1
|
Yamanaka T, Kurosawa M, Yoshida A, Shimogori T, Hiyama A, Maity SN, Hattori N, Matsui H, Nukina N. The transcription factor NF-YA is crucial for neural progenitor maintenance during brain development. J Biol Chem 2024; 300:105629. [PMID: 38199563 PMCID: PMC10839448 DOI: 10.1016/j.jbc.2024.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
In contrast to stage-specific transcription factors, the role of ubiquitous transcription factors in neuronal development remains a matter of scrutiny. Here, we demonstrated that a ubiquitous factor NF-Y is essential for neural progenitor maintenance during brain morphogenesis. Deletion of the NF-YA subunit in neural progenitors by using nestin-cre transgene in mice resulted in significant abnormalities in brain morphology, including a thinner cerebral cortex and loss of striatum during embryogenesis. Detailed analyses revealed a progressive decline in multiple neural progenitors in the cerebral cortex and ganglionic eminences, accompanied by induced apoptotic cell death and reduced cell proliferation. In neural progenitors, the NF-YA short isoform lacking exon 3 is dominant and co-expressed with cell cycle genes. ChIP-seq analysis from the cortex during early corticogenesis revealed preferential binding of NF-Y to the cell cycle genes, some of which were confirmed to be downregulated following NF-YA deletion. Notably, the NF-YA short isoform disappears and is replaced by its long isoform during neuronal differentiation. Forced expression of the NF-YA long isoform in neural progenitors resulted in a significant decline in neuronal count, possibly due to the suppression of cell proliferation. Collectively, we elucidated a critical role of the NF-YA short isoform in maintaining neural progenitors, possibly by regulating cell proliferation and apoptosis. Moreover, we identified an isoform switch in NF-YA within the neuronal lineage in vivo, which may explain the stage-specific role of NF-Y during neuronal development.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan; Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan; Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masaru Kurosawa
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aya Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Hiyama
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan
| | - Sankar N Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan; Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
Herb BR, Glover HJ, Bhaduri A, Colantuoni C, Bale TL, Siletti K, Hodge R, Lein E, Kriegstein AR, Doege CA, Ament SA. Single-cell genomics reveals region-specific developmental trajectories underlying neuronal diversity in the human hypothalamus. SCIENCE ADVANCES 2023; 9:eadf6251. [PMID: 37939194 PMCID: PMC10631741 DOI: 10.1126/sciadv.adf6251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
The development and diversity of neuronal subtypes in the human hypothalamus has been insufficiently characterized. To address this, we integrated transcriptomic data from 241,096 cells (126,840 newly generated) in the prenatal and adult human hypothalamus to reveal a temporal trajectory from proliferative stem cell populations to mature hypothalamic cell types. Iterative clustering of the adult neurons identified 108 robust transcriptionally distinct neuronal subtypes representing 10 hypothalamic nuclei. Pseudotime trajectories provided insights into the genes driving formation of these nuclei. Comparisons to single-cell transcriptomic data from the mouse hypothalamus suggested extensive conservation of neuronal subtypes despite certain differences in species-enriched gene expression. The uniqueness of hypothalamic neuronal lineages was examined developmentally by comparing excitatory lineages present in cortex and inhibitory lineages in ganglionic eminence, revealing both distinct and shared drivers of neuronal maturation across the human forebrain. These results provide a comprehensive transcriptomic view of human hypothalamus development through gestation and adulthood at cellular resolution.
Collapse
Affiliation(s)
- Brian R. Herb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Kahlert Institute for Addiction Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah J. Glover
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Carlo Colantuoni
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tracy L. Bale
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kimberly Siletti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rebecca Hodge
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Arnold R. Kriegstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Claudia A. Doege
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seth A. Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Kahlert Institute for Addiction Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Bhargava A. Unraveling corticotropin-releasing factor family-orchestrated signaling and function in both sexes. VITAMINS AND HORMONES 2023; 123:27-65. [PMID: 37717988 DOI: 10.1016/bs.vh.2023.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Stress responses to physical, psychological, environmental, or cellular stressors, has two arms: initiation and recovery. Corticotropin-releasing factor (CRF) is primarily responsible for regulating and/or initiating stress responses via, whereas urocortins (UCNs) are involved in the recovery response to stress via feedback inhibition. Stress is a loaded, polysemous word and is experienced in a myriad of ways. Some stressors are good for an individual, in fact essential, whereas other stressors are associated with bad outcomes. Perceived stress, like beauty, lies in the eye of the beholder, and hence the same stressor can result in individual-specific outcomes. In mammals, there are two main biological sexes with reproduction as primary function. Reproduction and nutrition can also be viewed as stressors; based on a body of work from my laboratory, we propose that the functions of all other organs have co-evolved to optimize and facilitate an individual's nutritional and reproductive functions. Hence, sex differences in physiologically relevant outcomes are innate and occur at all levels- molecular, endocrine, immune, and (patho)physiological. CRF and three UCNs are peptide hormones that mediate their physiological effects by binding to two known G protein-coupled receptors (GPCRs), CRF1 and CRF2. Expression and function of CRF family of hormones and their receptors is likely to be sexually dimorphic in all organs. In this chapter, based on the large body of work from others and my laboratory, an overview of the CRF family with special emphasis on sex-specific actions of peripherally expressed CRF2 receptor in health and disease is provided.
Collapse
Affiliation(s)
- Aditi Bhargava
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
4
|
Thalamocortical axons regulate neurogenesis and laminar fates in the early sensory cortex. Proc Natl Acad Sci U S A 2022; 119:e2201355119. [PMID: 35613048 PMCID: PMC9295754 DOI: 10.1073/pnas.2201355119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This study addresses how the cerebral cortex is partitioned into specialized areas during development. Although both early embryonic patterning and postnatal synaptic input from sensory thalamic nuclei are known to be critical, early roles of thalamic axons in area-specific regulation of cortical neurogenesis are poorly understood. We examined this by developing a genetic mouse model in which thalamocortical projections fail to properly form during embryogenesis, and found these axons are required not only for an enhanced production of superficial layer neurons but also for promoting the layer 4 cell fate, a hallmark of the primary sensory cortex. These findings provide a mechanism by which thalamocortical axons complement the intrinsic programs of neurogenesis and early fate specification. Area-specific axonal projections from the mammalian thalamus shape unique cellular organization in target areas in the adult neocortex. How these axons control neurogenesis and early neuronal fate specification is poorly understood. By using mutant mice lacking the majority of thalamocortical axons, we show that these axons are required for the production and specification of the proper number of layer 4 neurons in primary sensory areas by the neonatal stage. Part of these area-specific roles is played by the thalamus-derived molecule, VGF. Our work reveals that extrinsic cues from sensory thalamic projections have an early role in the formation of cortical cytoarchitecture by enhancing the production and specification of layer 4 neurons.
Collapse
|
5
|
Khodagholi F, Maleki A, Motamedi F, Mousavi MA, Rafiei S, Moslemi M. Oxytocin Prevents the Development of 3-NP-Induced Anxiety and Depression in Male and Female Rats: Possible Interaction of OXTR and mGluR2. Cell Mol Neurobiol 2022; 42:1105-1123. [PMID: 33201416 PMCID: PMC11441245 DOI: 10.1007/s10571-020-01003-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/07/2020] [Indexed: 01/01/2023]
Abstract
Huntington disease (HD) is a progressive neurological disorder with dominant motor symptoms. It also has psychiatric manifestations, like anxiety and depression, that can emerge themselves before motor symptoms and impose a major burden on patients. Oxytocin (OXT) is a newly emerged treatment for disorders like autism and schizophrenia and recently is using to alleviate depression and anxiety. In the current study, we investigated the behavioral and molecular effects of OXT on the development of anxiety and depression in 3-nitropropionic acid (3-NP)-induced model of HD. Anxiety- and depression-like behaviors as well as the levels of oxytocin receptor (OXTR), metabotropic glutamate receptor (mGluR) 2, mGluR5, and glutathione (GSH) were measured in striatum, hippocampus, prefrontal cortex, and amygdala. Also, we questioned if sex had any modulatory effect. We found that 3-NP increased anxiety and depression compared to controls. It also reduced the levels of OXTR and mGluR2, increased mGluR5, and reduced GSH in studied brain regions. Pretreatment with OXT before the injection of 3-NP ameliorated anxiety and depression. Additionally, it protected the brain from developing low levels of OXTR, mGluR2, and GSH and high levels of mGluR5 in studied regions. The protective effects of OXT were similar between male and female animals. These data suggest that OXTR, mGluR2, mGluR5, and GSH may contribute to psychiatric manifestations of HD. In addition, pretreatment with OXT could prevent the mood changes in male and female rats.
Collapse
Affiliation(s)
- Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrbanoo Rafiei
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Moslemi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Deficient maternal behavior in multiparous Pou3f2⊿ mice is associated with an impaired exploratory activity. Behav Brain Res 2022; 427:113846. [DOI: 10.1016/j.bbr.2022.113846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023]
|
7
|
Henningsen JB, Soylu-Kucharz R, Björkqvist M, Petersén Å. Effects of excitotoxicity in the hypothalamus in transgenic mouse models of Huntington disease. Heliyon 2021; 7:e07808. [PMID: 34458633 PMCID: PMC8379469 DOI: 10.1016/j.heliyon.2021.e07808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/21/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative movement disorder caused by an expanded CAG repeat in the huntingtin gene (HTT). The mutant huntingtin protein is ubiquitously expressed, but only certain brain regions are affected. The hypothalamus has emerged as an important area of pathology with selective loss of neurons expressing the neuropeptides orexin (hypocretin), oxytocin and vasopressin in human postmortem HD tissue. Hypothalamic changes in HD may have implications for early disease manifestations affecting the regulation of sleep, emotions and metabolism. The underlying mechanisms of selective vulnerability of certain neurons in HD are not fully understood, but excitotoxicity has been proposed to play a role. Further understanding of mechanisms rendering neurons sensitive to mutant huntingtin may reveal novel targets for therapeutic interventions. In the present study, we wanted to examine whether transgenic HD mice display altered sensitivity to excitotoxicity in the hypothalamus. We first assessed effects of hypothalamic injections of the excitotoxin quinolinic acid (QA) into wild-type (WT) mice. We show that neuronal populations expressing melanin-concentrating hormone (MCH) and cocaine and amphetamine-regulated transcript (CART) display a dose-dependent sensitivity to QA. In contrast, neuronal populations expressing orexin, oxytocin, vasopressin as well as tyrosine hydroxylase in the A13 area are resistant to QA-induced toxicity. We demonstrate that the R6/2 transgenic mouse model expressing a short fragment of mutant HTT displays hypothalamic neuropathology with discrete loss of the neuronal populations expressing orexin, MCH, CART, and orexin at 12 weeks of age. The BACHD mouse model expressing full-length mutant HTT does not display any hypothalamic neuropathology at 2 months of age. There was no effect of hypothalamic injections of QA on the neuronal populations expressing orexin, MCH, CART or oxytocin in neither HD mouse model. In conclusion, we find no support for a role of excitotoxicity in the loss of hypothalamic neuronal populations in HD.
Collapse
Affiliation(s)
- Jo B. Henningsen
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200, Copenhagen, Denmark
- Corresponding author.
| | - Rana Soylu-Kucharz
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| |
Collapse
|
8
|
van Wamelen DJ, Aziz NA. Hypothalamic pathology in Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:245-255. [PMID: 34266596 DOI: 10.1016/b978-0-12-819973-2.00017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Huntington's disease (HD), an autosomal dominant hereditary disorder associated with the accumulation of mutant huntingtin, is classically associated with cognitive decline and motor symptoms, notably chorea. However, growing evidence suggests that nonmotor symptoms are equally prevalent and debilitating. Some of these symptoms may be linked to hypothalamic pathology, demonstrated by findings in HD animal models and HD patients showing specific changes in hypothalamic neuropeptidergic populations and their associated functions. At least some of these alterations are likely due to local mutant huntingtin expression and toxicity, while others are likely caused by disturbed hypothalamic circuitry. Common problems include circadian rhythm disorders, including desynchronization of daily hormone excretion patterns, which could be targeted by novel therapeutic interventions, such as timed circadian interventions with light therapy or melatonin. However, translation of these findings from bench-to-bedside is hampered by differences in murine HD models and HD patients, including mutant huntingtin trinucleotide repeat length, which is highly heterogeneous across the various models. In this chapter, we summarize the current knowledge regarding hypothalamic alterations in HD patients and animal models, and the potential for these findings to be translated into clinical practice and management.
Collapse
Affiliation(s)
- Daniel J van Wamelen
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom; Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Cheong RY, Tonetto S, von Hörsten S, Petersén Å. Imbalance of the oxytocin-vasopressin system contributes to the neuropsychiatric phenotype in the BACHD mouse model of Huntington disease. Psychoneuroendocrinology 2020; 119:104773. [PMID: 32590293 DOI: 10.1016/j.psyneuen.2020.104773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/30/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Neuropsychiatric disturbances with altered social cognition, depression and anxiety are among the most debilitating early features in the fatal neurodegenerative disorder Huntington disease (HD) which is caused by an expanded CAG repeat in the huntingtin gene. The underlying neurobiological mechanisms are not known. Neuropathological analyses of postmortem human HD hypothalamic tissue have demonstrated loss of the neuropeptides oxytocin and vasopressin. The dynamic interplay between these neuropeptides is crucial for modulating emotional and social behavior but its role in HD is unclear. In the present study, we have investigated the effect of expressing the mutant huntingtin gene on the development of behavioral changes using the transgenic BACHD mouse model at different ages. We show for the first time that BACHD mice exhibit deficits in social behavior with parallel aberrations in the balance of the oxytocin-vasopressin system. Importantly, our data also show that restoration of the interplay within the system with an acute dose of intranasal oxytocin immediately prior to behavioral testing can rescue the depressive-like phenotype but not anxiety-like behavior in this transgenic model. These findings demonstrate that imbalances in the oxytocin-vasopressin interplay contribute to the neuropsychiatric component of HD and suggest that interventions aimed at restoring the blunted levels of oxytocin may confer therapeutic benefits for this disease.
Collapse
Affiliation(s)
- Rachel Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.
| | - Simone Tonetto
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Stephan von Hörsten
- Department of Experimental Therapy and Preclinical Center, Friedrich-Alexander-University, 91054 Erlangen, Germany
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| |
Collapse
|
10
|
Cheong RY, Gabery S, Petersén Å. The Role of Hypothalamic Pathology for Non-Motor Features of Huntington's Disease. J Huntingtons Dis 2020; 8:375-391. [PMID: 31594240 PMCID: PMC6839491 DOI: 10.3233/jhd-190372] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Huntington’s disease (HD) is a fatal genetic neurodegenerative disorder. It has mainly been considered a movement disorder with cognitive symptoms and these features have been associated with pathology of the striatum and cerebral cortex. Importantly, individuals with the mutant huntingtin gene suffer from a spectrum of non-motor features often decades before the motor disorder manifests. These symptoms and signs include a range of psychiatric symptoms, sleep problems and metabolic changes with weight loss particularly in later stages. A higher body mass index at diagnosis is associated with slower disease progression. The common psychiatric symptom of apathy progresses with the disease. The fact that non-motor features are present early in the disease and that they show an association to disease progression suggest that unravelling the underlying neurobiological mechanisms may uncover novel targets for early disease intervention and better symptomatic treatment. The hypothalamus and the limbic system are important brain regions that regulate emotion, social cognition, sleep and metabolism. A number of studies using neuroimaging, postmortem human tissue and genetic manipulation in animal models of the disease has collectively shown that the hypothalamus and the limbic system are affected in HD. These findings include the loss of neuropeptide-expressing neurons such as orexin (hypocretin), oxytocin, vasopressin, somatostatin and VIP, and increased levels of SIRT1 in distinct nuclei of the hypothalamus. This review provides a summary of the results obtained so far and highlights the potential importance of these changes for the understanding of non-motor features in HD.
Collapse
Affiliation(s)
- Rachel Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sanaz Gabery
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Nasu M, Anan K, Abe Y, Kozuki N, Matsushima A, Ueda S. Reduced home cage and social activity in Pou3f2⊿ mice. Biochem Biophys Res Commun 2020; 523:411-415. [PMID: 31870549 DOI: 10.1016/j.bbrc.2019.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 11/26/2022]
Abstract
Pou3f2/Brn2 is a transcription factor that helps to determine the cellular identity of neocortical or hypothalamic neurons. Mammalian Pou3f2 contains three homopolymeric amino acids that are not present in amphibian Pou3f2. These amino acids contribute to monoamine function, which may play specific roles in mammalian development and behavior. Previous work has indicated that Pou3f2⊿ mice, which lack the homopolymeric amino acids, exhibited declined maternal activity and impaired object and spatial recognition. The current study, analyzed weight gain, brain development, home cage activity, social interaction, and response to novel objects in Pou3f2⊿ mice to determine which aspects of behavior were affected by monoamine dysregulation. Compared to their wild type counterparts, Pou3f2⊿ mice showed decreased social interaction and reduced home cage activity during their active phase. However, they showed normal weight gain, brain development, and responses to novelty. These results indicate that monoamine dysregulation in Pou3f2⊿ mice may specifically affect basal activity and social development, without altering non-social motivation.
Collapse
Affiliation(s)
- Makoto Nasu
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Keiiti Anan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yukiko Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoyuki Kozuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Aya Matsushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shintaroh Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
12
|
Luo H, Cao L, Liang X, Du A, Peng T, Li H. Herp Promotes Degradation of Mutant Huntingtin: Involvement of the Proteasome and Molecular Chaperones. Mol Neurobiol 2018; 55:7652-7668. [PMID: 29430620 DOI: 10.1007/s12035-018-0900-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/09/2018] [Indexed: 01/18/2023]
Abstract
In neurodegenerative diseases, pathogenic proteins tend to misfold and form aggregates that are difficult to remove and able to induce excessive endoplasmic reticulum (ER) stress, leading to neuronal injury and apoptosis. Homocysteine-induced endoplasmic reticulum protein (Herp), an E3 ubiquitin ligase, is an important early marker of ER stress and is involved in the ubiquitination and degradation of many neurodegenerative proteins. However, in Huntington's disease (HD), a typical polyglutamine disease, whether Herp is also involved in the metabolism and degradation of the pathogenic protein, mutant huntingtin, has not been reported. Therefore, we studied the relationship between Herp and N-terminal fragments of huntingtin (HttN-20Q and HttN-160Q). We found that Herp was able to bind to the overexpressed Htt N-terminal, and this interaction was enhanced by expansion of the polyQ fragment. Confocal microscopy demonstrated that Herp was co-localized with the HttN-160Q aggregates in the cytoplasm and tightly surrounded the aggregates. Overexpression of Herp significantly decreased the amount of soluble and insoluble HttN-160Q, promoted its ubiquitination, and inhibited its cytotoxicity. In contrast, knockdown of Herp resulted in more HttN-160Q protein, less ubiquitination, and stronger cytotoxicity. Inhibition of the autophagy-lysosomal pathway (ALP) had no effect on the function of Herp. However, blocking the ubiquitin-proteasome pathway (UPP) inhibited the reduction in soluble HttN-160Q caused by Herp. Interestingly, blocking the UPP did not weaken the ability of Herp to reduce HttN-160Q aggregates. Deletions of the N-terminal of Herp weakened its ability to inhibit HttN-160Q aggregation but did not result in a significant increase in its soluble form. However, loss of the C-terminal led to a significant increase in soluble HttN-160Q, but Herp still maintained the ability to inhibit aggregate formation. We further found that the expression level of Herp was significantly increased in HD animal and cell models. Our findings suggest that Herp is a newly identified huntingtin-interacting protein that is able to reduce the cytotoxicity of mutant huntingtin by inhibiting its aggregation and promoting its degradation. The N-terminal of Herp serves as the molecular chaperone to inhibit protein aggregation, while its C-terminal functions as an E3 ubiquitin ligase to promote the degradation of misfolded proteins through the UPP. Increased expression of Herp in HD models may be a pro-survival mechanism under stress.
Collapse
Affiliation(s)
- Huanhuan Luo
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Histology and Embryology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Liying Cao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xuan Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ana Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ting Peng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - He Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Department of Histology and Embryology, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| |
Collapse
|
13
|
Vercruysse P, Vieau D, Blum D, Petersén Å, Dupuis L. Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Front Mol Neurosci 2018; 11:2. [PMID: 29403354 PMCID: PMC5780436 DOI: 10.3389/fnmol.2018.00002] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders characterized by progressive deterioration of brain structure and function. Selective neuronal populations are affected leading to symptoms which are prominently motor in amyotrophic lateral sclerosis (ALS) or Huntington’s disease (HD), or cognitive in Alzheimer’s disease (AD) and fronto-temporal dementia (FTD). Besides the common existence of neuronal loss, NDDs are also associated with metabolic changes such as weight gain, weight loss, loss of fat mass, as well as with altered feeding behavior. Importantly, preclinical research as well as clinical studies have demonstrated that altered energy homeostasis influences disease progression in ALS, AD and HD, suggesting that identification of the pathways leading to perturbed energy balance might provide valuable therapeutic targets Signals from both the periphery and central inputs are integrated in the hypothalamus, a major hub for the control of energy balance. Recent research identified major hypothalamic changes in multiple NDDs. Here, we review these hypothalamic alterations and seek to identify commonalities and differences in hypothalamic involvement between the different NDDs. These hypothalamic defects could be key in the development of perturbations in energy homeostasis in NDDs and further understanding of the underlying mechanisms might open up new avenues to not only treat weight loss but also to ameliorate overall neurological symptoms.
Collapse
Affiliation(s)
- Pauline Vercruysse
- UMR-S 1118, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.,UMR-S1118, Université de Strasbourg, Strasbourg, France.,Department of Neurology, Ulm University, Ulm, Germany
| | - Didier Vieau
- UMR-S 1172-JPArc, Centre Hospitalier Régional Universitaire de Lille (CHRU de Lille), Alzheimer and Tauopathies, Lille, France
| | - David Blum
- UMR-S 1172-JPArc, Centre Hospitalier Régional Universitaire de Lille (CHRU de Lille), Alzheimer and Tauopathies, Lille, France
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit (TNU), Lund University, Lund, Sweden
| | - Luc Dupuis
- UMR-S 1118, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.,UMR-S1118, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Sci Rep 2016; 6:34575. [PMID: 27687130 PMCID: PMC5043352 DOI: 10.1038/srep34575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
The mammalian central nervous system (CNS) contains various types of neurons with different neuronal functions. In contrast to established roles of cell type-specific transcription factors on neuronal specification and maintenance, whether ubiquitous transcription factors have conserved or differential neuronal function remains uncertain. Here, we revealed that inactivation of a ubiquitous factor NF-Y in different sets of neurons resulted in cell type-specific neuropathologies and gene downregulation in mouse CNS. In striatal and cerebellar neurons, NF-Y inactivation led to ubiquitin/p62 pathologies with downregulation of an endoplasmic reticulum (ER) chaperone Grp94, as we previously observed by NF-Y deletion in cortical neurons. In contrast, NF-Y inactivation in motor neurons induced neuronal loss without obvious protein deposition. Detailed analysis clarified downregulation of another ER chaperone Grp78 in addition to Grp94 in motor neurons, and knockdown of both ER chaperones in motor neurons recapitulated the pathology observed after NF-Y inactivation. Finally, additional downregulation of Grp78 in striatal neurons suppressed ubiquitin accumulation induced by NF-Y inactivation, implying that selective ER chaperone downregulation mediates different neuropathologies. Our data suggest distinct roles of NF-Y in protein homeostasis and neuronal maintenance in the CNS by differential regulation of ER chaperone expression.
Collapse
|
15
|
Metabolic and behavioral effects of mutant huntingtin deletion in Sim1 neurons in the BACHD mouse model of Huntington's disease. Sci Rep 2016; 6:28322. [PMID: 27334347 PMCID: PMC4917832 DOI: 10.1038/srep28322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
Hypothalamic pathology, metabolic dysfunction and psychiatric symptoms are part of Huntington disease (HD), which is caused by an expanded CAG repeat in the huntingtin (HTT) gene. Inactivation of mutant HTT selectively in the hypothalamus prevents the development of metabolic dysfunction and depressive-like behavior in the BACHD mouse model. The hypothalamic paraventricular nucleus (PVN) is implicated in metabolic and emotional control, therefore we here tested whether inactivation of mutant HTT in the PVN affects metabolic and psychiatric manifestations of HD in BACHD mice. BACHD mice were crossed with mice expressing Cre-recombinase under the Sim1 promoter (Sim1-Cre) to inactivate mutant HTT in Sim1 expressing cells, i.e. the PVN of the hypothalamus. We found that inactivation of mutant HTT in Sim1 cells had a sex-specific effect on both the metabolic and the psychiatric phenotype, as these phenotypes were no longer different in male BACHD/Sim1-Cre mice compared to wild-type littermates. We also found a reduced number of GnRH neurons specifically in the anterior hypothalamus and an increased testes weight in male BACHD mice compared to wild-type littermates. Taken together, expression of mutant HTT in Sim1 cells may play a role for the development of metabolic dysfunction and depressive-like behavior in male BACHD mice.
Collapse
|
16
|
Yamanaka T, Tosaki A, Kurosawa M, Shimogori T, Hattori N, Nukina N. Genome-wide analyses in neuronal cells reveal that upstream transcription factors regulate lysosomal gene expression. FEBS J 2016; 283:1077-87. [DOI: 10.1111/febs.13650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology; Doshisha University Graduate School of Brain Science; Kyoto Japan
- Laboratory for Structural Neuropathology; RIKEN Brain Science Institute; Saitama Japan
- Department of Neuroscience for Neurodegenerative Disorders; Juntendo University Graduate School of Medicine; Tokyo Japan
- Laboratory for Molecular Mechanisms of Thalamus Development; RIKEN Brain Science Institute; Saitama Japan
| | - Asako Tosaki
- Laboratory for Structural Neuropathology; RIKEN Brain Science Institute; Saitama Japan
| | - Masaru Kurosawa
- Laboratory for Structural Neuropathology; RIKEN Brain Science Institute; Saitama Japan
- Department of Neuroscience for Neurodegenerative Disorders; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Thalamus Development; RIKEN Brain Science Institute; Saitama Japan
| | - Nobutaka Hattori
- Department of Neurology; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology; Doshisha University Graduate School of Brain Science; Kyoto Japan
- Laboratory for Structural Neuropathology; RIKEN Brain Science Institute; Saitama Japan
- Department of Neuroscience for Neurodegenerative Disorders; Juntendo University Graduate School of Medicine; Tokyo Japan
- Laboratory for Molecular Mechanisms of Thalamus Development; RIKEN Brain Science Institute; Saitama Japan
| |
Collapse
|
17
|
Dallérac GM, Levasseur G, Vatsavayai SC, Milnerwood AJ, Cummings DM, Kraev I, Huetz C, Evans KA, Walters SW, Rezaie P, Cho Y, Hirst MC, Murphy KP. Dysfunctional Dopaminergic Neurones in Mouse Models of Huntington's Disease: A Role for SK3 Channels. NEURODEGENER DIS 2015; 15:93-108. [DOI: 10.1159/000375126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
|
18
|
Nizhnikov AA, Alexandrov AI, Ryzhova TA, Mitkevich OV, Dergalev AA, Ter-Avanesyan MD, Galkin AP. Proteomic screening for amyloid proteins. PLoS One 2014; 9:e116003. [PMID: 25549323 PMCID: PMC4280166 DOI: 10.1371/journal.pone.0116003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Despite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression. This approach is based on the isolation of protein fractions enriched with amyloid aggregates via sedimentation by ultracentrifugation in the presence of strong ionic detergents, such as sarkosyl or SDS. Sedimented proteins are then separated either by 2D difference gel electrophoresis or by SDS-PAGE, if they are insoluble in the buffer used for 2D difference gel electrophoresis, after which they are identified by mass-spectrometry. We validated this approach by detection of known yeast prions and mammalian proteins with established capacity for amyloid formation and also revealed yeast proteins forming detergent-insoluble aggregates in the presence of human huntingtin with expanded polyglutamine domain. Notably, with one exception, all these proteins contained glutamine/asparagine-rich stretches suggesting that their aggregates arose due to polymerization cross-seeding by human huntingtin. Importantly, though the approach was developed in a yeast model, it can easily be applied to any organism thus representing an efficient and universal tool for screening for amyloid proteins.
Collapse
Affiliation(s)
- Anton A. Nizhnikov
- Dept. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Tatyana A. Ryzhova
- Dept. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V. Mitkevich
- A.N. Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Dergalev
- A.N. Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Alexey P. Galkin
- Dept. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
19
|
van Wamelen DJ, Aziz NA, Roos RAC, Swaab DF. Hypothalamic alterations in Huntington's disease patients: comparison with genetic rodent models. J Neuroendocrinol 2014; 26:761-75. [PMID: 25074766 DOI: 10.1111/jne.12190] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/26/2014] [Accepted: 07/26/2014] [Indexed: 11/27/2022]
Abstract
Unintended weight loss, sleep and circadian disturbances and autonomic dysfunction are prevalent features of Huntington's disease (HD), an autosomal dominantly inherited neurodegenerative disorder caused by an expanded CAG repeat sequence in the HTT gene. These features form a substantial contribution to disease burden in HD patients and appear to be accompanied by a number of neuroendocrine and metabolic changes, pointing towards hypothalamic pathology as a likely underlying mechanism. Neuronal inclusion bodies of mutant huntingtin, which are hallmarks of the disease, occur throughout the hypothalamus, and indicate local mutant huntingtin expression that could interfere with hypothalamic neuropeptide production. Also, several genetic rodent models of HD show features that could be related to hypothalamic pathology, such as weight loss and circadian rhythm disturbances. In these rodents, several hypothalamic neuropeptide populations are affected. In the present review, we summarise the changes in genetic rodent models of HD for individual hypothalamic nuclei, compare these observations to the hypothalamic changes that occur in HD patients, and make an inventory of the work that still needs to be done. Surprisingly, there is only limited overlap in the hypothalamic changes reported in HD patients and genetic rodent models. At present, the only similarity between the hypothalamic alterations in HD patients and genetic rodent models is a decrease in the number of orexin-expressing neurones in the lateral hypothalamus. Possible reasons for these discrepancies, as well as potential consequences for the development of novel therapeutic strategies, are discussed.
Collapse
Affiliation(s)
- D J van Wamelen
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam ZO, The Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
20
|
Kurosawa M, Matsumoto G, Kino Y, Okuno M, Kurosawa-Yamada M, Washizu C, Taniguchi H, Nakaso K, Yanagawa T, Warabi E, Shimogori T, Sakurai T, Hattori N, Nukina N. Depletion of p62 reduces nuclear inclusions and paradoxically ameliorates disease phenotypes in Huntington's model mice. Hum Mol Genet 2014; 24:1092-105. [PMID: 25305080 DOI: 10.1093/hmg/ddu522] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a dominantly inherited genetic disease caused by mutant huntingtin (htt) protein with expanded polyglutamine (polyQ) tracts. A neuropathological hallmark of HD is the presence of neuronal inclusions of mutant htt. p62 is an important regulatory protein in selective autophagy, a process by which aggregated proteins are degraded, and it is associated with several neurodegenerative disorders including HD. Here, we investigated the effect of p62 depletion in three HD model mice: R6/2, HD190QG and HD120QG mice. We found that loss of p62 in these models led to longer life spans and reduced nuclear inclusions, although cytoplasmic inclusions increased with polyQ length. In mouse embryonic fibroblasts (MEFs) with or without p62, mutant htt with a nuclear localization signal (NLS) showed no difference in nuclear inclusion between the two MEF types. In the case of mutant htt without NLS, however, p62 depletion increased cytoplasmic inclusions. Furthermore, to examine the effect of impaired autophagy in HD model mice, we crossed R6/2 mice with Atg5 conditional knockout mice. These mice also showed decreased nuclear inclusions and increased cytoplasmic inclusions, similar to HD mice lacking p62. These data suggest that the genetic ablation of p62 in HD model mice enhances cytoplasmic inclusion formation by interrupting autophagic clearance of polyQ inclusions. This reduces polyQ nuclear influx and paradoxically ameliorates disease phenotypes by decreasing toxic nuclear inclusions.
Collapse
Affiliation(s)
- Masaru Kurosawa
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan, Laboratory for Structural Neuropathology, Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan, CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo 102-0076, Japan
| | - Gen Matsumoto
- Department of Neuroscience for Neurodegenerative Disorders, Laboratory for Structural Neuropathology, Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan, CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo 102-0076, Japan
| | - Yoshihiro Kino
- Department of Neuroscience for Neurodegenerative Disorders, Laboratory for Structural Neuropathology, Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan, CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo 102-0076, Japan
| | | | | | | | - Harumi Taniguchi
- Department of Neuroscience for Neurodegenerative Disorders, Laboratory for Structural Neuropathology, Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Kazuhiro Nakaso
- Department of Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Toru Yanagawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan and
| | - Eiji Warabi
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan and
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | | | - Nobuyuki Nukina
- Department of Neuroscience for Neurodegenerative Disorders, Laboratory for Structural Neuropathology, Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan, CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo 102-0076, Japan
| |
Collapse
|
21
|
Joshi AS, Thakur AK. Biodegradable delivery system containing a peptide inhibitor of polyglutamine aggregation: a step toward therapeutic development in Huntington's disease. J Pept Sci 2014; 20:630-9. [DOI: 10.1002/psc.2640] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Abhayraj S. Joshi
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology; Kanpur Uttar Pradesh 208016 India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology; Kanpur Uttar Pradesh 208016 India
| |
Collapse
|
22
|
Yamanaka T, Wong HK, Tosaki A, Bauer PO, Wada K, Kurosawa M, Shimogori T, Hattori N, Nukina N. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation. PLoS One 2014; 9:e93891. [PMID: 24705917 PMCID: PMC3976342 DOI: 10.1371/journal.pone.0093891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/10/2014] [Indexed: 01/04/2023] Open
Abstract
In polyglutamine (polyQ) diseases including Huntington's disease (HD), mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama, Japan
- CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo, Japan
| | - Hon Kit Wong
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, Massachusetts, United States of America
| | - Asako Tosaki
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | - Peter O. Bauer
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | - Koji Wada
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | - Masaru Kurosawa
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama, Japan
- CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuyuki Nukina
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama, Japan
- CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo, Japan
- * E-mail:
| |
Collapse
|
23
|
NF-Y inactivation causes atypical neurodegeneration characterized by ubiquitin and p62 accumulation and endoplasmic reticulum disorganization. Nat Commun 2014; 5:3354. [PMID: 24566496 DOI: 10.1038/ncomms4354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/30/2014] [Indexed: 12/23/2022] Open
Abstract
Nuclear transcription factor-Y (NF-Y), a key regulator of cell-cycle progression, often loses its activity during differentiation into nonproliferative cells. In contrast, NF-Y is still active in mature, differentiated neurons, although its neuronal significance remains obscure. Here we show that conditional deletion of the subunit NF-YA in postmitotic mouse neurons induces progressive neurodegeneration with distinctive ubiquitin/p62 pathology; these proteins are not incorporated into filamentous inclusion but co-accumulated with insoluble membrane proteins broadly on endoplasmic reticulum (ER). The degeneration also accompanies drastic ER disorganization, that is, an aberrant increase in ribosome-free ER in the perinuclear region, without inducing ER stress response. We further perform chromatin immunoprecipitation and identify several NF-Y physiological targets including Grp94 potentially involved in ER disorganization. We propose that NF-Y is involved in a unique regulation mechanism of ER organization in mature neurons and its disruption causes previously undescribed novel neuropathology accompanying abnormal ubiquitin/p62 accumulation.
Collapse
|
24
|
Abstract
A significant body of evidence shows that polyglutamine (polyQ) tracts are important for various biological functions. The characteristic polymorphism of polyQ length is thought to play an important role in the adaptation of organisms to their environment. However, proteins with expanded polyQ are prone to form amyloids, which cause diseases in humans and animals and toxicity in yeast. Saccharomyces cerevisiae contain at least 8 proteins which can form heritable amyloids, called prions, and most of them are proteins with glutamine- and asparagine-enriched domains. Yeast prion amyloids are susceptible to fragmentation by the protein disaggregase Hsp104, which allows them to propagate and be transmitted to daughter cells during cell divisions. We have previously shown that interspersion of polyQ domains with some non-glutamine residues stimulates fragmentation of polyQ amyloids in yeast and that yeast prion domains are often enriched in one of these residues. These findings indicate that yeast prion domains may have derived from polyQ tracts via accumulation and amplification of mutations. The same hypothesis may be applied to polyasparagine (polyN) tracts, since they display similar properties to polyQ, such as length polymorphism, amyloid formation and toxicity. We propose that mutations in polyQ/N may be favored by natural selection thus making prion domains likely by-products of the evolution of polyQ/N.
Collapse
|
25
|
Yamanaka T, Tosaki A, Kurosawa M, Akimoto K, Hirose T, Ohno S, Hattori N, Nukina N. Loss of aPKCλ in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains. PLoS One 2013; 8:e84036. [PMID: 24391875 PMCID: PMC3877147 DOI: 10.1371/journal.pone.0084036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/11/2013] [Indexed: 11/19/2022] Open
Abstract
Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS). Recent studies have established the significance of atypical protein kinase C (aPKC) and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Asako Tosaki
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | - Masaru Kurosawa
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazunori Akimoto
- Department of Molecular Medical Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuyuki Nukina
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
26
|
Baldo B, Soylu R, Petersén Å. Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction. PLoS One 2013; 8:e83050. [PMID: 24376631 PMCID: PMC3869748 DOI: 10.1371/journal.pone.0083050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/07/2013] [Indexed: 11/24/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin protein. Neuropathology in the basal ganglia and in the cerebral cortex has been linked to the motor and cognitive symptoms whereas recent work has suggested that the hypothalamus might be involved in the metabolic dysfunction. Several mouse models of HD that display metabolic dysfunction have hypothalamic pathology, and expression of mutant huntingtin in the hypothalamus has been causally linked to the development of metabolic dysfunction in mice. Although the pathogenic mechanisms by which mutant huntingtin exerts its toxic functions in the HD brain are not fully known, several studies have implicated a role for the lysososomal degradation pathway of autophagy. Interestingly, changes in autophagy in the hypothalamus have been associated with the development of metabolic dysfunction in wild-type mice. We hypothesized that expression of mutant huntingtin might lead to changes in the autophagy pathway in the hypothalamus in mice with metabolic dysfunction. We therefore investigated whether there were changes in basal levels of autophagy in a mouse model expressing a fragment of 853 amino acids of mutant huntingtin selectively in the hypothalamus using a recombinant adeno-associate viral vector approach as well as in the transgenic BACHD mice. We performed qRT-PCR and Western blot to investigate the mRNA and protein expression levels of selected autophagy markers. Our results show that basal levels of autophagy are maintained in the hypothalamus despite the presence of metabolic dysfunction in both mouse models. Furthermore, although there were no major changes in autophagy in the striatum and cortex of BACHD mice, we detected modest, but significant differences in levels of some markers in mice at 12 months of age. Taken together, our results indicate that overexpression of mutant huntingtin in mice do not significantly perturb basal levels of autophagy.
Collapse
Affiliation(s)
- Barbara Baldo
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rana Soylu
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Association of the PDYN gene with alcohol dependence and the propensity to drink in negative emotional states. Int J Neuropsychopharmacol 2013; 16:975-85. [PMID: 23101464 PMCID: PMC3901318 DOI: 10.1017/s1461145712001137] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Synthetic κ-opioid receptor (KOR) agonists induce dysphoric and pro-depressive effects and variations in the KOR (OPRK1) and prodynorphin (PDYN) genes have been shown to be associated with alcohol dependence. We genotyped 23 single nucleotide polymorphisms (SNPs) in the PDYN and OPRK1 genes in 816 alcohol-dependent subjects and investigated their association with: (1) negative craving measured by a subscale of the Inventory of Drug Taking Situations; (2) a self-reported history of depression; (3) the intensity of depressive symptoms measured by the Beck Depression Inventory-II. In addition, 13 of the 23 PDYN and OPRK1 SNPs, which were previously genotyped in a set of 1248 controls, were used to evaluate association with alcohol dependence. SNP and haplotype tests of association were performed. Analysis of a haplotype spanning the PDYN gene (rs6045784, rs910080, rs2235751, rs2281285) revealed significant association with alcohol dependence (p = 0.00079) and with negative craving (p = 0.0499). A candidate haplotype containing the PDYN rs2281285-rs1997794 SNPs that was previously associated with alcohol dependence was also associated with negative craving (p = 0.024) and alcohol dependence (p = 0.0008) in this study. A trend for association between depression severity and PDYN variation was detected. No associations of OPRK1 gene variation with alcohol dependence or other studied phenotypes were found. These findings support the hypothesis that sequence variation in the PDYN gene contributes to both alcohol dependence and the induction of negative craving in alcohol-dependent subjects.
Collapse
|
28
|
Heat shock factor-1 influences pathological lesion distribution of polyglutamine-induced neurodegeneration. Nat Commun 2013; 4:1405. [DOI: 10.1038/ncomms2417] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/20/2012] [Indexed: 01/24/2023] Open
|
29
|
Teng S, Yang JY, Wang L. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data. BMC Med Genomics 2013; 6 Suppl 1:S10. [PMID: 23369200 PMCID: PMC3552705 DOI: 10.1186/1755-8794-6-s1-s10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression.
Collapse
Affiliation(s)
- Shaolei Teng
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
30
|
Dominguez MH, Ayoub AE, Rakic P. POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. ACTA ACUST UNITED AC 2012; 23:2632-43. [PMID: 22892427 DOI: 10.1093/cercor/bhs252] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The upper layers (II-IV) are the most prominent distinguishing feature of mammalian neocortex compared with avian or reptilian dorsal cortex, and are vastly expanded in primates. Although the time-dependent embryonic generation of upper-layer cells is genetically instructed within their parental progenitors, mechanisms governing cell-intrinsic fate transitions remain obscure. POU-homeodomain transcription factors Pou3f3 and Pou3f2 (Brn1 and Brn2) are known to label postmitotic upper-layer cells, and are redundantly required for their production. We find that the onset of Pou3f3/2 expression actually occurs in ventricular zone (VZ) progenitors, and that Pou3f3/2 subsequently label neural progeny switching from deep-layer Ctip2(+) identity to Satb2(+) upper-layer fate as they migrate to proper superficial positions. By using an Engrailed dominant-negative repressor, we show that sustained neurogenesis after the deep- to upper-layer transition requires the proneual action of Pou3fs in VZ progenitors. Conversely, single-gene overexpression of any Pou3f in early neural progenitors is sufficient to specify the precocious birth of Satb2(+) daughter neurons that extend axons to the contralateral hemisphere, as well as exhibit robust pia-directed migration that is characteristic of upper-layer cells. Finally, we demonstrate that Pou3fs influence multiple stages of neurogenesis by suppressing Notch effector Hes5, and promoting the expression of proneural transcription factors Tbr2 and Tbr1.
Collapse
Affiliation(s)
- Martin H Dominguez
- Department of Neurobiology, Yale University School of Medicine and Kavli Institute for Neuroscience, 06510 New Haven, CT, USA
| | | | | |
Collapse
|
31
|
Gong H, Romanova NV, Allen KD, Chandramowlishwaran P, Gokhale K, Newnam GP, Mieczkowski P, Sherman MY, Chernoff YO. Polyglutamine toxicity is controlled by prion composition and gene dosage in yeast. PLoS Genet 2012; 8:e1002634. [PMID: 22536159 PMCID: PMC3334884 DOI: 10.1371/journal.pgen.1002634] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/21/2012] [Indexed: 12/02/2022] Open
Abstract
Polyglutamine expansion causes diseases in humans and other mammals. One example is Huntington's disease. Fragments of human huntingtin protein having an expanded polyglutamine stretch form aggregates and cause cytotoxicity in yeast cells bearing endogenous QN-rich proteins in the aggregated (prion) form. Attachment of the proline(P)-rich region targets polyglutamines to the large perinuclear deposit (aggresome). Aggresome formation ameliorates polyglutamine cytotoxicity in cells containing only the prion form of Rnq1 protein. Here we show that expanded polyglutamines both with (poly-QP) or without (poly-Q) a P-rich stretch remain toxic in the presence of the prion form of translation termination (release) factor Sup35 (eRF3). A Sup35 derivative that lacks the QN-rich domain and is unable to be incorporated into aggregates counteracts cytotoxicity, suggesting that toxicity is due to Sup35 sequestration. Increase in the levels of another release factor, Sup45 (eRF1), due to either disomy by chromosome II containing the SUP45 gene or to introduction of the SUP45-bearing plasmid counteracts poly-Q or poly-QP toxicity in the presence of the Sup35 prion. Protein analysis confirms that polyglutamines alter aggregation patterns of Sup35 and promote aggregation of Sup45, while excess Sup45 counteracts these effects. Our data show that one and the same mode of polyglutamine aggregation could be cytoprotective or cytotoxic, depending on the composition of other aggregates in a eukaryotic cell, and demonstrate that other aggregates expand the range of proteins that are susceptible to sequestration by polyglutamines. Polyglutamine diseases, including Huntington disease, are associated with expansions of polyglutamine tracts, resulting in aggregation of respective proteins. The severity of Huntington disease is controlled by both DNA and non–DNA factors. Mechanisms of such a control are poorly understood. Polyglutamine may sequester other cellular proteins; however, different experimental models have pointed to different sequestered proteins. By using a yeast model, we demonstrate that the mechanism of polyglutamine toxicity is driven by the composition of other (endogenous) aggregates (for example, yeast prions) present in a eukaryotic cell. Although these aggregates do not necessarily cause significant toxicity on their own, they serve as mediators in protein sequestration and therefore determine which specific proteins are to be sequestered by polyglutamines. We also show that polyglutamine deposition into an aggresome, a perinuclear compartment thought to be cytoprotective, fails to ameliorate cytotoxicity in cells with certain compositions of pre-existing aggregates. Finally, we demonstrate that an increase in the dosage of a sequestered protein due to aneuploidy by a chromosome carrying a respective gene may rescue cytotoxicity. Our data shed light on genetic and epigenetic mechanisms modulating polyglutamine cytotoxicity and establish a new approach for identifying potential therapeutic targets through characterization of the endogenous aggregated proteins.
Collapse
Affiliation(s)
- He Gong
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nina V. Romanova
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kim D. Allen
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | | | - Kavita Gokhale
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Gary P. Newnam
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Piotr Mieczkowski
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael Y. Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yury O. Chernoff
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Nukina N. [Neurodegeration based on polyglutamine aggregation]. Rinsho Shinkeigaku 2012; 51:976-8. [PMID: 22277447 DOI: 10.5692/clinicalneurol.51.976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
One of the major hypotheses about polyQ toxicity is the sequestration of functionally important proteins into the aggregates. We established and carried out a direct, systematic proteomic analysis of aggregate-interacting proteins (AIPs). This analysis, as well as other studies in our lab, has revealed the following AIPs in addition to our previously reported chaperones: ubiquitin binding proteins such as ubiquilins and Tollip and p62, TLS and transcription factor NF-Y. Although transcriptional dysregulation has been reported in polyQ disease, the precise mechanism has not been clarified. We identified NF-Y as an AIP and found the reduction of NF-Y binding to the promoter region of HSP70, one of the NF-Y targets. Because suppressive roles of HSP70 on the HD pathological process have been shown in several HD models, NF-Y could be an important target of expanded polyQ. We further screened transcription factors, which reduced in HD model mouse, using Protein DNA array and found the decrease of POU domain factor. Based on this result, we confirmed Brn2 is decreased in HD model mouse, which showed the dysfunction of hypothalamus. We proposed the mechanism of hypothalamic dysregulation, suggesting the region specific abnormality could be induced by the imbalance of cellular compensatory mechanism.
Collapse
|
33
|
Seredenina T, Luthi-Carter R. What have we learned from gene expression profiles in Huntington's disease? Neurobiol Dis 2012; 45:83-98. [DOI: 10.1016/j.nbd.2011.07.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/24/2011] [Accepted: 07/01/2011] [Indexed: 12/22/2022] Open
|
34
|
Fuentealba RA, Marasa J, Diamond MI, Piwnica-Worms D, Weihl CC. An aggregation sensing reporter identifies leflunomide and teriflunomide as polyglutamine aggregate inhibitors. Hum Mol Genet 2011; 21:664-80. [PMID: 22052286 DOI: 10.1093/hmg/ddr500] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular protein aggregation is a common pathologic feature in neurodegenerative diseases such as Huntington' disease, amyotrophic lateral sclerosis and Parkinson' disease. Although progress towards understanding protein aggregation in vitro has been made, little of this knowledge has translated to patient therapy. Moreover, mechanisms controlling aggregate formation and catabolism in cellulo remain poorly understood. One limitation is the lack of tools to quantitatively monitor protein aggregation and disaggregation. Here, we developed a protein-aggregation reporter that uses huntingtin exon 1 containing 72 glutamines fused to the N-terminal end of firefly luciferase (httQ72-Luc). httQ72-Luc fails to aggregate unless seeded by a non-luciferase-containing polyglutamine (polyQ) protein such as Q80-cfp. Upon co-aggregation, httQ72-luc becomes insoluble and loses its enzymatic activity. Using httQ72-Luc with Q80(CFP/YFP) as seeds, we screened the Johns Hopkins Clinical Compound Library and identified leflunomide, a dihydroorotate dehydrogenase inhibitor with immunosuppressive and anti-psoriatic activities, as a novel drug that prevents polyQ aggregation. Leflunomide and its active metabolite teriflunomide inhibited protein aggregation independently of their known role in pyrimidine biosynthesis, since neither uridine treatment nor other pyrimidine biosynthesis inhibitors affected polyQ aggregation. Inducible cell line and cycloheximide-chase experiments indicate that these drugs prevent incorporation of expanded polyQ into an aggregate. This study demonstrates the usefulness of luciferase-based protein aggregate reporters for high-throughput screening applications. As current trials are under-way for teriflunomide in the treatment of multiple sclerosis, we propose that this drug be considered a possible therapeutic agent for polyQ diseases.
Collapse
Affiliation(s)
- Rodrigo A Fuentealba
- Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
35
|
Duarte AI, Petit GH, Ranganathan S, Li JY, Oliveira CR, Brundin P, Björkqvist M, Rego AC. IGF-1 protects against diabetic features in an in vivo model of Huntington's disease. Exp Neurol 2011; 231:314-9. [PMID: 21763311 DOI: 10.1016/j.expneurol.2011.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/08/2011] [Accepted: 06/26/2011] [Indexed: 01/16/2023]
Abstract
Huntington's disease (HD) is the most prevalent polyglutamine expansion disorder. HD is caused by an expansion of CAG triplet in the huntingtin (HTT) gene, associated with striatal and cortical neuronal loss. Central and peripheral metabolic abnormalities and altered insulin-like growth factor-1 (IGF-1) levels have been described in HD. Thus, we hypothesized that restoration of IGF-1-mediated signaling pathways could rescue R6/2 mice from metabolic stress and behavioral changes induced by polyglutamine expansion. We analyzed the in vivo effect of continuous peripheral IGF-1 administration on diabetic parameters, body weight and motor behavior in the hemizygous R6/2 mouse model of HD. We used 9 week-old and age-matched wild-type mice, subjected to continuously infused recombinant IGF-I or vehicle, for 14 days. IGF-1 treatment prevented the age-related decrease in body weight in R6/2 mice. Although blood glucose levels were higher in R6/2 mice, they did not reach a diabetic state. Even though, IGF-1 ameliorated poor glycemic control in HD mice. This seemed to be associated with a decrease in blood insulin levels in R6/2 mice, which was increased following IGF-1 infusion. Similarly, blood IGF-1 levels decreased during aging in both wild-type and R6/2 mice, being significantly improved upon its continuous infusion. Although no significant differences were found in motor function in R6/2-treated mice, IGF-1 treatment highly improved paw clasping scores. In summary, these results suggest that IGF-1 has a protective role against HD-associated impaired glucose tolerance, by enhancing blood insulin levels.
Collapse
Affiliation(s)
- A I Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hult S, Soylu R, Björklund T, Belgardt BF, Mauer J, Brüning JC, Kirik D, Petersén Å. Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab 2011; 13:428-439. [PMID: 21459327 DOI: 10.1016/j.cmet.2011.02.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/03/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
In Huntington's disease (HD), the mutant huntingtin protein is ubiquitously expressed. The disease was considered to be limited to the basal ganglia, but recent studies have suggested a more widespread pathology involving hypothalamic dysfunction. Here we tested the hypothesis that expression of mutant huntingtin in the hypothalamus causes metabolic abnormalities. First, we showed that bacterial artificial chromosome-mediated transgenic HD (BACHD) mice developed impaired glucose metabolism and pronounced insulin and leptin resistance. Selective hypothalamic expression of a short fragment of mutant huntingtin using adeno-associated viral vectors was sufficient to recapitulate these metabolic disturbances. Finally, selective hypothalamic inactivation of the mutant gene prevented the development of the metabolic phenotype in BACHD mice. Our findings establish a causal link between mutant huntingtin expression in the hypothalamus and metabolic dysfunction, and indicate that metabolic parameters are powerful readouts to assess therapies aimed at correcting dysfunction in HD by silencing huntingtin expression in the brain.
Collapse
Affiliation(s)
- Sofia Hult
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Lund 22184, Sweden
| | - Rana Soylu
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Lund 22184, Sweden
| | - Tomas Björklund
- Brain Repair and Imaging in Neural Systems Unit, Department of Experimental Medical Sciences Lund University, Lund 22184, Sweden
| | - Bengt F Belgardt
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC) at the University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) University Hospital Cologne, and Max Planck Institute for Neurological Research, D-50674 Cologne, Germany
| | - Jan Mauer
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC) at the University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) University Hospital Cologne, and Max Planck Institute for Neurological Research, D-50674 Cologne, Germany
| | - Jens C Brüning
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC) at the University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) University Hospital Cologne, and Max Planck Institute for Neurological Research, D-50674 Cologne, Germany
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems Unit, Department of Experimental Medical Sciences Lund University, Lund 22184, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Lund 22184, Sweden.
| |
Collapse
|
37
|
van Wamelen DJ, Shan L, Aziz NA, Anink JJ, Bao AM, Roos RAC, Swaab DF. Functional increase of brain histaminergic signaling in Huntington's disease. Brain Pathol 2010; 21:419-27. [PMID: 21106039 DOI: 10.1111/j.1750-3639.2010.00465.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To evaluate whether central histaminergic signaling in Huntington's disease (HD) patients is affected, we assessed mRNA levels of histidine decarboxylase (HDC), volume of and neuron number in the hypothalamic tuberomamillary nucleus (TMN) (HD n = 8, controls n = 8). In addition, we assessed histamine N-methyltransferase (HMT) and histamine receptor (H(1) R, H(2) R and H(3) R) mRNA levels in the inferior frontal gyrus (IFG) (n = 9 and 9) and caudate nucleus (CN) (n = 6 and 6) by real-time polymerase chain reaction. In HD patients, TMN volume and neuronal number was unaltered (P = 0.72, P = 0.25). The levels of HDC mRNA (P = 0.046), IFG HMT (P < 0.001), H(1) R (P < 0.001) and H(3) R mRNA levels (P = 0.011) were increased, while CN H(2) R and H(3) R mRNA levels were decreased (P = 0.041, P = 0.009). In HD patients, we observed a positive correlation between IFG H(3) R mRNA levels and CAG repeat length (P = 0.024) and negative correlations between age at onset of disease and IFG HMT (P = 0.015) and H(1) R (P = 0.021) mRNA levels. These findings indicate a functional increase in brain histaminergic signaling in HD, and provide a rationale for the use of histamine receptor antagonists.
Collapse
Affiliation(s)
- Daniel J van Wamelen
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam ZO.
| | | | | | | | | | | | | |
Collapse
|
38
|
Changes in key hypothalamic neuropeptide populations in Huntington disease revealed by neuropathological analyses. Acta Neuropathol 2010; 120:777-88. [PMID: 20821223 DOI: 10.1007/s00401-010-0742-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/19/2010] [Accepted: 08/21/2010] [Indexed: 10/19/2022]
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by expansion of a CAG repeat in the HD gene. Degeneration concentrating in the basal ganglia has been thought to account for the characteristic psychiatric symptoms, cognitive decline and motor dysfunction. However, the homeostatic control of emotions and metabolism are disturbed early in HD, and focused studies have identified a loss of orexin (hypocretin) neurons in the lateral hypothalamus in HD patients. There has been limited assessment of other hypothalamic cell populations that may be involved. In this study, we quantified the neuropeptide-expressing hypothalamic neurons known to regulate metabolism and emotion in patients with HD compared to healthy controls using unbiased stereological methods. We confirmed the loss of orexin-expressing neurons in HD and revealed substantial differences in the peptide expression of other neuronal populations in the same patients. Both oxytocin- and vasopressin-expressing neurons were decreased by 45 and 24%, respectively, while the number of cocaine- and amphetamine-regulated transcript (CART)-expressing neurons was increased by 30%. The increased expression of CART in the hypothalamus is consistent with a previous study showing increased CART levels in cerebrospinal fluid from HD patients. There was no difference in the numbers of neuropeptide Y-expressing neurons. These results show significant and specific alterations in the peptide expression of hypothalamic neurons known to regulate metabolism and emotion. They may be important in the development of psychiatric symptoms and metabolic disturbances in HD, and may provide potential targets for therapeutic interventions.
Collapse
|