1
|
Pretzel P, Herrmann A, Kuhn A, Klauser AL, Matilainen J, Kellner E, Hackenberg M, Mayer S, Laugwitz L, Uhl M, Groeschel S, Janzarik WG. Brain morphometry and psychomotor development in children with PCH2A. Eur J Paediatr Neurol 2025; 56:58-66. [PMID: 40311513 DOI: 10.1016/j.ejpn.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/25/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
INTRODUCTION Pontocerebellar hypoplasia type 2A (PCH2A) is a rare neurogenetic disease characterized by severe cognitive and motor impairment. This study reports on brain morphometry and psychomotor development of affected children. MATERIALS AND METHODS We analyzed 78 cerebral MRI datasets of 57 patients with genetically confirmed PCH2A. Volumetric and in-plane measurements were conducted in cerebellum, neocortex and pons. Supratentorial width and width of the anterior horns of the lateral ventricles was used to calculate the Evans index. Caregivers of 65 patients (aged 7 months to 33 years) filled in a survey assessing motor and cognitive development. Developmental status was compared to MRI measurements. RESULTS In children with PCH2A, cerebellar volume was markedly smaller than in healthy children at birth, with slower increase and stagnation at around 12 months. No cerebellar growth was observed in the cranio-caudal axis. Longitudinal data did not reveal a decrease in cerebellar volume or in-plane measurements. Supratentorial measurements showed progressive microcephaly and a continuous increase of the Evans index, reflecting progressive cerebral atrophy. Patients demonstrated severe cognitive and motor impairments, with developmental regression reported in only a minority. No statistical relationship between brain measurements and cognitive or motor development was observed. CONCLUSION MRI in PCH2A patients shows limited cerebellar growth during infancy, especially restricted along the cranio-caudal axis. After infancy, cerebellar volume remains relatively stable. Supratentorial measurements indicate slowly progressive atrophy. Psychomotor development is significantly impaired, but regression is rare.
Collapse
Affiliation(s)
- Pablo Pretzel
- Experimental Pediatric Neuroimaging, Department of Child Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany; Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical Universtiy of Munich, Germany.
| | - Antonia Herrmann
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alice Kuhn
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna-Lena Klauser
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Elias Kellner
- Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, University of Freiburg, Germany
| | - Maren Hackenberg
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Karlsruhe Institute of Technology, Zoological Institute and Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe, Germany
| | - Lucia Laugwitz
- Department of Child Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Markus Uhl
- Division of Pediatric Radiology, Department of Radiology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Samuel Groeschel
- Experimental Pediatric Neuroimaging, Department of Child Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany; Department of Child Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Wibke G Janzarik
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Namikawa K, Pose-Méndez S, Köster RW. Genetic modeling of degenerative diseases and mechanisms of neuronal regeneration in the zebrafish cerebellum. Cell Mol Life Sci 2024; 82:26. [PMID: 39725709 DOI: 10.1007/s00018-024-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The cerebellum is a highly conserved brain compartment of vertebrates. Genetic diseases of the human cerebellum often lead to degeneration of the principal neuron, the Purkinje cell, resulting in locomotive deficits and socio-emotional impairments. Due to its relatively simple but highly conserved neuroanatomy and circuitry, these human diseases can be modeled well in vertebrates amenable for genetic manipulation. In the recent years, cerebellar research in zebrafish has contributed to understanding cerebellum development and function, since zebrafish larvae are not only molecularly tractable, but also accessible for high resolution in vivo imaging due to the transparency of the larvae and the ease of access to the zebrafish cerebellar cortex for microscopy approaches. Therefore, zebrafish is increasingly used for genetic modeling of human cerebellar neurodegenerative diseases and in particular of different types of Spinocerebellar Ataxias (SCAs). These models are well suited to address the underlying pathogenic mechanisms by means of in vivo cell biological studies. Furthermore, accompanying circuitry characterizations, physiological studies and behavioral analysis allow for unraveling molecular, structural and functional relationships. Moreover, unlike in mammals, zebrafish possess an astonishing ability to regenerate neuronal populations and their functional circuitry in the central nervous system including the cerebellum. Understanding the cellular and molecular processes of these regenerative processes could well serve to counteract acute and chronic loss of neurons in humans. Based on the high evolutionary conservation of the cerebellum these regeneration studies in zebrafish promise to open therapeutic avenues for counteracting cerebellar neuronal degeneration. The current review aims to provide an overview over currently existing genetic models of human cerebellar neurodegenerative diseases in zebrafish as well as neuroregeneration studies using the zebrafish cerebellum. Due to this solid foundation in cerebellar disease modeling and neuronal regeneration analysis, the zebrafish promises to become a popular model organism for both unraveling pathogenic mechanisms of human cerebellar diseases and providing entry points for therapeutic neuronal regeneration approaches.
Collapse
Affiliation(s)
- Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
3
|
Kagermeier T, Hauser S, Sarieva K, Laugwitz L, Groeschel S, Janzarik WG, Yentür Z, Becker K, Schöls L, Krägeloh-Mann I, Mayer S. Human organoid model of pontocerebellar hypoplasia 2a recapitulates brain region-specific size differences. Dis Model Mech 2024; 17:dmm050740. [PMID: 39034883 PMCID: PMC11552497 DOI: 10.1242/dmm.050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 07/23/2024] Open
Abstract
Pontocerebellar hypoplasia type 2a (PCH2a) is an ultra-rare, autosomal recessive pediatric disorder with limited treatment options. Its anatomical hallmark is hypoplasia of the cerebellum and pons accompanied by progressive microcephaly. A homozygous founder variant in TSEN54, which encodes a tRNA splicing endonuclease (TSEN) complex subunit, is causal. The pathological mechanism of PCH2a remains unknown due to the lack of a model system. Therefore, we developed human models of PCH2a using regionalized neural organoids. We generated induced pluripotent stem cell (iPSC) lines from three males with genetically confirmed PCH2a and subsequently differentiated cerebellar and neocortical organoids. Mirroring clinical neuroimaging findings, PCH2a cerebellar organoids were reduced in size compared to controls starting early in differentiation. Neocortical PCH2a organoids demonstrated milder growth deficits. Although PCH2a cerebellar organoids did not upregulate apoptosis, their stem cell zones showed altered proliferation kinetics, with increased proliferation at day 30 and reduced proliferation at day 50 compared to controls. In summary, we generated a human model of PCH2a, providing the foundation for deciphering brain region-specific disease mechanisms. Our first analyses suggest a neurodevelopmental aspect of PCH2a.
Collapse
Affiliation(s)
- Theresa Kagermeier
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72076Tübingen, Germany
| | - Stefan Hauser
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- German Center for Neurodegenerative Diseases, 72076Tübingen, Germany
| | - Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72076Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, 72076Tübingen, Germany
| | - Lucia Laugwitz
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Samuel Groeschel
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Wibke G. Janzarik
- Department of Neuropediatrics and Muscle Disorders, Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Zeynep Yentür
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72076Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, 72076Tübingen, Germany
- Heidelberger Akademie der Wissenschaften, 69117 Heidelberg, Germany
| | - Katharina Becker
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
| | - Ludger Schöls
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- German Center for Neurodegenerative Diseases, 72076Tübingen, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- Heidelberger Akademie der Wissenschaften, 69117 Heidelberg, Germany
| |
Collapse
|
4
|
Tyynismaa H. Disease models of mitochondrial aminoacyl-tRNA synthetase defects. J Inherit Metab Dis 2023; 46:817-823. [PMID: 37410890 DOI: 10.1002/jimd.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mitochondrial aminoacyl-tRNA synthetases (mtARS) are enzymes critical for the first step of mitochondrial protein synthesis by charging mitochondrial tRNAs with their cognate amino acids. Pathogenic variants in all 19 nuclear mtARS genes are now recognized as causing recessive mitochondrial diseases. Most mtARS disorders affect the nervous system, but the phenotypes range from multisystem diseases to tissue-specific manifestations. However, the mechanisms behind the tissue specificities are poorly understood, and challenges remain in obtaining accurate disease models for developing and testing treatments. Here, some of the currently existing disease models that have increased our understanding of mtARS defects are discussed.
Collapse
Affiliation(s)
- Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Hayne CK, Sekulovski S, Hurtig JE, Stanley RE, Trowitzsch S, van Hoof A. New insights into RNA processing by the eukaryotic tRNA splicing endonuclease. J Biol Chem 2023; 299:105138. [PMID: 37544645 PMCID: PMC10485636 DOI: 10.1016/j.jbc.2023.105138] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023] Open
Abstract
Through its role in intron cleavage, tRNA splicing endonuclease (TSEN) plays a critical function in the maturation of intron-containing pre-tRNAs. The catalytic mechanism and core requirement for this process is conserved between archaea and eukaryotes, but for decades, it has been known that eukaryotic TSENs have evolved additional modes of RNA recognition, which have remained poorly understood. Recent research identified new roles for eukaryotic TSEN, including processing or degradation of additional RNA substrates, and determined the first structures of pre-tRNA-bound human TSEN complexes. These recent discoveries have changed our understanding of how the eukaryotic TSEN targets and recognizes substrates. Here, we review these recent discoveries, their implications, and the new questions raised by these findings.
Collapse
Affiliation(s)
- Cassandra K Hayne
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.
| | - Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jennifer E Hurtig
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National, Institutes of Health, Research Triangle Park, North Carolina, USA.
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA.
| |
Collapse
|
6
|
Hurtig JE, van Hoof A. An unknown essential function of tRNA splicing endonuclease is linked to the integrated stress response and intron debranching. Genetics 2023; 224:iyad044. [PMID: 36943791 PMCID: PMC10213494 DOI: 10.1093/genetics/iyad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
tRNA splicing endonuclease (TSEN) has a well-characterized role in transfer RNA (tRNA) splicing but also other functions. For yeast TSEN, these other functions include degradation of a subset of mRNAs that encode mitochondrial proteins and an unknown essential function. In this study, we use yeast genetics to characterize the unknown tRNA-independent function(s) of TSEN. Using a high-copy suppressor screen, we found that sen2 mutants can be suppressed by overexpression of SEN54. This effect was seen both for tRNA-dependent and tRNA-independent functions indicating that SEN54 is a general suppressor of sen2, likely through structural stabilization. A spontaneous suppressor screen identified mutations in the intron-debranching enzyme, Dbr1, as tRNA splicing-independent suppressors. Transcriptome analysis showed that sen2 mutation activates the Gcn4 stress response. These Gcn4 target transcripts decreased considerably in the sen2 dbr1 double mutant. We propose that Dbr1 and TSEN may compete for a shared substrate, which TSEN normally processes into an essential RNA, while Dbr1 initiates its degradation. These data provide further insight into the essential function(s) of TSEN. Importantly, single amino acid mutations in TSEN cause the generally fatal neuronal disease pontocerebellar hypoplasia (PCH). The mechanism by which defects in TSEN cause this disease is unknown, and our results reveal new possible mechanisms.
Collapse
Affiliation(s)
- Jennifer E Hurtig
- Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ambro van Hoof
- Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Recessive aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182874. [PMID: 37274208 PMCID: PMC10234152 DOI: 10.3389/fnins.2023.1182874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Protein synthesis is a fundamental process that underpins almost every aspect of cellular functioning. Intriguingly, despite their common function, recessive mutations in aminoacyl-tRNA synthetases (ARSs), the family of enzymes that pair tRNA molecules with amino acids prior to translation on the ribosome, cause a diverse range of multi-system disorders that affect specific groups of tissues. Neurological development is impaired in most ARS-associated disorders. In addition to central nervous system defects, diseases caused by recessive mutations in cytosolic ARSs commonly affect the liver and lungs. Patients with biallelic mutations in mitochondrial ARSs often present with encephalopathies, with variable involvement of peripheral systems. Many of these disorders cause severe disability, and as understanding of their pathogenesis is currently limited, there are no effective treatments available. To address this, accurate in vivo models for most of the recessive ARS diseases are urgently needed. Here, we discuss approaches that have been taken to model recessive ARS diseases in vivo, highlighting some of the challenges that have arisen in this process, as well as key results obtained from these models. Further development and refinement of animal models is essential to facilitate a better understanding of the pathophysiology underlying recessive ARS diseases, and ultimately to enable development and testing of effective therapies.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Sekulovski S, Trowitzsch S. What connects splicing of transfer RNA precursor molecules with pontocerebellar hypoplasia? Bioessays 2023; 45:e2200130. [PMID: 36517085 DOI: 10.1002/bies.202200130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023]
Abstract
Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor impairments, and child mortality. Recently, we demonstrated that mutations leading to specific PCH subtypes destabilize TSEN in vitro and cause imbalances of immature to mature tRNA ratios in patient-derived cells. However, how tRNA processing defects translate to disease on a systems level has not been understood. Recent findings suggested that other cellular processes may be affected by mutations in TSEN/CLP1 and obscure the molecular mechanisms of PCH emergence. Here, we review PCH disease models linked to the TSEN/CLP1 machinery and discuss future directions to study neuropathogenesis.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
9
|
Upadhya S, Gingerich D, Lutz MW, Chiba-Falek O. Differential Gene Expression and DNA Methylation in the Risk of Depression in LOAD Patients. Biomolecules 2022; 12:1679. [PMID: 36421693 PMCID: PMC9687527 DOI: 10.3390/biom12111679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/28/2024] Open
Abstract
Depression is common among late-onset Alzheimer's Disease (LOAD) patients. Only a few studies investigated the genetic variability underlying the comorbidity of depression in LOAD. Moreover, the epigenetic and transcriptomic factors that may contribute to comorbid depression in LOAD have yet to be studied. Using transcriptomic and DNA-methylomic datasets from the ROSMAP cohorts, we investigated differential gene expression and DNA-methylation in LOAD patients with and without comorbid depression. Differential expression analysis did not reveal significant association between differences in gene expression and the risk of depression in LOAD. Upon sex-stratification, we identified 25 differential expressed genes (DEG) in males, of which CHI3L2 showed the strongest upregulation, and only 3 DEGs in females. Additionally, testing differences in DNA-methylation found significant hypomethylation of CpG (cg20442550) on chromosome 17 (log2FC = -0.500, p = 0.004). Sex-stratified differential DNA-methylation analysis did not identify any significant CpG probes. Integrating the transcriptomic and DNA-methylomic datasets did not discover relationships underlying the comorbidity of depression and LOAD. Overall, our study is the first multi-omics genome-wide exploration of the role of gene expression and epigenome alterations in the risk of comorbid depression in LOAD patients. Furthermore, we discovered sex-specific differences in gene expression underlying the risk of depression symptoms in LOAD.
Collapse
Affiliation(s)
| | | | | | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Bashirzade AA, Zabegalov KN, Volgin AD, Belova AS, Demin KA, de Abreu MS, Babchenko VY, Bashirzade KA, Yenkoyan KB, Tikhonova MA, Amstislavskaya TG, Kalueff AV. Modeling neurodegenerative disorders in zebrafish. Neurosci Biobehav Rev 2022; 138:104679. [PMID: 35490912 DOI: 10.1016/j.neubiorev.2022.104679] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 12/15/2022]
Abstract
Neurodegeneration is a major cause of Alzheimer's, Parkinson's, Huntington's, multiple and amyotrophic lateral sclerosis, pontocerebellar hypoplasia, dementia and other related brain disorders. Their complex pathogenesis commonly includes genetic and neurochemical deficits, misfolded protein toxicity, demyelination, apoptosis and mitochondrial dysfunctions. Albeit differing in specific underlying mechanisms, neurodegenerative disorders typically display evolutionarily conserved mechanisms across taxa. Here, we review the role of zebrafish models in recapitulating major human and rodent neurodegenerative conditions, demonstrating this species as a highly relevant experimental model for research on neurodegenerative diseases, and discussing how these fish models can further clarify the underlying genetic, neurochemical, neuroanatomical and behavioral pathogenic mechanisms.
Collapse
Affiliation(s)
- Alim A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | | | - Andrey D Volgin
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Alisa S Belova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia; Almazov Medical Research Center, St. Petersburg, Russia
| | | | - Vladislav Ya Babchenko
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Kseniya A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M Heratsi Yerevan State Medical University, Yerevan, Armenia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia
| | - Maria A Tikhonova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Allan V Kalueff
- The Russian Academy of Sciences, Moscow, Russia; Ural Federal University, Yekaterinburg, Russia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia.
| |
Collapse
|
11
|
Sekulovski S, Trowitzsch S. Transfer RNA processing - from a structural and disease perspective. Biol Chem 2022; 403:749-763. [PMID: 35728022 DOI: 10.1515/hsz-2021-0406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Transfer RNAs (tRNAs) are highly structured non-coding RNAs which play key roles in translation and cellular homeostasis. tRNAs are initially transcribed as precursor molecules and mature by tightly controlled, multistep processes that involve the removal of flanking and intervening sequences, over 100 base modifications, addition of non-templated nucleotides and aminoacylation. These molecular events are intertwined with the nucleocytoplasmic shuttling of tRNAs to make them available at translating ribosomes. Defects in tRNA processing are linked to the development of neurodegenerative disorders. Here, we summarize structural aspects of tRNA processing steps with a special emphasis on intron-containing tRNA splicing involving tRNA splicing endonuclease and ligase. Their role in neurological pathologies will be discussed. Identification of novel RNA substrates of the tRNA splicing machinery has uncovered functions unrelated to tRNA processing. Future structural and biochemical studies will unravel their mechanistic underpinnings and deepen our understanding of neurological diseases.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
12
|
Schmidt CA, Min LY, McVay MH, Giusto JD, Brown JC, Salzler HR, Matera AG. Mutations in Drosophila tRNA processing factors cause phenotypes similar to Pontocerebellar Hypoplasia. Biol Open 2022; 11:274283. [PMID: 35132432 PMCID: PMC8935212 DOI: 10.1242/bio.058928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/19/2022] [Indexed: 01/28/2023] Open
Abstract
Mature transfer (t)RNAs are generated by multiple RNA processing events, which can include the excision of intervening sequences. The tRNA splicing endonuclease (TSEN) complex is responsible for cleaving these intron-containing pre-tRNA transcripts. In humans, TSEN copurifies with CLP1, an RNA kinase. Despite extensive work on CLP1, its in vivo connection to tRNA splicing remains unclear. Interestingly, mutations in CLP1 or TSEN genes cause neurological diseases in humans that are collectively termed Pontocerebellar Hypoplasia (PCH). In mice, loss of Clp1 kinase activity results in premature death, microcephaly and progressive loss of motor function. To determine if similar phenotypes are observed in Drosophila, we characterized mutations in crowded-by-cid (cbc), the CLP1 ortholog, as well as in the fly ortholog of human TSEN54. Analyses of organismal viability, larval locomotion and brain size revealed that mutations in both cbc and Tsen54 phenocopy those in mammals in several details. In addition to an overall reduction in brain lobe size, we also found increased cell death in mutant larval brains. Ubiquitous or tissue-specific knockdown of cbc in neurons and muscles reduced viability and locomotor function. These findings indicate that we can successfully model PCH in a genetically-tractable invertebrate.
Collapse
Affiliation(s)
- Casey A. Schmidt
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lucy Y. Min
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michelle H. McVay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph D. Giusto
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John C. Brown
- Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA,Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA,Author for correspondence ()
| |
Collapse
|
13
|
Schmidt CA, Min LY, McVay MH, Giusto JD, Brown JC, Salzler HR, Matera AG. Mutations in Drosophila tRNA processing factors cause phenotypes similar to Pontocerebellar Hypoplasia. Biol Open 2022. [PMID: 35132432 DOI: 10.1101/2021.07.09.451847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Mature transfer (t)RNAs are generated by multiple RNA processing events, which can include the excision of intervening sequences. The tRNA splicing endonuclease (TSEN) complex is responsible for cleaving these intron-containing pre-tRNA transcripts. In humans, TSEN copurifies with CLP1, an RNA kinase. Despite extensive work on CLP1, its in vivo connection to tRNA splicing remains unclear. Interestingly, mutations in CLP1 or TSEN genes cause neurological diseases in humans that are collectively termed Pontocerebellar Hypoplasia (PCH). In mice, loss of Clp1 kinase activity results in premature death, microcephaly and progressive loss of motor function. To determine if similar phenotypes are observed in Drosophila, we characterized mutations in crowded-by-cid (cbc), the CLP1 ortholog, as well as in the fly ortholog of human TSEN54. Analyses of organismal viability, larval locomotion and brain size revealed that mutations in both cbc and Tsen54 phenocopy those in mammals in several details. In addition to an overall reduction in brain lobe size, we also found increased cell death in mutant larval brains. Ubiquitous or tissue-specific knockdown of cbc in neurons and muscles reduced viability and locomotor function. These findings indicate that we can successfully model PCH in a genetically-tractable invertebrate.
Collapse
Affiliation(s)
- Casey A Schmidt
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lucy Y Min
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michelle H McVay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph D Giusto
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John C Brown
- Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Harmony R Salzler
- Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences 27599, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Patel PA, Hegert JV, Cristian I, Kerr A, LaConte LEW, Fox MA, Srivastava S, Mukherjee K. Complete loss of the X-linked gene CASK causes severe cerebellar degeneration. J Med Genet 2022; 59:1044-1057. [PMID: 35149592 DOI: 10.1136/jmedgenet-2021-108115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/13/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Heterozygous loss of X-linked genes like CASK and MeCP2 (Rett syndrome) causes developmental delay in girls, while in boys, loss of the only allele of these genes leads to epileptic encephalopathy. The mechanism for these disorders remains unknown. CASK-linked cerebellar hypoplasia is presumed to result from defects in Tbr1-reelin-mediated neuronal migration. METHOD Here we report clinical and histopathological analyses of a deceased 2-month-old boy with a CASK-null mutation. We next generated a mouse line where CASK is completely deleted (hemizygous and homozygous) from postmigratory neurons in the cerebellum. RESULT The CASK-null human brain was smaller in size but exhibited normal lamination without defective neuronal differentiation, migration or axonal guidance. The hypoplastic cerebellum instead displayed astrogliosis and microgliosis, which are markers for neuronal loss. We therefore hypothesise that CASK loss-induced cerebellar hypoplasia is the result of early neurodegeneration. Data from the murine model confirmed that in CASK loss, a small cerebellum results from postdevelopmental degeneration of cerebellar granule neurons. Furthermore, at least in the cerebellum, functional loss from CASK deletion is secondary to degeneration of granule cells and not due to an acute molecular functional loss of CASK. Intriguingly, female mice with heterozygous deletion of CASK in the cerebellum do not display neurodegeneration. CONCLUSION We suggest that X-linked neurodevelopmental disorders like CASK mutation and Rett syndrome are pathologically neurodegenerative; random X-chromosome inactivation in heterozygous mutant girls, however, results in 50% of cells expressing the functional gene, resulting in a non-progressive pathology, whereas complete loss of the only allele in boys leads to unconstrained degeneration and encephalopathy.
Collapse
Affiliation(s)
- Paras A Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Julia V Hegert
- Department of Pathology, Orlando Health, Orlando, Florida, USA
| | | | - Alicia Kerr
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | | | - Michael A Fox
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,School of Neuroscience, Blacksburg, Virginia, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA .,Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| |
Collapse
|
15
|
Sekulovski S, Devant P, Panizza S, Gogakos T, Pitiriciu A, Heitmeier K, Ramsay EP, Barth M, Schmidt C, Tuschl T, Baas F, Weitzer S, Martinez J, Trowitzsch S. Assembly defects of human tRNA splicing endonuclease contribute to impaired pre-tRNA processing in pontocerebellar hypoplasia. Nat Commun 2021; 12:5610. [PMID: 34584079 PMCID: PMC8479045 DOI: 10.1038/s41467-021-25870-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Introns of human transfer RNA precursors (pre-tRNAs) are excised by the tRNA splicing endonuclease TSEN in complex with the RNA kinase CLP1. Mutations in TSEN/CLP1 occur in patients with pontocerebellar hypoplasia (PCH), however, their role in the disease is unclear. Here, we show that intron excision is catalyzed by tetrameric TSEN assembled from inactive heterodimers independently of CLP1. Splice site recognition involves the mature domain and the anticodon-intron base pair of pre-tRNAs. The 2.1-Å resolution X-ray crystal structure of a TSEN15-34 heterodimer and differential scanning fluorimetry analyses show that PCH mutations cause thermal destabilization. While endonuclease activity in recombinant mutant TSEN is unaltered, we observe assembly defects and reduced pre-tRNA cleavage activity resulting in an imbalanced pre-tRNA pool in PCH patient-derived fibroblasts. Our work defines the molecular principles of intron excision in humans and provides evidence that modulation of TSEN stability may contribute to PCH phenotypes.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Pascal Devant
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
- Ph.D. Program in Virology, Harvard Medical School, Boston, MA, USA
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Silvia Panizza
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Tasos Gogakos
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Anda Pitiriciu
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Katharina Heitmeier
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | | | - Marie Barth
- Interdisciplinary research center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary research center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Frank Baas
- Department of Clinical Genetics, Leiden University, Leiden, Netherlands
| | - Stefan Weitzer
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Javier Martinez
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany.
| |
Collapse
|
16
|
Three-Dimensional X-ray Imaging of β-Galactosidase Reporter Activity by Micro-CT: Implication for Quantitative Analysis of Gene Expression. Brain Sci 2021; 11:brainsci11060746. [PMID: 34199780 PMCID: PMC8230009 DOI: 10.3390/brainsci11060746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Acquisition of detailed anatomical and molecular knowledge from intact biological samples while preserving their native three-dimensional structure is still a challenging issue for imaging studies aiming to unravel a system's functions. Three-dimensional micro-CT X-ray imaging with a high spatial resolution in minimally perturbed naive non-transparent samples has recently gained increased popularity and broad application in biomedical research. Here, we describe a novel X-ray-based methodology for analysis of β-galactosidase (lacZ) reporter-driven gene expression in an intact murine brain ex vivo by micro-CT. The method relies on detection of bromine molecules in the product of the enzymatic β-galactosidase reaction. Enhancement of the X-ray signal is observed specifically in the regions of the murine brain where expression of the lacZ reporter gene is also detected histologically. We performed quantitative analysis of the expression levels of lacZ reporter activity by relative radiodensity estimation of the β-galactosidase/X-gal precipitate in situ. To demonstrate the feasibility of the method, we performed expression analysis of the Tsen54-lacZ reporter gene in the murine brain in a semi-quantitative manner. Human mutations in the Tsen54 gene cause pontocerebellar hypoplasia (PCH), a group of severe neurodegenerative disorders with both mental and motor deficits. Comparing relative levels of Tsen54 gene expression, we demonstrate that the highest Tsen54 expression is observed in anatomical brain substructures important for the normal motor and memory functions in mice.
Collapse
|
17
|
van Dijk T, Barth P, Baas F, Reneman L, Poll-The BT. Postnatal Brain Growth Patterns in Pontocerebellar Hypoplasia. Neuropediatrics 2021; 52:163-169. [PMID: 33111306 DOI: 10.1055/s-0040-1716900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pontocerebellar hypoplasia (PCH) is a rare group of disorders mainly affecting the cerebellum and pons. Supratentorial structures are variably involved. We assessed brain growth patterns in patients with the most frequent forms of PCH, namely PCH1B (OMIM#614678) and PCH2A (OMIM#277470), since in these types of PCH, pre- and postnatal neurodegeneration is established by neuropathological profiling. To assess the influence of the different pathomechanisms on postnatal growth patterns, we included CASK-associated microcephaly and PCH (MICPCH, OMIM#300749) patients in our analyses, as MICPH mimics PCH on magnetic resonance imaging (MRI) but represents a developmental disorder including abnormal neuronal migration. METHODS A total of 66 patients were included: 9 patients with PCH1B, 18 patients with PCH2A, 6 patients with MICPCH, and 33 age- and gender-matched hospital-based controls. Segmentation of the vermis and cerebellum was performed manually, as were measurements of the thickness of the head of the caudate nucleus, the width of the anterior horn, and lateral ventricle size. RESULTS The cerebellum was severely hypoplastic at birth in all patients, and postnatal growth was nearly absent. In patients with PCH1B/2A, we found relative sparing of the vermis compared with the cerebellar hemispheres. In addition, PCH1B and PCH2A cases demonstrated thinning of the head of the caudate nucleus, an associated increase in anterior horn width, and an increase in lateral ventricle size. None of these features were seen in the MICPCH group. CONCLUSIONS Our findings confirm the progressive nature including caudate nucleus atrophy in PCH1B and PCH2A. In MICPCH, the relative sparing of supratentorial structures confirms its different pathomechanism.
Collapse
Affiliation(s)
- Tessa van Dijk
- Department of Clinical Genetics, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Barth
- Department of Pediatric Neurology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Bwee Tien Poll-The
- Department of Pediatric Neurology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Zebrafish Models of Autosomal Recessive Ataxias. Cells 2021; 10:cells10040836. [PMID: 33917666 PMCID: PMC8068028 DOI: 10.3390/cells10040836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal recessive ataxias are much less well studied than autosomal dominant ataxias and there are no clearly defined systems to classify them. Autosomal recessive ataxias, which are characterized by neuronal and multisystemic features, have significant overlapping symptoms with other complex multisystemic recessive disorders. The generation of animal models of neurodegenerative disorders increases our knowledge of their cellular and molecular mechanisms and helps in the search for new therapies. Among animal models, the zebrafish, which shares 70% of its genome with humans, offer the advantages of being small in size and demonstrating rapid development, making them optimal for high throughput drug and genetic screening. Furthermore, embryo and larval transparency allows to visualize cellular processes and central nervous system development in vivo. In this review, we discuss the contributions of zebrafish models to the study of autosomal recessive ataxias characteristic phenotypes, behavior, and gene function, in addition to commenting on possible treatments found in these models. Most of the zebrafish models generated to date recapitulate the main features of recessive ataxias.
Collapse
|
19
|
Fraga de Andrade I, Mehta C, Bresnick EH. Post-transcriptional control of cellular differentiation by the RNA exosome complex. Nucleic Acids Res 2020; 48:11913-11928. [PMID: 33119769 PMCID: PMC7708067 DOI: 10.1093/nar/gkaa883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Given the complexity of intracellular RNA ensembles and vast phenotypic remodeling intrinsic to cellular differentiation, it is instructive to consider the role of RNA regulatory machinery in controlling differentiation. Dynamic post-transcriptional regulation of protein-coding and non-coding transcripts is vital for establishing and maintaining proteomes that enable or oppose differentiation. By contrast to extensively studied transcriptional mechanisms governing differentiation, many questions remain unanswered regarding the involvement of post-transcriptional mechanisms. Through its catalytic activity to selectively process or degrade RNAs, the RNA exosome complex dictates the levels of RNAs comprising multiple RNA classes, thereby regulating chromatin structure, gene expression and differentiation. Although the RNA exosome would be expected to control diverse biological processes, studies to elucidate its biological functions and how it integrates into, or functions in parallel with, cell type-specific transcriptional mechanisms are in their infancy. Mechanistic analyses have demonstrated that the RNA exosome confers expression of a differentiation regulatory receptor tyrosine kinase, downregulates the telomerase RNA component TERC, confers genomic stability and promotes DNA repair, which have considerable physiological and pathological implications. In this review, we address how a broadly operational RNA regulatory complex interfaces with cell type-specific machinery to control cellular differentiation.
Collapse
Affiliation(s)
- Isabela Fraga de Andrade
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| |
Collapse
|
20
|
Miner GH, Renton AE, Taubenfeld E, Tadros RO, Marcora E, Lookstein RA, Faries PL, Marin ML. Whole genome sequencing identifies loci specifically associated with thoracic aortic wall defects and abdominal aortic aneurysms in patients with European ancestry. JVS Vasc Sci 2020; 1:233-245. [PMID: 34617051 PMCID: PMC8489199 DOI: 10.1016/j.jvssci.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE The objective of this study was to better understand the pathophysiology and underlying genetic mechanisms behind two abdominal aortic aneurysm (AAA) subtypes using computed tomographic imaging in combination with whole genome sequencing. METHODS Patients with a known AAA and European ancestry were included in this investigation and underwent genetic and image analysis. Patients with AAAs and indications of descending thoracic aortic pathology (aortic dissection, penetrating aortic ulcers, intramural hematoma, atheromas, ulcerative plaque, and intramural ulceration, and intimal flaps/tears) were classified as having thoracic aortic disease, grouped together, and compared with patients with an AAA and a normal descending thoracic aorta. Whole genome sequencing was then performed on the 93 patients who had imaging features consistent with thoracic aortic disease and the 126 patients with a normal descending thoracic aorta. RESULTS The results of this study suggest one variant-level, four gene-level, and one gene set-level associations in patients with thoracic aortic disease who also had an AAA. The variant rs79508780 located in TSEN54 achieved study-wide significance (P = 1.71E-06). BATF3 and SMLR1 were significantly associated and EFCAB3 and TAF4 were reached suggestive assocation with a diseased descending thoracic aorta (P = 5.23E-26, P = 1.86E-25, P = 1.54E-05, and P = 8.31E-05, respectively). Gene sets were also compiled using MSigDB and trait-based index single nucleotide variation from major genome-wide association studies. GO_DNA_DOUBLE_STRAND_BREAK_PROCESSING, a gene set related to double-stranded DNA break repair, was significantly associated with thoracic aortic disease in AAA patients (P = 1.80E-06). CONCLUSIONS This pilot study provides further evidence that an AAA may be the end result of multiple degenerative pathways. Genetic variations in vitamin D signaling, cholesterol metabolism, extracellular matrix breakdown, and double-stranded DNA break repair pathways were associated with European patients who had an AAA and thoracic aortic disease. Additionally, this study provides support for the application of a radiogenomic approach for the investigation of other potential pathologies that could lead to the development of an AAA or influence future management decisions. (JVS-Vascular Science.). CLINICAL RELEVANCE In this study, we provide evidence that abdominal aortic aneurysms (AAAs) may be a result of multiple pathophysiologies rather than a single disease. We have identified genetic variants involved in vitamin D signaling, cholesterol metabolism, extracellular matrix breakdown, and double-stranded DNA break repair associated with structural defects in the aortic wall in patients with AAAs who are of European descent. Patients with AAAs and structural defects in the thoracic aorta have been previously linked to differential behavior after endovascular aneurysm repair. These patients with wall defects exhibited greater sac regression, a marker of surgical success, after endovascular aneurysm repair. Our study demonstrates the usefulness of a radiogenomic approach for elucidating mechanisms behind the formation and future behavior of AAAs that could aid surgeons in making future procedural and management decisions.
Collapse
|
21
|
Kasinathan A, Sankhyan N, Dijk TV, Singh P, Singhi P. Clinico-radiological Profile of Children with Pontocerebellar Hypoplasia. J Pediatr Neurosci 2020; 15:94-98. [PMID: 33042238 PMCID: PMC7519739 DOI: 10.4103/jpn.jpn_6_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 11/18/2019] [Accepted: 12/12/2019] [Indexed: 11/04/2022] Open
Abstract
Aims and Objectives Pontocerebellar hypoplasia (PCH) constitutes a heterogeneous group of neurodegenerative/neurodevelopmental disorder of pons and cerebellum with onset in prenatal period. This study aimed to discuss the clinical, radiological profile, and outcome of four infants with PCH attending our center. Materials and Methods Data of children with psychomotor retardation seen between January 2015 and December 2015 at neurodevelopmental clinic was retrieved. PCH was defined by clinical and radiological criteria. Clinical features included were delay in attainment of milestones in more than two developmental domains accompanied by severe microcephaly. Radiological evidence of cerebellar volume loss with hypoplasia of pons was included. Patient charts were reviewed for clinical features, neuroimaging, electroencephalography, and biochemical investigations including serum and cerebrospinal lactate. Molecular genetic testing for the common p.A307S mutation in TSEN54 of the cases and their parents were also analyzed. Results During this period, 101 children with psychomotor retardation were evaluated at our center. Of the 101, four children were with clinical and radiological evidence of PCH. In addition to psychomotor retardation and severe microcephaly, spasticity, bipyramidal signs, and epileptic spasms were universal in all four children. Three of the four children had optic atrophy and two had sensorineural hearing loss. Severe cerebellar hypoplasia with attenuated pons was seen in all four children. Two children had dragonfly appearance of cerebellum on coronal section. The commonest TSEN54 p.A307S mutation in children and their parents was not detected. Conclusion A heightened index of suspicion for PCH is merited in infants with progressive psychomotor retardation and severe microcephaly. Cerebellar hypoplasia with pontine attenuation forms the mainstay of diagnosis of PCH.
Collapse
Affiliation(s)
- Ananthanarayanan Kasinathan
- Department of Pediatrics, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Pondicherry, India
| | - Naveen Sankhyan
- Department of Pediatrics, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Tessa Van Dijk
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | - Paramjeet Singh
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Pratibha Singhi
- Department of Pediatrics, Medanta - The Medicity, Gurugram, Haryana, India
| |
Collapse
|
22
|
Hayne CK, Schmidt CA, Haque MI, Matera AG, Stanley RE. Reconstitution of the human tRNA splicing endonuclease complex: insight into the regulation of pre-tRNA cleavage. Nucleic Acids Res 2020; 48:7609-7622. [PMID: 32476018 PMCID: PMC7641302 DOI: 10.1093/nar/gkaa438] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 01/04/2023] Open
Abstract
The splicing of tRNA introns is a critical step in pre-tRNA maturation. In archaea and eukaryotes, tRNA intron removal is catalyzed by the tRNA splicing endonuclease (TSEN) complex. Eukaryotic TSEN is comprised of four core subunits (TSEN54, TSEN2, TSEN34 and TSEN15). The human TSEN complex additionally co-purifies with the polynucleotide kinase CLP1; however, CLP1's role in tRNA splicing remains unclear. Mutations in genes encoding all four TSEN subunits, as well as CLP1, are known to cause neurodegenerative disorders, yet the mechanisms underlying the pathogenesis of these disorders are unknown. Here, we developed a recombinant system that produces active TSEN complex. Co-expression of all four TSEN subunits is required for efficient formation and function of the complex. We show that human CLP1 associates with the active TSEN complex, but is not required for tRNA intron cleavage in vitro. Moreover, RNAi knockdown of the Drosophila CLP1 orthologue, cbc, promotes biogenesis of mature tRNAs and circularized tRNA introns (tricRNAs) in vivo. Collectively, these and other findings suggest that CLP1/cbc plays a regulatory role in tRNA splicing by serving as a negative modulator of the direct tRNA ligation pathway in animal cells.
Collapse
Affiliation(s)
- Cassandra K Hayne
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Casey A Schmidt
- Curriculum in Genetics & Molecular Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Maira I Haque
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
- Department of Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - A Gregory Matera
- Curriculum in Genetics & Molecular Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
23
|
Sepahvand A, Razmara E, Bitarafan F, Galehdari M, Tavasoli AR, Almadani N, Garshasbi M. A homozygote variant in the tRNA splicing endonuclease subunit 54 causes pontocerebellar hypoplasia in a consanguineous Iranian family. Mol Genet Genomic Med 2020; 8:e1413. [PMID: 32697043 PMCID: PMC7549571 DOI: 10.1002/mgg3.1413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Background Homozygous loss‐of‐function mutations in TSEN54 (tRNA splicing endonuclease subunit 54; OMIM: 608755) cause different types of pontocerebellar hypoplasias (PCH) including PCH2, PCH4, and PCH5. The study aimed to determine the possible genetic factors contributing to PCH phenotypes in two affected male infants in an Iranian family. Methods We subjected two affected individuals in a consanguineous Iranian family. To systematically investigate the susceptible gene(s), whole‐exome sequencing was performed on the proband and a novel identified variant was confirmed by Sanger sequencing. We also analyzed 26 relatives in three generations using PCR‐restriction fragment length polymorphism (PCR‐RFLP) followed and confirmed by Sanger sequencing. Results Physical and medical examinations confirmed PCH in the patients. Besides, the proband showed bilateral moderate sensorineural hearing loss and structural heart defects as the novel phenotypes. The molecular findings also verified that two affected individuals were homozygote for the novel synonymous variant, NM_207346.2: c.1170G>A; p.(Val390Val), in TSEN54. PCR‐RFLP and Sanger sequencing elucidated that the parents and 16 relatives were heterozygote for the novel variant. Conclusion We identified a novel synonymous variant, c.1170G>A, in TSEN54 associated with PCH in an Iranian family. Based on this study, we strongly suggest using “TSENopathies” to show the overlapped phenotypes among different types of PCH resulted from TSEN causative mutations.
Collapse
Affiliation(s)
- Afrooz Sepahvand
- Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Fatemeh Bitarafan
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Galehdari
- Department of Biology, Faculty of Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Müller JS, Burns DT, Griffin H, Wells GR, Zendah RA, Munro B, Schneider C, Horvath R. RNA exosome mutations in pontocerebellar hypoplasia alter ribosome biogenesis and p53 levels. Life Sci Alliance 2020; 3:3/8/e202000678. [PMID: 32527837 PMCID: PMC7295610 DOI: 10.26508/lsa.202000678] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
The RNA exosome is a ubiquitously expressed complex of nine core proteins (EXOSC1-9) and associated nucleases responsible for RNA processing and degradation. Mutations in EXOSC3, EXOSC8, EXOSC9, and the exosome cofactor RBM7 cause pontocerebellar hypoplasia and motor neuronopathy. We investigated the consequences of exosome mutations on RNA metabolism and cellular survival in zebrafish and human cell models. We observed that levels of mRNAs encoding p53 and ribosome biogenesis factors are increased in zebrafish lines with homozygous mutations of exosc8 or exosc9, respectively. Consistent with higher p53 levels, mutant zebrafish have a reduced head size, smaller brain, and cerebellum caused by an increased number of apoptotic cells during development. Down-regulation of EXOSC8 and EXOSC9 in human cells leads to p53 protein stabilisation and G2/M cell cycle arrest. Increased p53 transcript levels were also observed in muscle samples from patients with EXOSC9 mutations. Our work provides explanation for the pathogenesis of exosome-related disorders and highlights the link between exosome function, ribosome biogenesis, and p53-dependent signalling. We suggest that exosome-related disorders could be classified as ribosomopathies.
Collapse
Affiliation(s)
- Juliane S Müller
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - David T Burns
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Griffin
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Graeme R Wells
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Romance A Zendah
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Benjamin Munro
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK .,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
25
|
Schmidt CA, Matera AG. tRNA introns: Presence, processing, and purpose. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1583. [DOI: 10.1002/wrna.1583] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Casey A. Schmidt
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
- Department of Biology, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
- Department of Genetics, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
26
|
TSEN54 missense variant in Standard Schnauzers with leukodystrophy. PLoS Genet 2019; 15:e1008411. [PMID: 31584937 PMCID: PMC6795476 DOI: 10.1371/journal.pgen.1008411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/16/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
We report a hereditary leukodystrophy in Standard Schnauzer puppies. Clinical signs occurred shortly after birth or started at an age of under 4 weeks and included apathy, dysphoric vocalization, hypermetric ataxia, intension tremor, head tilt, circling, proprioceptive deficits, seizures and ventral strabismus consistent with a diffuse intracranial lesion. Magnetic resonance imaging revealed a diffuse white matter disease without mass effect. Macroscopically, the cerebral white matter showed a gelatinous texture in the centrum semiovale. A mild hydrocephalus internus was noted. Histopathologically, a severe multifocal reduction of myelin formation and moderate diffuse edema without inflammation was detected leading to the diagnosis of leukodystrophy. Combined linkage analysis and homozygosity mapping in two related families delineated critical intervals of approximately 29 Mb. The comparison of whole genome sequence data of one affected Standard Schnauzer to 221 control genomes revealed a single private homozygous protein changing variant in the critical intervals, TSEN54:c.371G>A or p.(Gly124Asp). TSEN54 encodes the tRNA splicing endonuclease subunit 54. In humans, several variants in TSEN54 were reported to cause different types of pontocerebellar hypoplasia. The genotypes at the c.371G>A variant were perfectly associated with the leukodystrophy phenotype in 12 affected Standard Schnauzers and almost 1000 control dogs from different breeds. These results suggest that TSEN54:c.371G>A causes the leukodystrophy. The identification of a candidate causative variant enables genetic testing so that the unintentional breeding of affected Standard Schnauzers can be avoided in the future. Our findings extend the known genotype-phenotype correlation for TSEN54 variants. Various hereditary diseases of the cerebral white matter occur in humans and dogs. We describe a new leukodystrophy in Standard Schnauzers. Genetic mapping and whole genome sequence analysis identified a likely candidate causative variant in the TSEN54 gene encoding tRNA splicing endonuclease 54. These results provide new information about the role of TSEN54 in cell metabolism and the development of the central nervous system in the late gestational and early post-natal period. The affected dogs potentially represent a translational large animal model for similar leukoencephalopathies in human medicine. The clinical phenotype in Schnauzers included multifocal central nervous system signs. A holistic pathogenically driven understanding of disease initiation and perpetuation requires a solid analysis of the underlying genetics and characterization of the disease phenotype at the clinical and cellular as well as sub-cellular level. In contrast to the canine phenotype with a predominant manifestation in the cerebrum white matter, other TSEN54 variants in humans have been reported to result in a different pathological phenotype characterized by pontocerebellar hypoplasia. The differences between humans and dogs underscore the need for comparative analysis at the clinical, pathological and molecular level to understand species-specific protein mediated pathways, interactions and outcomes.
Collapse
|
27
|
Fichi G, Naef V, Barca A, Longo G, Fronte B, Verri T, Santorelli FM, Marchese M, Petruzzella V. Fishing in the Cell Powerhouse: Zebrafish as A Tool for Exploration of Mitochondrial Defects Affecting the Nervous System. Int J Mol Sci 2019; 20:ijms20102409. [PMID: 31096646 PMCID: PMC6567007 DOI: 10.3390/ijms20102409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
The zebrafish (Danio rerio) is a small vertebrate ideally suited to the modeling of human diseases. Large numbers of genetic alterations have now been modeled and could be used to study organ development by means of a genetic approach. To date, limited attention has been paid to the possible use of the zebrafish toolbox in studying human mitochondrial disorders affecting the nervous system. Here, we review the pertinent scientific literature discussing the use of zebrafish in modeling gene mutations involved in mitochondria-related neurological human diseases. A critical analysis of the literature suggests that the zebrafish not only lends itself to exploration of the pathological consequences of mitochondrial energy output on the nervous system but could also serve as an attractive platform for future drugs in an as yet untreatable category of human disorders.
Collapse
Affiliation(s)
- Gianluca Fichi
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Valentina Naef
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Amilcare Barca
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | | | - Maria Marchese
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Vittoria Petruzzella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
28
|
Accogli A, Russell L, Sébire G, Rivière JB, St-Onge J, Addour-Boudrahem N, Laporte AD, Rouleau GA, Saint-Martin C, Srour M. Pathogenic variants in AIMP1 cause pontocerebellar hypoplasia. Neurogenetics 2019; 20:103-108. [PMID: 30924036 DOI: 10.1007/s10048-019-00572-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) is a non-catalytic component of the multi-tRNA synthetase complex which catalyzes the ligation of amino acids to the correct tRNAs. Pathogenic variants in several aminoacyl-tRNA synthetases genes have been linked to various neurological disorders, including leukodystrophies and pontocerebellar hypoplasias (PCH). To date, loss-of-function variants in AIMP1 have been associated with hypomyelinating leukodystrophy-3 (MIM 260600). Here, we report a novel frameshift AIMP1 homozygous variant (c.160delA,p.Lys54Asnfs) in a child with pontocerebellar hypoplasia and simplified gyral pattern, a phenotype not been previously described with AIMP1 variants, thus expanding the phenotypic spectrum. AIMP1 should be included in diagnostic PCH gene panels.
Collapse
Affiliation(s)
- Andrea Accogli
- Departments of Pediatrics, Neurology & Neurosurgery, MUHC-Research Institute, McGill University, 1001 Blvd Décarie, Montreal, H4A 3J1, Canada.,IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.,DINOGMI-Università degli Studi di Genova, 16126, Genoa, Italy
| | - Laura Russell
- Division of Medical Genetics, Department of Medicine, McGill University, Montreal, Canada
| | - Guillaume Sébire
- Departments of Pediatrics, Neurology & Neurosurgery, MUHC-Research Institute, McGill University, 1001 Blvd Décarie, Montreal, H4A 3J1, Canada
| | | | - Judith St-Onge
- McGill University Health Center (MUHC) Research Institute, Montreal, Canada
| | | | | | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Christine Saint-Martin
- Department of Radiology, Montreal Children's Hospital, McGill University Health Center, Montreal, Canada
| | - Myriam Srour
- Departments of Pediatrics, Neurology & Neurosurgery, MUHC-Research Institute, McGill University, 1001 Blvd Décarie, Montreal, H4A 3J1, Canada. .,McGill University Health Center (MUHC) Research Institute, Montreal, Canada.
| |
Collapse
|
29
|
Burns DT, Donkervoort S, Müller JS, Knierim E, Bharucha-Goebel D, Faqeih EA, Bell SK, AlFaifi AY, Monies D, Millan F, Retterer K, Dyack S, MacKay S, Morales-Gonzalez S, Giunta M, Munro B, Hudson G, Scavina M, Baker L, Massini TC, Lek M, Hu Y, Ezzo D, AlKuraya FS, Kang PB, Griffin H, Foley AR, Schuelke M, Horvath R, Bönnemann CG. Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 2018; 102:858-873. [PMID: 29727687 PMCID: PMC5986733 DOI: 10.1016/j.ajhg.2018.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
The exosome is a conserved multi-protein complex that is essential for correct RNA processing. Recessive variants in exosome components EXOSC3, EXOSC8, and RBM7 cause various constellations of pontocerebellar hypoplasia (PCH), spinal muscular atrophy (SMA), and central nervous system demyelination. Here, we report on four unrelated affected individuals with recessive variants in EXOSC9 and the effect of the variants on the function of the RNA exosome in vitro in affected individuals' fibroblasts and skeletal muscle and in vivo in zebrafish. The clinical presentation was severe, early-onset, progressive SMA-like motor neuronopathy, cerebellar atrophy, and in one affected individual, congenital fractures of the long bones. Three affected individuals of different ethnicity carried the homozygous c.41T>C (p.Leu14Pro) variant, whereas one affected individual was compound heterozygous for c.41T>C (p.Leu14Pro) and c.481C>T (p.Arg161∗). We detected reduced EXOSC9 in fibroblasts and skeletal muscle and observed a reduction of the whole multi-subunit exosome complex on blue-native polyacrylamide gel electrophoresis. RNA sequencing of fibroblasts and skeletal muscle detected significant >2-fold changes in genes involved in neuronal development and cerebellar and motor neuron degeneration, demonstrating the widespread effect of the variants. Morpholino oligonucleotide knockdown and CRISPR/Cas9-mediated mutagenesis of exosc9 in zebrafish recapitulated aspects of the human phenotype, as they have in other zebrafish models of exosomal disease. Specifically, portions of the cerebellum and hindbrain were absent, and motor neurons failed to develop and migrate properly. In summary, we show that variants in EXOSC9 result in a neurological syndrome combining cerebellar atrophy and spinal motoneuronopathy, thus expanding the list of human exosomopathies.
Collapse
|
30
|
Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, Morzherin YY, Warnick JE, Kalueff AV, Echevarria DJ. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol 2017; 174:1925-1944. [PMID: 28217866 PMCID: PMC5466539 DOI: 10.1111/bph.13754] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
| | - Adam D Collier
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
| | - Darya A Meshalkina
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
| | - Elana V Kysil
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
| | | | | | | | - Jason E Warnick
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Department of Behavioral SciencesArkansas Tech UniversityRussellvilleARUSA
| | - Allan V Kalueff
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
- Ural Federal UniversityEkaterinburgRussia
- Research Institute of Marine Drugs and Nutrition, College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangGuangdongChina
| | - David J Echevarria
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
| |
Collapse
|
31
|
Abstract
In modern biomedicine, the increasing need to develop experimental models to further our understanding of disease conditions and delineate innovative treatments has found in the zebrafish (Danio rerio) an experimental model, and indeed a valuable asset, to close the gap between in vitro and in vivo assays. Translation of ideas at a faster pace is vital in the field of neurodegeneration, with the attempt to slow or prevent the dramatic impact on the society's welfare being an essential priority. Our research group has pioneered the use of zebrafish to contribute to the quest for faster and improved understanding and treatment of neurodegeneration in concert with, and inspired by, many others who have primed the study of the zebrafish to understand and search for a cure for disorders of the nervous system. Aware of the many advantages this vertebrate model holds, here, we present an update on the recent zebrafish models available to study neurodegeneration with the goal of stimulating further interest and increasing the number of diseases and applications for which they can be exploited. We shall do so by citing and commenting on recent breakthroughs made possible via zebrafish, highlighting their benefits for the testing of therapeutics and dissecting of disease mechanisms.
Collapse
Affiliation(s)
- Rebeca Martín-Jiménez
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | | | | |
Collapse
|
32
|
Ognjenović J, Wu J, Matthies D, Baxa U, Subramaniam S, Ling J, Simonović M. The crystal structure of human GlnRS provides basis for the development of neurological disorders. Nucleic Acids Res 2016; 44:3420-31. [PMID: 26869582 PMCID: PMC4838373 DOI: 10.1093/nar/gkw082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 11/25/2022] Open
Abstract
Cytosolic glutaminyl-tRNA synthetase (GlnRS) is the singular enzyme responsible for translation of glutamine codons. Compound heterozygous mutations in GlnRS cause severe brain disorders by a poorly understood mechanism. Herein, we present crystal structures of the wild type and two pathological mutants of human GlnRS, which reveal, for the first time, the domain organization of the intact enzyme and the structure of the functionally important N-terminal domain (NTD). Pathological mutations mapping in the NTD alter the domain structure, and decrease catalytic activity and stability of GlnRS, whereas missense mutations in the catalytic domain induce misfolding of the enzyme. Our results suggest that the reduced catalytic efficiency and a propensity of GlnRS mutants to misfold trigger the disease development. This report broadens the spectrum of brain pathologies elicited by protein misfolding and provides a paradigm for understanding the role of mutations in aminoacyl-tRNA synthetases in neurological diseases.
Collapse
Affiliation(s)
- Jana Ognjenović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jiang Wu
- Department of Microbiology and Molecular Genetics, The University of Texas, Health Science Center at Houston, Houston, TX 77030, USA
| | - Doreen Matthies
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, The University of Texas, Health Science Center at Houston, Houston, TX 77030, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
33
|
Sin O, Nollen EAA. Regulation of protein homeostasis in neurodegenerative diseases: the role of coding and non-coding genes. Cell Mol Life Sci 2015; 72:4027-47. [PMID: 26190021 PMCID: PMC4605983 DOI: 10.1007/s00018-015-1985-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/10/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022]
Abstract
Protein homeostasis is fundamental for cell function and survival, because proteins are involved in all aspects of cellular function, ranging from cell metabolism and cell division to the cell's response to environmental challenges. Protein homeostasis is tightly regulated by the synthesis, folding, trafficking and clearance of proteins, all of which act in an orchestrated manner to ensure proteome stability. The protein quality control system is enhanced by stress response pathways, which take action whenever the proteome is challenged by environmental or physiological stress. Aging, however, damages the proteome, and such proteome damage is thought to be associated with aging-related diseases. In this review, we discuss the different cellular processes that define the protein quality control system and focus on their role in protein conformational diseases. We highlight the power of using small organisms to model neurodegenerative diseases and how these models can be exploited to discover genetic modulators of protein aggregation and toxicity. We also link findings from small model organisms to the situation in higher organisms and describe how some of the genetic modifiers discovered in organisms such as worms are functionally conserved throughout evolution. Finally, we demonstrate that the non-coding genome also plays a role in maintaining protein homeostasis. In all, this review highlights the importance of protein and RNA homeostasis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga Sin
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, 9700 AD, Groningen, The Netherlands
- Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003, Porto, Portugal
| | - Ellen A A Nollen
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, 9700 AD, Groningen, The Netherlands.
| |
Collapse
|
34
|
Neuropathologic Characterization of Pontocerebellar Hypoplasia Type 6 Associated With Cardiomyopathy and Hydrops Fetalis and Severe Multisystem Respiratory Chain Deficiency due to Novel RARS2 Mutations. J Neuropathol Exp Neurol 2015; 74:688-703. [PMID: 26083569 PMCID: PMC4470523 DOI: 10.1097/nen.0000000000000209] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Autosomal recessive mutations in the RARS2 gene encoding the mitochondrial arginyl-transfer RNA synthetase cause infantile-onset myoencephalopathy pontocerebellar hypoplasia type 6 (PCH6). We describe 2 sisters with novel compound heterozygous RARS2 mutations who presented perinatally with neurologic features typical of PCH6 but with additional features including cardiomyopathy, hydrops, and pulmonary hypoplasia and who died at 1 day and 14 days of age. Magnetic resonance imaging findings included marked cerebellar hypoplasia, gyral immaturity, punctate lesions in cerebral white matter, and unfused deep cerebral grey matter. Enzyme histochemistry of postmortem tissues revealed a near-global cytochrome c oxidase-deficiency; assessment of respiratory chain enzyme activities confirmed severe deficiencies involving complexes I, III, and IV. Molecular genetic studies revealed 2 RARS2 gene mutations: a c.1A>G, p.? variant predicted to abolish the initiator methionine, and a deep intronic c.613-3927C>T variant causing skipping of exons 6-8 in the mature RARS2 transcript. Neuropathologic investigation included low brain weights, small brainstem and cerebellum, deep cerebral white matter pathology, pontine nucleus neuron loss (in 1 sibling), and peripheral nerve pathology. Mitochondrial respiratory chain immunohistochemistry in brain tissues confirmed an absence of complexes I and IV immunoreactivity with sparing of mitochondrial numbers. These cases expand the clinical spectrum of RARS2 mutations, including antenatal features and widespread mitochondrial respiratory chain deficiencies in postmortem brain tissues.
Collapse
|
35
|
Anttonen AK, Hilander T, Linnankivi T, Isohanni P, French RL, Liu Y, Simonović M, Söll D, Somer M, Muth-Pawlak D, Corthals GL, Laari A, Ylikallio E, Lähde M, Valanne L, Lönnqvist T, Pihko H, Paetau A, Lehesjoki AE, Suomalainen A, Tyynismaa H. Selenoprotein biosynthesis defect causes progressive encephalopathy with elevated lactate. Neurology 2015; 85:306-15. [PMID: 26115735 DOI: 10.1212/wnl.0000000000001787] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/26/2015] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE We aimed to decipher the molecular genetic basis of disease in a cohort of children with a uniform clinical presentation of neonatal irritability, spastic or dystonic quadriplegia, virtually absent psychomotor development, axonal neuropathy, and elevated blood/CSF lactate. METHODS We performed whole-exome sequencing of blood DNA from the index patients. Detected compound heterozygous mutations were confirmed by Sanger sequencing. Structural predictions and a bacterial activity assay were performed to evaluate the functional consequences of the mutations. Mass spectrometry, Western blotting, and protein oxidation detection were used to analyze the effects of selenoprotein deficiency. RESULTS Neuropathology indicated laminar necrosis and severe loss of myelin, with neuron loss and astrogliosis. In 3 families, we identified a missense (p.Thr325Ser) and a nonsense (p.Tyr429*) mutation in SEPSECS, encoding the O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase, which was previously associated with progressive cerebellocerebral atrophy. We show that the mutations do not completely abolish the activity of SEPSECS, but lead to decreased selenoprotein levels, with demonstrated increase in oxidative protein damage in the patient brain. CONCLUSIONS These results extend the phenotypes caused by defective selenocysteine biosynthesis, and suggest SEPSECS as a candidate gene for progressive encephalopathies with lactate elevation.
Collapse
Affiliation(s)
- Anna-Kaisa Anttonen
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Taru Hilander
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Tarja Linnankivi
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Pirjo Isohanni
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Rachel L French
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Yuchen Liu
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Miljan Simonović
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Dieter Söll
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Mirja Somer
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Dorota Muth-Pawlak
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Garry L Corthals
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Anni Laari
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Emil Ylikallio
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Marja Lähde
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Leena Valanne
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Tuula Lönnqvist
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Helena Pihko
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Anders Paetau
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Anna-Elina Lehesjoki
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Anu Suomalainen
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - Henna Tyynismaa
- From the Department of Medical Genetics, Haartman Institute (A.-K.A., H.T.), Folkhälsan Institute of Genetics and Neuroscience Center (A.-K.A., A.L., A.-E.L.), Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (T.H., P.I., A.L., E.Y., A.-E.L.), University of Helsinki; Departments of Clinical Genetics (A.-K.A.) and Neurology (A.S.), Helsinki University Central Hospital; Department of Pediatric Neurology (T. Linnankivi, P.I., T. Lönnqvist, H.P.), Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland; Department of Biochemistry and Molecular Genetics (R.L.F., M. Simonović), University of Illinois at Chicago; Department of Molecular Biophysics and Biochemistry (Y.L., D.S.), Yale University, New Haven, CT; Norio Centre (M. Somer), Department of Medical Genetics, Helsinki, Finland; Turku Centre for Biotechnology (D.M.-P., G.L.C.), University of Turku and Åbo Akademi University; Department of Pediatric Neurology (M.L.), South Karelia Central Hospital, Lappeenranta; Department of Radiology (L.V.), HUS Medical Imaging Center, Helsinki; and Department of Pathology (A.P.), HUSLAB and University of Helsinki, Finland. G.L.C. is currently affiliated with Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Abstract
Activity of the RNA ligase RtcB has only two known functions: tRNA ligation after intron removal and XBP1 mRNA ligation during activation of the unfolded protein response. Here, we show that RtcB acts in neurons to inhibit axon regeneration after nerve injury. This function of RtcB is independent of its basal activities in tRNA ligation and the unfolded protein response. Furthermore, inhibition of axon regeneration is independent of the RtcB cofactor archease. Finally, RtcB is enriched at axon termini after nerve injury. Our data indicate that neurons have co-opted an ancient RNA modification mechanism to regulate specific and dynamic functions and identify neuronal RtcB activity as a critical regulator of neuronal growth potential.
Collapse
|
37
|
Kasher PR, Jenkinson EM, Briolat V, Gent D, Morrissey C, Zeef LAH, Rice GI, Levraud JP, Crow YJ. Characterization of samhd1 morphant zebrafish recapitulates features of the human type I interferonopathy Aicardi-Goutières syndrome. THE JOURNAL OF IMMUNOLOGY 2015; 194:2819-25. [PMID: 25672750 DOI: 10.4049/jimmunol.1403157] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In humans, loss of function mutations in the SAMHD1 (AGS5) gene cause a severe form of Aicardi-Goutières syndrome (AGS), an inherited inflammatory-mediated encephalopathy characterized by increased type I IFN activity and upregulation of IFN-stimulated genes (ISGs). In particular, SAMHD1-related AGS is associated with a distinctive cerebrovascular pathology that commonly leads to stroke. Although inflammatory responses are observed in immune cells cultured from Samhd1 null mouse models, these mice are physically healthy, specifically lacking a brain phenotype. We have investigated the use of zebrafish as an alternative system for generating a clinically relevant model of SAMHD1-related AGS. Using temporal gene knockdown of zebrafish samhd1, we observe hindbrain ventricular swelling and brain hemorrhage. Furthermore, loss of samhd1 or of another AGS-associated gene, adar, leads to a significant upregulation of innate immune-related genes and an increase in the number of cells expressing the zebrafish type I IFN ifnphi1. To our knowledge, this is the first example of an in vivo model of AGS that recapitulates features of both the innate immune and neurological characteristics of the disease. The phenotypes associated with loss of samhd1 and adar suggest a function of these genes in controlling innate immune processes conserved to zebrafish, thereby also contributing to our understanding of antiviral signaling in this model organism.
Collapse
Affiliation(s)
- Paul R Kasher
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9WL, United Kingdom;
| | - Emma M Jenkinson
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Valérie Briolat
- Institut Pasteur, Macrophages et Développement de l'Immunité, F-75015 Paris, France; Centre National de la Recherche Scientifique, Unité de Recherche Associée 2578, F-75015 Paris, France
| | - David Gent
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Catherine Morrissey
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Leo A H Zeef
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Gillian I Rice
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Jean-Pierre Levraud
- Institut Pasteur, Macrophages et Développement de l'Immunité, F-75015 Paris, France; Centre National de la Recherche Scientifique, Unité de Recherche Associée 2578, F-75015 Paris, France
| | - Yanick J Crow
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9WL, United Kingdom; Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Necker Hospital for Sick Children, 75015 Paris, France
| |
Collapse
|
38
|
Abstract
Pontocerebellar hypoplasia is a group of severe developmental disorders with prenatal onset affecting the growth and function of the brainstem and cerebellum. The rarity and genetic heterogeneity of this group of disorders can make molecular diagnosis challenging. We report 3 siblings who were born to nonconsanguineous parents, were hypotonic at birth, developed seizures, had repeated apneic spells, and died within 2 months of life. Neuroimaging showed that all had profound cerebellar hypoplasia and simplified cortical gyration. Genetic analysis by whole-exome sequencing demonstrated compound heterozygous mutations in the mitochondrial arginyl transfer RNA synthetase gene RARS2, indicating that the children had pontocerebellar hypoplasia type 6. Autopsies on the younger twin siblings revealed small and immature cerebella at an approximate developmental age of less than 18 weeks. The basis pontis showed regressive changes, and the medulla had marked inferior olivary hypoplasia. The brains of both twins were microencephalic and had simplified gyri; cortices were immature, and deep white matter had extensive astrocytosis. The findings suggest a near-normal embryologic period followed by midgestation developmental slowing or cessation and later regression in select anatomic regions. This is the first detailed description of neuropathologic findings associated with pontocerebellar hypoplasia type 6 and demonstrates the profound effects of RARS2 disruption during early neurodevelopment.
Collapse
|
39
|
Weitzer S, Hanada T, Penninger JM, Martinez J. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:47-63. [DOI: 10.1002/wrna.1255] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Stefan Weitzer
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Toshikatsu Hanada
- TK Project, Medical Innovation Center; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Josef M. Penninger
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Javier Martinez
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| |
Collapse
|
40
|
Yoshihisa T. Handling tRNA introns, archaeal way and eukaryotic way. Front Genet 2014; 5:213. [PMID: 25071838 PMCID: PMC4090602 DOI: 10.3389/fgene.2014.00213] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/20/2014] [Indexed: 11/25/2022] Open
Abstract
Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo Ako-gun, Hyogo, Japan
| |
Collapse
|
41
|
Boczonadi V, Müller JS, Pyle A, Munkley J, Dor T, Quartararo J, Ferrero I, Karcagi V, Giunta M, Polvikoski T, Birchall D, Princzinger A, Cinnamon Y, Lützkendorf S, Piko H, Reza M, Florez L, Santibanez-Koref M, Griffin H, Schuelke M, Elpeleg O, Kalaydjieva L, Lochmüller H, Elliott DJ, Chinnery PF, Edvardson S, Horvath R. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun 2014; 5:4287. [PMID: 24989451 PMCID: PMC4102769 DOI: 10.1038/ncomms5287] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022] Open
Abstract
The exosome is a multi-protein complex, required for the degradation of AU-rich element (ARE) containing messenger RNAs (mRNAs). EXOSC8 is an essential protein of the exosome core, as its depletion causes a severe growth defect in yeast. Here we show that homozygous missense mutations in EXOSC8 cause progressive and lethal neurological disease in 22 infants from three independent pedigrees. Affected individuals have cerebellar and corpus callosum hypoplasia, abnormal myelination of the central nervous system or spinal motor neuron disease. Experimental downregulation of EXOSC8 in human oligodendroglia cells and in zebrafish induce a specific increase in ARE mRNAs encoding myelin proteins, showing that the imbalanced supply of myelin proteins causes the disruption of myelin, and explaining the clinical presentation. These findings show the central role of the exosomal pathway in neurodegenerative disease. The exosome is responsible for mRNA degradation, which is an important step in the regulation of gene expression. Here the authors report that homozygous missense mutations in the exosome subunit, EXOSC8, may cause neurodegenerative disease in infants through the dysregulation of myelin expression.
Collapse
Affiliation(s)
- Veronika Boczonadi
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Juliane S Müller
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Angela Pyle
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Jennifer Munkley
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Talya Dor
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Jade Quartararo
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Ileana Ferrero
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Veronika Karcagi
- Department of Molecular Genetics and Diagnostics, NIEH, Albert Florian ut 2-6, Budapest 1097, Hungary
| | - Michele Giunta
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Tuomo Polvikoski
- Department of Pathology, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daniel Birchall
- Neuroradiology Department, Regional Neurosciences Centre, Queen Victoria Road, Newcastle upon Tyne NE1 4PL, UK
| | - Agota Princzinger
- Department of Paediatrics, Josa Andras Hospital, Szent Istvan utca 6, Nyiregyhaza 4400, Hungary
| | - Yuval Cinnamon
- 1] The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel [2] Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization, The Volcani Center, P.O.Box 6, Bet Dagan 50250, Israel
| | - Susanne Lützkendorf
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Charité-Platz 1, 10117 Berlin, Germany
| | - Henriett Piko
- Department of Molecular Genetics and Diagnostics, NIEH, Albert Florian ut 2-6, Budapest 1097, Hungary
| | - Mojgan Reza
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Laura Florez
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, 35 Stirling Highway Crawley, Western Australia 6009 Perth, Australia
| | - Mauro Santibanez-Koref
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Helen Griffin
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Charité-Platz 1, 10117 Berlin, Germany
| | - Orly Elpeleg
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Luba Kalaydjieva
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, 35 Stirling Highway Crawley, Western Australia 6009 Perth, Australia
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Shimon Edvardson
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
42
|
Schaffer AE, Eggens VRC, Caglayan AO, Reuter MS, Scott E, Coufal NG, Silhavy JL, Xue Y, Kayserili H, Yasuno K, Rosti RO, Abdellateef M, Caglar C, Kasher PR, Cazemier JL, Weterman MA, Cantagrel V, Cai N, Zweier C, Altunoglu U, Satkin NB, Aktar F, Tuysuz B, Yalcinkaya C, Caksen H, Bilguvar K, Fu XD, Trotta CR, Gabriel S, Reis A, Gunel M, Baas F, Gleeson JG. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 2014; 157:651-63. [PMID: 24766810 DOI: 10.1016/j.cell.2014.03.049] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 01/07/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans.
Collapse
Affiliation(s)
- Ashleigh E Schaffer
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Veerle R C Eggens
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9,1105AZ Amsterdam, the Netherlands
| | - Ahmet Okay Caglayan
- Yale Program on Neurogenetics, Departments of Neurosurgery, Neurobiology, and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Miriam S Reuter
- Institute of Human Genetics, Universität Erlangen-Nürnberg, Schwabachanlage 10, Erlangen 91054, Germany
| | - Eric Scott
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole G Coufal
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer L Silhavy
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuanchao Xue
- Cellular Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hulya Kayserili
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Millet Caddesi, 34093 Fatih/Istanbul, Turkey
| | - Katsuhito Yasuno
- Yale Program on Neurogenetics, Departments of Neurosurgery, Neurobiology, and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rasim Ozgur Rosti
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mostafa Abdellateef
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caner Caglar
- Yale Program on Neurogenetics, Departments of Neurosurgery, Neurobiology, and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Paul R Kasher
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9,1105AZ Amsterdam, the Netherlands
| | - J Leonie Cazemier
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9,1105AZ Amsterdam, the Netherlands
| | - Marian A Weterman
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9,1105AZ Amsterdam, the Netherlands
| | - Vincent Cantagrel
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Institut IMAGINE, INSERM U1163, Faculté Paris-Descartes, 75015 Paris, France
| | - Na Cai
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christiane Zweier
- Institute of Human Genetics, Universität Erlangen-Nürnberg, Schwabachanlage 10, Erlangen 91054, Germany
| | - Umut Altunoglu
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Millet Caddesi, 34093 Fatih/Istanbul, Turkey
| | - N Bilge Satkin
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Millet Caddesi, 34093 Fatih/Istanbul, Turkey
| | - Fesih Aktar
- Department of Pediatrics, Diyarbakir State Hospital, 21100 Diyarbakir, Turkey
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Cerrahpaşa Medical School, Istanbul University, 34098 Istanbul, Turkey
| | - Cengiz Yalcinkaya
- Department of Neurology, Division of Child Neurology, Cerrahpaşa Medical School, Istanbul University, 34098 Istanbul, Turkey
| | - Huseyin Caksen
- Department of Pediatrics, Meram Medical School, Necmettin Erbakan University, 42080 Konya, Turkey
| | - Kaya Bilguvar
- Yale Program on Neurogenetics, Departments of Neurosurgery, Neurobiology, and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiang-Dong Fu
- Cellular Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Stacey Gabriel
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - André Reis
- Institute of Human Genetics, Universität Erlangen-Nürnberg, Schwabachanlage 10, Erlangen 91054, Germany
| | - Murat Gunel
- Yale Program on Neurogenetics, Departments of Neurosurgery, Neurobiology, and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9,1105AZ Amsterdam, the Netherlands
| | - Joseph G Gleeson
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet 2014; 5:158. [PMID: 24917879 PMCID: PMC4042891 DOI: 10.3389/fgene.2014.00158] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022] Open
Abstract
Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are “hotspots” for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| | | | - Susan M Robey-Bond
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| |
Collapse
|
44
|
Keightley MC, Crowhurst MO, Layton JE, Beilharz T, Markmiller S, Varma S, Hogan BM, de Jong-Curtain TA, Heath JK, Lieschke GJ. In vivo mutation of pre-mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation. FEBS Lett 2013; 587:2150-7. [PMID: 23714367 DOI: 10.1016/j.febslet.2013.05.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 01/09/2023]
Abstract
Mutated spliceosome components are recurrently being associated with perturbed tissue development and disease pathogenesis. Cephalophŏnus (cph), is a zebrafish mutant carrying an early premature STOP codon in the spliceosome component Prpf8 (pre-mRNA processing factor 8). Cph initially develops normally, but then develops widespread cell death, especially in neurons, and is embryonic lethal. Cph mutants accumulate aberrantly spliced transcripts retaining both U2- and U12-type introns. Within early haematopoiesis, myeloid differentiation is impaired, suggesting Prpf8 is required for haematopoietic development. Cph provides an animal model for zygotic PRPF8 dysfunction diseases and for evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Maria-Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cassandrini D, Cilio MR, Bianchi M, Doimo M, Balestri M, Tessa A, Rizza T, Sartori G, Meschini MC, Nesti C, Tozzi G, Petruzzella V, Piemonte F, Bisceglia L, Bruno C, Dionisi-Vici C, D'Amico A, Fattori F, Carrozzo R, Salviati L, Santorelli FM, Bertini E. Pontocerebellar hypoplasia type 6 caused by mutations in RARS2: definition of the clinical spectrum and molecular findings in five patients. J Inherit Metab Dis 2013; 36:43-53. [PMID: 22569581 DOI: 10.1007/s10545-012-9487-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/26/2012] [Accepted: 04/05/2012] [Indexed: 11/27/2022]
Abstract
Recessive mutations in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been associated with early onset encephalopathy with signs of oxidative phosphorylation defects classified as pontocerebellar hypoplasia 6. We describe clinical, neuroimaging and molecular features on five patients from three unrelated families who displayed mutations in RARS2. All patients rapidly developed a neonatal or early-infantile epileptic encephalopathy with intractable seizures. The long-term follow-up revealed a virtual absence of psychomotor development, progressive microcephaly, and feeding difficulties. Mitochondrial respiratory chain enzymes in muscle and fibroblasts were normal in two. Blood and CSF lactate was abnormally elevated in all five patients at early stages while appearing only occasionally abnormal with the progression of the disease. Cerebellar vermis hypoplasia with normal aspect of the cerebral and cerebellar hemispheres appeared within the first months of life at brain MRI. In three patients follow-up neuroimaging revealed a progressive pontocerebellar and cerebral cortical atrophy. Molecular investigations of RARS2 disclosed the c.25A>G/p.I9V and the c.1586+3A>T in family A, the c.734G>A/p.R245Q and the c.1406G>A/p.R469H in family B, and the c.721T>A/p.W241R and c.35A>G/p.Q12R in family C. Functional complementation studies in Saccharomyces cerevisiae showed that mutation MSR1-R531H (equivalent to human p.R469H) abolished respiration whereas the MSR1-R306Q strain (corresponding to p.R245Q) displayed a reduced growth on non-fermentable YPG medium. Although mutations functionally disrupted yeast we found a relatively well preserved arginine aminoacylation of mitochondrial tRNA. Clinical and neuroimaging findings are important clues to raise suspicion and to reach diagnostic accuracy for RARS2 mutations considering that biochemical abnormalities may be absent in muscle biopsy.
Collapse
|
46
|
Zafeiriou DI, Ververi A, Tsitlakidou A, Anastasiou A, Vargiami E. Recurrent episodes of rhabdomyolysis in pontocerebellar hypoplasia type 2. Neuromuscul Disord 2012. [PMID: 23177318 DOI: 10.1016/j.nmd.2012.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pontocerebellar hypoplasia type 2 is an autosomal recessive disorder characterized by hypoplasia and atrophy of the cerebellum and pons, leading to microcephaly, dystonia/dyskinesia, seizures, and severe cognitive impairment. Until lately it was considered a CNS-refined disease, but recent reports have associated it with muscular defects, as well. A 5-year-old boy with genetically confirmed pontocerebellar hypoplasia type 2 is described. The patient had all the clinical and radiological features of the disease, but he, additionally, exhibited two episodes of rhabdomyolysis precipitated by respiratory infections. The possible mechanisms associating encephalopathy and myopathy in pontocerebellar hypoplasia type 2 are discussed.
Collapse
Affiliation(s)
- Dimitrios I Zafeiriou
- 1st Department of Pediatrics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
47
|
Weterman MAJ, Sorrentino V, Kasher PR, Jakobs ME, van Engelen BGM, Fluiter K, de Wissel MB, Sizarov A, Nürnberg G, Nürnberg P, Zelcer N, Schelhaas HJ, Baas F. A frameshift mutation in LRSAM1 is responsible for a dominant hereditary polyneuropathy. Hum Mol Genet 2012; 21:358-70. [PMID: 22012984 PMCID: PMC3276280 DOI: 10.1093/hmg/ddr471] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/07/2011] [Indexed: 12/22/2022] Open
Abstract
Despite the high number of genes identified in hereditary polyneuropathies/Charcot-Marie-Tooth (CMT) disease, the genetic defect in many families is still unknown. Here we report the identification of a new gene for autosomal dominant axonal neuropathy in a large three-generation family. Linkage analysis identified a 5 Mb region on 9q33-34 with a LOD score of 5.12. Sequence capture and next-generation sequencing of the region of interest identified five previously unreported non-synonymous heterozygous single nucleotide changes or indels, four of which were confirmed by Sanger sequencing. Two sequence variants co-segregated with the disease, and one, a 2 bp insertion in the last exon of LRSAM1, was also absent in 676 ethnicity-matched control chromosomes. This frameshift mutation (p.Leu708Argfx28) is located in the C-terminal RING finger motif of the encoded protein. Ubiquitin ligase activity in transfected cells with constructs carrying the patient mutation was affected as measured by a higher level of abundance of TSG101, the only reported target of LRSAM1. Injections of morpholino oligonucleotides in zebrafish embryos directed against the ATG or last splice site of zebrafish Lrsam1 disturbed neurodevelopment, showing a less organized neural structure and, in addition, affected tail formation and movement. LRSAM1 is highly expressed in adult spinal cord motoneurons as well as in fetal spinal cord and muscle tissue. Recently, a homozygous mutation in LRSAM1 was proposed as a strong candidate for the disease in a family with recessive axonal polyneuropathy. Our data strongly support the hypothesis that LRSAM1 mutations can cause both dominant and recessive forms of CMT.
Collapse
|
48
|
Namavar Y, Barth PG, Baas F, Poll-The BT. Reply: Mutations of TSEN and CASK genes are prevalent in pontocerebellar hypoplasias type 2 and 4. Brain 2012. [DOI: 10.1093/brain/awr109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Namavar Y, Barth PG, Poll-The BT, Baas F. Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J Rare Dis 2011; 6:50. [PMID: 21749694 PMCID: PMC3159098 DOI: 10.1186/1750-1172-6-50] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/12/2011] [Indexed: 01/24/2023] Open
Abstract
Pontocerebellar Hypoplasia (PCH) is group of very rare, inherited progressive neurodegenerative disorders with prenatal onset. Up to now seven different subtypes have been reported (PCH1-7). The incidence of each subtype is unknown. All subtypes share common characteristics, including hypoplasia/atrophy of cerebellum and pons, progressive microcephaly, and variable cerebral involvement. Patients have severe cognitive and motor handicaps and seizures are often reported. Treatment is only symptomatic and prognosis is poor, as most patients die during infancy or childhood. The genetic basis of different subtypes has been elucidated, which makes prenatal testing possible in families with mutations. Mutations in three tRNA splicing endonuclease subunit genes were found to be responsible for PCH2, PCH4 and PCH5. Mutations in the nuclear encoded mitochondrial arginyl- tRNA synthetase gene underlie PCH6. The tRNA splicing endonuclease, the mitochondrial arginyl- tRNA synthetase and the vaccinia related kinase1 are mutated in the minority of PCH1 cases. These genes are involved in essential processes in protein synthesis in general and tRNA processing in particular. In this review we describe the neuroradiological, neuropathological, clinical and genetic features of the different PCH subtypes and we report on in vitro and in vivo studies on the tRNA splicing endonuclease and mitochondrial arginyl-tRNA synthetase and discuss their relation to pontocerebellar hypoplasia.
Collapse
Affiliation(s)
- Yasmin Namavar
- Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|