1
|
Lee YH, Jeong EY, Kim YH, Park JH, Yoon JH, Lee YJ, Lee SH, Nam YK, Cha SY, Park JS, Kim SY, Byun Y, Shin SS, Park JT. Identification of senescence rejuvenation mechanism of Magnolia officinalis extract including honokiol as a core ingredient. Aging (Albany NY) 2025; 17:497-523. [PMID: 39992207 PMCID: PMC11892931 DOI: 10.18632/aging.206207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Reactive oxygen species (ROS) contribute to aging by mainly damaging cellular organelles and DNA. Although strategies to reduce ROS production have been proposed as important components of anti-aging therapy, effective mechanisms to lower ROS levels have not yet been identified. Here, we screened natural compounds frequently used as cosmetic ingredients to find substances that reduce ROS levels. Magnolia officinalis (M. officinalis) extract significantly lowered the levels of ROS in senescent fibroblasts. A novel mechanism by which M. officinalis extract restores mitochondrial function to reduce ROS, a byproduct of inefficient electron transport, was discovered. The reduction of ROS by M. officinalis extracts reversed senescence-associated phenotypes and skin aging. Then, honokiol was demonstrated as a core ingredient of M. officinalis extract that exhibits antioxidant effects. Honokiol functions as an oxygen radical scavenger through redox processes, also significantly reduced ROS levels by restoring mitochondrial function. In summary, our study identified a novel mechanism by which M. officinalis extract reverses aging and skin aging by reducing ROS through restoring mitochondrial function. These new findings will not only expand our understanding of aging and associated diseases, but also provide new approaches to anti-aging treatments.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Young Jeong
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Ye Hyang Kim
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Ji Ho Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yoo Jin Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - So Hun Lee
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Yeon Kyung Nam
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - So Yoon Cha
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Jin Seong Park
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - So Yeon Kim
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Song Seok Shin
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
Joudeh LA, Schuck PL, Van NM, DiCintio AJ, Stewart JA, Waldman AS. Progerin can induce DNA damage in the absence of global changes in replication or cell proliferation. PLoS One 2024; 19:e0315084. [PMID: 39636792 PMCID: PMC11620420 DOI: 10.1371/journal.pone.0315084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs) and alterations in the nature of DSB repair. The source of DSBs in HGPS is often attributed to stalling and subsequent collapse of replication forks in conjunction with faulty recruitment of repair factors to damage sites. In this work, we used a model system involving immortalized human cell lines to investigate progerin-induced genomic damage. Using an immunofluorescence approach to visualize phosphorylated histone H2AX foci which mark sites of genomic damage, we report that cells engineered to express progerin displayed a significant elevation of endogenous damage in the absence of any change in the cell cycle profile or doubling time of cells. Genomic damage was enhanced and persistent in progerin-expressing cells treated with hydroxyurea. Overexpression of wild-type lamin A did not elicit the outcomes associated with progerin expression. Our results show that DNA damage caused by progerin can occur independently from global changes in replication or cell proliferation.
Collapse
Affiliation(s)
- Liza A. Joudeh
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - P. Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Nina M. Van
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alannah J. DiCintio
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jason A. Stewart
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Alan S. Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
3
|
Hartinger R, Singh K, Leverett J, Djabali K. Enhancing Cellular Homeostasis: Targeted Botanical Compounds Boost Cellular Health Functions in Normal and Premature Aging Fibroblasts. Biomolecules 2024; 14:1310. [PMID: 39456243 PMCID: PMC11506649 DOI: 10.3390/biom14101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The human skin, the body's largest organ, undergoes continuous renewal but is significantly impacted by aging, which impairs its function and leads to visible changes. This study aimed to identify botanical compounds that mimic the anti-aging effects of baricitinib, a known JAK1/2 inhibitor. Through in silico screening of a botanical compound library, 14 potential candidates were identified, and 7 were further analyzed for their effects on cellular aging. The compounds were tested on both normal aged fibroblasts and premature aging fibroblasts derived from patients with Hutchinson-Gilford Progeria Syndrome (HGPS). Results showed that these botanical compounds effectively inhibited the JAK/STAT pathway, reduced the levels of phosphorylated STAT1 and STAT3, and ameliorated phenotypic changes associated with cellular aging. Treatments improved cell proliferation, reduced senescence markers, and enhanced autophagy without inducing cytotoxicity. Compounds, such as Resveratrol, Bisdemethoxycurcumin, Pinosylvin, Methyl P-Hydroxycinnamate, cis-Pterostilbene, and (+)-Gallocatechin, demonstrated significant improvements in both control and HGPS fibroblasts. These findings suggest that these botanical compounds have the potential to mitigate age-related cellular alterations, offering promising strategies for anti-aging therapies, particularly for skin health. Further in vivo studies are warranted to validate these results and explore their therapeutic applications.
Collapse
Affiliation(s)
- Ramona Hartinger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany;
| | - Khushboo Singh
- Amway Corporation, Innovation and Science, 7575 Fulton Street East, Ada, MI 49355, USA
| | - Jesse Leverett
- Amway Corporation, Innovation and Science, 7575 Fulton Street East, Ada, MI 49355, USA
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany;
| |
Collapse
|
4
|
Yoon JH, Kim YH, Jeong EY, Lee YH, Byun Y, Shin SS, Park JT. Senescence Rejuvenation through Reduction in Mitochondrial Reactive Oxygen Species Generation by Polygonum cuspidatum Extract: In Vitro Evidence. Antioxidants (Basel) 2024; 13:1110. [PMID: 39334769 PMCID: PMC11429016 DOI: 10.3390/antiox13091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress caused by reactive oxygen species (ROS) is one of the major causes of senescence. Strategies to reduce ROS are known to be important factors in reversing senescence, but effective strategies have not been found. In this study, we screened substances commonly used as cosmetic additives to find substances with antioxidant effects. Polygonum cuspidatum (P. cuspidatum) extract significantly reduced ROS levels in senescent cells. A novel mechanism was discovered in which P. cuspidatum extract reduced ROS, a byproduct of inefficient oxidative phosphorylation (OXPHOS), by increasing OXPHOS efficiency. The reduction in ROS by P. cuspidatum extract restored senescence-associated phenotypes and enhanced skin protection. Then, we identified polydatin as the active ingredient of P. cuspidatum extract that exhibited antioxidant effects. Polydatin, which contains stilbenoid polyphenols that act as singlet oxygen scavengers through redox reactions, increased OXPHOS efficiency and subsequently restored senescence-associated phenotypes. In summary, our data confirmed the effects of P. cuspidatum extract on senescence rejuvenation and skin protection through ROS reduction. This novel finding may be used as a treatment in senescence rejuvenation in clinical and cosmetic fields.
Collapse
Affiliation(s)
- Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
| | - Ye Hyang Kim
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Eun Young Jeong
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| | - Song Seok Shin
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
5
|
Joudeh LA, Logan Schuck P, Van NM, DiCintio AJ, Stewart JA, Waldman AS. Progerin Can Induce DNA Damage in the Absence of Global Changes in Replication or Cell Proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601729. [PMID: 39005395 PMCID: PMC11244969 DOI: 10.1101/2024.07.02.601729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs) and alterations in the nature of DSB repair. The source of DSBs in HGPS is often attributed to stalling and subsequent collapse of replication forks in conjunction with faulty recruitment of repair factors to damage sites. In this work, we used a model system involving immortalized human cell lines to investigate progerin-induced genomic damage. Using an immunofluorescence approach to visualize phosphorylated histone H2AX foci which mark sites of genomic damage, we report that cells engineered to express progerin displayed a significant elevation of endogenous damage in the absence of any change in the cell cycle profile or doubling time of cells. Genomic damage was enhanced and persistent in progerin-expressing cells treated with hydroxyurea. Overexpression of wild-type lamin A did not elicit the outcomes associated with progerin expression. Our results show that DNA damage caused by progerin can occur independently from global changes in replication or cell proliferation.
Collapse
Affiliation(s)
- Liza A. Joudeh
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - P. Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Nina M. Van
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Alannah J. DiCintio
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Jason A. Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101
| | - Alan S. Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| |
Collapse
|
6
|
Ngubo M, Chen Z, McDonald D, Karimpour R, Shrestha A, Yockell‐Lelièvre J, Laurent A, Besong OTO, Tsai EC, Dilworth FJ, Hendzel MJ, Stanford WL. Progeria-based vascular model identifies networks associated with cardiovascular aging and disease. Aging Cell 2024; 23:e14150. [PMID: 38576084 PMCID: PMC11258467 DOI: 10.1111/acel.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Hutchinson-Gilford Progeria syndrome (HGPS) is a lethal premature aging disorder caused by a de novo heterozygous mutation that leads to the accumulation of a splicing isoform of Lamin A termed progerin. Progerin expression deregulates the organization of the nuclear lamina and the epigenetic landscape. Progerin has also been observed to accumulate at low levels during normal aging in cardiovascular cells of adults that do not carry genetic mutations linked with HGPS. Therefore, the molecular mechanisms that lead to vascular dysfunction in HGPS may also play a role in vascular aging-associated diseases, such as myocardial infarction and stroke. Here, we show that HGPS patient-derived vascular smooth muscle cells (VSMCs) recapitulate HGPS molecular hallmarks. Transcriptional profiling revealed cardiovascular disease remodeling and reactive oxidative stress response activation in HGPS VSMCs. Proteomic analyses identified abnormal acetylation programs in HGPS VSMC replication fork complexes, resulting in reduced H4K16 acetylation. Analysis of acetylation kinetics revealed both upregulation of K16 deacetylation and downregulation of K16 acetylation. This correlates with abnormal accumulation of error-prone nonhomologous end joining (NHEJ) repair proteins on newly replicated chromatin. The knockdown of the histone acetyltransferase MOF recapitulates preferential engagement of NHEJ repair activity in control VSMCs. Additionally, we find that primary donor-derived coronary artery vascular smooth muscle cells from aged individuals show similar defects to HGPS VSMCs, including loss of H4K16 acetylation. Altogether, we provide insight into the molecular mechanisms underlying vascular complications associated with HGPS patients and normative aging.
Collapse
Affiliation(s)
- Mzwanele Ngubo
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Ottawa Institute of Systems BiologyOttawaOntarioCanada
| | - Zhaoyi Chen
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Darin McDonald
- Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Rana Karimpour
- Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Amit Shrestha
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Julien Yockell‐Lelièvre
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Aurélie Laurent
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Université de StrasbourgStrasbourgFrance
| | - Ojong Tabi Ojong Besong
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- School of BioscienceUniversity of SkövdeSkövdeSweden
| | - Eve C. Tsai
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Ottawa Institute of Systems BiologyOttawaOntarioCanada
- Division of Neurosurgery, Department of Surgery, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - F. Jeffrey Dilworth
- Department of Cell and Regenerative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Michael J. Hendzel
- Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - William L. Stanford
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Ottawa Institute of Systems BiologyOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
- Department of Biochemistry, Microbiology & ImmunologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
7
|
Pande S, Ghosh DK. Nuclear proteostasis imbalance in laminopathy-associated premature aging diseases. FASEB J 2023; 37:e23116. [PMID: 37498235 DOI: 10.1096/fj.202300878r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Debasish Kumar Ghosh
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
8
|
Kristiani L, Kim Y. The Interplay between Oxidative Stress and the Nuclear Lamina Contributes to Laminopathies and Age-Related Diseases. Cells 2023; 12:cells12091234. [PMID: 37174634 PMCID: PMC10177617 DOI: 10.3390/cells12091234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress is a physiological condition that arises when there is an imbalance between the production of reactive oxygen species (ROS) and the ability of cells to neutralize them. ROS can damage cellular macromolecules, including lipids, proteins, and DNA, leading to cellular senescence and physiological aging. The nuclear lamina (NL) is a meshwork of intermediate filaments that provides structural support to the nucleus and plays crucial roles in various nuclear functions, such as DNA replication and transcription. Emerging evidence suggests that oxidative stress disrupts the integrity and function of the NL, leading to dysregulation of gene expression, DNA damage, and cellular senescence. This review highlights the current understanding of the interplay between oxidative stress and the NL, along with its implications for human health. Specifically, elucidation of the mechanisms underlying the interplay between oxidative stress and the NL is essential for the development of effective treatments for laminopathies and age-related diseases.
Collapse
Affiliation(s)
- Lidya Kristiani
- Department of Biomedicine, School of Life Science, Indonesia International Institute for Life Science, Jakarta 13210, Indonesia
| | - Youngjo Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan 31151, Republic of Korea
| |
Collapse
|
9
|
Lee YH, Kuk MU, So MK, Song ES, Lee H, Ahn SK, Kwon HW, Park JT, Park SC. Targeting Mitochondrial Oxidative Stress as a Strategy to Treat Aging and Age-Related Diseases. Antioxidants (Basel) 2023; 12:antiox12040934. [PMID: 37107309 PMCID: PMC10136354 DOI: 10.3390/antiox12040934] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria are one of the organelles undergoing rapid alteration during the senescence process. Senescent cells show an increase in mitochondrial size, which is attributed to the accumulation of defective mitochondria, which causes mitochondrial oxidative stress. Defective mitochondria are also targets of mitochondrial oxidative stress, and the vicious cycle between defective mitochondria and mitochondrial oxidative stress contributes to the onset and development of aging and age-related diseases. Based on the findings, strategies to reduce mitochondrial oxidative stress have been suggested for the effective treatment of aging and age-related diseases. In this article, we discuss mitochondrial alterations and the consequent increase in mitochondrial oxidative stress. Then, the causal role of mitochondrial oxidative stress on aging is investigated by examining how aging and age-related diseases are exacerbated by induced stress. Furthermore, we assess the importance of targeting mitochondrial oxidative stress for the regulation of aging and suggest different therapeutic strategies to reduce mitochondrial oxidative stress. Therefore, this review will not only shed light on a new perspective on the role of mitochondrial oxidative stress in aging but also provide effective therapeutic strategies for the treatment of aging and age-related diseases through the regulation of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Moon Kyoung So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Soon Kil Ahn
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
10
|
Liu M, Liu S, Song C, Zhu H, Wu B, Zhang A, Zhao H, Wen Z, Gao J. Pre-meiotic deletion of PEX5 causes spermatogenesis failure and infertility in mice. Cell Prolif 2023; 56:e13365. [PMID: 36433756 PMCID: PMC9977671 DOI: 10.1111/cpr.13365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Peroxisomes are involved in the regulation of various pathological processes. Peroxisomal biogenesis factor 5 (PEX5), which plays an essential role in peroxisomal biogenesis, is critical for reactive oxygen species (ROS) accumulation. However, its underlying functions in spermatogenesis have not yet been identified. Pex5 was deleted by crossing Stra8-Cre mice with Pex5flox/flox mice before the onset of meiosis. The morphology of testes and epididymides, spermatogenesis function, and fertility in both wild type (WT) and Pex5-/- mice were analysed by haematoxylin and eosin (HE) and immunofluorescent staining. Mechanism of PEX5 affecting peroxisomes and spermatogenesis were validated by Western blot and transmission electron microscopy (TEM). Transcriptome RNA sequencing (RNA-seq) was used to profile the dysregulated genes in testes from WT and Pex5-/- mice on postnatal day (P) 35. The adult Pex5 knockout male mice were completely sterile with no mature sperm production. Loss of Pex5 in spermatocytes resulted in multinucleated giant cell formation, meiotic arrest, abnormal tubulin expression, and deformed acrosome formation. Furthermore, Pex5 deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene stage. Impaired peroxisome function in Pex5 knockout mice induced ROS redundancy, which in turn led to an increase in germ cell apoptosis and a decline in autophagy. Pex5 regulates ROS during meiosis and is essential for spermatogenesis and male fertility in mice.
Collapse
Affiliation(s)
- Min Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Shuangyuan Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Chenyang Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Bin Wu
- Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Hui Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Zongzhuang Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiangang Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| |
Collapse
|
11
|
Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery. Cells 2023; 12:cells12050691. [PMID: 36899828 PMCID: PMC10000945 DOI: 10.3390/cells12050691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity.
Collapse
|
12
|
Fragoso-Luna A, Askjaer P. The Nuclear Envelope in Ageing and Progeria. Subcell Biochem 2023; 102:53-75. [PMID: 36600129 DOI: 10.1007/978-3-031-21410-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Development from embryo to adult, organismal homeostasis and ageing are consecutive processes that rely on several functions of the nuclear envelope (NE). The NE compartmentalises the eukaryotic cells and provides physical stability to the genetic material in the nucleus. It provides spatiotemporal regulation of gene expression by controlling nuclear import and hence access of transcription factors to target genes as well as organisation of the genome into open and closed compartments. In addition, positioning of chromatin relative to the NE is important for DNA replication and repair and thereby also for genome stability. We discuss here the relevance of the NE in two classes of age-related human diseases. Firstly, we focus on the progeria syndromes Hutchinson-Gilford (HGPS) and Nestor-Guillermo (NGPS), which are caused by mutations in the LMNA and BANF1 genes, respectively. Both genes encode ubiquitously expressed components of the nuclear lamina that underlines the nuclear membranes. HGPS and NGPS patients manifest symptoms of accelerated ageing and cells from affected individuals show similar defects as cells from healthy old donors, including signs of increased DNA damage and epigenetic alternations. Secondly, we describe how several age-related neurodegenerative diseases, such as amyotrophic lateral sclerosis and Huntington's disease, are related with defects in nucleocytoplasmic transport. A common feature of this class of diseases is the accumulation of nuclear pore proteins and other transport factors in inclusions. Importantly, genetic manipulations of the nucleocytoplasmic transport machinery can alleviate disease-related phenotypes in cell and animal models, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Adrián Fragoso-Luna
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Sevilla, Spain
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
13
|
Wang W, Zhao J, Zhang C, Zhang W, Jin M, Shao Y. Current advances in the selection of adjuvant radiotherapy regimens for keloid. Front Med (Lausanne) 2022; 9:1043840. [DOI: 10.3389/fmed.2022.1043840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Keloid is a common benign skin tumor in the outpatient department, and patients are often accompanied by itching and pain. Since the pathogenesis is unknown, the effect of single method treatment is unsatisfactory, and therefore the recurrence rate is high. Therefore, comprehensive treatment is mostly used in clinical treatment. Adjuvant radiotherapy is currently one of the most effective treatments for keloid. After long-term clinical practice, brachytherapy and electron beam radiotherapy has increasingly become the gold standard of treatment, because brachytherapy provides more focused radiation treatment to focal tissue to significantly reduce recurrence rate, and better preserve normal tissue. With the development of new radiotherapy techniques, more options for the treatment of keloid. Currently, adjuvant radiotherapy has been widely recognized, but there is no consensus on the optimal protocol for adjuvant radiotherapy for keloids. This review provides a review of published treatment options and new radiotherapy techniques for adjuvant radiotherapy of keloids and gives a comprehensive evaluation for clinical treatment.
Collapse
|
14
|
Maynard S, Hall A, Galanos P, Rizza S, Yamamoto T, Gram H, Munk SHN, Shoaib M, Sørensen CS, Bohr V, Lerdrup M, Maya-Mendoza A, Bartek J. Lamin A/C impairments cause mitochondrial dysfunction by attenuating PGC1α and the NAMPT-NAD+ pathway. Nucleic Acids Res 2022; 50:9948-9965. [PMID: 36099415 PMCID: PMC9508839 DOI: 10.1093/nar/gkac741] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 07/30/2022] [Accepted: 08/30/2022] [Indexed: 11/14/2022] Open
Abstract
Mutations in the lamin A/C gene (LMNA) cause laminopathies such as the premature aging Hutchinson Gilford progeria syndrome (HGPS) and altered lamin A/C levels are found in diverse malignancies. The underlying lamin-associated mechanisms remain poorly understood. Here we report that lamin A/C-null mouse embryo fibroblasts (Lmna-/- MEFs) and human progerin-expressing HGPS fibroblasts both display reduced NAD+ levels, unstable mitochondrial DNA and attenuated bioenergetics. This mitochondrial dysfunction is associated with reduced chromatin recruitment (Lmna-/- MEFs) or low levels (HGPS) of PGC1α, the key transcription factor for mitochondrial homeostasis. Lmna-/- MEFs showed reduced expression of the NAD+-biosynthesis enzyme NAMPT and attenuated activity of the NAD+-dependent deacetylase SIRT1. We find high PARylation in lamin A/C-aberrant cells, further decreasing the NAD+ pool and consistent with impaired DNA base excision repair in both cell models, a condition that fuels DNA damage-induced PARylation under oxidative stress. Further, ATAC-sequencing revealed a substantially altered chromatin landscape in Lmna-/- MEFs, including aberrantly reduced accessibility at the Nampt gene promoter. Thus, we identified a new role of lamin A/C as a key modulator of mitochondrial function through impairments of PGC1α and the NAMPT-NAD+ pathway, with broader implications for the aging process.
Collapse
Affiliation(s)
- Scott Maynard
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Arnaldur Hall
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | | | - Salvatore Rizza
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Tatsuro Yamamoto
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | | | | | - Muhammad Shoaib
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Vilhelm A Bohr
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mads Lerdrup
- The DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Jiri Bartek
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
15
|
Trani JP, Chevalier R, Caron L, El Yazidi C, Broucqsault N, Toury L, Thomas M, Annab K, Binetruy B, De Sandre-Giovannoli A, Levy N, Magdinier F, Robin JD. Mesenchymal stem cells derived from patients with premature aging syndromes display hallmarks of physiological aging. Life Sci Alliance 2022; 5:e202201501. [PMID: 36104080 PMCID: PMC9475049 DOI: 10.26508/lsa.202201501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 02/06/2023] Open
Abstract
Progeroid syndromes are rare genetic diseases with most of autosomal dominant transmission, the prevalence of which is less than 1/10,000,000. These syndromes caused by mutations in the <i>LMNA</i> gene encoding A-type lamins belong to a group of disorders called laminopathies. Lamins are implicated in the architecture and function of the nucleus and chromatin. Patients affected with progeroid laminopathies display accelerated aging of mesenchymal stem cells (MSCs)-derived tissues associated with nuclear morphological abnormalities. To identify pathways altered in progeroid patients' MSCs, we used induced pluripotent stem cells (hiPSCs) from patients affected with classical Hutchinson-Gilford progeria syndrome (HGPS, c.1824C>T-p.G608G), HGPS-like syndrome (HGPS-L; c.1868C>G-p.T623S) associated with farnesylated prelamin A accumulation, or atypical progeroid syndromes (APS; homozygous c.1583C> T-p.T528M; heterozygous c.1762T>C-p.C588R; compound heterozygous c.1583C>T and c.1619T>C-p.T528M and p.M540T) without progerin accumulation. By comparative analysis of the transcriptome and methylome of hiPSC-derived MSCs, we found that patient's MSCs display specific DNA methylation patterns and modulated transcription at early stages of differentiation. We further explored selected biological processes deregulated in the presence of <i>LMNA</i> variants and confirmed alterations of age-related pathways during MSC differentiation. In particular, we report the presence of an altered mitochondrial pattern; an increased response to double-strand DNA damage; and telomere erosion in HGPS, HGPS-L, and APS MSCs, suggesting converging pathways, independent of progerin accumulation, but a distinct DNA methylation profile in HGPS and HGPS-L compared with APS cells.
Collapse
Affiliation(s)
- Jean Philippe Trani
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Raphaël Chevalier
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Leslie Caron
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Claire El Yazidi
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Natacha Broucqsault
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Léa Toury
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Morgane Thomas
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Karima Annab
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Bernard Binetruy
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
- Assistance Publique Hôpitaux de Marseille (APHM), Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France
- Biological Resource Center (CRB-TAC), APHM, La Timone Children's Hospital, Marseille, France
| | - Nicolas Levy
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
- Assistance Publique Hôpitaux de Marseille (APHM), Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France
- Biological Resource Center (CRB-TAC), APHM, La Timone Children's Hospital, Marseille, France
| | | | - Jérôme D Robin
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| |
Collapse
|
16
|
Lamis A, Siddiqui SW, Ashok T, Patni N, Fatima M, Aneef AN. Hutchinson-Gilford Progeria Syndrome: A Literature Review. Cureus 2022; 14:e28629. [PMID: 36196312 PMCID: PMC9524302 DOI: 10.7759/cureus.28629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging condition that involves genetic mutations, resulting in debilitating phenotypic features. The present state of knowledge on the molecular pathways that contribute to the pathophysiology of HGPS and the techniques being tested in vitro and in vivo to combat progerin toxicity have been discussed here. Nuclear morphological abnormalities, dysregulated gene expression, DNA repair deficiencies, telomere shortening, and genomic instability are all caused by progerin accumulation, all of which impair cellular proliferative capability. In addition, HGPS cells and preclinical animal models have revealed new information about the disease's molecular and cellular pathways and putative mechanisms involved in normal aging. This article has discussed the understanding of the molecular pathways by which progerin expression leads to HGPS and how the advanced therapy options for HGPS patients can help us understand and treat the condition.
Collapse
|
17
|
Dogan SA, Giacchin G, Zito E, Viscomi C. Redox Signaling and Stress in Inherited Myopathies. Antioxid Redox Signal 2022; 37:301-323. [PMID: 35081731 DOI: 10.1089/ars.2021.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Reactive oxygen species (ROS) are highly reactive compounds that behave like a double-edged sword; they damage cellular structures and act as second messengers in signal transduction. Mitochondria and endoplasmic reticulum (ER) are interconnected organelles with a central role in ROS production, detoxification, and oxidative stress response. Skeletal muscle is the most abundant tissue in mammals and one of the most metabolically active ones and thus relies mainly on oxidative phosphorylation (OxPhos) to synthesize adenosine triphosphate. The impairment of OxPhos leads to myopathy and increased ROS production, thus affecting both redox poise and signaling. In addition, ROS enter the ER and trigger ER stress and its maladaptive response, which also lead to a myopathic phenotype with mitochondrial involvement. Here, we review the role of ROS signaling in myopathies due to either mitochondrial or ER dysfunction. Recent Advances: Relevant advances have been evolving over the last 10 years on the intricate ROS-dependent pathways that act as modifiers of the disease course in several myopathies. To this end, pathways related to mitochondrial biogenesis, satellite cell differentiation, and ER stress have been studied extensively in myopathies. Critical Issues: The analysis of the chemistry and the exact quantitation, as well as the localization of ROS, are still challenging due to the intrinsic labile nature of ROS and the technical limitations of their sensors. Future Directions: The mechanistic studies of the pathogenesis of mitochondrial and ER-related myopathies offer a unique possibility to discover novel ROS-dependent pathways. Antioxid. Redox Signal. 37, 301-323.
Collapse
Affiliation(s)
- Sukru Anil Dogan
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | - Giacomo Giacchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.,Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
18
|
Impact of MnTBAP and Baricitinib Treatment on Hutchinson–Gilford Progeria Fibroblasts. Pharmaceuticals (Basel) 2022; 15:ph15080945. [PMID: 36015093 PMCID: PMC9415676 DOI: 10.3390/ph15080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare premature aging disease. It is caused by a mutation in the LMNA gene, which results in a 50-amino-acid truncation of prelamin A. The resultant truncated prelamin A (progerin) lacks the cleavage site for the zinc-metallopeptidase ZMPSTE24. Progerin is permanently farnesylated, carboxymethylated, and strongly anchored to the nuclear envelope. This leads to abnormalities, such as altered nuclear shape, mitochondrial dysfunction, and inflammation. HGPS patients display symptoms of physiological aging, including atherosclerosis, alopecia, lipodystrophy, and arthritis. Currently, no cure for HGPS exists. Here we focus on a drug combination consisting of the superoxide dismutase mimetic MnTBAP and JAK1/2 inhibitor baricitinib (Bar) to restore phenotypic alterations in HGPS fibroblasts. Treating HGPS fibroblasts with the MnTBAP/Bar combination improved mitochondrial functions and sustained Bar’s positive effects on reducing progerin and pro-inflammatory factor levels. Collectively, MnTBAP/Bar combination treatment ameliorates the aberrant phenotype of HGPS fibroblasts and is a potential treatment strategy for patients with HGPS.
Collapse
|
19
|
Crochemore C, Cimmaruta C, Fernández-Molina C, Ricchetti M. Reactive Species in Progeroid Syndromes and Aging-Related Processes. Antioxid Redox Signal 2022; 37:208-228. [PMID: 34428933 DOI: 10.1089/ars.2020.8242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Significance: Reactive species have been classically considered causative of age-related degenerative processes, but the scenario appears considerably more complex and to some extent counterintuitive than originally anticipated. The impact of reactive species in precocious aging syndromes is revealing new clues to understand and perhaps challenge the resulting degenerative processes. Recent Advances: Our understanding of reactive species has considerably evolved, including their hormetic effect (beneficial at a certain level, harmful beyond this level), the occurrence of diverse hormetic peaks in different cell types and organisms, and the extended type of reactive species that are relevant in biological processes. Our understanding of the impact of reactive species has also expanded from the dichotomic damaging/signaling role to modulation of gene expression. Critical Issues: These new concepts are affecting the study of aging and diseases where aging is greatly accelerated. We discuss how notions arising from the study of the underlying mechanisms of a progeroid disease, Cockayne syndrome, represent a paradigm shift that may shed a new light in understanding the role of reactive species in age-related degenerative processes. Future Issues: Future investigations urge to explore established and emerging notions to elucidate the multiple contributions of reactive species in degenerative processes linked to pathophysiological aging and their possible amelioration. Antioxid. Redox Signal. 37, 208-228.
Collapse
Affiliation(s)
- Clément Crochemore
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sup'Biotech, Villejuif, France
| | - Chiara Cimmaruta
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| | - Cristina Fernández-Molina
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sorbonne Universités, UPMC, University of Paris 06, Paris, France
| | - Miria Ricchetti
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
20
|
Chen MM, Li Y, Deng SL, Zhao Y, Lian ZX, Yu K. Mitochondrial Function and Reactive Oxygen/Nitrogen Species in Skeletal Muscle. Front Cell Dev Biol 2022; 10:826981. [PMID: 35265618 PMCID: PMC8898899 DOI: 10.3389/fcell.2022.826981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 12/06/2022] Open
Abstract
Skeletal muscle fibers contain a large number of mitochondria, which produce ATP through oxidative phosphorylation (OXPHOS) and provide energy for muscle contraction. In this process, mitochondria also produce several types of "reactive species" as side product, such as reactive oxygen species and reactive nitrogen species which have attracted interest. Mitochondria have been proven to have an essential role in the production of skeletal muscle reactive oxygen/nitrogen species (RONS). Traditionally, the elevation in RONS production is related to oxidative stress, leading to impaired skeletal muscle contractility and muscle atrophy. However, recent studies have shown that the optimal RONS level under the action of antioxidants is a critical physiological signal in skeletal muscle. Here, we will review the origin and physiological functions of RONS, mitochondrial structure and function, mitochondrial dynamics, and the coupling between RONS and mitochondrial oxidative stress. The crosstalk mechanism between mitochondrial function and RONS in skeletal muscle and its regulation of muscle stem cell fate and myogenesis will also be discussed. In all, this review aims to describe a comprehensive and systematic network for the interaction between skeletal muscle mitochondrial function and RONS.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yue Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Campos JTADM, Oliveira MSD, Soares LP, Medeiros KAD, Campos LRDS, Lima JG. DNA repair-related genes and adipogenesis: Lessons from congenital lipodystrophies. Genet Mol Biol 2022; 45:e20220086. [DOI: 10.1590/1678-4685-gmb-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
|
22
|
Zhang Y, Lin Y, Zhang Y, Wang Y, Li Z, Zhu Y, Liu H, Ju W, Cui C, Chen M. Familial atrial myopathy in a large multigenerational heart-hand syndrome pedigree carrying an LMNA missense variant in rod 2B domain (p.R335W). Heart Rhythm 2021; 19:466-475. [PMID: 34808346 DOI: 10.1016/j.hrthm.2021.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The literature on laminopathy with ventricular phenotype is extensive. However, the pathogenicity of LMNA variations in atrial lesions still lacks research. OBJECTIVE The purpose of this study was to characterize the atrial phenotypes and possible mechanisms in a large Chinese family with heart-hand syndrome carrying a LMNA missense variant in rod 2B domain (c.1003C>T p.R335W). METHODS Clinical characteristics were collected on the basis of the pedigree investigation. Comprehensive functional analyses, including molecular dynamic (MD) simulation, cellular, and animal functional assays, determined the pathogenicity in atrial myopathy. RESULTS In the pedigree investigation, 6 of 13 of the mutation carriers showed heterogeneous cardiac phenotypes and 8 carriers also had brachydactyly. In silico molecular dynamics simulations predicted increased binding energy of the R335W mutant lamin A. Atrial cardiomyocytes (HL-1, human induced pluripotent stem cell-derived atrial cardiomyocytes) expressing R335W showed abnormal nuclear morphology, compromised DNA repair, and dysfunctional contraction. Adult zebrafish expressing mutant lamin A showed increased P wave duration in the electrocardiogram, decreased peak A wave velocity in echocardiography, and atrial lesions under the transmission electron microscope. CONCLUSION LMNA p.R335W mutation leads to familial heart-hand syndrome characterized by an overlapping phenotype of prominent atrial lesions and brachydactyly. The unstable lamin dimerization and impaired DNA repair are possible mechanisms underlying cardiac phenotypes. Our findings consolidated the genetic role in the course of atrial arrhythmias and cardiac aging, which is helpful in the diagnosis and treatment of cardiac laminopathy.
Collapse
Affiliation(s)
- Yike Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping Lin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanjuan Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanqing Wang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhaomin Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailei Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weizhu Ju
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Cui
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Minglong Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
Preclinical Advances of Therapies for Laminopathies. J Clin Med 2021; 10:jcm10214834. [PMID: 34768351 PMCID: PMC8584472 DOI: 10.3390/jcm10214834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Laminopathies are a group of rare disorders due to mutation in LMNA gene. Depending on the mutation, they may affect striated muscles, adipose tissues, nerves or are multisystemic with various accelerated ageing syndromes. Although the diverse pathomechanisms responsible for laminopathies are not fully understood, several therapeutic approaches have been evaluated in patient cells or animal models, ranging from gene therapies to cell and drug therapies. This review is focused on these therapies with a strong focus on striated muscle laminopathies and premature ageing syndromes.
Collapse
|
24
|
Rajeev M, Ratan C, Krishnan K, Vijayan M. Hutchinson-Gilford Progeria Syndrome (Hgps) And Application Of Gene Therapy Based Crispr/Cas Technology As A Promising Innovative Treatment Approach. Recent Pat Biotechnol 2021; 15:266-285. [PMID: 34602042 DOI: 10.2174/1872208315666210928114720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS) also known as progeria of childhood or progeria is a rare, rapid, autosomal dominant genetic disorder characterized by premature aging which occurs shortly after birth. HGPS occurs as a result of de novo point mutation in the gene recognized as LMNA gene that encodes two proteins Lamin A protein and Lamin C protein which are the structural components of the nuclear envelope. Mutations in the gene trigger abnormal splicing and induce internal deletion of 50 amino acids leading to the development of a truncated form of Lamin A protein known as Progerin. Progerin generation can be considered as the crucial step in HGPS since the protein is highly toxic to human cells, permanently farnesylated, and exhibits variation in several biochemical and structural properties within the individual. HGPS also produces complications such as skin alterations, growth failure, atherosclerosis, hair and fat loss, and bone and joint diseases. We have also revised all relevant patents relating to Hutchinson-gilford progeria syndrome and its therapy in the current article. METHOD The goal of the present review article is to provide information about Hutchinson-Gilford progeria syndrome (HGPS) and the use of CRISPR/Cas technology as a promising treatment approach in the treatment of the disease. The review also discusses about different pharmacological and non-pharmacological methods of treatment currently used for HGPS. RESULTS The main limitation associated with progeria is the lack of a definitive cure. The existing treatment modality provides only symptomatic relief. Therefore, it is high time to develop a therapeutic method that hastens premature aging in such patients. CONCLUSION CRISPR/Cas technology is a novel gene-editing tool that allows genome editing at specific loci, and is found to be a promising therapeutic approach for the treatment of genetic disorders such as HGPS where dominant-negative mutations take place.
Collapse
Affiliation(s)
- Mekha Rajeev
- Amrita School of Pharmacy, Amrita Vihwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041. India
| | - Chameli Ratan
- Amrita School of Pharmacy, Amrita Vihwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041. India
| | - Karthik Krishnan
- Amrita School of Pharmacy, Amrita Vihwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041. India
| | - Meenu Vijayan
- Amrita School of Pharmacy, Amrita Vihwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041. India
| |
Collapse
|
25
|
Fafián-Labora JA, Morente-López M, de Toro FJ, Arufe MC. High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome. Int J Mol Sci 2021; 22:7327. [PMID: 34298947 PMCID: PMC8305791 DOI: 10.3390/ijms22147327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a deadly childhood disorder, which is considered a very rare disease. It is caused by an autosomal dominant mutation on the LMNA gene, and it is characterized by accelerated aging. Human cell lines from HGPS patients and healthy parental controls were studied in parallel using next-generation sequencing (NGS) to unravel new non-previously altered molecular pathways. Nine hundred and eleven transcripts were differentially expressed when comparing healthy versus HGPS cell lines from a total of 21,872 transcripts; ITPR1, ITPR3, CACNA2D1, and CAMK2N1 stood out among them due to their links with calcium signaling, and these were validated by Western blot analysis. It was observed that the basal concentration of intracellular Ca2+ was statistically higher in HGPS cell lines compared to healthy ones. The relationship between genes involved in Ca2+ signaling and mitochondria-associated membranes (MAM) was demonstrated through cytosolic calcium handling by means of an automated fluorescent plate reading system (FlexStation 3, Molecular Devices), and apoptosis and mitochondrial ROS production were examined by means of flow cytometry analysis. Altogether, our data suggest that the Ca2+ signaling pathway is altered in HGPS at least in part due to the overproduction of reactive oxygen species (ROS). Our results unravel a new therapeutic window for the treatment of this rare disease and open new strategies to study pathologies involving both accelerated and healthy aging.
Collapse
Affiliation(s)
| | | | | | - María C. Arufe
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universdidade da Coruña, Agrupación Estratégica INIBIC-CICA, 15006 A Coruña, Spain; (J.A.F.-L.); (M.M.-L.); (F.J.d.T.)
| |
Collapse
|
26
|
Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Small-Molecule Therapeutic Perspectives for the Treatment of Progeria. Int J Mol Sci 2021; 22:7190. [PMID: 34281245 PMCID: PMC8267806 DOI: 10.3390/ijms22137190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), or progeria, is an extremely rare disorder that belongs to the class of laminopathies, diseases characterized by alterations in the genes that encode for the lamin proteins or for their associated interacting proteins. In particular, progeria is caused by a point mutation in the gene that codifies for the lamin A gene. This mutation ultimately leads to the biosynthesis of a mutated version of lamin A called progerin, which accumulates abnormally in the nuclear lamina. This accumulation elicits several alterations at the nuclear, cellular, and tissue levels that are phenotypically reflected in a systemic disorder with important alterations, mainly in the cardiovascular system, bones, skin, and overall growth, which results in premature death at an average age of 14.5 years. In 2020, lonafarnib became the first (and only) FDA approved drug for treating progeria. In this context, the present review focuses on the different therapeutic strategies currently under development, with special attention to the new small molecules described in recent years, which may represent the upcoming first-in-class drugs with new mechanisms of action endowed with effectiveness not only to treat but also to cure progeria.
Collapse
Affiliation(s)
| | | | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (J.M.); (B.M.-R.)
| |
Collapse
|
27
|
Mozzini C, Setti A, Cicco S, Pagani M. The Most Severe Paradigm of Early Cardiovascular Disease: Hutchinson-Gilford Progeria. Focus on the Role of Oxidative Stress. Curr Probl Cardiol 2021; 47:100900. [PMID: 34167843 DOI: 10.1016/j.cpcardiol.2021.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) is one of the most frequently recognized causes of ageing. Telomere erosion, defects in the DNA damage response and alterations in the nuclear architecture are also associated with premature ageing. The most severe premature ageing syndrome, Hutchinson-Gilford progeria syndrome (HGPS) is associated with alterations in nuclear shape resulting in the deregulation of lamin A/C. In this review we describe emerging data reporting the role of OS and antioxidant defence in progeroid syndromes focusing on HGPS. We explore precise antioxidant defence mechanisms and related drugs that may create a potential path out of the woods in this disease. Pathways regulated by Nuclear factor E2 related factor (Nrf2), by Nuclear Factor kappa B (NF-kB), and related to the Unfolded Protein Response (UPR) and Endoplasmic Reticulum (ER) stress are under investigation in HGPS patients for which the goal is a significant lifespan extension in particular by postponing atherosclerosis-related complications.
Collapse
Affiliation(s)
- Chiara Mozzini
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| | - Angela Setti
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy.
| | - Sebastiano Cicco
- Unit of Internal Medicine "Guido Baccelli", Department of Biomedical Sciences and Human Oncology University of Bari, Aldo Moro Medical School, Bari, Italy.
| | - Mauro Pagani
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| |
Collapse
|
28
|
Pongbangli N, Pitipakorn K, Jai-aue S, Sirijanchune P, Pongpittayut S, Wongcharoen W. A 13-Year-Old Boy from Thailand with Hutchinson-Gilford Progeria Syndrome with Coronary Artery and Aortic Calcification and Non-ST-Segment Elevation Myocardial Infarction (NSTEMI). AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e928969. [PMID: 33414362 PMCID: PMC7805248 DOI: 10.12659/ajcr.928969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/03/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS), also known as progeria, is due to a mutation in the LMNA gene, resulting in a life expectancy of no more than 13 years, and a high mortality rate due to cardiovascular disease. We report the case of a 13-year-old boy from Thailand with Hutchinson-Gilford progeria syndrome with coronary artery and aortic calcification and non-ST-segment elevation myocardial infarction (NSTEMI). CASE REPORT A 13-year-old Thai boy was diagnosed with progeria. His physical appearance included short stature and thin limbs with prominent joint stiffness. He had craniofacial disproportion, with the absence of earlobes and with micrognathia. His skin had a generalized scleroderma-like lesion and hair loss with prominent scalp veins. His mental and cognitive functions were normal. Unfortunately, the mutation status in the LMNA gene was not available for testing in Thailand. He was diagnosed as having NSTEMI based on clinical chest pain, 12-lead ECG, and elevated cardiac troponin level. The coronary calcium score reflected severe calcification of the aortic valve and coronary artery disease along the left main and left anterior descending arteries. The patient received treatment with medication and aggressive risk factor control. After 3 months of follow-up, the patient reported no recurrence of symptoms. CONCLUSIONS This case of Hutchinson-Gilford progeria syndrome is rare in that most patients do not live beyond 13 years of age. This patient presented with typical accelerated degenerative changes of the cardiovascular system, including NSTEMI.
Collapse
Affiliation(s)
- Natnicha Pongbangli
- Division of Cardiology, Department of Internal Medicine, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Kannika Pitipakorn
- Division of Cardiology, Department of Pediatric, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Sasivimon Jai-aue
- Division of Cardiology, Department of Internal Medicine, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Piyaporn Sirijanchune
- Division of Pulmonology, Department of Internal Medicine, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Sorawit Pongpittayut
- Division of Cardiology, Department of Pediatric, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Wanwarang Wongcharoen
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
29
|
Fontanilla P, Willaume S, Thézé B, Moussa A, Pennarun G, Bertrand P. [Aging: A matter of DNA damage, nuclear envelope alterations and inflammation?]. Med Sci (Paris) 2020; 36:1118-1128. [PMID: 33296628 DOI: 10.1051/medsci/2020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The accumulation of senescent cells accompanies organismal aging. Senescent cells produce an inflammatory microenvironment that is conducive to the development of many age-related diseases. Here we describe the different situations leading to cellular senescence and show that these situations are frequently associated with DNA damage. We also discuss the intimate link between cell aging and perturbations in the nuclear envelope, namely in nuclear lamins, as seen in progeroid syndromes. Finally, we present evidence that these alterations are associated with DNA repair defects, the persistence of DNA damage, and an inflammatory phenotype.
Collapse
Affiliation(s)
- Paula Fontanilla
- Laboratoire Réparation et Vieillissement, Institut de radiobiologie cellulaire et moléculaire, Institut de biologie François Jacob, Direction de la recherche fondamentale du CEA, Unité 1274, Stabilité génétique, cellules souches et radiations CEA-Inserm-Universités Paris Diderot - Paris Saclay, 18 route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Simon Willaume
- Laboratoire Réparation et Vieillissement, Institut de radiobiologie cellulaire et moléculaire, Institut de biologie François Jacob, Direction de la recherche fondamentale du CEA, Unité 1274, Stabilité génétique, cellules souches et radiations CEA-Inserm-Universités Paris Diderot - Paris Saclay, 18 route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Benoit Thézé
- Laboratoire Réparation et Vieillissement, Institut de radiobiologie cellulaire et moléculaire, Institut de biologie François Jacob, Direction de la recherche fondamentale du CEA, Unité 1274, Stabilité génétique, cellules souches et radiations CEA-Inserm-Universités Paris Diderot - Paris Saclay, 18 route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Angela Moussa
- Laboratoire Réparation et Vieillissement, Institut de radiobiologie cellulaire et moléculaire, Institut de biologie François Jacob, Direction de la recherche fondamentale du CEA, Unité 1274, Stabilité génétique, cellules souches et radiations CEA-Inserm-Universités Paris Diderot - Paris Saclay, 18 route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Gaëlle Pennarun
- Laboratoire Réparation et Vieillissement, Institut de radiobiologie cellulaire et moléculaire, Institut de biologie François Jacob, Direction de la recherche fondamentale du CEA, Unité 1274, Stabilité génétique, cellules souches et radiations CEA-Inserm-Universités Paris Diderot - Paris Saclay, 18 route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Laboratoire Réparation et Vieillissement, Institut de radiobiologie cellulaire et moléculaire, Institut de biologie François Jacob, Direction de la recherche fondamentale du CEA, Unité 1274, Stabilité génétique, cellules souches et radiations CEA-Inserm-Universités Paris Diderot - Paris Saclay, 18 route du Panorama, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
30
|
Schnabel F, Kornak U, Wollnik B. Premature aging disorders: A clinical and genetic compendium. Clin Genet 2020; 99:3-28. [PMID: 32860237 DOI: 10.1111/cge.13837] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Progeroid disorders make up a heterogeneous group of very rare hereditary diseases characterized by clinical signs that often mimic physiological aging in a premature manner. Apart from Hutchinson-Gilford progeria syndrome, one of the best-investigated progeroid disorders, a wide spectrum of other premature aging phenotypes exist, which differ significantly in their clinical presentation and molecular pathogenesis. Next-generation sequencing (NGS)-based approaches have made it feasible to determine the molecular diagnosis in the early stages of a disease. Nevertheless, a broad clinical knowledge on these disorders and their associated symptoms is still fundamental for a comprehensive patient management and for the interpretation of variants of unknown significance from NGS data sets. This review provides a detailed overview on characteristic clinical features and underlying molecular genetics of well-known as well as only recently identified premature aging disorders and also highlights novel findings towards future therapeutic options.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
31
|
Komari CJ, Guttman AO, Carr SR, Trachtenberg TL, Orloff EA, Haas AV, Patrick AR, Chowdhary S, Waldman BC, Waldman AS. Alteration of genetic recombination and double-strand break repair in human cells by progerin expression. DNA Repair (Amst) 2020; 96:102975. [PMID: 33010688 DOI: 10.1016/j.dnarep.2020.102975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare autosomal, dominant genetic condition characterized by many features of accelerated aging. On average, children with HGPS live to about fourteen years of age. The syndrome is commonly caused by a point mutation in the LMNA gene which normally codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The LMNA mutation alters splicing, leading to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at very low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs), suggesting corruption of DNA repair. In this work, we investigated the influence of progerin expression on DSB repair in the human genome at the nucleotide level. We used a model system that involves a reporter DNA substrate inserted in the genome of cultured human cells. A DSB could be induced within the substrate through exogenous expression of endonuclease I-SceI, and DSB repair events occurring via either homologous recombination (HR) or nonhomologous end-joining (NHEJ) were recoverable. Additionally, spontaneous HR events were recoverable in the absence of artificial DSB induction. We compared DSB repair and spontaneous HR in cells overexpressing progerin versus cells expressing no progerin. We report that overexpression of progerin correlated with an increase in DSB repair via NHEJ relative to HR, as well as an increased fraction of HR events occurring via gene conversion. Progerin also engendered an apparent increase in spontaneous HR events, with a highly significant shift toward gene conversion events, and an increase in DNA amplification events. Such influences of progerin on DNA transactions may impact genome stability and contribute to aging.
Collapse
Affiliation(s)
- Celina J Komari
- Department of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Anne O Guttman
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Shelby R Carr
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Taylor L Trachtenberg
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Elise A Orloff
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Ashley V Haas
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew R Patrick
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sona Chowdhary
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Barbara C Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alan S Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
32
|
Cenni V, Capanni C, Mattioli E, Schena E, Squarzoni S, Bacalini MG, Garagnani P, Salvioli S, Franceschi C, Lattanzi G. Lamin A involvement in ageing processes. Ageing Res Rev 2020; 62:101073. [PMID: 32446955 DOI: 10.1016/j.arr.2020.101073] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/05/2020] [Accepted: 04/11/2020] [Indexed: 12/29/2022]
Abstract
Lamin A, a main constituent of the nuclear lamina, is the major splicing product of the LMNA gene, which also encodes lamin C, lamin A delta 10 and lamin C2. Involvement of lamin A in the ageing process became clear after the discovery that a group of progeroid syndromes, currently referred to as progeroid laminopathies, are caused by mutations in LMNA gene. Progeroid laminopathies include Hutchinson-Gilford Progeria, Mandibuloacral Dysplasia, Atypical Progeria and atypical-Werner syndrome, disabling and life-threatening diseases with accelerated ageing, bone resorption, lipodystrophy, skin abnormalities and cardiovascular disorders. Defects in lamin A post-translational maturation occur in progeroid syndromes and accumulated prelamin A affects ageing-related processes, such as mTOR signaling, epigenetic modifications, stress response, inflammation, microRNA activation and mechanosignaling. In this review, we briefly describe the role of these pathways in physiological ageing and go in deep into lamin A-dependent mechanisms that accelerate the ageing process. Finally, we propose that lamin A acts as a sensor of cell intrinsic and environmental stress through transient prelamin A accumulation, which triggers stress response mechanisms. Exacerbation of lamin A sensor activity due to stably elevated prelamin A levels contributes to the onset of a permanent stress response condition, which triggers accelerated ageing.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge, University Hospital, Stockholm, Sweden
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Center Alma Mater Research Institute on Global Challenges and Climate Changes, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
33
|
Villa-Bellosta R. Dietary magnesium supplementation improves lifespan in a mouse model of progeria. EMBO Mol Med 2020; 12:e12423. [PMID: 32875720 PMCID: PMC7539193 DOI: 10.15252/emmm.202012423] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/11/2023] Open
Abstract
Aging is associated with redox imbalance according to the redox theory of aging. Consistently, a mouse model of premature aging (LmnaG609G/+) showed an increased level of mitochondrial reactive oxygen species (ROS) and a reduced basal antioxidant capacity, including loss of the NADPH‐coupled glutathione redox system. LmnaG609G/+ mice also exhibited reduced mitochondrial ATP synthesis secondary to ROS‐induced mitochondrial dysfunction. Treatment of LmnaG609G/+ vascular smooth muscle cells with magnesium‐enriched medium improved the intracellular ATP level, enhanced the antioxidant capacity, and thereby reduced mitochondrial ROS production. Moreover, treatment of LmnaG609G/+ mice with dietary magnesium improved the proton pumps (complexes I, III, and IV), stimulated extramitochondrial NADH oxidation and enhanced the coupled mitochondrial membrane potential, and thereby increased H+‐coupled mitochondrial NADPH and ATP synthesis, which is necessary for cellular energy supply and survival. Consistently, magnesium treatment reduced calcification of vascular smooth muscle cells in vitro and in vivo, and improved the longevity of mice. This antioxidant property of magnesium may be beneficial in children with HGPS.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Lai W, Wong W. Progress and trends in the development of therapies for Hutchinson-Gilford progeria syndrome. Aging Cell 2020; 19:e13175. [PMID: 32596971 PMCID: PMC7370734 DOI: 10.1111/acel.13175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an autosomal-dominant genetic disease that leads to accelerated aging and often premature death caused by cardiovascular complications. Till now clinical management of HGPS has largely relied on the treatment of manifestations and on the prevention of secondary complications, cure for the disease has not yet been established. Addressing this need cannot only benefit progeria patients but may also provide insights into intervention design for combating physiological aging. By using the systematic review approach, this article revisits the overall progress in the development of strategies for HGPS treatment over the last ten years, from 2010 to 2019. In total, 1,906 articles have been retrieved, of which 56 studies have been included for further analysis. Based on the articles analyzed, the trends in the use of different HGPS models, along with the prevalence, efficiency, and limitations of different reported treatment strategies, have been examined. Emerging strategies for preclinical studies, and possible targets for intervention development, have also been presented as avenues for future research.
Collapse
Affiliation(s)
- Wing‐Fu Lai
- School of Life and Health Sciences The Chinese University of Hong Kong (Shenzhen) Shenzhen China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong Special Administrative Region China
| | - Wing‐Tak Wong
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong Special Administrative Region China
| |
Collapse
|
35
|
Bhattacharya D, Scimè A. Mitochondrial Function in Muscle Stem Cell Fates. Front Cell Dev Biol 2020; 8:480. [PMID: 32612995 PMCID: PMC7308489 DOI: 10.3389/fcell.2020.00480] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are crucial organelles that control cellular metabolism through an integrated mechanism of energy generation via oxidative phosphorylation. Apart from this canonical role, it is also integral for ROS production, fatty acid metabolism and epigenetic remodeling. Recently, a role for the mitochondria in effecting stem cell fate decisions has gained considerable interest. This is important for skeletal muscle, which exhibits a remarkable property for regeneration following injury, owing to satellite cells (SCs), the adult myogenic stem cells. Mitochondrial function is associated with maintaining and dictating SC fates, linked to metabolic programming during quiescence, activation, self-renewal, proliferation and differentiation. Notably, mitochondrial adaptation might take place to alter SC fates and function in the presence of different environmental cues. This review dissects the contribution of mitochondria to SC operational outcomes, focusing on how their content, function, dynamics and adaptability work to influence SC fate decisions.
Collapse
Affiliation(s)
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
36
|
Chen T, Gu T, Cheng L, Li X, Han G, Liu Z. Porous Pt nanoparticles loaded with doxorubicin to enable synergistic Chemo-/Electrodynamic Therapy. Biomaterials 2020; 255:120202. [PMID: 32562941 DOI: 10.1016/j.biomaterials.2020.120202] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Overexpression of P-glycoprotein (P-gp), which is responsible for pumping chemotherapeutic drugs out of tumor cells, has been recognized as an important cause of drug resistance in conventional chemotherapy. Herein, porous platinum nanoparticles (pPt NPs) are developed to enable the combined electrodynamic therapy (EDT) with chemotherapy. With polyethylene glycol (PEG) coating, the obtained pPt-PEG NPs could be loaded with anticancer drug doxorubicin (DOX) by utilizing the porous structure of pPt NPs. Those pPt-PEG NPs are able to produce reactive oxygen species (ROS) by triggering water decomposition under electric field, independent of O2 and H2O2 contents in the tumor. Furthermore, the ROS generated during EDT could induce the inhibition of P-glycoprotein (P-gp), in turn enhancing the efficacy of chemotherapeutic agents by facilitating intracellular accumulation of drugs. As the results, excellent synergetic therapeutic effects were observed by combining chemotherapy with EDT using DOX-loaded pPt (DOX@pPt-PEG) NPs, as demonstrated by both in vitro and in vivo experiments. This study demonstrates a new concept of combinational cancer therapy with superior therapeutic efficacy.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tongxu Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
37
|
Deng L, Pan X, Zhang Y, Sun S, Lv L, Gao L, Ma P, Ai H, Zhou Q, Wang X, Zhan L. Immunostimulatory Potential of MoS 2 Nanosheets: Enhancing Dendritic Cell Maturation, Migration and T Cell Elicitation. Int J Nanomedicine 2020; 15:2971-2986. [PMID: 32431496 PMCID: PMC7197944 DOI: 10.2147/ijn.s243537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Due to their extraordinary physical and chemical properties, MoS2 nanosheets (MSNs) are becoming more widely used in nanomedicine. However, their influence on immune systems remains unclear. MATERIALS AND METHODS Two few-layered MSNs at sizes of 100-250 nm (S-MSNs) and 400-500 nm (L-MSNs) were used in this study. Bone marrow-derived dendritic cells (DCs) were exposed to both MSNs at different doses (0, 8, 16, 32, 64, 128 µg/mL) for 48 h and subjected to analyses of surface marker expression, cytokine secretion, lymphoid homing and in vivo T cell priming. RESULTS Different-sized MSNs of all doses did not affect the viability of DCs. The expression of CD40, CD80, CD86 and CCR7 was significantly higher on both S-MSN- and L-MSN-treated DCs at a dose of 128 μg/mL. As the dose of MSN increased, the secretion of IL-12p70 remained unchanged, the secretion of IL-1β decreased, and the production of TNF-α increased. A significant increase in IL-6 was observed in the 128 µg/mL L-MSN-treated DCs. In particular, MSN treatment dramatically improved the ex vivo movement and in vivo homing ability of both the local resident and blood circulating DCs. Furthermore, the cytoskeleton rearrangement regulated by ROS elevation was responsible for the enhanced homing ability of the MSNs. More robust CD4+ and CD8+ T cell proliferation and activation (characterized by high expression of CD107a, CD69 and ICOS) was observed in mice vaccinated with MSN-treated DCs. Importantly, exposure to MSNs did not interrupt LPS-induced DC activation, homing and T cell priming. CONCLUSION Few-layered MSNs ranging from 100 to 500 nm in size could play an immunostimulatory role in enhancing DC maturation, migration and T cell elicitation, making them a good candidate for vaccine adjuvants. Investigation of this study will not only expand the applications of MSNs and other new transition metal dichalcogenides (TMDCs) but also shed light on the in vivo immune-risk evaluation of MSN-based nanomaterials.
Collapse
Affiliation(s)
- Lei Deng
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiaoli Pan
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yulong Zhang
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Sujing Sun
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Liping Lv
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Lei Gao
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ping Ma
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Huisheng Ai
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qianqian Zhou
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Xiaohui Wang
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Linsheng Zhan
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
38
|
Guilbert SM, Cardoso D, Lévy N, Muchir A, Nissan X. Hutchinson-Gilford progeria syndrome: Rejuvenating old drugs to fight accelerated ageing. Methods 2020; 190:3-12. [PMID: 32278808 DOI: 10.1016/j.ymeth.2020.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
What if the next generation of successful treatments was hidden in the current pharmacopoeia? Identifying new indications for existing drugs, also called the drug repurposing or drug rediscovery process, is a highly efficient and low-cost strategy. First reported almost a century ago, drug repurposing has emerged as a valuable therapeutic option for diseases that do not have specific treatments and rare diseases, in particular. This review focuses on Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic disorder that induces accelerated and precocious aging, for which drug repurposing has led to the discovery of several potential treatments over the past decade.
Collapse
Affiliation(s)
- Solenn M Guilbert
- CECS, I-STEM AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 28 rue Henri Desbruères, 91100 Corbeil-Essonnes, France
| | - Déborah Cardoso
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, F-75013 Paris, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMRS910: Génétique médicale et Génomique fonctionnelle, Faculté de médecine Timone, Marseille, France
| | - Antoine Muchir
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, F-75013 Paris, France
| | - Xavier Nissan
- CECS, I-STEM AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 28 rue Henri Desbruères, 91100 Corbeil-Essonnes, France.
| |
Collapse
|
39
|
Saxena S, Kumar S. Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. GeroScience 2020; 42:467-494. [PMID: 32048129 PMCID: PMC7205988 DOI: 10.1007/s11357-020-00167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), commonly called progeria, is an extremely rare disorder that affects only one child per four million births. It is characterized by accelerated aging in affected individuals leading to premature death at an average age of 14.5 years due to cardiovascular complications. The main cause of HGPS is a sporadic autosomal dominant point mutation in LMNA gene resulting in differently spliced lamin A protein known as progerin. Accumulation of progerin under nuclear lamina and activation of its downstream effectors cause perturbation in cellular morphology and physiology which leads to a systemic disorder that mainly impairs the cardiovascular system, bones, skin, and overall growth. Till now, no cure has been found for this catastrophic disorder; however, several therapeutic strategies are under development. The current review focuses on the overall progress in the field of therapeutic approaches for the management/cure of HGPS. We have also discussed the new disease models that have been developed for the study of this rare disorder. Moreover, we have highlighted the therapeutic application of extracellular vesicles derived from stem cells against aging and aging-related disorders and, therefore, suggest the same for the treatment of HGPS.
Collapse
Affiliation(s)
- Saurabh Saxena
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India.
| | - Sanjeev Kumar
- Faculty of Technology and Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
40
|
Radiobiological Principles of Radiotherapy for Benign Diseases. Radiat Oncol 2020. [DOI: 10.1007/978-3-319-52619-5_133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
41
|
Harhouri K, Frankel D, Bartoli C, Roll P, De Sandre-Giovannoli A, Lévy N. An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucleus 2019; 9:246-257. [PMID: 29619863 PMCID: PMC5973194 DOI: 10.1080/19491034.2018.1460045] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a sporadic, autosomal dominant disorder characterized by premature and accelerated aging symptoms leading to death at the mean age of 14.6 years usually due to cardiovascular complications. HGPS is caused by a de novo point mutation in the LMNA gene encoding the intermediate filament proteins lamins A and C which are structural components of the nuclear lamina. This mutation leads to the production of a truncated toxic form of lamin A, issued from aberrant splicing and called progerin. Progerin accumulates in HGPS cells' nuclei and is a hallmark of the disease. Small amounts of progerin are also produced during normal aging. HGPS cells and animal preclinical models have provided insights into the molecular and cellular pathways that underlie the disease and have also highlighted possible mechanisms involved in normal aging. This review reports recent medical advances and treatment approaches for patients affected with HGPS.
Collapse
Affiliation(s)
- Karim Harhouri
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France
| | - Diane Frankel
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,b APHM, Hôpital la Timone, Service de Biologie Cellulaire , Marseille , France
| | | | - Patrice Roll
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,b APHM, Hôpital la Timone, Service de Biologie Cellulaire , Marseille , France
| | - Annachiara De Sandre-Giovannoli
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,c APHM, Hôpital la Timone , Département de Génétique Médicale , Marseille , France
| | - Nicolas Lévy
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,c APHM, Hôpital la Timone , Département de Génétique Médicale , Marseille , France
| |
Collapse
|
42
|
Kreienkamp R, Gonzalo S. Hutchinson-Gilford Progeria Syndrome: Challenges at Bench and Bedside. Subcell Biochem 2019; 91:435-451. [PMID: 30888661 DOI: 10.1007/978-981-13-3681-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The structural nuclear proteins known as "lamins" (A-type and B-type) provide a scaffold for the compartmentalization of genome function that is important to maintain genome stability. Mutations in the LMNA gene -encoding for A-type lamins- are associated with over a dozen of degenerative disorders termed laminopathies, which include muscular dystrophies, lipodystrophies, neuropathies, and premature ageing diseases such as Hutchinson Gilford Progeria Syndrome (HGPS). This devastating disease is caused by the expression of a truncated lamin A protein named "progerin". To date, there is no effective treatment for HGPS patients, who die in their teens from cardiovascular disease. At a cellular level, progerin expression impacts nuclear architecture, chromatin organization, response to mechanical stress, and DNA transactions such as transcription, replication and repair. However, the current view is that key mechanisms behind progerin toxicity still remain to be discovered. Here, we discuss new findings about pathological mechanisms in HGPS, especially the contribution of replication stress to cellular decline, and therapeutic strategies to ameliorate progerin toxicity. In particular, we present evidence for retinoids and calcitriol (hormonal vitamin D metabolite) being among the most potent compounds to ameliorate HGPS cellular phenotypes in vitro, providing the rationale for testing these compounds in preclinical models of the disease in the near term, and in patients in the future.
Collapse
Affiliation(s)
- Ray Kreienkamp
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, St Louis University School of Medicine, St. Louis, MO, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, St Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
43
|
Nucleus–cytoplasm cross‐talk in the aging brain. J Neurosci Res 2019; 98:247-261. [DOI: 10.1002/jnr.24446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
44
|
Clements CS, Bikkul MU, Ofosu W, Eskiw C, Tree D, Makarov E, Kill IR, Bridger JM. Presence and distribution of progerin in HGPS cells is ameliorated by drugs that impact on the mevalonate and mTOR pathways. Biogerontology 2019; 20:337-358. [PMID: 31041622 PMCID: PMC6535420 DOI: 10.1007/s10522-019-09807-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, premature ageing syndrome in children. HGPS is normally caused by a mutation in the LMNA gene, encoding nuclear lamin A. The classical mutation in HGPS leads to the production of a toxic truncated version of lamin A, progerin, which retains a farnesyl group. Farnesyltransferase inhibitors (FTI), pravastatin and zoledronic acid have been used in clinical trials to target the mevalonate pathway in HGPS patients to inhibit farnesylation of progerin, in order to reduce its toxicity. Some other compounds that have been suggested as treatments include rapamycin, IGF1 and N-acetyl cysteine (NAC). We have analysed the distribution of prelamin A, lamin A, lamin A/C, progerin, lamin B1 and B2 in nuclei of HGPS cells before and after treatments with these drugs, an FTI and a geranylgeranyltransferase inhibitor (GGTI) and FTI with pravastatin and zoledronic acid in combination. Confirming other studies prelamin A, lamin A, progerin and lamin B2 staining was different between control and HGPS fibroblasts. The drugs that reduced progerin staining were FTI, pravastatin, zoledronic acid and rapamycin. However, drugs affecting the mevalonate pathway increased prelamin A, with only FTI reducing internal prelamin A foci. The distribution of lamin A in HGPS cells was improved with treatments of FTI, pravastatin and FTI + GGTI. All treatments reduced the number of cells displaying internal speckles of lamin A/C and lamin B2. Drugs targeting the mevalonate pathway worked best for progerin reduction, with zoledronic acid removing internal progerin speckles. Rapamycin and NAC, which impact on the MTOR pathway, both reduced both pools of progerin without increasing prelamin A in HGPS cell nuclei.
Collapse
Affiliation(s)
- Craig S Clements
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Mehmet U Bikkul
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Wendy Ofosu
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.,Department of Biomedical Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Christopher Eskiw
- Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7B 5A8, Canada
| | - David Tree
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Evgeny Makarov
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Ian R Kill
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Joanna M Bridger
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK. .,Genome Engineering and Maintenance Network, Ageing Studies Theme, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
45
|
Rodriguez BM, Khouzami L, Decostre V, Varnous S, Pekovic-Vaughan V, Hutchison CJ, Pecker F, Bonne G, Muchir A. N-acetyl cysteine alleviates oxidative stress and protects mice from dilated cardiomyopathy caused by mutations in nuclear A-type lamins gene. Hum Mol Genet 2019; 27:3353-3360. [PMID: 29982513 DOI: 10.1093/hmg/ddy243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as LMNA cardiomyopathy) is an anatomic and pathologic condition associated with muscular and electrical dysfunction of the heart, often leading to heart failure-related disability. There is currently no specific therapy available for patients that target the molecular pathophysiology of LMNA cardiomyopathy. We showed here an increase in oxidative stress levels in the hearts of mice carrying LMNA mutation, associated with a decrease of the key cellular antioxidant glutathione (GHS). Oral administration of N-acetyl cysteine, a GHS precursor, led to a marked improvement of GHS content, a decrease in oxidative stress markers including protein carbonyls and an improvement of left ventricular structure and function in a model of LMNA cardiomyopathy. Collectively, our novel results provide therapeutic insights into LMNA cardiomyopathy.
Collapse
Affiliation(s)
- Blanca Morales Rodriguez
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France.,Sanofi R&D, Chilly-Mazarin, France
| | - Lara Khouzami
- Université Paris Est Créteil, Inserm UMRS 955, IMRB, Créteil, France
| | - Valérie Decostre
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Shaida Varnous
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Vanja Pekovic-Vaughan
- Institute of Ageing and Chronic Disease, William Henry Duncan Building, University of Liverpool, UK
| | | | - Françoise Pecker
- Université Paris Est Créteil, Inserm UMRS 955, IMRB, Créteil, France
| | - Gisèle Bonne
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Antoine Muchir
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| |
Collapse
|
46
|
Zou J, Fei Q, Xiao H, Wang H, Liu K, Liu M, Zhang H, Xiao X, Wang K, Wang N. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol 2019; 234:17690-17703. [PMID: 30793306 DOI: 10.1002/jcp.28395] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
Proangiogenesis is generally regarded as an effective approach for treating ischemic heart disease. Vascular endothelial growth factor (VEGF)-A is a strong and essential proangiogenic factor. Reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy are implicated in the process of angiogenesis. This study is designed to clarify the regulatory mechanisms underlying VEGF-A, ROS, ER stress, autophagy, and angiogenesis in acute myocardial infarction (AMI). A mouse model of AMI was successfully established by occluding the left anterior descending coronary artery. Compared with the sham-operated mice, the microvessel density, VEGF-A content, ROS production, expression of vascular endothelial cadherin, positive expression of 78 kDa glucose-regulated protein/binding immunoglobulin protein (GRP78/Bip), and LC3 puncta in CD31-positive endothelial cells of the ischemic myocardium were overtly elevated. Moreover, VEGF-A exposure predominantly increased the expression of beclin-1, autophagy-related gene (ATG) 4, ATG5, inositol-requiring enzyme-1 (IRE-1), GRP78/Bip, and LC3-II/LC3-I as well as ROS production in the human umbilical vein endothelial cells (HUVECs) in a dose and time-dependent manner. Both beclin-1 small interfering RNA and 3-methyladenine treatment predominantly mitigated VEGF-A-induced tube formation and migration of HUVECs, but they failed to elicit any notable effect on VEGF-A-increased expression of GRP78/Bip. Tauroursodeoxycholic acid not only obviously abolished VEGF-A-induced increase of IRE-1, GRP78/Bip, beclin-1 expression, and LC3-II/LC3-I, but also negated VEGF-A-induced tube formation and migration of HUVECs. Furthermore, N-acetyl- l-cysteine markedly abrogated VEGF-A-increased ROS production, IRE-1, GRP78/Bip, beclin-1 expression, and LC3-II/LC3-I in the HUVECs. Taken together, our data demonstrated that increased spontaneous production of VEGF-A may induce angiogenesis after AMI through initiating ROS-ER stress-autophagy axis in the vascular endothelial cells.
Collapse
Affiliation(s)
- Jiang Zou
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Qin Fei
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Hui Xiao
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Hao Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Xianzhong Xiao
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China.,Department of Laboratory Animals, Hunan Key Laboratory of Animal Models for Human Diseases, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| |
Collapse
|
47
|
Dworak N, Makosa D, Chatterjee M, Jividen K, Yang CS, Snow C, Simke WC, Johnson IG, Kelley JB, Paschal BM. A nuclear lamina-chromatin-Ran GTPase axis modulates nuclear import and DNA damage signaling. Aging Cell 2019; 18:e12851. [PMID: 30565836 PMCID: PMC6351833 DOI: 10.1111/acel.12851] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/16/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
The Ran GTPase regulates nuclear import and export by controlling the assembly state of transport complexes. This involves the direct action of RanGTP, which is generated in the nucleus by the chromatin‐associated nucleotide exchange factor, RCC1. Ran interactions with RCC1 contribute to formation of a nuclear:cytoplasmic (N:C) Ran protein gradient in interphase cells. In previous work, we showed that the Ran protein gradient is disrupted in fibroblasts from Hutchinson–Gilford progeria syndrome (HGPS) patients. The Ran gradient disruption in these cells is caused by nuclear membrane association of a mutant form of Lamin A, which induces a global reduction in heterochromatin marked with Histone H3K9me3 and Histone H3K27me3. Here, we have tested the hypothesis that heterochromatin controls the Ran gradient. Chemical inhibition and depletion of the histone methyltransferases (HMTs) G9a and GLP in normal human fibroblasts reduced heterochromatin levels and caused disruption of the Ran gradient, comparable to that observed previously in HGPS fibroblasts. HMT inhibition caused a defect in nuclear localization of TPR, a high molecular weight protein that, owing to its large size, displays a Ran‐dependent import defect in HGPS. We reasoned that pathways dependent on nuclear import of large proteins might be compromised in HGPS. We found that nuclear import of ATM requires the Ran gradient, and disruption of the Ran gradient in HGPS causes a defect in generating nuclear γ‐H2AX in response to ionizing radiation. Our data suggest a lamina–chromatin–Ran axis is important for nuclear transport regulation and contributes to the DNA damage response.
Collapse
Affiliation(s)
- Natalia Dworak
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Dawid Makosa
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Mandovi Chatterjee
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Kasey Jividen
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Chun-Song Yang
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Chelsi Snow
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
- Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville Virginia
| | - William C. Simke
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Isaac G. Johnson
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Joshua B. Kelley
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Bryce M. Paschal
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
- Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville Virginia
| |
Collapse
|
48
|
Griveau A, Wiel C, Le Calvé B, Ziegler DV, Djebali S, Warnier M, Martin N, Marvel J, Vindrieux D, Bergo MO, Bernard D. Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes. Aging Cell 2018; 17:e12835. [PMID: 30216637 PMCID: PMC6260922 DOI: 10.1111/acel.12835] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/13/2018] [Accepted: 07/29/2018] [Indexed: 11/26/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a lethal premature aging that recapitulates many normal aging characteristics. This disorder is caused by mutation in the LMNA gene leading to the production of progerin which induces misshapen nuclei, cellular senescence, and aging. We previously showed that the phospholipase A2 receptor (PLA2R1) promotes senescence induced by replicative, oxidative, and oncogenic stress but its role during progerin‐induced senescence and in progeria is currently unknown. Here, we show that knockdown of PLA2R1 prevented senescence induced by progerin expression in human fibroblasts and markedly delayed senescence of HGPS patient‐derived fibroblasts. Whole‐body knockout of Pla2r1 in a mouse model of progeria decreased some premature aging phenotypes, such as rib fracture and decreased bone content, together with decreased senescence marker. Progerin‐expressing human fibroblasts exhibited a high frequency of misshapen nuclei and increased farnesyl diphosphate synthase (FDPS) expression compared to controls; knockdown of PLA2R1 reduced the frequency of misshapen nuclei and normalized FDPS expression. Pamidronate, a FDPS inhibitor, also reduced senescence and misshapen nuclei. Downstream of PLA2R1, we found that p53 mediated the progerin‐induced increase in FDPS expression and in misshapen nuclei. These results suggest that PLA2R1 mediates key premature aging phenotypes through a p53/FDPS pathway and might be a new therapeutic target.
Collapse
Affiliation(s)
- Audrey Griveau
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Clotilde Wiel
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge Sweden
| | - Benjamin Le Calvé
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Dorian V. Ziegler
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Sophia Djebali
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, École Normale Supérieure de Lyon; Université de Lyon; Université Claude Bernard Lyon 1; Lyon France
| | - Marine Warnier
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Jacqueline Marvel
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, École Normale Supérieure de Lyon; Université de Lyon; Université Claude Bernard Lyon 1; Lyon France
| | - David Vindrieux
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Martin O. Bergo
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge Sweden
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| |
Collapse
|
49
|
L'honoré A, Commère PH, Negroni E, Pallafacchina G, Friguet B, Drouin J, Buckingham M, Montarras D. The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration. eLife 2018; 7:e32991. [PMID: 30106373 PMCID: PMC6191287 DOI: 10.7554/elife.32991] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS). Using Pitx2/3 single and double mutant mice that provide genetic models of deregulated redox states, we demonstrate that moderate overproduction of ROS results in premature differentiation of satellite cells while high levels lead to their senescence and regenerative failure. Using the ROS scavenger, N-Acetyl-Cysteine (NAC), in primary cultures we show that a physiological increase in ROS is required for satellite cells to exit the cell cycle and initiate differentiation through the redox activation of p38α MAP kinase. Subjecting cultured satellite cells to transient inhibition of P38α MAP kinase in conjunction with NAC treatment leads to their rapid expansion, with striking improvement of their regenerative potential in grafting experiments.
Collapse
Affiliation(s)
- Aurore L'honoré
- Department of Developmental and Stem Cell Biology, CNRS, UMR 3738Institut PasteurParisFrance
- Biological Adaptation and Aging-IBPS, CNRS UMR 8256, INSERM ERL U1164Sorbonne Universités, Université Pierre et Marie CurieParisFrance
| | | | - Elisa Negroni
- Center for Research in MyologySorbonne Universités, Université Pierre et Marie CurieParisFrance
| | - Giorgia Pallafacchina
- NeuroscienceInstitute, Department of Biomedical Sciences, Italian National Research CouncilUniversityof PadovaPadovaItaly
| | - Bertrand Friguet
- Biological Adaptation and Aging-IBPS, CNRS UMR 8256, INSERM ERL U1164Sorbonne Universités, Université Pierre et Marie CurieParisFrance
| | - Jacques Drouin
- Laboratory of Molecular GeneticsInstitut de Recherches Cliniques de MontréalMontréalCanada
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS, UMR 3738Institut PasteurParisFrance
| | - Didier Montarras
- Department of Developmental and Stem Cell Biology, CNRS, UMR 3738Institut PasteurParisFrance
| |
Collapse
|
50
|
Bikkul MU, Clements CS, Godwin LS, Goldberg MW, Kill IR, Bridger JM. Farnesyltransferase inhibitor and rapamycin correct aberrant genome organisation and decrease DNA damage respectively, in Hutchinson-Gilford progeria syndrome fibroblasts. Biogerontology 2018; 19:579-602. [PMID: 29907918 PMCID: PMC6223735 DOI: 10.1007/s10522-018-9758-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal premature ageing disease in children. HGPS is one of several progeroid syndromes caused by mutations in the LMNA gene encoding the nuclear structural proteins lamins A and C. In classic HGPS the mutation G608G leads to the formation of a toxic lamin A protein called progerin. During post-translational processing progerin remains farnesylated owing to the mutation interfering with a step whereby the farnesyl moiety is removed by the enzyme ZMPSTE24. Permanent farnesylation of progerin is thought to be responsible for the proteins toxicity. Farnesyl is generated through the mevalonate pathway and three drugs that interfere with this pathway and hence the farnesylation of proteins have been administered to HGPS children in clinical trials. These are a farnesyltransferase inhibitor (FTI), statin and a bisphosphonate. Further experimental studies have revealed that other drugs such as N-acetyl cysteine, rapamycin and IGF-1 may be of use in treating HGPS through other pathways. We have shown previously that FTIs restore chromosome positioning in interphase HGPS nuclei. Mis-localisation of chromosomes could affect the cells ability to regulate proper genome function. Using nine different drug treatments representing drug regimes in the clinic we have shown that combinatorial treatments containing FTIs are most effective in restoring specific chromosome positioning towards the nuclear periphery and in tethering telomeres to the nucleoskeleton. On the other hand, rapamycin was found to be detrimental to telomere tethering, it was, nonetheless, the most effective at inducing DNA damage repair, as revealed by COMET analyses.
Collapse
Affiliation(s)
- Mehmet U Bikkul
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Craig S Clements
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Lauren S Godwin
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Martin W Goldberg
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | - Ian R Kill
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Joanna M Bridger
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|