the functions of Htt during early Xenopus embryogenesis. We find that reduction of Htt levels affects cilia polarity and function and causes whole body paralysis. Moreover, Htt loss of function leads to abnormal development of trigeminal and motor neurons. Interestingly, these phenotypes are partially rescued by either wild-type or expanded HTT. These results show that the Htt activity is required for normal embryonic development, and highlight the usefulness of the Xenopus system for investigating proteins involved in human diseases.
Collapse
|
15
|
Dietz KN, Di Stefano L, Maher RC, Zhu H, Macdonald ME, Gusella JF, Walker JA. The Drosophila Huntington's disease gene ortholog dhtt influences chromatin regulation during development. Hum Mol Genet 2014; 24:330-45. [PMID: 25168387 DOI: 10.1093/hmg/ddu446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease is an autosomal dominant neurodegenerative disorder caused by a CAG expansion mutation in HTT, the gene encoding huntingtin. Evidence from both human genotype-phenotype relationships and mouse model systems suggests that the mutation acts by dysregulating some normal activity of huntingtin. Recent work in the mouse has revealed a role for huntingtin in epigenetic regulation during development. Here, we examine the role of the Drosophila huntingtin ortholog (dhtt) in chromatin regulation in the development of the fly. Although null dhtt mutants display no overt phenotype, we found that dhtt acts as a suppressor of position-effect variegation (PEV), suggesting that it influences chromatin organization. We demonstrate that dhtt affects heterochromatin spreading in a PEV model by modulating histone H3K9 methylation levels at the heterochromatin-euchromatin boundary. To gain mechanistic insights into how dhtt influences chromatin function, we conducted a candidate genetic screen using RNAi lines targeting known PEV modifier genes. We found that dhtt modifies phenotypes caused by knockdown of a number of key epigenetic regulators, including chromatin-associated proteins, histone demethylases (HDMs) and methyltransferases. Notably, dhtt strongly modifies phenotypes resulting from loss of the HDM dLsd1, in both the ovary and wing, and we demonstrate that dhtt appears to act as a facilitator of dLsd1 function in regulating global histone H3K4 methylation levels. These findings suggest that a fundamental aspect of huntingtin function in heterochromatin/euchromatin organization is evolutionarily conserved across phyla.
Collapse
Affiliation(s)
- Kevin N Dietz
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Luisa Di Stefano
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, UMR 5088, Université de Toulouse and Centre National de la Recherche Scientifique, 31062 Toulouse, France and
| | - Robert C Maher
- Center for Cancer Research, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Hui Zhu
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Marcy E Macdonald
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - James A Walker
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| |
Collapse
|
16
|
Das S, Rajanikant GK. Huntington disease: can a zebrafish trail leave more than a ripple? Neurosci Biobehav Rev 2014; 45:258-61. [PMID: 25003805 DOI: 10.1016/j.neubiorev.2014.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 11/26/2022]
Abstract
Over the past decade, zebrafish has proved to be very useful in modeling neurodegenerative conditions. It poses a number of advantages and has been accepted as one of the best models for elucidating pathophysiological mechanisms of neurodegenerative diseases, including Huntington disease (HD). HD is a debilitating neurodegenerative genetic disorder that affects a person's ability to think, talk, and move. The pathophysiology of HD is not completely understood, which prevents the development of effective therapeutic approaches. Using zebrafish as a model organism, scientific advancements can be made in understanding the HD pathology/mechanisms with the hope of developing potential therapies in the near future.
Collapse
Affiliation(s)
- Sambit Das
- School of Biotechnology, National Institute of Technology Calicut, NITC Campus PO, Calicut 673601, Kerala, India
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, NITC Campus PO, Calicut 673601, Kerala, India.
| |
Collapse
|
17
|
Wong BX, Duce JA. The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Front Pharmacol 2014; 5:81. [PMID: 24795635 PMCID: PMC4001010 DOI: 10.3389/fphar.2014.00081] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
As with most bioavailable transition metals, iron is essential for many metabolic processes required by the cell but when left unregulated is implicated as a potent source of reactive oxygen species. It is uncertain whether the brain’s evident vulnerability to reactive species-induced oxidative stress is caused by a reduced capability in cellular response or an increased metabolic activity. Either way, dys-regulated iron levels appear to be involved in oxidative stress provoked neurodegeneration. As in peripheral iron management, cells within the central nervous system tightly regulate iron homeostasis via responsive expression of select proteins required for iron flux, transport and storage. Recently proteins directly implicated in the most prevalent neurodegenerative diseases, such as amyloid-β precursor protein, tau, α-synuclein, prion protein and huntingtin, have been connected to neuronal iron homeostatic control. This suggests that disrupted expression, processing, or location of these proteins may result in a failure of their cellular iron homeostatic roles and augment the common underlying susceptibility to neuronal oxidative damage that is triggered in neurodegenerative disease.
Collapse
Affiliation(s)
- Bruce X Wong
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - James A Duce
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia ; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, UK
| |
Collapse
|
18
|
Abstract
Changes in the level and activity of brain-derived neurotrophic factor (BDNF) have been described in a number of neurodegenerative disorders since early 1990s. However, only in Huntington disease (HD) gain- and loss-of-function experiments have mechanistically linked these abnormalities with the genetic defect.In this chapter we will describe how huntingtin protein, whose mutation causes HD, is involved in the physiological control of BDNF synthesis and transport in neurons and how both processes are simultaneously disrupted in HD. We will describe the underlying molecular mechanisms and discuss pre-clinical data concerning the impact of the experimental manipulation of BDNF levels on HD progression. These studies have revealed that a major loss of BDNF protein in the brain of HD patients may contribute to the clinical manifestations of the disease. The experimental strategies under investigation to increase brain BDNF levels in animal models of HD will also be described, with a view to ultimately improving the clinical treatment of this condition.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Biosciences and Centre for Stem cell Research, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy,
| | | |
Collapse
|
19
|
Jellinger KA. The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 110:1-47. [PMID: 24209432 DOI: 10.1016/b978-0-12-410502-7.00002-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders are featured by a variety of pathological conditions that share similar critical processes, such as oxidative stress, free radical activity, proteinaceous aggregations, mitochondrial dysfunctions, and energy failure. They are mediated or triggered by an imbalance of metal ions leading to changes of critical biological systems and initiating a cascade of events finally leading to neurodegeneration and cell death. Their causes are multifactorial, and although the source of the shift in oxidative homeostasis is still unclear, current evidence points to changes in the balance of redox transition metals, especially iron, copper, and other trace metals. They are present at elevated levels in Alzheimer disease, Parkinson disease, multisystem atrophy, etc., while in other neurodegenerative disorders, copper, zinc, aluminum, and manganese are involved. This chapter will review the recent advances of the role of metals in the pathogenesis and pathophysiology of major neurodegenerative diseases and discuss the use of chelating agents as potential therapies for metal-related disorders.
Collapse
|
20
|
An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity. Cell Death Dis 2012; 3:e382. [PMID: 22932724 PMCID: PMC3434668 DOI: 10.1038/cddis.2012.121] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder whose main hallmark is brain atrophy. However, several peripheral organs are considerably affected and their symptoms may, in fact, manifest before those resulting from brain pathology. HD is of genetic origin and caused by a mutation in the huntingtin gene. The mutated protein has detrimental effects on cell survival, but whether the mutation leads to a gain of toxic function or a loss of function of the altered protein is still highly controversial. Most currently used in vitro models have been designed, to a large extent, to investigate the effects of the aggregation process in neuronal-like cells. However, as the pathology involves several other organs, new in vitro models are critically needed to take into account the deleterious effects of mutant huntingtin in peripheral tissues, and thus to identify new targets that could lead to more effective clinical interventions in the early course of the disease. This review aims to present current in vitro models of HD pathology and to discuss the knowledge that has been gained from these studies as well as the new in vitro tools that have been developed, which should reflect the more global view that we now have of the disease.
Collapse
|
21
|
Lo Sardo V, Zuccato C, Gaudenzi G, Vitali B, Ramos C, Tartari M, Myre MA, Walker JA, Pistocchi A, Conti L, Valenza M, Drung B, Schmidt B, Gusella J, Zeitlin S, Cotelli F, Cattaneo E. An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nat Neurosci 2012; 15:713-21. [PMID: 22466506 DOI: 10.1038/nn.3080] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/05/2012] [Indexed: 02/06/2023]
Abstract
The Huntington's disease gene product, huntingtin, is indispensable for neural tube formation, but its role is obscure. We studied neurulation in htt-null embryonic stem cells and htt-morpholino zebrafish embryos and found a previously unknown, evolutionarily recent function for this ancient protein. We found that htt was essential for homotypic interactions between neuroepithelial cells; it permitted neurulation and rosette formation by regulating metalloprotease ADAM10 activity and Ncadherin cleavage. This function was embedded in the N terminus of htt and was phenocopied by treatment of htt knockdown zebrafish with an ADAM10 inhibitor. Notably, in htt-null cells, reversion of the rosetteless phenotype occurred only with expression of evolutionarily recent htt heterologues from deuterostome organisms. Conversely, all of the heterologues that we tested, including htt from Drosophila melanogaster and Dictyostelium discoideum, exhibited anti-apoptotic activity. Thus, anti-apoptosis may have been one of htt’s ancestral function(s), but, in deuterostomes, htt evolved to acquire a unique regulatory activity for controlling neural adhesion via ADAM10-Ncadherin, with implications for brain evolution and development.
Collapse
Affiliation(s)
- Valentina Lo Sardo
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Myre MA. Clues to γ-secretase, huntingtin and Hirano body normal function using the model organism Dictyostelium discoideum. J Biomed Sci 2012; 19:41. [PMID: 22489754 PMCID: PMC3352040 DOI: 10.1186/1423-0127-19-41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/10/2012] [Indexed: 12/11/2022] Open
Abstract
Many neurodegenerative disorders, although related by their destruction of brain function, display remarkable cellular and/or regional pathogenic specificity likely due to a deregulated functionality of the mutant protein. However, neurodegenerative disease genes, for example huntingtin (HTT), the ataxins, the presenilins (PSEN1/PSEN2) are not simply localized to neurons but are ubiquitously expressed throughout peripheral tissues; it is therefore paramount to properly understand the earliest precipitating events leading to neuronal pathogenesis to develop effective long-term therapies. This means, in no unequivocal terms, it is crucial to understand the gene's normal function. Unfortunately, many genes are often essential for embryogenesis which precludes their study in whole organisms. This is true for HTT, the β-amyloid precursor protein (APP) and presenilins, responsible for early onset Alzheimer's disease (AD). To better understand neurological disease in humans, many lower and higher eukaryotic models have been established. So the question arises: how reasonable is the use of organisms to study neurological disorders when the model of choice does not contain neurons? Here we will review the surprising, and novel emerging use of the model organism Dictyostelium discoideum, a species of soil-living amoeba, as a valuable biomedical tool to study the normal function of neurodegenerative genes. Historically, the evidence on the usefulness of simple organisms to understand the etiology of cellular pathology cannot be denied. But using an organism without a central nervous system to understand diseases of the brain? We will first introduce the life cycle of Dictyostelium, the presence of many disease genes in the genome and how it has provided unique opportunities to identify mechanisms of disease involving actin pathologies, mitochondrial disease, human lysosomal and trafficking disorders and host-pathogen interactions. Secondly, I will highlight recent studies on the function of HTT, presenilin γ-secretase and Hirano bodies conducted in Dictyostelium. I will then outline the limitations and future directions in using Dictyostelium to study disease, and finally conclude that given the evolutionary conservation of genes between Dictyostelium and humans and the organisms' genetic tractability, that this system provides a fertile environment for discovering normal gene function related to neurodegeneration and will permit translational studies in higher systems.
Collapse
Affiliation(s)
- Michael A Myre
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
23
|
Yin L, Unger EL, Jellen LC, Earley CJ, Allen RP, Tomaszewicz A, Fleet JC, Jones BC. Systems genetic analysis of multivariate response to iron deficiency in mice. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1282-96. [PMID: 22461179 DOI: 10.1152/ajpregu.00634.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to identify genes that influence iron regulation under varying dietary iron availability. Male and female mice from 20+ BXD recombinant inbred strains were fed iron-poor or iron-adequate diets from weaning until 4 mo of age. At death, the spleen, liver, and blood were harvested for the measurement of hemoglobin, hematocrit, total iron binding capacity, transferrin saturation, and liver, spleen and plasma iron concentration. For each measure and diet, we found large, strain-related variability. A principal-components analysis (PCA) was performed on the strain means for the seven parameters under each dietary condition for each sex, followed by quantitative trait loci (QTL) analysis on the factors. Compared with the iron-adequate diet, iron deficiency altered the factor structure of the principal components. QTL analysis, combined with PosMed (a candidate gene searching system) published gene expression data and literature citations, identified seven candidate genes, Ptprd, Mdm1, Picalm, lip1, Tcerg1, Skp2, and Frzb based on PCA factor, diet, and sex. Expression of each of these is cis-regulated, significantly correlated with the corresponding PCA factor, and previously reported to regulate iron, directly or indirectly. We propose that polymorphisms in multiple genes underlie individual differences in iron regulation, especially in response to dietary iron challenge. This research shows that iron management is a highly complex trait, influenced by multiple genes. Systems genetics analysis of iron homeostasis holds promise for developing new methods for prevention and treatment of iron deficiency anemia and related diseases.
Collapse
Affiliation(s)
- Lina Yin
- Graduate Program in Neuroscience,The Pennsylvania State University, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mo W, Nicolson T. Both pre- and postsynaptic activity of Nsf prevents degeneration of hair-cell synapses. PLoS One 2011; 6:e27146. [PMID: 22073277 PMCID: PMC3207842 DOI: 10.1371/journal.pone.0027146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/11/2011] [Indexed: 01/27/2023] Open
Abstract
Vesicle fusion contributes to the maintenance of synapses in the nervous system by mediating synaptic transmission, release of neurotrophic factors, and trafficking of membrane receptors. N-ethylmaleimide-sensitive factor (NSF) is indispensible for dissociation of the SNARE-complex following vesicle fusion. Although NSF function has been characterized extensively in vitro, the in vivo role of NSF in vertebrate synaptogenesis is relatively unexplored. Zebrafish possess two nsf genes, nsf and nsfb. Here, we examine the function of either Nsf or Nsfb in the pre- and postsynaptic cells of the zebrafish lateral line organ and demonstrate that Nsf, but not Nsfb, is required for maintenance of afferent synapses in hair cells. In addition to peripheral defects in nsf mutants, neurodegeneration of glutamatergic synapses in the central nervous system also occurs in the absence of Nsf function. Expression of an nsf transgene in a null background indicates that stabilization of synapses requires Nsf function in both hair cells and afferent neurons. To identify potential targets of Nsf-mediated fusion, we examined the expression of genes implicated in stabilizing synapses and found that transcripts for multiple genes including brain-derived neurotrophic factor (bdnf) were significantly reduced in nsf mutants. With regard to trafficking of BDNF, we observed a striking accumulation of BDNF in the neurites of nsf mutant afferent neurons. In addition, injection of recombinant BDNF protein partially rescued the degeneration of afferent synapses in nsf mutants. These results establish a role for Nsf in the maintenance of synaptic contacts between hair cells and afferent neurons, mediated in part via the secretion of trophic signaling factors.
Collapse
Affiliation(s)
- Weike Mo
- Howard Hughes Medical Institute, Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Teresa Nicolson
- Howard Hughes Medical Institute, Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
25
|
Kurz T, Eaton JW, Brunk UT. The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 2011; 43:1686-97. [PMID: 21907822 DOI: 10.1016/j.biocel.2011.08.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 02/07/2023]
Abstract
Iron is the most abundant transition metal in the earth's crust. It cycles easily between ferric (oxidized; Fe(III)) and ferrous (reduced; Fe(II)) and readily forms complexes with oxygen, making this metal a central player in respiration and related redox processes. However, 'loose' iron, not within heme or iron-sulfur cluster proteins, can be destructively redox-active, causing damage to almost all cellular components, killing both cells and organisms. This may explain why iron is so carefully handled by aerobic organisms. Iron uptake from the environment is carefully limited and carried out by specialized iron transport mechanisms. One reason that iron uptake is tightly controlled is that most organisms and cells cannot efficiently excrete excess iron. When even small amounts of intracellular free iron occur, most of it is safely stored in a non-redox-active form in ferritins. Within nucleated cells, iron is constantly being recycled from aged iron-rich organelles such as mitochondria and used for construction of new organelles. Much of this recycling occurs within the lysosome, an acidic digestive organelle. Because of this, most lysosomes contain relatively large amounts of redox-active iron and are therefore unusually susceptible to oxidant-mediated destabilization or rupture. In many cell types, iron transit through the lysosomal compartment can be remarkably brisk. However, conditions adversely affecting lysosomal iron handling (or oxidant stress) can contribute to a variety of acute and chronic diseases. These considerations make normal and abnormal lysosomal handling of iron central to the understanding and, perhaps, therapy of a wide range of diseases.
Collapse
Affiliation(s)
- Tino Kurz
- Division of Pharmacology, Faculty of Health Sciences, Linköping University, 581 85 Linköping, Sweden.
| | | | | |
Collapse
|
26
|
Valenza M, Cattaneo E. Emerging roles for cholesterol in Huntington's disease. Trends Neurosci 2011; 34:474-86. [DOI: 10.1016/j.tins.2011.06.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 06/04/2011] [Accepted: 06/08/2011] [Indexed: 01/01/2023]
|
27
|
Abstract
The zebrafish, Danio rerio, has been established as an excellent vertebrate model for the study of developmental biology and gene function. It also has proven to be a valuable model to study human diseases. Here, we reviewed recent publications using zebrafish to study the pathology of human neurodegenerative diseases including Parkinson's, Huntington's, and Alzheimer's. These studies indicate that zebrafish genes and their human homologues have conserved functions with respect to the etiology of neurodegenerative diseases. The characteristics of the zebrafish and the experimental approaches to which it is amenable make this species a useful complement to other animal models for the study of pathologic mechanisms of neurodegenerative diseases and for the screening of compounds with therapeutic potential.
Collapse
Affiliation(s)
- Yanwei Xi
- Department of Biology, Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N6N5, Canada
| | | | | |
Collapse
|
28
|
Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011; 63:411-36. [PMID: 21415126 PMCID: PMC3082451 DOI: 10.1124/pr.110.003293] [Citation(s) in RCA: 706] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process.
Collapse
Affiliation(s)
- Udai Bhan Pandey
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | | |
Collapse
|
29
|
Characterisation of neuronal and glial populations of the visual system during zebrafish lifespan. Int J Dev Neurosci 2011; 29:441-9. [DOI: 10.1016/j.ijdevneu.2011.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/07/2011] [Accepted: 02/23/2011] [Indexed: 11/17/2022] Open
|
30
|
Myre MA, Lumsden AL, Thompson MN, Wasco W, MacDonald ME, Gusella JF. Deficiency of huntingtin has pleiotropic effects in the social amoeba Dictyostelium discoideum. PLoS Genet 2011; 7:e1002052. [PMID: 21552328 PMCID: PMC3084204 DOI: 10.1371/journal.pgen.1002052] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/02/2011] [Indexed: 11/24/2022] Open
Abstract
Huntingtin is a large HEAT repeat protein first identified in humans, where a polyglutamine tract expansion near the amino terminus causes a gain-of-function mechanism that leads to selective neuronal loss in Huntington's disease (HD). Genetic evidence in humans and knock-in mouse models suggests that this gain-of-function involves an increase or deregulation of some aspect of huntingtin's normal function(s), which remains poorly understood. As huntingtin shows evolutionary conservation, a powerful approach to discovering its normal biochemical role(s) is to study the effects caused by its deficiency in a model organism with a short life-cycle that comprises both cellular and multicellular developmental stages. To facilitate studies aimed at detailed knowledge of huntingtin's normal function(s), we generated a null mutant of hd, the HD ortholog in Dictyostelium discoideum. Dictyostelium cells lacking endogenous huntingtin were viable but during development did not exhibit the typical polarized morphology of Dictyostelium cells, streamed poorly to form aggregates by accretion rather than chemotaxis, showed disorganized F-actin staining, exhibited extreme sensitivity to hypoosmotic stress, and failed to form EDTA-resistant cell–cell contacts. Surprisingly, chemotactic streaming could be rescued in the presence of the bivalent cations Ca2+ or Mg2+ but not pulses of cAMP. Although hd− cells completed development, it was delayed and proceeded asynchronously, producing small fruiting bodies with round, defective spores that germinated spontaneously within a glassy sorus. When developed as chimeras with wild-type cells, hd− cells failed to populate the pre-spore region of the slug. In Dictyostelium, huntingtin deficiency is compatible with survival of the organism but renders cells sensitive to low osmolarity, which produces pleiotropic cell autonomous defects that affect cAMP signaling and as a consequence development. Thus, Dictyostelium provides a novel haploid organism model for genetic, cell biological, and biochemical studies to delineate the functions of the HD protein. Genetic evidence in humans and mouse models of Huntington's disease suggests that the disease mutation confers a deleterious gain-of-function on huntingtin that acts through the deregulation of some aspect of the protein's normal function(s). While huntingtin's function is poorly understood, its evolutionary conservation makes investigation of its physiological role in lower organisms an attractive route that has yet to be fully exploited. Therefore, we have used Dictyostelium discoideum to study the consequences of huntingtin (hd) deficiency. Developing Dictyostelium cells chemotax to form a multicellular slug that forms a fruiting body, comprising dormant spores encased above dead stalk cells. We found that hd− cells were hypersensitive to hypoosmotic stress. When starved, hd− cells aggregate by accretion, showed disorganized F-actin, and failed to form EDTA-resistant cell–cell contacts. Surprisingly, chemotactic signaling was rescued with Ca2+ or Mg2+ but not pulses of cAMP. Development of hd− mutants produced small fruiting bodies with round, defective spores, and when mixed with wild-type cells they didn't differentiate into spores. Our results are consistent with mammalian studies that show huntingtin is a multifunctional protein involved in many biochemical processes; and, importantly, they establish Dictyostelium as a valuable experimental organism for exploring in biochemical detail huntingtin's normal function(s).
Collapse
Affiliation(s)
- Michael A. Myre
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| | - Amanda L. Lumsden
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Morgan N. Thompson
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Wilma Wasco
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Marcy E. MacDonald
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
31
|
Fleming A, Rubinsztein DC. Zebrafish as a model to understand autophagy and its role in neurological disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:520-6. [PMID: 21256213 PMCID: PMC3060341 DOI: 10.1016/j.bbadis.2011.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 11/10/2010] [Accepted: 01/03/2011] [Indexed: 12/16/2022]
Abstract
In the past decade, the zebrafish (Danio rerio) has become a popular model system for the study of vertebrate development, since the embryos and larvae of this species are small, transparent and undergo rapid development ex utero, allowing in vivo analysis of embryogenesis and organogenesis. These characteristics can also be exploited by researchers interested in signaling pathways and disease processes and, accordingly, there is a growing literature on the use of zebrafish to model human disease. This model holds great potential for exploring how autophagy, an evolutionarily conserved mechanism for protein degradation, influences the pathogeneses of a range of different human diseases and for the evaluation of this pathway as a potential therapeutic strategy. Here we summarize what is known about the regulation of autophagy in eukaryotic cells and its role in neurodegenerative disease and highlight how research using zebrafish has helped further our understanding of these processes.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
32
|
Schulte J, Littleton JT. The biological function of the Huntingtin protein and its relevance to Huntington's Disease pathology. CURRENT TRENDS IN NEUROLOGY 2011; 5:65-78. [PMID: 22180703 PMCID: PMC3237673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Huntington's Disease is an adult-onset dominant heritable disorder characterized by progressive psychiatric disruption, cognitive deficits, and loss of motor coordination. It is caused by expansion of a polyglutamine tract within the N-terminal domain of the Huntingtin protein. The mutation confers a toxic gain-of-function phenotype, resulting in neurodegeneration that is most severe in the striatum. Increasing experimental evidence from genetic model systems such as mice, zebrafish, and Drosophila suggest that polyglutamine expansion within the Huntingtin protein also disrupts its normal biological function. Huntingtin is widely expressed during development and has a complex and dynamic distribution within cells. It is predicted to be a protein of pleiotropic function, interacting with a large number of effector proteins to mediate a host of physiological processes. In this review, we highlight the wildtype function of Huntingtin, focusing on its postdevelopmental roles in axonal trafficking, regulation of gene transcription, and cell survival. We then discuss how potential loss-of-function phenotypes resulting in polyglutamine expansion within Huntingtin may have direct relevance to the underlying pathophysiology of Huntington's Disease.
Collapse
Affiliation(s)
- Joost Schulte
- The Picower Institute for Learning and Memory, Departments of Biology and Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., 46-3251, Cambridge, MA 02139, USA
| | - J. Troy Littleton
- The Picower Institute for Learning and Memory, Departments of Biology and Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., 46-3251, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
34
|
Zuccato C, Valenza M, Cattaneo E. Molecular Mechanisms and Potential Therapeutical Targets in Huntington's Disease. Physiol Rev 2010; 90:905-81. [DOI: 10.1152/physrev.00041.2009] [Citation(s) in RCA: 626] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene encoding for huntingtin protein. A lot has been learned about this disease since its first description in 1872 and the identification of its causative gene and mutation in 1993. We now know that the disease is characterized by several molecular and cellular abnormalities whose precise timing and relative roles in pathogenesis have yet to be understood. HD is triggered by the mutant protein, and both gain-of-function (of the mutant protein) and loss-of-function (of the normal protein) mechanisms are involved. Here we review the data that describe the emergence of the ancient huntingtin gene and of the polyglutamine trait during the last 800 million years of evolution. We focus on the known functions of wild-type huntingtin that are fundamental for the survival and functioning of the brain neurons that predominantly degenerate in HD. We summarize data indicating how the loss of these beneficial activities reduces the ability of these neurons to survive. We also review the different mechanisms by which the mutation in huntingtin causes toxicity. This may arise both from cell-autonomous processes and dysfunction of neuronal circuitries. We then focus on novel therapeutical targets and pathways and on the attractive option to counteract HD at its primary source, i.e., by blocking the production of the mutant protein. Strategies and technologies used to screen for candidate HD biomarkers and their potential application are presented. Furthermore, we discuss the opportunities offered by intracerebral cell transplantation and the likely need for these multiple routes into therapies to converge at some point as, ideally, one would wish to stop the disease process and, at the same time, possibly replace the damaged neurons.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Marta Valenza
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Elena Cattaneo
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
35
|
Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis 2010; 40:58-65. [PMID: 20493258 DOI: 10.1016/j.nbd.2010.05.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 11/23/2022] Open
Abstract
As a consequence of the widespread use of zebrafish in developmental biology studies, an extensive array of experimental tools and techniques has been assembled; it has recently become apparent that these might be exploited in the analysis of human neurodegenerative diseases. A surprising degree of functional conservation has been demonstrated between human genes implicated in neurodegenerative diseases and their zebrafish orthologues. In zebrafish models of recessive parkinsonism, Parkin or Pink1 knockdown gave rise to specific loss of dopamine neurons; in a zebrafish model of recessive spinal muscular atrophy, loss of Smn1 function caused specific motor axonal defects. In addition, pathological features of several dominant diseases were replicated by transgenic over-expression of mutant human proteins, including Tau, Huntingtin, and SOD1. In some cases, conservation of relevant cellular pathways was sufficient that disease-specific posttranslational changes to the respective proteins were found in the zebrafish models. These data collectively suggest that the zebrafish can be an appropriate setting in which to model the molecular events underlying human neuropsychiatric disease. Consequently, novel findings yielded by studies in zebrafish models may be applicable to human diseases; this is an exciting prospect, in view of the many potential uses of zebrafish models, for example, screening for lead therapeutic compounds, rapid functional assessments of putative modifier genes, and live observation of pathogenic mechanisms in vivo.
Collapse
|
36
|
Jana NR. Role of the ubiquitin–proteasome system and autophagy in polyglutamine neurodegenerative diseases. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.09.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The accumulation of intracellular protein aggregates is a prominent feature of many late-onset neurodegenerative disorders, including polyglutamine neurodegenerative diseases. Appearance of aggregates of the misfolded mutant disease proteins indicate that the degradative pathways of the cell are failing to efficiently clear them and are being progressively overwhelmed, which could eventually lead to neuronal dysfunction and neurodegeneration. Cellular pathways for degrading misfolded and aggregated-prone proteins include the ubiquitin–proteasome system and autophagy. This article reviews recent studies that have shown a critical role of the ubiquitin–proteasome system and autophagy in the pathogenesis of polyglutamine diseases. Understanding the role of these two pathways in disease pathogenesis could open up a new attractive therapeutic avenue for polyglutamine and other related neurodegenerative disorders.
Collapse
Affiliation(s)
- Nihar Ranjan Jana
- Cellular & Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122 050, India
| |
Collapse
|