1
|
Kanno J, Miura A, Kawashima S, Shima H, Suzuki D, Kamimura M, Fujiwara I, Kamimura M, Uematsu M, Kudo M, Kikuchi A. A case of 49,XXXYY followed-up from infancy to adulthood with review of literature. Endocr J 2024; 71:721-727. [PMID: 38684424 DOI: 10.1507/endocrj.ej24-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
49,XXXYY is an extremely rare sex chromosomal aneuploidy (SCA), with only seven cases reported worldwide to date. Among these cases, only three have been documented into adulthood. Moreover, no cases of 49,XXXYY have been reported in Japan. This SCA has been identified in two scenarios: in vitro fertilization and abortion. Similar to 47,XXY, this aneuploidy is a type of Klinefelter syndrome. Aneuploidy of the X chromosome can lead to various progressive complications due to excess X chromosomes. Herein, we present the case of a Japanese man with 49,XXXYY. He exhibited developmental delays and external genitalia abnormalities since early infancy but was not closely monitored for these symptoms until the age of 3 years old. At that time, a chromosome test revealed his karyotype to be 49,XXXYY. Subsequent examinations were conducted due to various symptoms, including delayed motor development, intellectual disability, facial dysmorphisms, forearm deformities, hip dysplasia, cryptorchidism, micropenis, primary hypogonadism, and essential tremor. Since reaching puberty, he has undergone testosterone replacement therapy for primary hypogonadism, experiencing no complications related to androgen deficiency to date. He has maintained normal lipid and glucose metabolism, as well as bone density, for a prolonged period. There are no other reports on the long-term effects of testosterone treatment for the SCA. Appropriate testosterone replacement therapy is recommended for individuals with 49,XXXYY to prevent complications. This report will contribute to an enhanced understanding of the 49,XXXYY phenotype, aiding in the diagnosis, treatment, and genetic counseling of future cases.
Collapse
Affiliation(s)
- Junko Kanno
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
- Department of Pediatrics, Tome City Maiya Hospital, Tome 987-0500, Japan
| | - Akinobu Miura
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Sayaka Kawashima
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Hirohito Shima
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Dai Suzuki
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Miki Kamimura
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
- Department of Pediatrics, National Hospital Organization Sendai Medical Center, Sendai 983-0045, Japan
| | - Ikuma Fujiwara
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
- Department of Pediatrics, Sendai City Hospital, Sendai 982-8502, Japan
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Mitsugu Uematsu
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Masataka Kudo
- Department of Nephrology and Endocrinology, Osaki Citizen Hospital, Osaki 989-6136, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
2
|
Galetaki DM, Dauber A. C-Type Natriuretic Peptide Analogs: Current and Future Therapeutic Applications. Horm Res Paediatr 2024; 98:51-58. [PMID: 38330932 DOI: 10.1159/000537743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Short stature is one of the most common reasons for referral to a pediatric endocrinologist that can be due to multitude of conditions, including an ever-growing list of genetic etiologies. Despite the numerous different causes, options for medical therapy remain quite limited, with the primary medication available being recombinant human growth hormone. A second option is recombinant insulin-like growth factor 1 (rIGF-1) in select patients with severe primary IGF-1 deficiency. Alternative strategies to increase height have been attempted such as delaying the onset of puberty with a gonadotropin-releasing hormone agonist or delaying epiphyseal fusion with an aromatase inhibitor. However, these options focus on increasing the duration of growth as opposed to directly stimulating growth at the growth plate. SUMMARY Novel approaches to growth promotion have recently been developed, including analogs of C-type natriuretic peptide (CNP). The purpose of this study is to review the function of CNP and its potential use in different conditions. KEY MESSAGES Alterations in the CNP/FGFR3 pathway can lead to multiple defined genetic causes of short stature. The CNP pathway has become the focus for treatment of children with short stature that suffer from such genetic conditions, with promising outcomes.
Collapse
Affiliation(s)
- Despoina M Galetaki
- Division of Endocrinology, Children's National Hospital, Washington, District of Columbia, USA,
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Pan R, Qi L, Xu Z, Zhang D, Nie Q, Zhang X, Luo W. Weighted single-step GWAS identified candidate genes associated with carcass traits in a Chinese yellow-feathered chicken population. Poult Sci 2024; 103:103341. [PMID: 38134459 PMCID: PMC10776626 DOI: 10.1016/j.psj.2023.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Carcass traits in broiler chickens are complex traits that are influenced by multiple genes. To gain deeper insights into the genetic mechanisms underlying carcass traits, here we conducted a weighted single-step genome-wide association study (wssGWAS) in a population of Chinese yellow-feathered chicken. The objective was to identify genomic regions and candidate genes associated with carcass weight (CW), eviscerated weight with giblets (EWG), eviscerated weight (EW), breast muscle weight (BMW), drumstick weight (DW), abdominal fat weight (AFW), abdominal fat percentage (AFP), gizzard weight (GW), and intestine length (IL). A total of 1,338 broiler chickens with phenotypic and pedigree information were included in this study. Of these, 435 chickens were genotyped using a 600K single nucleotide polymorphism chip for association analysis. The results indicate that the most significant regions for 9 traits explained 2.38% to 5.09% of the phenotypic variation, from which the region of 194.53 to 194.63Mb on chromosome 1 with the gene RELT and FAM168A identified on it was significantly associated with CW, EWG, EW, BMW, and DW. Meanwhile, the 5 traits have a strong genetic correlation, indicating that the region and the genes can be used for further research. In addition, some candidate genes associated with skeletal muscle development, fat deposition regulation, intestinal repair, and protection were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that the genes are involved in processes such as vascular development (CD34, FGF7, FGFR3, ITGB1BP1, SEMA5A, LOXL2), bone formation (FGFR3, MATN1, MEF2D, DHRS3, SKI, STC1, HOXB1, HOXB3, TIPARP), and anatomical size regulation (ADD2, AKT1, CFTR, EDN3, FLII, HCLS1, ITGB1BP1, SEMA5A, SHC1, ULK1, DSTN, GSK3B, BORCS8, GRIP2). In conclusion, the integration of phenotype, genotype, and pedigree information without creating pseudo-phenotype will facilitate the genetic improvement of carcass traits in chickens, providing valuable insights into the genetic architecture and potential candidate genes underlying carcass traits, enriching our understanding and contributing to the breeding of high-quality broiler chickens.
Collapse
Affiliation(s)
- Rongyang Pan
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Xugang Yellow Poultry Seed Industry Group Co., Ltd, Jiangmen City, Guangdong Province, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Qi
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenqiang Xu
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dexiang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Seiersen KV, Henriksen TB, Andelius TCK, Andreasen L, Diemer T, Gudmundsdottir G, Vogel I, Gjørup V, Gregersen PA. Combined achondroplasia and short stature homeobox-containing (SHOX) gene deletion in a Danish infant. Eur J Med Genet 2024; 67:104894. [PMID: 38070826 DOI: 10.1016/j.ejmg.2023.104894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 01/29/2024]
Abstract
Short stature or shortening of the limbs can be the result of a variety of genetic variants. Achondroplasia is the most common cause of disproportionate short stature and is caused by pathogenic variants in the fibroblast growth factor receptor 3 gene (FGFR3). Short stature homeobox (SHOX) deficiency is caused by loss or defects of the SHOX gene or its enhancer region. It is associated with a spectrum of phenotypes ranging from normal stature to Léri-Weill dyschondrosteosis characterized by mesomelia and short stature or the more severe Langer mesomelic dysplasia in case of biallelic SHOX deficiency. Little is known about the interactions and phenotypic consequences of achondroplasia in combination with SHOX deficiency, as the literature on this subject is scarce, and no genetically confirmed clinical reports exist. We present the clinical findings in an infant girl with concurrent achondroplasia and SHOX deficiency. We conclude that the clinical findings in infancy are phenotypically compatible with achondroplasia, with no features of the SHOX deficiency evident. This may change over time, as some features of SHOX deficiency only become evident later in life.
Collapse
Affiliation(s)
- Kasper V Seiersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark.
| | - Tine B Henriksen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Ted C K Andelius
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lotte Andreasen
- Department of Clinical Genetics, Aarhus University Hospital, Denmark
| | - Tue Diemer
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Ida Vogel
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Denmark; Center for Fetal Diagnostics, Aarhus University Hospital, Aarhus, Denmark
| | - Vibike Gjørup
- Department of Gynaecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
| | - Pernille A Gregersen
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Denmark; Centre for Rare Diseases, Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Vodopiutz J, Steurer LM, Haufler F, Laccone F, Garczarczyk-Asim D, Hilkenmeier M, Steinbauer P, Janecke AR. Leri-Weill Dyschondrosteosis Caused by a Leaky Homozygous SHOX Splice-Site Variant. Genes (Basel) 2023; 14:genes14040877. [PMID: 37107635 PMCID: PMC10138022 DOI: 10.3390/genes14040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
SHOX deficiency is a common genetic cause of short stature of variable degree. SHOX haploinsufficiency causes Leri-Weill dyschondrosteosis (LWD) as well as nonspecific short stature. SHOX haploinsufficiency is known to result from heterozygous loss-of-function variants with pseudo-autosomal dominant inheritance, while biallelic SHOX loss-of-function variants cause the more severe skeletal dysplasia, Langer mesomelic dyschondrosteosis (LMD). Here we report for the first time the pseudo-autosomal recessive inheritance of LWD in two siblings caused by a novel homozygous non-canonical, leaky splice-site variant in intron 3 of SHOX: c.544+5G>C. Transcript analyses in patient-derived fibroblasts showed homozygous patients to produce approximately equal amounts of normally spliced mRNA and mRNA with the abnormal retention of intron 3 and containing a premature stop codon (p.Val183Glyfs*31). The aberrant transcript was shown to undergo nonsense-mediated mRNA decay, and thus resulting in SHOX haploinsufficiency in the homozygous patient. Six healthy relatives who are of normal height are heterozygous for this variant and fibroblasts from a heterozygote for the c.544+5G>C variant produced wild-type transcript amounts comparable to healthy control. The unique situation reported here highlights the fact that the dosage of SHOX determines the clinical phenotype rather than the Mendelian inheritance pattern of SHOX variants. This study extends the molecular and inheritance spectrum of SHOX deficiency disorder and highlights the importance of functional testing of SHOX variants of unknown significance in order to allow appropriate counseling and precision medicine for each family individual.
Collapse
Affiliation(s)
- Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Vienna Bone and Growth Center, 1130 Vienna, Austria
| | - Lisa-Maria Steurer
- Vienna Bone and Growth Center, 1130 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Florentina Haufler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Matthias Hilkenmeier
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Steinbauer
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
The Klinefelter Syndrome and Testicular Sperm Retrieval Outcomes. Genes (Basel) 2023; 14:genes14030647. [PMID: 36980920 PMCID: PMC10048758 DOI: 10.3390/genes14030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Klinefelter syndrome (KS), caused by the presence of an extra X chromosome, is the most prevalent chromosomal sexual anomaly, with an estimated incidence of 1:500/1000 per male live birth (karyotype 47,XXY). High stature, tiny testicles, small penis, gynecomastia, feminine body proportions and hair, visceral obesity, and testicular failure are all symptoms of KS. Endocrine (osteoporosis, obesity, diabetes), musculoskeletal, cardiovascular, autoimmune disorders, cancer, neurocognitive disabilities, and infertility are also outcomes of KS. Causal theories are discussed in addition to hormonal characteristics and testicular histology. The retrieval of spermatozoa from the testicles for subsequent use in assisted reproduction treatments is discussed in the final sections. Despite testicular atrophy, reproductive treatments allow excellent results, with rates of 40–60% of spermatozoa recovery, 60% of clinical pregnancy, and 50% of newborns. This is followed by a review on the predictive factors for successful sperm retrieval. The risks of passing on the genetic defect to children are also discussed. Although the risk is low (0.63%) when compared to the general population (0.5–1%), patients should be informed about embryo selection through pre-implantation genetic testing (avoids clinical termination of pregnancy). Finally, readers are directed to a number of reviews where they can enhance their understanding of comprehensive diagnosis, clinical care, and fertility preservation.
Collapse
|
7
|
Hoffmann S, Roeth R, Diebold S, Gogel J, Hassel D, Just S, Rappold GA. Identification and Tissue-Specific Characterization of Novel SHOX-Regulated Genes in Zebrafish Highlights SOX Family Members Among Other Genes. Front Genet 2021; 12:688808. [PMID: 34122528 PMCID: PMC8191631 DOI: 10.3389/fgene.2021.688808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
SHOX deficiency causes a spectrum of clinical phenotypes related to skeletal dysplasia and short stature, including Léri-Weill dyschondrosteosis, Langer mesomelic dysplasia, Turner syndrome, and idiopathic short stature. SHOX controls chondrocyte proliferation and differentiation, bone maturation, and cellular growth arrest and apoptosis via transcriptional regulation of its direct target genes NPPB, FGFR3, and CTGF. However, our understanding of SHOX-related pathways is still incomplete. To elucidate the underlying molecular mechanisms and to better understand the broad phenotypic spectrum of SHOX deficiency, we aimed to identify novel SHOX targets. We analyzed differentially expressed genes in SHOX-overexpressing human fibroblasts (NHDF), and confirmed the known SHOX target genes NPPB and FGFR among the most strongly regulated genes, together with 143 novel candidates. Altogether, 23 genes were selected for further validation, first by whole-body characterization in developing shox-deficient zebrafish embryos, followed by tissue-specific expression analysis in three shox-expressing zebrafish tissues: head (including brain, pharyngeal arches, eye, and olfactory epithelium), heart, and pectoral fins. Most genes were physiologically relevant in the pectoral fins, while only few genes were also significantly regulated in head and heart tissue. Interestingly, multiple sox family members (sox5, sox6, sox8, and sox18) were significantly dysregulated in shox-deficient pectoral fins together with other genes (nppa, nppc, cdkn1a, cdkn1ca, cyp26b1, and cy26c1), highlighting an important role for these genes in shox-related growth disorders. Network-based analysis integrating data from the Ingenuity pathways revealed that most of these genes act in a common network. Our results provide novel insights into the genetic pathways and molecular events leading to the clinical manifestation of SHOX deficiency.
Collapse
Affiliation(s)
- Sandra Hoffmann
- Department of Human Molecular Genetics, Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ralph Roeth
- Department of Human Molecular Genetics, Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Sabrina Diebold
- Clinic for Internal Medicine II - Molecular Cardiology, University Hospital Ulm, Ulm, Germany
| | - Jasmin Gogel
- Department of Human Molecular Genetics, Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - David Hassel
- Department of Internal Medicine III - Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Steffen Just
- Clinic for Internal Medicine II - Molecular Cardiology, University Hospital Ulm, Ulm, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
8
|
Of mice and men - and guinea pigs? Ann Anat 2021; 238:151765. [PMID: 34000371 DOI: 10.1016/j.aanat.2021.151765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022]
Abstract
This year marks the twentieth anniversary of the publication of the first draft of the human genome and its broad availability to the scientific community. In parallel, the annotation of the mouse genome led to the identification and analysis of countless genes by means of genetic manipulation. Today, when comparing both genomes, it might surprise that some genes are still seeking their respective homologs in either species. In this review, we aim at raising awareness for the remarkable differences between the researcher's favorite rodents, i.e., mice and rats, when it comes to the generation of rodent research models regarding genes with a particular delicate localization, namely the pseudoautosomal region on both sex chromosomes. Many of these genes are of utmost clinical relevance in humans and still miss a rodent disease model giving their absence in mice and rats or low sequence similarity compared to humans. The abundance of rodents within mammals prompted us to investigate different branches of rodents leading us to the re-discovery of the guinea pig as a mammalian research model for a distinct group of genes.
Collapse
|
9
|
Deebel NA, Bradshaw AW, Sadri-Ardekani H. Infertility considerations in klinefelter syndrome: From origin to management. Best Pract Res Clin Endocrinol Metab 2020; 34:101480. [PMID: 33358481 DOI: 10.1016/j.beem.2020.101480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Klinefelter syndrome (KS) is defined as the presence of one or more extra "X" chromosome in a male patient. It affects approximately 1 in 600 newborn males and the most common chromosomal abnormality, leading to male hypogonadism and infertility. There is a lack of data supporting best practices for KS patients' care. In this paper we review controversial issues in KS research ranging from mechanisms of variation in KS phenotype to abnormalities resulting in reduced sperm production to successful sperm retrieval disparities after testicular sperm extraction (TESE). Translation to live birth and offspring health is also examined. Finally, medical therapies used to optimize the hormonal status and chances of fertility in KS patients are reviewed. We will also discuss the experimental spermatogonial stem cell (SSC) treatments, which are considered the future for TESE negative patients.
Collapse
Affiliation(s)
- Nicholas A Deebel
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Aaron W Bradshaw
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hooman Sadri-Ardekani
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
10
|
Fowler DA, Larsson HCE. The tissues and regulatory pattern of limb chondrogenesis. Dev Biol 2020; 463:124-134. [PMID: 32417169 DOI: 10.1016/j.ydbio.2020.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Initial limb chondrogenesis offers the first differentiated tissues that resemble the mature skeletal anatomy. It is a developmental progression of three tissues. The limb begins with undifferentiated mesenchyme-1, some of which differentiates into condensations-2, and this tissue then transforms into cartilage-3. Each tissue is identified by physical characteristics of cell density, shape, and extracellular matrix composition. Tissue specific regimes of gene regulation underlie the diagnostic physical and chemical properties of these three tissues. These three tissue based regimes co-exist amid a background of other gene regulatory regimes within the same tissues and time-frame of limb development. The bio-molecular indicators of gene regulation reveal six identifiable patterns. Three of these patterns describe the unique bio-molecular indicators of each of the three tissues. A fourth pattern shares bio-molecular indicators between condensation and cartilage. Finally, a fifth pattern is composed of bio-molecular indicators that are found in undifferentiated mesenchyme prior to any condensation differentiation, then these bio-molecular indicators are upregulated in condensations and downregulated in undifferentiated mesenchyme. The undifferentiated mesenchyme that remains in between the condensations and cartilage, the interdigit, contains a unique set of bio-molecular indicators that exhibit dynamic behaviour during chondrogenesis and therefore argue for its own inclusion as a tissue in its own right and for more study into this process of differentiation.
Collapse
Affiliation(s)
- Donald A Fowler
- Redpath Museum, McGill University, 859 Sherbrooke St W, Montréal, QC, H3A 0C4, Canada; Department of Biology, McGill University, Stewart Biology Building, 1205 Docteur Penfield, Montréal, QC, H3A 1B1, Canada.
| | - Hans C E Larsson
- Redpath Museum, McGill University, 859 Sherbrooke St W, Montréal, QC, H3A 0C4, Canada.
| |
Collapse
|
11
|
Xu XJ, Xin SJ, Mao HY, Zhang HJ, Chen LN, Li L, Bai HL, Huang HH, Shu M. SHOX CNE9/10 Knockout in U2OS Osteosarcoma Cells and Its Effects on Cell Growth and Apoptosis. Med Sci Monit 2020; 26:e921233. [PMID: 32032347 PMCID: PMC7020756 DOI: 10.12659/msm.921233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Osteosarcoma is a common malignant tumor of musculoskeletal stromal cells. Osteosarcoma clinical behavior depends mostly on the histologic grade, the site of primary tumor, the response to chemotherapy, and the presence of pulmonary metastases. The aim of this study was to knockout SHOX CNE9/10 in U2OS osteosarcoma cells and to analyze the effects on cell growth and apoptosis. Material/Methods U2OS cells with CNE9 knockout and U2OS cells with CNE10 knockout were established via the CRISPR/Cas9 system. Sanger sequencing was used to detect the success of the knockdown experiment. Western blotting and quantitative polymerase chain reaction were used to detect the expression levels of short stature homeobox-containing gene (SHOX) protein and messenger RNA (mRNA) after knockdown of CNE9 and CNE10. The cell viability and apoptotic rate were detected by the Cell Counting Kit-8 method and by flow cytometry. Results The Sanger sequencing results showed that the knockdown experiment was successful. The levels of SHOX mRNA and protein were significantly reduced after knocking down CNE9 and CNE10. Knockdown of CNE9 and CNE10 significantly increased the growth and inhibited the apoptosis of U2OS osteosarcoma cells. CNE9/CNE10 knockdown U2OS cells were successfully constructed. Conclusions Knockdown of CNE9 and CNE10 promoted U2OS cell growth and inhibited apoptosis by decreasing SHOX expression. This CNE9/CNE10 knockout U2OS cell model could provide a bridge for the research on SHOX and CNEs in osteosarcoma.
Collapse
Affiliation(s)
- Xue-Jiao Xu
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| | - Shi-Jie Xin
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| | - Hui-Ying Mao
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| | - Hui-Jiao Zhang
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| | - Lan-Ni Chen
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| | - Li Li
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| | - Hua-Lei Bai
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Hai-Hua Huang
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| | - Min Shu
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| |
Collapse
|
12
|
Mori S, Sakakura E, Tsunekawa Y, Hagiwara M, Suzuki T, Eiraku M. Self-organized formation of developing appendages from murine pluripotent stem cells. Nat Commun 2019; 10:3802. [PMID: 31444329 PMCID: PMC6707191 DOI: 10.1038/s41467-019-11702-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/29/2019] [Indexed: 01/28/2023] Open
Abstract
Limb development starts with the formation of limb buds (LBs), which consist of tissues from two different germ layers; the lateral plate mesoderm-derived mesenchyme and ectoderm-derived surface epithelium. Here, we report means for induction of an LB-like mesenchymal/epithelial complex tissues from murine pluripotent stem cells (PSCs) in vitro. The LB-like tissues selectively differentiate into forelimb- or hindlimb-type mesenchymes, depending on a concentration of retinoic acid. Comparative transcriptome analysis reveals that the LB-like tissues show similar gene expression pattern to that seen in LBs. We also show that manipulating BMP signaling enables us to induce a thickened epithelial structure similar to the apical ectodermal ridge. Finally, we demonstrate that the induced tissues can contribute to endogenous digit tissue after transplantation. This PSC technology offers a first step for creating an artificial limb bud in culture and might open the door to inducing other mesenchymal/epithelial complex tissues from PSCs.
Collapse
Affiliation(s)
- Shunsuke Mori
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan. .,Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Eriko Sakakura
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Masaya Hagiwara
- NanoSqure Research Institute, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - Takayuki Suzuki
- Laboratory of Avian Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8602, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan. .,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
13
|
Pigeon foot feathering reveals conserved limb identity networks. Dev Biol 2019; 454:128-144. [PMID: 31247188 DOI: 10.1016/j.ydbio.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
The tetrapod limb is a stunning example of evolutionary diversity, with dramatic variation not only among distantly related species, but also between the serially homologous forelimbs (FLs) and hindlimbs (HLs) within species. Despite this variation, highly conserved genetic and developmental programs underlie limb development and identity in all tetrapods, raising the question of how limb diversification is generated from a conserved toolkit. In some breeds of domestic pigeon, shifts in the expression of two conserved limb identity transcription factors, PITX1 and TBX5, are associated with the formation of feathered HLs with partial FL identity. To determine how modulation of PITX1 and TBX5 expression affects downstream gene expression, we compared the transcriptomes of embryonic limb buds from pigeons with scaled and feathered HLs. We identified a set of differentially expressed genes enriched for genes encoding transcription factors, extracellular matrix proteins, and components of developmental signaling pathways with important roles in limb development. A subset of the genes that distinguish scaled and feathered HLs are also differentially expressed between FL and scaled HL buds in pigeons, pinpointing a set of gene expression changes downstream of PITX1 and TBX5 in the partial transformation from HL to FL identity. We extended our analyses by comparing pigeon limb bud transcriptomes to chicken, anole lizard, and mammalian datasets to identify deeply conserved PITX1- and TBX5-responsive components of the limb identity program. Our analyses reveal a suite of predominantly low-level gene expression changes that are conserved across amniotes to regulate the identity of morphologically distinct limbs.
Collapse
|
14
|
Los E, Rosenfeld RG. Growth and growth hormone in Turner syndrome: Looking back, looking ahead. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:86-90. [DOI: 10.1002/ajmg.c.31680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/22/2018] [Accepted: 01/10/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Evan Los
- Department of Pediatrics, Division of Pediatric EndocrinologyEast Tennessee State University Johnson City
| | | |
Collapse
|
15
|
Burkardt DD, Graham JM. Abnormal Body Size and Proportion. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS AND GENOMICS 2019:81-143. [DOI: 10.1016/b978-0-12-812536-6.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Coelacanth-specific adaptive genes give insights into primitive evolution for water-to-land transition of tetrapods. Mar Genomics 2018; 38:89-95. [DOI: 10.1016/j.margen.2017.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/30/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022]
|
17
|
Arditi JD, Thomaidis L, Frysira H, Doulgeraki A, Chrousos GP, Kanaka-Gantenbein C. Long-term follow-up of a child with Klinefelter syndrome and achondroplasia from infancy to 16 years. J Pediatr Endocrinol Metab 2017; 30:797-803. [PMID: 28672740 DOI: 10.1515/jpem-2016-0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/12/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Achondroplasia (ACH), an autosomal dominant skeletal dysplasia, occurs in approximately 1:20,000 births. On the other hand, 47,XXY aneuploidy (Klinefelter syndrome [KS]) is the most common sex chromosome disorder, with a prevalence of approximately 1:600 males. To the best of our knowledge, only five cases of patients presenting both ACH and KS have been reported to date in the international literature. However, none of these cases has been longitudinally followed during the entire childhood. CASE PRESENTATION We report a male patient with ACH and KS, diagnosed in early infancy because of his typical phenotype of ACH. The diagnosis was confirmed by molecular analysis revealing a de novo heterozygous 1138 G-to-A mutation of the FGFR3 gene. During his first assessment, a karyotype was performed, which also revealed coexistence of KS. He was followed by our pediatric endocrinology team until the age of 16 years, then he was gradually transferred to adult endocrine care. CONCLUSIONS This is the first reported case with both conditions that was diagnosed in infancy and was longitudinally followed by a pediatric endocrinology team regularly, from infancy to late adolescence. With a typical phenotype of ACH, it is striking and noteworthy that he did not develop the classical endocrine complications of a child with KS, neither did he necessitate testosterone supplementation during his pubertal development, due to his normal virilization and testosterone levels.
Collapse
|
18
|
Marstrand-Joergensen MR, Jensen RB, Aksglaede L, Duno M, Juul A. Prevalence of SHOX haploinsufficiency among short statured children. Pediatr Res 2017; 81:335-341. [PMID: 27814343 DOI: 10.1038/pr.2016.233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/30/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND The aim of this clinical study was to determine the prevalence of SHOX haploinsufficiency in a population of short stature patients and describe their anthropometric measurements. METHODS 574 short statured patients were evaluated in a single center (1992-2015). SHOX copy number was detected by quantitative polymerase chain reaction (qPCR) in 574 subjects, followed by multiplex ligation-dependent probe amplification (MLPA) and DNA sequencing in subjects with SHOX haploinsufficiency. We evaluated anthropometric measurements at birth, and at first examination. Skeletal abnormalities were recorded for patients with SHOX haploinsufficiency. RESULTS Thirty-two patients were excluded due to Turner syndrome (n = 28), SRY-positive 46,XX male karyotype (n = 1), or lacked clinical follow-up information (n = 3). The prevalence of SHOX haploinsufficiency was 9 out of 542 (1.7%). The nine children had decreased height -2.85 (0.6) SD scores (SDS) (mean (SD)) and weight -2.15 (1.36) SDS, P < 0.001 and P = 0.001, respectively. The sitting height/height ratio was increased, P = 0.04. Madelung deformity was diagnosed in three patients. Mean height was -2.9 (0.4) SDS at baseline and increased by 0.25 (0.2) SDS, P = 0.046, after 1 y of growth hormone (GH) treatment. CONCLUSION The prevalence of SHOX haploinsufficiency was 1.7%. The clinical findings indicating SHOX haploinsufficiency among the nine children were disproportionate short stature and forearm anomalies.
Collapse
Affiliation(s)
| | - Rikke Beck Jensen
- Department of Growth and Reproduction, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Lise Aksglaede
- Department of Clinical Genetics, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Morten Duno
- Department of Clinical Genetics, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, DK-2100 Copenhagen, Denmark
| |
Collapse
|
19
|
Bonomi M, Rochira V, Pasquali D, Balercia G, Jannini EA, Ferlin A. Klinefelter syndrome (KS): genetics, clinical phenotype and hypogonadism. J Endocrinol Invest 2017; 40:123-134. [PMID: 27644703 PMCID: PMC5269463 DOI: 10.1007/s40618-016-0541-6] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/25/2016] [Indexed: 01/29/2023]
Abstract
Klinefelter Syndrome (KS) is characterized by an extreme heterogeneity in its clinical and genetic presentation. The relationship between clinical phenotype and genetic background has been partially disclosed; nevertheless, physicians are aware that several aspects concerning this issue are far to be fully understood. By improving our knowledge on the role of some genetic aspects as well as on the KS, patients' interindividual differences in terms of health status will result in a better management of this chromosomal disease. The aim of this review is to provide an update on both genetic and clinical phenotype and their interrelationships.
Collapse
Affiliation(s)
- M Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Division of Endocrine and Metabolic Diseases & Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - V Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126, Modena, Italy.
- Azienda USL of Modena, NOCSAE, Via P. Giardini 1355, 41126, Modena, Italy.
| | - D Pasquali
- Department of Cardiothoracic and Respiratory Science, Second University of Naples, Naples, Italy
| | - G Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126, Ancona, Italy
| | - E A Jannini
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - A Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
20
|
Yokokura T, Kamei H, Shibano T, Yamanaka D, Sawada-Yamaguchi R, Hakuno F, Takahashi SI, Shimizu T. The Short-Stature Homeobox-Containing Gene ( shox/ SHOX) Is Required for the Regulation of Cell Proliferation and Bone Differentiation in Zebrafish Embryo and Human Mesenchymal Stem Cells. Front Endocrinol (Lausanne) 2017; 8:125. [PMID: 28642734 PMCID: PMC5462919 DOI: 10.3389/fendo.2017.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The short-stature homeobox-containing gene (SHOX) was originally discovered as one of genes responsible for idiopathic short-stature syndromes in humans. Previous studies in animal models have shown the evolutionarily conserved link between this gene and skeletal formation in early embryogenesis. Here, we characterized developmental roles of shox/SHOX in zebrafish embryos and human mesenchymal stem cells (hMSCs) using loss-of-function approaches. Morpholino oligo-mediated knockdown of zebrafish shox markedly hindered cell proliferation in the anterior region of the pharyngula embryos, which was accompanied by reduction in the dlx2 expression at mesenchymal core sites for future pharyngeal bones. In addition, the impaired shox expression transiently increased expression levels of skeletal differentiation genes in early larval stage. In cell culture studies, we found that hMSCs expressed SHOX; the siRNA-mediated blockade of SHOX expression significantly blunted cell proliferation in undifferentiated hMSCs but the loss of SHOX expression did augment the expressions of subsets of early osteogenic genes during early osteoblast differentiation. These data suggest that shox/SHOX maintains the population of embryonic bone progenitor cells by keeping its proliferative status and by repressing the onset of early osteogenic gene expression. The current study for the first time shows cellular and developmental responses caused by shox/SHOX deficiency in zebrafish embryos and hMSCs, and it expands our understanding of the role of this gene in early stages of skeletal growth.
Collapse
Affiliation(s)
- Tomoaki Yokokura
- Juntendo University Graduate School of Medicine, Bunkyo, Japan
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Hiroyasu Kamei
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
- *Correspondence: Hiroyasu Kamei, ; Shin-Ichiro Takahashi,
| | - Takashi Shibano
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Daisuke Yamanaka
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo, Japan
| | - Rie Sawada-Yamaguchi
- Juntendo University Graduate School of Medicine, Bunkyo, Japan
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- *Correspondence: Hiroyasu Kamei, ; Shin-Ichiro Takahashi,
| | | |
Collapse
|
21
|
Montalbano A, Juergensen L, Roeth R, Weiss B, Fukami M, Fricke-Otto S, Binder G, Ogata T, Decker E, Nuernberg G, Hassel D, Rappold GA. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency. EMBO Mol Med 2016; 8:1455-1469. [PMID: 27861128 PMCID: PMC5167135 DOI: 10.15252/emmm.201606623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022] Open
Abstract
Mutations in the homeobox gene SHOX cause SHOX deficiency, a condition with clinical manifestations ranging from short stature without dysmorphic signs to severe mesomelic skeletal dysplasia. In rare cases, individuals with SHOX deficiency are asymptomatic. To elucidate the factors that modify disease severity/penetrance, we studied a three-generation family with SHOX deficiency. The variant p.Phe508Cys of the retinoic acid catabolizing enzyme CYP26C1 co-segregated with the SHOX variant p.Val161Ala in the affected individuals, while the SHOX mutant alone was present in asymptomatic individuals. Two further cases with SHOX deficiency and damaging CYP26C1 variants were identified in a cohort of 68 individuals with LWD The identified CYP26C1 variants affected its catabolic activity, leading to an increased level of retinoic acid. High levels of retinoic acid significantly decrease SHOX expression in human primary chondrocytes and zebrafish embryos. Individual morpholino knockdown of either gene shortens the pectoral fins, whereas depletion of both genes leads to a more severe phenotype. Together, our findings describe CYP26C1 as the first genetic modifier for SHOX deficiency.
Collapse
Affiliation(s)
- Antonino Montalbano
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Lonny Juergensen
- Department of Internal Medicine III - Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ralph Roeth
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Birgit Weiss
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | - Gerhard Binder
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Eva Decker
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Gudrun Nuernberg
- Center for Molecular Medicine, Cologne, Germany
- Cologne Center for Genomics, Cologne, Germany
| | - David Hassel
- Department of Internal Medicine III - Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Marchini A, Ogata T, Rappold GA. A Track Record on SHOX: From Basic Research to Complex Models and Therapy. Endocr Rev 2016; 37:417-48. [PMID: 27355317 PMCID: PMC4971310 DOI: 10.1210/er.2016-1036] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SHOX deficiency is the most frequent genetic growth disorder associated with isolated and syndromic forms of short stature. Caused by mutations in the homeobox gene SHOX, its varied clinical manifestations include isolated short stature, Léri-Weill dyschondrosteosis, and Langer mesomelic dysplasia. In addition, SHOX deficiency contributes to the skeletal features in Turner syndrome. Causative SHOX mutations have allowed downstream pathology to be linked to defined molecular lesions. Expression levels of SHOX are tightly regulated, and almost half of the pathogenic mutations have affected enhancers. Clinical severity of SHOX deficiency varies between genders and ranges from normal stature to profound mesomelic skeletal dysplasia. Treatment options for children with SHOX deficiency are available. Two decades of research support the concept of SHOX as a transcription factor that integrates diverse aspects of bone development, growth plate biology, and apoptosis. Due to its absence in mouse, the animal models of choice have become chicken and zebrafish. These models, therefore, together with micromass cultures and primary cell lines, have been used to address SHOX function. Pathway and network analyses have identified interactors, target genes, and regulators. Here, we summarize recent data and give insight into the critical molecular and cellular functions of SHOX in the etiopathogenesis of short stature and limb development.
Collapse
Affiliation(s)
- Antonio Marchini
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Tsutomu Ogata
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Gudrun A Rappold
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Fukami M, Seki A, Ogata T. SHOX Haploinsufficiency as a Cause of Syndromic and Nonsyndromic Short Stature. Mol Syndromol 2016; 7:3-11. [PMID: 27194967 DOI: 10.1159/000444596] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 12/26/2022] Open
Abstract
SHOX in the short arm pseudoautosomal region (PAR1) of sex chromosomes is one of the major growth genes in humans. SHOX haploinsufficiency results in idiopathic short stature and Léri-Weill dyschondrosteosis and is associated with the short stature of patients with Turner syndrome. The SHOX protein likely controls chondrocyte apoptosis by regulating multiple target genes including BNP,Fgfr3, Agc1, and Ctgf. SHOX haploinsufficiency frequently results from deletions and duplications in PAR1 involving SHOX exons and/or the cis-acting enhancers, while exonic point mutations account for a small percentage of cases. The clinical severity of SHOX haploinsufficiency reflects hormonal conditions rather than mutation types. Growth hormone treatment seems to be beneficial for cases with SHOX haploinsufficiency, although the long-term outcomes of this therapy require confirmation. Future challenges in SHOX research include elucidating its precise function in the developing limbs, identifying additional cis-acting enhancers, and determining optimal therapeutic strategies for patients.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Hamamatsu, Japan
| | - Atsuhito Seki
- Department of Orthopedic Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Hamamatsu, Japan; Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
24
|
Faienza MF, Ventura A, Colucci S, Cavallo L, Grano M, Brunetti G. Bone Fragility in Turner Syndrome: Mechanisms and Prevention Strategies. Front Endocrinol (Lausanne) 2016; 7:34. [PMID: 27199891 PMCID: PMC4844601 DOI: 10.3389/fendo.2016.00034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/11/2016] [Indexed: 01/18/2023] Open
Abstract
Bone fragility is recognized as one of the major comorbidities in Turner syndrome (TS). The mechanisms underlying bone impairment in affected patients are not clearly elucidated, but estrogen deficiency and X-chromosomal abnormalities represent important factors. Moreover, although many girls with TS undergo recombinant growth hormone therapy to treat short stature, the efficacy of this treatment on bone mineral density is controversial. The present review will focus on bone fragility in subjects with TS, providing an overview on the pathogenic mechanisms and some prevention strategies.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatrics Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “A. Moro”, Bari, Italy
| | - Annamaria Ventura
- Pediatrics Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “A. Moro”, Bari, Italy
| | - Silvia Colucci
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “A. Moro”, Bari, Italy
| | - Luciano Cavallo
- Pediatrics Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “A. Moro”, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation (DETO), University of Bari “A. Moro”, Bari, Italy
| | - Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “A. Moro”, Bari, Italy
- *Correspondence: Giacomina Brunetti,
| |
Collapse
|
25
|
Sawada R, Kamei H, Hakuno F, Takahashi SI, Shimizu T. In vivo loss of function study reveals theshort stature homeobox-containing(shox) gene plays indispensable roles in early embryonic growth and bone formation in zebrafish. Dev Dyn 2014; 244:146-56. [DOI: 10.1002/dvdy.24239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/11/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Rie Sawada
- Juntendo University Graduate School of Medicine; Tokyo Japan
- Departments of Animal Sciences and Applied Biological Chemistry; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Hiroyasu Kamei
- Departments of Animal Sciences and Applied Biological Chemistry; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | | |
Collapse
|
26
|
Harmel EM, Binder G, Barnikol-Oettler A, Caliebe J, Kiess W, Losekoot M, Ranke MB, Rappold GA, Schlicke M, Stobbe H, Wit JM, Pfäffle R, Klammt J. Alu-mediated recombination defect in IGF1R: haploinsufficiency in a patient with short stature. Horm Res Paediatr 2014; 80:431-42. [PMID: 24296753 DOI: 10.1159/000355410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The insulin-like growth factor (IGF) receptor (IGF1R) is essential for normal development and growth. IGF1R mutations cause IGF-1 resistance resulting in intrauterine and postnatal growth failure. The phenotypic spectrum related to IGF1R mutations remains to be fully understood. METHODS Auxological and endocrinological data of a patient identified previously were assessed. The patient's fibroblasts were studied to characterize the IGF1R deletion, mRNA fate, protein expression and signalling capabilities. RESULTS The boy, who carries a heterozygous IGF1R exon 6 deletion caused by Alu element-mediated recombination and a heterozygous SHOX variant (p.Met240Ile), was born appropriate for gestational age but developed proportionate short stature postnatally. IGF-1 levels were low-normal. None of the stigmata associated with SHOX deficiency or sporadically observed in IGF1R mutation carriers were present. Nonsense-mediated mRNA decay led to a substantial decline of IGF1R dosage and IGF-1-dependent receptor autophosphorylation but not impaired downstream signalling. CONCLUSION We present the first detailed report of an intragenic IGF1R deletion identified in a patient who, apart from short stature, deviates from all established markers that qualify a growth-retarded child for IGF1R analysis. Although such children will usually escape routine clinical mutation screenings, they can contribute to the understanding of factors and mechanisms that cooperate with the IGF1R.
Collapse
Affiliation(s)
- Eva-Maria Harmel
- University Hospital for Children and Adolescents, Centre for Paediatric Research, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Identification of novel SHOX target genes in the developing limb using a transgenic mouse model. PLoS One 2014; 9:e98543. [PMID: 24887312 PMCID: PMC4041798 DOI: 10.1371/journal.pone.0098543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/04/2014] [Indexed: 11/19/2022] Open
Abstract
Deficiency of the human short stature homeobox-containing gene (SHOX) has been identified in several disorders characterized by reduced height and skeletal anomalies such as Turner syndrome, Léri-Weill dyschondrosteosis and Langer mesomelic dysplasia as well as isolated short stature. SHOX acts as a transcription factor during limb development and is expressed in chondrocytes of the growth plates. Although highly conserved in vertebrates, rodents lack a SHOX orthologue. This offers the unique opportunity to analyze the effects of human SHOX expression in transgenic mice. We have generated a mouse expressing the human SHOXa cDNA under the control of a murine Col2a1 promoter and enhancer (Tg(Col2a1-SHOX)). SHOX and marker gene expression as well as skeletal phenotypes were characterized in two transgenic lines. No significant skeletal anomalies were found in transgenic compared to wildtype mice. Quantitative and in situ hybridization analyses revealed that Tg(Col2a1-SHOX), however, affected extracellular matrix gene expression during early limb development, suggesting a role for SHOX in growth plate assembly and extracellular matrix composition during long bone development. For instance, we could show that the connective tissue growth factor gene Ctgf, a gene involved in chondrogenic and angiogenic differentiation, is transcriptionally regulated by SHOX in transgenic mice. This finding was confirmed in human NHDF and U2OS cells and chicken micromass culture, demonstrating the value of the SHOX-transgenic mouse for the characterization of SHOX-dependent genes and pathways in early limb development.
Collapse
|
28
|
Glaser A, Arora R, Hoffmann S, Li L, Gretz N, Papaioannou VE, Rappold GA. Tbx4 interacts with the short stature homeobox gene Shox2 in limb development. Dev Dyn 2014; 243:629-39. [PMID: 24347445 DOI: 10.1002/dvdy.24104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/29/2013] [Accepted: 11/29/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The short stature homeodomain transcription factors SHOX and SHOX2 play key roles in limb formation. To gain more insight into genes regulated by Shox2 during limb development, we analyzed expression profiles of WT and Shox2-/- mouse embryonic limbs and identified the T-Box transcription factor Tbx4 as a potential downstream target. Tbx4 is known to exert essential functions in skeletal and muscular hindlimb development. In humans, haploinsufficiency of TBX4 causes small patella syndrome, a skeletal dysplasia characterized by anomalies of the knee, pelvis, and foot. RESULTS Here, we demonstrate an inhibitory regulatory effect of Shox2 on Tbx4 specifically in the forelimbs. We also show that Tbx4 activates Shox2 expression in fore- and hindlimbs, suggesting Shox2 as a feedback modulator of Tbx4. Using EMSA studies, we find that Tbx4/TBX4 is able to bind to distinct T-box binding sites within the mouse and human Shox2/SHOX2 promoter. CONCLUSIONS Our data identifies Tbx4 as a novel transcriptional activator of Shox2 during murine fore- and hindlimb development. Tbx4 is also regulated by Shox2 specifically in the forelimb bud possibly via a feedback mechanism. These data extend our understanding of the role and regulation of Tbx4 and Shox2 in limb development and limb associated diseases.
Collapse
Affiliation(s)
- Anne Glaser
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Aza-Carmona M, Barca-Tierno V, Hisado-Oliva A, Belinchón A, Gorbenko-del Blanco D, Rodriguez JI, Benito-Sanz S, Campos-Barros A, Heath KE. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development. PLoS One 2014; 9:e83104. [PMID: 24421874 PMCID: PMC3885427 DOI: 10.1371/journal.pone.0083104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.
Collapse
Affiliation(s)
- Miriam Aza-Carmona
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Veronica Barca-Tierno
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Alfonso Hisado-Oliva
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Alberta Belinchón
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Darya Gorbenko-del Blanco
- Dept. Celular Biology, Immunology & Neurosciences, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | | | - Sara Benito-Sanz
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Angel Campos-Barros
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Karen E. Heath
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
30
|
Hristov G, Marttila T, Durand C, Niesler B, Rappold GA, Marchini A. SHOX triggers the lysosomal pathway of apoptosis via oxidative stress. Hum Mol Genet 2013; 23:1619-30. [PMID: 24186869 DOI: 10.1093/hmg/ddt552] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The SHOX gene encodes for a transcription factor important for normal bone development. Mutations in the gene are associated with idiopathic short stature and are responsible for the growth failure and skeletal defects found in the majority of patients with Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia. SHOX is expressed in growth plate chondrocytes where it is supposed to modulate the proliferation, differentiation and cell death of these cells. Supporting this hypothesis, in vitro studies have shown that SHOX expression induces cell cycle arrest and apoptosis in both transformed and primary cells. In this study, we further characterized the cell death mechanisms triggered by SHOX and compared them with the effects induced by one clinically relevant mutant form of SHOX, detected in LWD patients (SHOX R153L) and a SHOX C-terminally truncated version (L185X). We show that SHOX expression in U2OS osteosarcoma cells leads to oxidative stress that, in turn, induces lysosomal membrane rupture with release of active cathepsin B to the cytosol and subsequent activation of the intrinsic apoptotic pathway characterized by mitochondrial membrane permeabilization and caspase activation. Importantly, cells expressing SHOX R153L or L185X did not display any of these features. Given the fact that many of the events observed in SHOX-expressing cells also characterize the complex cell death process occurring in the growth plate during endochondral ossification, our findings further support the hypothesis that SHOX may play a central role in the regulation of the cell death pathways activated during long bone development.
Collapse
Affiliation(s)
- Georgi Hristov
- Tumour Virology Division F010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Soucek O, Zapletalova J, Zemkova D, Snajderova M, Novotna D, Hirschfeldova K, Plasilova I, Kolouskova S, Rocek M, Hlavka Z, Lebl J, Sumnik Z. Prepubertal girls with Turner syndrome and children with isolated SHOX deficiency have similar bone geometry at the radius. J Clin Endocrinol Metab 2013; 98:E1241-7. [PMID: 23666967 DOI: 10.1210/jc.2013-1113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CONTEXT The low bone mineral density (BMD) and alterations in bone geometry observed in patients with Turner syndrome (TS) are likely caused by hypergonadotropic hypogonadism and/or by haploinsufficiency of the SHOX gene. OBJECTIVE Our objective was to compare BMD, bone geometry, and strength at the radius between prepubertal girls with TS and children with isolated SHOX deficiency (SHOX-D) to test the hypothesis that the TS radial bone phenotype may be caused by SHOX-D. DESIGN AND SETTING This comparative cross-sectional study was performed between March 2008 and May 2011 in 5 large centers for pediatric endocrinology. PATIENTS Twenty-two girls with TS (mean age 10.3 years) and 10 children with SHOX-D (mean age 10.3 years) were assessed using peripheral quantitative computed tomography of the forearm. MAIN OUTCOMES BMD, bone geometry, and strength at 4% and 65% sites of the radius were evaluated. RESULTS Trabecular BMD was normal in TS (mean Z-score = -0.2 ± 1.1, P = .5) as well as SHOX-D patients (mean Z-score = 0.5 ± 1.5, P = .3). At the proximal radius, we observed increased total bone area (Z-scores = 0.9 ± 1.5, P = .013, and 1.5 ± 1.4, P = .001, for TS and SHOX-D patients, respectively) and thin cortex (Z-scores = -0.7 ± 1.2, P = 0.013, and -2.0 ± 1.2, P < .001, respectively) in both groups. Bone strength index was normal in TS as well as SHOX-D patients (Z-scores = 0.3 ± 1.0, P = .2, and 0.1 ± 1.3, P = .8, respectively). CONCLUSIONS The similar bone geometry changes of the radius in TS and SHOX-D patients support the hypothesis that loss of 1 copy of SHOX is responsible for the radial bone phenotype associated with TS.
Collapse
Affiliation(s)
- O Soucek
- Department of Pediatrics, Second Faculty ofMedicine, Charles University in Prague and University Hospital Motol, 15006 Prague 5, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stochholm K, Juul S, Gravholt CH. Poor socio-economic status in 47,XXX – An unexpected effect of an extra X chromosome. Eur J Med Genet 2013; 56:286-91. [DOI: 10.1016/j.ejmg.2013.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
33
|
Rodríguez FA, Unanue N, Hernandez MI, Basaure J, Heath KE, Cassorla F. Clinical and molecular characterization of Chilean patients with Léri-Weill dyschondrosteosis. J Pediatr Endocrinol Metab 2013; 26:729-34. [PMID: 23729538 DOI: 10.1515/jpem-2013-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/01/2013] [Indexed: 11/15/2022]
Abstract
AIM Léri-Weill dyschondrosteosis (LWD) is a mesomelic dysplasia with disproportionate short stature associated with short stature homeobox-containing gene (SHOX) haploinsufficiency. The objective of this study was to improve the diagnosis of patients with suspected LWD through molecular analysis. METHODS Twelve patients from 11 families with a clinical diagnosis of LWD were analyzed with multiplex ligation-dependent probe amplification to detect deletions and duplications of SHOX and its enhancer regions. High resolution melting and sequencing was employed to screen for mutations in SHOX coding exons. RESULTS The molecular-based screening strategy applied in these patients allowed detection of five SHOX deletions and two previously unreported SHOX missense mutations. CONCLUSION Molecular studies confirmed the clinical diagnosis of LWD in seven out of 12 patients, which provided support for therapeutic decisions and improved genetic counseling in their families.
Collapse
|
34
|
Durand C, Decker E, Roeth R, Schneider KU, Rappold G. The homeobox transcription factor HOXA9 is a regulator of SHOX in U2OS cells and chicken micromass cultures. PLoS One 2012; 7:e45369. [PMID: 23028966 PMCID: PMC3447975 DOI: 10.1371/journal.pone.0045369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022] Open
Abstract
The homeobox gene SHOX encodes for a transcription factor that plays an important role during limb development. Mutations or deletions of SHOX in humans cause short stature in Turner, Langer and Leri-Weill syndrome as well as idiopathic short stature. During embryonic development, SHOX is expressed in a complex spatio-temporal pattern that requires the presence of specific regulatory mechanisms. Up to now, it was known that SHOX is regulated by two upstream promoters and several enhancers on either side of the gene, but no regulators have been identified that can activate or repress the transcription of SHOX by binding to these regulatory elements. We have now identified the homeodomain protein HOXA9 as a positive regulator of SHOX expression in U2OS cells. Using luciferase assays, chromatin immunoprecipitation and electrophoretic mobility shift assays, we could narrow down the HOXA9 binding site to two AT-rich sequences of 31 bp within the SHOX promoter 2. Virus-induced Hoxa9 overexpression in a chicken micromass model validated the regulation of Shox by Hoxa9 (negative regulation). As Hoxa9 and Shox are both expressed in overlapping regions of the developing limb buds, a regulatory relationship of Hoxa9 and Shox during the process of limb development can be assumed.
Collapse
Affiliation(s)
- Claudia Durand
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Eva Decker
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Ralph Roeth
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Katja U. Schneider
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Gudrun Rappold
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
35
|
Hoeijmakers JGJ, Han C, Merkies ISJ, Macala LJ, Lauria G, Gerrits MM, Dib-Hajj SD, Faber CG, Waxman SG. Small nerve fibres, small hands and small feet: a new syndrome of pain, dysautonomia and acromesomelia in a kindred with a novel NaV1.7 mutation. ACTA ACUST UNITED AC 2012; 135:345-58. [PMID: 22286749 DOI: 10.1093/brain/awr349] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Na(V)1.7 sodium channel is preferentially expressed within dorsal root ganglion and sympathetic ganglion neurons and their small-diameter peripheral axons. Gain-of-function variants of Na(V)1.7 have recently been described in patients with painful small fibre neuropathy and no other apparent cause. Here, we describe a novel syndrome of pain, dysautonomia, small hands and small feet in a kindred carrying a novel Na(V)1.7 mutation. A 35-year-old male presented with erythema and burning pain in the hands since early childhood, later disseminating to the feet, cheeks and ears. He also experienced progressive muscle cramps, profound sweating, bowel disturbances (diarrhoea or constipation), episodic dry eyes and mouth, hot flashes, and erectile dysfunction. Neurological examination was normal. Physical examination was remarkable in revealing small hands and feet (acromesomelia). Blood examination and nerve conduction studies were unremarkable. Intra-epidermal nerve fibre density was significantly reduced compared to age- and sex-matched normative values. The patient's brother and father reported similar complaints including distal extremity redness and pain, and demonstrated comparable distal limb under-development. Quantitative sensory testing revealed impaired warmth sensation in the proband, father and brother. Genetic analysis revealed a novel missense mutation in the SCN9A gene encoding sodium channel Na(V)1.7 (G856D; c.2567G > A) in all three affected subjects, but not in unaffected family members. Functional analysis demonstrated that the mutation hyperpolarizes (-9.3 mV) channel activation, depolarizes (+6.2 mV) steady-state fast-inactivation, slows deactivation and enhances persistent current and the response to slow ramp stimuli by 10- to 11-fold compared with wild-type Na(V)1.7 channels. Current-clamp analysis of dorsal root ganglion neurons transfected with G856D mutant channels demonstrated depolarized resting potential, reduced current threshold, increased repetitive firing in response to suprathreshold stimulation and increased spontaneous firing. Our results demonstrate that the G856D mutation produces DRG neuron hyperexcitability which underlies pain in this kindred, and suggest that small peripheral nerve fibre dysfunction due to this mutation may have contributed to distal limb under-development in this novel syndrome.
Collapse
Affiliation(s)
- Janneke G J Hoeijmakers
- Neuroscience and Regeneration Research Centre, VA Connecticut Healthcare System, 950 Campbell Avenue, Building 34, West Haven, CT 06516, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bobick BE, Cobb J. Shox2 regulates progression through chondrogenesis in the mouse proximal limb. J Cell Sci 2012; 125:6071-83. [DOI: 10.1242/jcs.111997] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In humans, loss of SHOX gene function is responsible for the mesomelic short stature characteristic of Turner syndrome, Leri-Weill dyschondrosteosis, and Langer dysplasia. In a mouse model of SHOX deficiency, Prrx1-Cre-driven limb-specific deletion of the paralogous gene Shox2 results in severe rhizomelia. In this study, we show that Col2a1-Cre-driven deletion of Shox2 in developing chondrocytes also results in shortening of the stylopodial skeleton (i.e. humerus, femur) and that this rhizomelia is due to precocious chondrocyte maturation and hypertrophy. We demonstrate, using the micromass culture model system, that increased BMP activity triggers accelerated maturation and hypertrophy in Col2a1-Cre Shox2 mutant chondrocytes and we confirm in vivo that elevated transcript levels and expanded expression domains of Bmp2 and 4 are associated with premature formation of the hypertrophic zone in mutant humeri. In micromass cultures of Prrx1-Cre Shox2 mutant limb cells, we find that Shox2 deletion in undifferentiated mesenchymal cells results in increased BMP activity that enhances early chondrogenesis, but is insufficient to provoke chondrocyte maturation and hypertrophy. Similarly, shRNA-mediated Shox2 knockdown in multipotent C3H10T1/2 cells and primary mouse bone marrow mesenchymal stem cells results in spontaneous chondrogenesis in the absence of chondrostimulation, but again fails to induce progression through the later stages of chondrogenic differentiation. Importantly, exogenous BMP supplementation can overcome the block to maturation and hypertrophy caused by Shox2 depletion prior to overt chondrogenesis. Thus, we provide evidence that Shox2 regulates progression through chondrogenesis at two distinct stages – the onset of early differentiation and the transition to maturation and hypertrophy.
Collapse
|
37
|
Oliveira CS, Alves C. The role of the SHOX gene in the pathophysiology of Turner syndrome. ACTA ACUST UNITED AC 2011; 58:433-42. [PMID: 21925981 DOI: 10.1016/j.endonu.2011.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 06/03/2011] [Accepted: 06/08/2011] [Indexed: 12/20/2022]
Abstract
Turner syndrome (TS) affects 1:2500 live females. It is caused by partial or complete absence of a sex chromosome. Patients with deletions of the distal segment of the short arm of X chromosome (Xp-) including haploinsufficiency of the SHOX (short stature homeobox) have, more often, short stature, skeletal abnormalities and hearing impairments. This article evaluates the current knowledge of the SHOX gene role in TS pathophysiology. Articles were searched from MEDLINE and LILACS databases, in the past 10 years, using the following keywords: Turner syndrome, SHOX gene, haploinsufficiency, short stature and hearing loss. As the inheritance of only one copy of the SHOX gene does not explain most of TS anomalies, more studies are needed to explain them. These studies will also improve understanding how SHOX participates in cartilage and bone growth and will help develop novel therapeutic strategies focused on SHOX-related disorders.
Collapse
Affiliation(s)
- Conceicao S Oliveira
- Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | | |
Collapse
|