1
|
Skawratananond S, Xiong DX, Zhang C, Tonk S, Pinili A, Delacruz B, Pham P, Smith SC, Navab R, Reddy PH. Mitophagy in Alzheimer's disease and other metabolic disorders: A focus on mitochondrial-targeted therapeutics. Ageing Res Rev 2025; 108:102732. [PMID: 40122398 DOI: 10.1016/j.arr.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria, as central regulators of cellular processes such as energy production, apoptosis, and metabolic homeostasis, are essential to cellular function and health. The maintenance of mitochondrial integrity, especially through mitophagy-the selective removal of impaired mitochondria-is crucial for cellular homeostasis. Dysregulation of mitochondrial function, dynamics, and biogenesis is linked to neurodegenerative and metabolic diseases, notably Alzheimer's disease (AD), which is increasingly recognized as a metabolic disorder due to its shared pathophysiologic features: insulin resistance, oxidative stress, and chronic inflammation. In this review, we highlight recent advancements in pharmacological interventions, focusing on agents that modulate mitophagy, mitochondrial uncouplers that reduce oxidative phosphorylation, compounds that directly scavenge reactive oxygen species to alleviate oxidative stress, and molecules that ameliorate amyloid beta plaque accumulation and phosphorylated tau pathology. Additionally, we explore dietary and lifestyle interventions-MIND and ketogenic diets, caloric restriction, physical activity, hormone modulation, and stress management-that complement pharmacological approaches and support mitochondrial health. Our review underscores mitochondria's central role in the pathogenesis and potential treatment of neurodegenerative and metabolic diseases, particularly AD. By advocating for an integrated therapeutic model that combines pharmacological and lifestyle interventions, we propose a comprehensive approach aimed at mitigating mitochondrial dysfunction and improving clinical outcomes in these complex, interrelated diseases.
Collapse
Affiliation(s)
- Shadt Skawratananond
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Daniel X Xiong
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Charlie Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Sahil Tonk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Aljon Pinili
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Brad Delacruz
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Patrick Pham
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Shane C Smith
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Rahul Navab
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Maková B, Mik V, Lišková B, Drašarová L, Medvedíková M, Hořínková A, Vojta P, Zatloukal M, Plíhalová L, Hönig M, Doležal K, Forejt K, Oždian T, Hajdúch M, Strnad M, Voller J. Correction of aberrant splicing of ELP1 pre-mRNA by kinetin derivatives - A structure activity relationship study. Eur J Med Chem 2025; 284:117176. [PMID: 39756144 DOI: 10.1016/j.ejmech.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025]
Abstract
Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family. We explored the relationship between the structure of a set of kinetin derivatives (N = 72) and their ability to correct aberrant splicing of the ELP1 gene. Active compounds can be obtained by the substitution of the purine ring with chlorine and fluorine at the C2 atom, with a small alkyl group at the N7 atom, or with diverse groups at the C8 atom. On the other hand, a substitution at the N3 or N9 atoms resulted in a loss of activity. We successfully tested a hypothesis inspired by the remarkable tolerance of the position C8 to substitution, postulating that the imidazole of the purine moiety is not required for the activity. We also evaluated the activity of phytohormones from other families, but none of them corrected ELP1 mRNA aberrant splicing. A panel of in vitro ADME assays, including evaluation of transport across model barriers, stability in plasma and in the presence of liver microsomal fraction as well as plasma protein binding, was used for an initial estimation of the potential bioavailability of the active compounds. Finally, a RNA-seq data suggest that 8-aminokinetin modulates expression spliceosome components.
Collapse
Affiliation(s)
- Barbara Maková
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Václav Mik
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Lenka Drašarová
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Martina Medvedíková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Alena Hořínková
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Petr Vojta
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Computational Biology, Vienna, Austria
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lucie Plíhalová
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Martin Hönig
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Kristýna Forejt
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Tomáš Oždian
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jiří Voller
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
3
|
Yun S, Chekuri A, Art J, Kondabolu K, Slaugenhaupt SA, Zeltner N, Kleinstiver BP, Morini E, Alves CRR. Engineered CRISPR-Base Editors as a Permanent Treatment for Familial Dysautonomia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625322. [PMID: 39651221 PMCID: PMC11623606 DOI: 10.1101/2024.11.27.625322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Familial dysautonomia (FD) is a fatal autosomal recessive congenital neuropathy caused by a T-to-C mutation in intron 20 of the Elongator acetyltransferase complex subunit 1 (ELP1) gene, which causes tissue-specific skipping of exon 20 and reduction of ELP1 protein. Here, we developed a base editor (BE) approach to precisely correct this mutation. By optimizing Cas9 variants and screening multiple gRNAs, we identified a combination that was able to promote up to 70% on-target editing in HEK293T cells harboring the ELP1 T-to-C mutation. These editing levels were sufficient to restore exon 20 inclusion in the ELP1 transcript. Moreover, we optimized an engineered dual intein-split system to deliver these constructs in vivo. Mediated by adeno-associated virus (AAV) delivery, this BE strategy effectively corrected the liver and brain ELP1 splicing defects in a humanized FD mouse model carrying the ELP1 T-to-C mutation and rescued the FD phenotype in iPSC-derived sympathetic neurons. Importantly, we observed minimal off-target editing demonstrating high levels of specificity with these optimized base editors. These findings establish a novel and highly precise BE-based therapeutic approach to correct the FD mutation and associated splicing defects and provide the foundation for the development of a transformative, permanent treatment for this devastating disease.
Collapse
Affiliation(s)
- Shuqi Yun
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Anil Chekuri
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Jennifer Art
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
- Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, USA
| | - Krishnakanth Kondabolu
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Susan A. Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| | - Christiano R. R. Alves
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| |
Collapse
|
4
|
Schultz A, Cheng SY, Kirchner E, Costello S, Miettinen H, Chaverra M, King C, George L, Zhao X, Narasimhan J, Weetall M, Slaugenhaupt S, Morini E, Punzo C, Lefcort F. Reduction of retinal ganglion cell death in mouse models of familial dysautonomia using AAV-mediated gene therapy and splicing modulators. Sci Rep 2023; 13:18600. [PMID: 37903840 PMCID: PMC10616160 DOI: 10.1038/s41598-023-45376-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Familial dysautonomia (FD) is a rare neurodevelopmental and neurodegenerative disease caused by a splicing mutation in the Elongator Acetyltransferase Complex Subunit 1 (ELP1) gene. The reduction in ELP1 mRNA and protein leads to the death of retinal ganglion cells (RGCs) and visual impairment in all FD patients. Currently patient symptoms are managed, but there is no treatment for the disease. We sought to test the hypothesis that restoring levels of Elp1 would thwart the death of RGCs in FD. To this end, we tested the effectiveness of two therapeutic strategies for rescuing RGCs. Here we provide proof-of-concept data that gene replacement therapy and small molecule splicing modifiers effectively reduce the death of RGCs in mouse models for FD and provide pre-clinical foundational data for translation to FD patients.
Collapse
Affiliation(s)
- Anastasia Schultz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Shun-Yun Cheng
- Department of Ophthalmology, Neurobiology and Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Emily Kirchner
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Stephanann Costello
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Heini Miettinen
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Marta Chaverra
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Colin King
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lynn George
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
- Department of Biological and Physical Science, Montana State University Billings, Billings, MT, USA
| | - Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ, 07080, USA
| | | | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ, 07080, USA
| | - Susan Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Claudio Punzo
- Department of Ophthalmology, Neurobiology and Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
5
|
Schultz A, Cheng SY, Kirchner E, Costello S, Miettinen H, Chaverra M, King C, George L, Zhao X, Narasimhan J, Weetall M, Slaugenhaupt S, Morini E, Punzo C, Lefcort F. Reduction of retinal ganglion cell death in mouse models of familial dysautonomia using AAV-mediated gene therapy and splicing modulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541535. [PMID: 37293016 PMCID: PMC10245894 DOI: 10.1101/2023.05.22.541535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Familial dysautonomia (FD) is a rare neurodevelopmental and neurodegenerative disease caused by a splicing mutation in the Elongator Acetyltransferase Complex Subunit 1 ( ELP1 ) gene. The reduction in ELP1 mRNA and protein leads to the death of retinal ganglion cells (RGCs) and visual impairment in all FD patients. Currently, patient symptoms are managed, but there is no treatment for the disease. We sought to test the hypothesis that restoring levels of Elp1 would thwart the death of RGCs in FD. To this end, we tested the effectiveness of two therapeutic strategies for rescuing RGCs. Here we provide proof-of-concept data that gene replacement therapy and small molecule splicing modifiers effectively reduce the death of RGCs in mouse models for FD and provide pre-clinical data foundation for translation to FD patients.
Collapse
|
6
|
Morini E, Chekuri A, Logan EM, Bolduc JM, Kirchner EG, Salani M, Krauson AJ, Narasimhan J, Gabbeta V, Grover S, Dakka A, Mollin A, Jung SP, Zhao X, Zhang N, Zhang S, Arnold M, Woll MG, Naryshkin NA, Weetall M, Slaugenhaupt SA. Development of an oral treatment that rescues gait ataxia and retinal degeneration in a phenotypic mouse model of familial dysautonomia. Am J Hum Genet 2023; 110:531-547. [PMID: 36809767 PMCID: PMC10027479 DOI: 10.1016/j.ajhg.2023.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a splicing mutation in elongator acetyltransferase complex subunit 1 (ELP1). This mutation leads to the skipping of exon 20 and a tissue-specific reduction of ELP1, mainly in the central and peripheral nervous systems. FD is a complex neurological disorder accompanied by severe gait ataxia and retinal degeneration. There is currently no effective treatment to restore ELP1 production in individuals with FD, and the disease is ultimately fatal. After identifying kinetin as a small molecule able to correct the ELP1 splicing defect, we worked on its optimization to generate novel splicing modulator compounds (SMCs) that can be used in individuals with FD. Here, we optimize the potency, efficacy, and bio-distribution of second-generation kinetin derivatives to develop an oral treatment for FD that can efficiently pass the blood-brain barrier and correct the ELP1 splicing defect in the nervous system. We demonstrate that the novel compound PTC258 efficiently restores correct ELP1 splicing in mouse tissues, including brain, and most importantly, prevents the progressive neuronal degeneration that is characteristic of FD. Postnatal oral administration of PTC258 to the phenotypic mouse model TgFD9;Elp1Δ20/flox increases full-length ELP1 transcript in a dose-dependent manner and leads to a 2-fold increase in functional ELP1 in the brain. Remarkably, PTC258 treatment improves survival, gait ataxia, and retinal degeneration in the phenotypic FD mice. Our findings highlight the great therapeutic potential of this novel class of small molecules as an oral treatment for FD.
Collapse
Affiliation(s)
- Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.
| | - Anil Chekuri
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Emily M Logan
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Jessica M Bolduc
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Emily G Kirchner
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Monica Salani
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Aram J Krauson
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | | | | | | | - Amal Dakka
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Anna Mollin
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | - Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Nanjing Zhang
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Sophie Zhang
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | | | | | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Chekuri A, Logan EM, Krauson AJ, Salani M, Ackerman S, Kirchner EG, Bolduc JM, Wang X, Dietrich P, Dragatsis I, Vandenberghe LH, Slaugenhaupt SA, Morini E. Selective retinal ganglion cell loss and optic neuropathy in a humanized mouse model of familial dysautonomia. Hum Mol Genet 2022; 31:1776-1787. [PMID: 34908112 PMCID: PMC9169455 DOI: 10.1093/hmg/ddab359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease caused by a splicing mutation in the gene encoding Elongator complex protein 1 (ELP1, also known as IKBKAP). This mutation results in tissue-specific skipping of exon 20 with a corresponding reduction of ELP1 protein, predominantly in the central and peripheral nervous system. Although FD patients have a complex neurological phenotype caused by continuous depletion of sensory and autonomic neurons, progressive visual decline leading to blindness is one of the most problematic aspects of the disease, as it severely affects their quality of life. To better understand the disease mechanism as well as to test the in vivo efficacy of targeted therapies for FD, we have recently generated a novel phenotypic mouse model, TgFD9; IkbkapΔ20/flox. This mouse exhibits most of the clinical features of the disease and accurately recapitulates the tissue-specific splicing defect observed in FD patients. Driven by the dire need to develop therapies targeting retinal degeneration in FD, herein, we comprehensively characterized the progression of the retinal phenotype in this mouse, and we demonstrated that it is possible to correct ELP1 splicing defect in the retina using the splicing modulator compound (SMC) BPN-15477.
Collapse
Affiliation(s)
- Anil Chekuri
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Emily M Logan
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Aram J Krauson
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Monica Salani
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Sophie Ackerman
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Emily G Kirchner
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Jessica M Bolduc
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Xia Wang
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Lee MTW, Mahy W, Rackham MD. The medicinal chemistry of mitochondrial dysfunction: a critical overview of efforts to modulate mitochondrial health. RSC Med Chem 2021; 12:1281-1311. [PMID: 34458736 PMCID: PMC8372206 DOI: 10.1039/d1md00113b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are subcellular organelles that perform a variety of critical biological functions, including ATP production and acting as hubs of immune and apoptotic signalling. Mitochondrial dysfunction has been extensively linked to the pathology of multiple neurodegenerative disorders, resulting in significant investment from the drug discovery community. Despite extensive efforts, there remains no disease modifying therapies for neurodegenerative disorders. This manuscript aims to review the compounds historically used to modulate the mitochondrial network through the lens of modern medicinal chemistry, and to offer a perspective on the evidence that relevant exposure was achieved in a representative model and that exposure was likely to result in target binding and engagement of pharmacology. We hope this manuscript will aid the community in identifying those targets and mechanisms which have been convincingly (in)validated with high quality chemical matter, and those for which an opportunity exists to explore in greater depth.
Collapse
Affiliation(s)
| | - William Mahy
- MSD The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | | |
Collapse
|
9
|
Ajiro M, Awaya T, Kim YJ, Iida K, Denawa M, Tanaka N, Kurosawa R, Matsushima S, Shibata S, Sakamoto T, Studer R, Krainer AR, Hagiwara M. Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nat Commun 2021; 12:4507. [PMID: 34301951 PMCID: PMC8302731 DOI: 10.1038/s41467-021-24705-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/21/2021] [Indexed: 01/10/2023] Open
Abstract
Approximately half of genetic disease-associated mutations cause aberrant splicing. However, a widely applicable therapeutic strategy to splicing diseases is yet to be developed. Here, we analyze the mechanism whereby IKBKAP-familial dysautonomia (FD) exon 20 inclusion is specifically promoted by a small molecule splice modulator, RECTAS, even though IKBKAP-FD exon 20 has a suboptimal 5' splice site due to the IVS20 + 6 T > C mutation. Knockdown experiments reveal that exon 20 inclusion is suppressed in the absence of serine/arginine-rich splicing factor 6 (SRSF6) binding to an intronic splicing enhancer in intron 20. We show that RECTAS directly interacts with CDC-like kinases (CLKs) and enhances SRSF6 phosphorylation. Consistently, exon 20 splicing is bidirectionally manipulated by targeting cellular CLK activity with RECTAS versus CLK inhibitors. The therapeutic potential of RECTAS is validated in multiple FD disease models. Our study indicates that small synthetic molecules affecting phosphorylation state of SRSFs is available as a new therapeutic modality for mechanism-oriented precision medicine of splicing diseases.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Young Jin Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kei Iida
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatsugu Denawa
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuo Tanaka
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryo Kurosawa
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shingo Matsushima
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saiko Shibata
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsunori Sakamoto
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rolenz Studer
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY, USA
| | | | - Masatoshi Hagiwara
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
10
|
Boussaad I, Obermaier CD, Hanss Z, Bobbili DR, Bolognin S, Glaab E, Wołyńska K, Weisschuh N, De Conti L, May C, Giesert F, Grossmann D, Lambert A, Kirchen S, Biryukov M, Burbulla LF, Massart F, Bohler J, Cruciani G, Schmid B, Kurz-Drexler A, May P, Duga S, Klein C, Schwamborn JC, Marcus K, Woitalla D, Vogt Weisenhorn DM, Wurst W, Baralle M, Krainc D, Gasser T, Wissinger B, Krüger R. A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease. Sci Transl Med 2021; 12:12/560/eaau3960. [PMID: 32908004 DOI: 10.1126/scitranslmed.aau3960] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/24/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD.
Collapse
Affiliation(s)
- Ibrahim Boussaad
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Carolin D Obermaier
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg.,Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Zoé Hanss
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Dheeraj R Bobbili
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Silvia Bolognin
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Enrico Glaab
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Katarzyna Wołyńska
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Laura De Conti
- ICGEB-International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Florian Giesert
- Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany.,Technische Universität München-Weihenstephan, Developmental Genetics, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Dajana Grossmann
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Annika Lambert
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Susanne Kirchen
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Maria Biryukov
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Lena F Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Francois Massart
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Jill Bohler
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Gérald Cruciani
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Benjamin Schmid
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | | | - Patrick May
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.,Humanitas Clinical and Research center, IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Jens C Schwamborn
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Dirk Woitalla
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Daniela M Vogt Weisenhorn
- Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,Technische Universität München-Weihenstephan, Developmental Genetics, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany.,Technische Universität München-Weihenstephan, Developmental Genetics, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Marco Baralle
- ICGEB-International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Thomas Gasser
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Rejko Krüger
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg. .,Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,Department of Neurology and Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1445 Strassen, Luxembourg
| |
Collapse
|
11
|
Clark EH, Vázquez de la Torre A, Hoshikawa T, Briston T. Targeting mitophagy in Parkinson's disease. J Biol Chem 2021; 296:100209. [PMID: 33372898 PMCID: PMC7948953 DOI: 10.1074/jbc.rev120.014294] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
The genetics and pathophysiology of Parkinson's disease (PD) strongly implicate mitochondria in disease aetiology. Elegant studies over the last two decades have elucidated complex molecular signaling governing the identification and removal of dysfunctional mitochondria from the cell, a process of mitochondrial quality control known as mitophagy. Mitochondrial deficits and specifically reduced mitophagy are evident in both sporadic and familial PD. Mendelian genetics attributes loss-of-function mutations in key mitophagy regulators PINK1 and Parkin to early-onset PD. Pharmacologically enhancing mitophagy and accelerating the removal of damaged mitochondria are of interest for developing a disease-modifying PD therapeutic. However, despite significant understanding of both PINK1-Parkin-dependent and -independent mitochondrial quality control pathways, the therapeutic potential of targeting mitophagy remains to be fully explored. Here, we provide a summary of the genetic evidence supporting the role for mitophagy failure as a pathogenic mechanism in PD. We assess the tractability of mitophagy pathways and prospects for drug discovery and consider intervention points for mitophagy enhancement. We explore the numerous hit molecules beginning to emerge from high-content/high-throughput screening as well as the biochemical and phenotypic assays that enabled these screens. The chemical and biological properties of these reference compounds suggest many could be used to interrogate and perturb mitochondrial biology to validate promising drug targets. Finally, we address key considerations and challenges in achieving preclinical proof-of-concept, including in vivo mitophagy reporter methodologies and disease models, as well as patient stratification and biomarker development for mitochondrial forms of the disease.
Collapse
Affiliation(s)
- Emily H Clark
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom
| | | | - Tamaki Hoshikawa
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom
| | - Thomas Briston
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom.
| |
Collapse
|
12
|
Kadlecová A, Maková B, Artal-Sanz M, Strnad M, Voller J. The plant hormone kinetin in disease therapy and healthy aging. Ageing Res Rev 2019; 55:100958. [PMID: 31479763 DOI: 10.1016/j.arr.2019.100958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/02/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
It has been more than 60 years since the discovery of kinetin, the first known member of a group of plant hormones called cytokinins. In this review we summarize the health-promoting activity of kinetin in animal systems, ranging from cells cultured in vitro through invertebrates to mammals. Kinetin has been shown to modulate aging, to delay age-related physiological decline and to protect against some neurodegenerative diseases. We also review studies on its mechanism of action, as well as point out gaps in our current knowledge.
Collapse
Affiliation(s)
- Alena Kadlecová
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Barbara Maková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology, CISIC-JA-University Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jiří Voller
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
13
|
Bruun GH, Bang JMV, Christensen LL, Brøner S, Petersen USS, Guerra B, Grønning AGB, Doktor TK, Andresen BS. Blocking of an intronic splicing silencer completely rescues IKBKAP exon 20 splicing in familial dysautonomia patient cells. Nucleic Acids Res 2019; 46:7938-7952. [PMID: 29762696 PMCID: PMC6125618 DOI: 10.1093/nar/gky395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Familial dysautonomia (FD) is a severe genetic disorder causing sensory and autonomic dysfunction. It is predominantly caused by a c.2204+6T>C mutation in the IKBKAP gene. This mutation decreases the 5′ splice site strength of IKBKAP exon 20 leading to exon 20 skipping and decreased amounts of full-length IKAP protein. We identified a binding site for the splicing regulatory protein hnRNP A1 downstream of the IKBKAP exon 20 5′-splice site. We show that hnRNP A1 binds to this splicing regulatory element (SRE) and that two previously described inhibitory SREs inside IKBKAP exon 20 are also bound by hnRNP A1. Knockdown of hnRNP A1 in FD patient fibroblasts increases IKBKAP exon 20 inclusion demonstrating that hnRNP A1 is a negative regulator of IKBKAP exon 20 splicing. Furthermore, by mutating the SREs in an IKBKAP minigene we show that all three SREs cause hnRNP A1-mediated exon repression. We designed splice switching oligonucleotides (SSO) that blocks the intronic hnRNP A1 binding site, and demonstrate that this completely rescues splicing of IKBKAP exon 20 in FD patient fibroblasts and increases the amounts of IKAP protein. We propose that this may be developed into a potential new specific treatment of FD.
Collapse
Affiliation(s)
- Gitte H Bruun
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jeanne M V Bang
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lise L Christensen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Sabrina Brøner
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ulrika S S Petersen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Barbara Guerra
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Alexander G B Grønning
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
14
|
Sinha R, Kim YJ, Nomakuchi T, Sahashi K, Hua Y, Rigo F, Bennett CF, Krainer AR. Antisense oligonucleotides correct the familial dysautonomia splicing defect in IKBKAP transgenic mice. Nucleic Acids Res 2019; 46:4833-4844. [PMID: 29672717 PMCID: PMC6007753 DOI: 10.1093/nar/gky249] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
Familial dysautonomia (FD) is a rare inherited neurodegenerative disorder caused by a point mutation in the IKBKAP gene that results in defective splicing of its pre-mRNA. The mutation weakens the 5′ splice site of exon 20, causing this exon to be skipped, thereby introducing a premature termination codon. Though detailed FD pathogenesis mechanisms are not yet clear, correcting the splicing defect in the relevant tissue(s), thus restoring normal expression levels of the full-length IKAP protein, could be therapeutic. Splice-switching antisense oligonucleotides (ASOs) can be effective targeted therapeutics for neurodegenerative diseases, such as nusinersen (Spinraza), an approved drug for spinal muscular atrophy. Using a two-step screen with ASOs targeting IKBKAP exon 20 or the adjoining intronic regions, we identified a lead ASO that fully restored exon 20 splicing in FD patient fibroblasts. We also characterized the corresponding cis-acting regulatory sequences that control exon 20 splicing. When administered into a transgenic FD mouse model, the lead ASO promoted expression of full-length human IKBKAP mRNA and IKAP protein levels in several tissues tested, including the central nervous system. These findings provide insights into the mechanisms of IKBKAP exon 20 recognition, and pre-clinical proof of concept for an ASO-based targeted therapy for FD.
Collapse
Affiliation(s)
- Rahul Sinha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Young Jin Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Stony Brook University School of Medicine, Stony Brook, NY 11790, USA
| | - Tomoki Nomakuchi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Stony Brook University School of Medicine, Stony Brook, NY 11790, USA
| | - Kentaro Sahashi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yimin Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
15
|
ELP1 Splicing Correction Reverses Proprioceptive Sensory Loss in Familial Dysautonomia. Am J Hum Genet 2019; 104:638-650. [PMID: 30905397 DOI: 10.1016/j.ajhg.2019.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a splice mutation in Elongator complex protein 1 (ELP1, also known as IKBKAP); this mutation leads to variable skipping of exon 20 and to a drastic reduction of ELP1 in the nervous system. Clinically, many of the debilitating aspects of the disease are related to a progressive loss of proprioception; this loss leads to severe gait ataxia, spinal deformities, and respiratory insufficiency due to neuromuscular incoordination. There is currently no effective treatment for FD, and the disease is ultimately fatal. The development of a drug that targets the underlying molecular defect provides hope that the drastic peripheral neurodegeneration characteristic of FD can be halted. We demonstrate herein that the FD mouse TgFD9;IkbkapΔ20/flox recapitulates the proprioceptive impairment observed in individuals with FD, and we provide the in vivo evidence that postnatal correction, promoted by the small molecule kinetin, of the mutant ELP1 splicing can rescue neurological phenotypes in FD. Daily administration of kinetin starting at birth improves sensory-motor coordination and prevents the onset of spinal abnormalities by stopping the loss of proprioceptive neurons. These phenotypic improvements correlate with increased amounts of full-length ELP1 mRNA and protein in multiple tissues, including in the peripheral nervous system (PNS). Our results show that postnatal correction of the underlying ELP1 splicing defect can rescue devastating disease phenotypes and is therefore a viable therapeutic approach for persons with FD.
Collapse
|
16
|
Tantzer S, Sperle K, Kenaley K, Taube J, Hobson GM. Morpholino Antisense Oligomers as a Potential Therapeutic Option for the Correction of Alternative Splicing in PMD, SPG2, and HEMS. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:420-432. [PMID: 30195779 PMCID: PMC6036941 DOI: 10.1016/j.omtn.2018.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 01/10/2023]
Abstract
DNA variants of the proteolipid protein 1 gene (PLP1) that shift PLP1/DM20 alternative splicing away from the PLP1 form toward DM20 cause the allelic X-linked leukodystrophies Pelizaeus-Merzbacher disease (PMD), spastic paraplegia 2 (SPG2), and hypomyelination of early myelinating structures (HEMS). We designed a morpholino oligomer (MO-PLP) to block use of the DM20 5' splice donor site, thereby shifting alternative splicing toward the PLP1 5' splice site. Treatment of an immature oligodendrocyte cell line with MO-PLP significantly shifted alternative splicing toward PLP1 expression from the endogenous gene and from transfected human minigene splicing constructs harboring patient variants known to reduce the amount of the PLP1 spliced product. Additionally, a single intracerebroventricular injection of MO-PLP into the brains of neonatal mice, carrying a deletion of an intronic splicing enhancer identified in a PMD patient that reduces the Plp1 spliced form, corrected alternative splicing at both RNA and protein levels in the CNS. The effect lasted to post-natal day 90, well beyond the early post-natal spike in myelination and PLP production. Further, the single injection produced a sustained reduction of inflammatory markers in the brains of the mice. Our results suggest that morpholino oligomers have therapeutic potential for the treatment of PMD, SPG2, and HEMS.
Collapse
Affiliation(s)
- Stephanie Tantzer
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Karen Sperle
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kaitlin Kenaley
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Pediatrics/Neonatology, Christiana Care Health System, Newark, DE 19713, USA
| | - Jennifer Taube
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
17
|
Salani M, Urbina F, Brenner A, Morini E, Shetty R, Gallagher CS, Law EA, Sunshine S, Finneran DJ, Johnson G, Minor L, Slaugenhaupt SA. Development of a Screening Platform to Identify Small Molecules That Modify ELP1 Pre-mRNA Splicing in Familial Dysautonomia. SLAS DISCOVERY 2018; 24:57-67. [PMID: 30085848 DOI: 10.1177/2472555218792264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Familial dysautonomia (FD) is an autonomic and sensory neuropathy caused by a mutation in the splice donor site of intron 20 of the ELP1 gene. Variable skipping of exon 20 leads to a tissue-specific reduction in the level of ELP1 protein. We have shown that the plant cytokinin kinetin is able to increase cellular ELP1 protein levels in vivo and in vitro through correction of ELP1 splicing. Studies in FD patients determined that kinetin is not a practical therapy due to low potency and rapid elimination. To identify molecules with improved potency and efficacy, we developed a cell-based luciferase splicing assay by inserting renilla (Rluc) and firefly (Fluc) luciferase reporters into our previously well-characterized ELP1 minigene construct. Evaluation of the Fluc/Rluc signal ratio enables a fast and accurate way to measure exon 20 inclusion. Further, we developed a secondary assay that measures ELP1 splicing in FD patient-derived fibroblasts. Here we demonstrate the quality and reproducibility of our screening method. Development and implementation of this screening platform has allowed us to efficiently screen for new compounds that robustly and specifically enhance ELP1 pre-mRNA splicing.
Collapse
Affiliation(s)
- Monica Salani
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Fabio Urbina
- 2 Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony Brenner
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Elisabetta Morini
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.,3 Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Ranjit Shetty
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - C Scott Gallagher
- 3 Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Emily A Law
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Sara Sunshine
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Dylan J Finneran
- 4 Byrd Alzheimer's Institute College of Medicine Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| | | | - Lisa Minor
- 6 In Vitro Strategies LLC, Flemington, NJ, USA
| | - Susan A Slaugenhaupt
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.,3 Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
N6-Furfuryladenine is protective in Huntington's disease models by signaling huntingtin phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E7081-E7090. [PMID: 29987005 DOI: 10.1073/pnas.1801772115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington's disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.
Collapse
|
19
|
Chandra G, Shenoi RA, Anand R, Rajamma U, Mohanakumar KP. Reinforcing mitochondrial functions in aging brain: An insight into Parkinson's disease therapeutics. J Chem Neuroanat 2017; 95:29-42. [PMID: 29269015 DOI: 10.1016/j.jchemneu.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/16/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria, the powerhouse of the neural cells in the brain, are also the seat of certain essential gene signaling pathways that control neuronal functions. Deterioration of mitochondrial functions has been widely reported in normal aging as well as in a spectrum of age-associated neurological diseases, including Parkinson's disease (PD). Evidences accumulated in the recent past provide not only advanced information on the causes of mitochondrial bioenergetics defects and redox imbalance in PD brains, but also much insight into mitochondrial biogenesis, quality control of mitochondrial proteins, and genes, which regulate intra- and extra-mitochondrial signaling that control the general health of neural cells. The mitochondrial quality control machinery is affected in aging and especially in PD, thus affecting intraneuronal protein transport and degradation, which are primarily responsible for accumulation of misfolded proteins and mitochondrial damage in sporadic as well as familial PD. Essentially we considered in the first half of this review, mitochondria-based targets such as mitochondrial oxidative stress and mitochondrial quality control pathways in PD, relevance of mitochondrial DNA mutations, mitophagy, mitochondrial proteases, mitochondrial flux, and finally mitochondria-based therapies possible for PD. Therapeutic aspects are considered in the later half and mitochondria-targeted antioxidant therapy, mitophagy enhancers, mitochondrial biogenesis boasters, mitochondrial dynamics modulators, and gene-based therapeutic approaches are discussed. The present review is a critical assessment of this information to distinguish some exemplary mitochondrial therapeutic targets, and provides a utilitarian perception of some avenues for therapeutic designs on identified mitochondrial targets for PD, a very incapacitating disorder of the geriatric population, world over.
Collapse
Affiliation(s)
- G Chandra
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India.
| | - R A Shenoi
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| | - R Anand
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| | - U Rajamma
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| | - K P Mohanakumar
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| |
Collapse
|
20
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:810. [PMID: 29081515 DOI: 10.1038/nrd.2017.225] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:755-772. [DOI: 10.1038/nrd.2017.170] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Orr AL, Rutaganira FU, de Roulet D, Huang EJ, Hertz NT, Shokat KM, Nakamura K. Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease. Neurochem Int 2017; 109:106-116. [PMID: 28434973 DOI: 10.1016/j.neuint.2017.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Mutations in the mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) cause Parkinson's disease (PD), likely by disrupting PINK1's kinase activity. Although the mechanism(s) underlying how this loss of activity causes degeneration remains unclear, increasing PINK1 activity may therapeutically benefit some forms of PD. However, we must first learn whether restoring PINK1 function prevents degeneration in patients harboring PINK1 mutations, or whether boosting PINK1 function can offer protection in more common causes of PD. To test these hypotheses in preclinical rodent models of PD, we used kinetin triphosphate, a small-molecule that activates both wild-type and mutant forms of PINK1, which affects mitochondrial function and protects neural cells in culture. We chronically fed kinetin, the precursor of kinetin triphosphate, to PINK1-null rats in which PINK1 was reintroduced into their midbrain, and also to rodent models overexpressing α-synuclein. The highest tolerated dose of oral kinetin increased brain levels of kinetin for up to 6 months, without adversely affecting the survival of nigrostriatal dopamine neurons. However, there was no degeneration of midbrain dopamine neurons lacking PINK1, which precluded an assessment of neuroprotection and raised questions about the robustness of the PINK1 KO rat model of PD. In two rodent models of α-synuclein-induced toxicity, boosting PINK1 activity with oral kinetin provided no protective effects. Our results suggest that oral kinetin is unlikely to protect against α-synuclein toxicity, and thus fail to provide evidence that kinetin will protect in sporadic models of PD. Kinetin may protect in cases of PINK1 deficiency, but this possibility requires a more robust PINK1 KO model that can be validated by proof-of-principle genetic correction in adult animals.
Collapse
Affiliation(s)
- Adam L Orr
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Florentine U Rutaganira
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Mitokinin LLC, 2 Wall Street, 4th Floor, New York, NY, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Dietrich P, Dragatsis I. Familial Dysautonomia: Mechanisms and Models. Genet Mol Biol 2016; 39:497-514. [PMID: 27561110 PMCID: PMC5127153 DOI: 10.1590/1678-4685-gmb-2015-0335] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/16/2016] [Indexed: 11/22/2022] Open
Abstract
Hereditary Sensory and Autonomic Neuropathies (HSANs) compose a heterogeneous group of genetic disorders characterized by sensory and autonomic dysfunctions. Familial Dysautonomia (FD), also known as HSAN III, is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population. The major features of the disease are already present at birth and are attributed to abnormal development and progressive degeneration of the sensory and autonomic nervous systems. Despite clinical interventions, the disease is inevitably fatal. FD is caused by a point mutation in intron 20 of the IKBKAP gene that results in severe reduction in expression of IKAP, its encoded protein. In vitro and in vivo studies have shown that IKAP is involved in multiple intracellular processes, and suggest that failed target innervation and/or impaired neurotrophic retrograde transport are the primary causes of neuronal cell death in FD. However, FD is far more complex, and appears to affect several other organs and systems in addition to the peripheral nervous system. With the recent generation of mouse models that recapitulate the molecular and pathological features of the disease, it is now possible to further investigate the mechanisms underlying different aspects of the disorder, and to test novel therapeutic strategies.
Collapse
Affiliation(s)
- Paula Dietrich
- Department of Physiology, The University of Tennessee, Memphis, TN, USA
| | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Memphis, TN, USA
| |
Collapse
|
24
|
Hervé M, Ibrahim EC. MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech 2016; 9:899-909. [PMID: 27483351 PMCID: PMC5007982 DOI: 10.1242/dmm.025841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022] Open
Abstract
Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a mutation in intron 20 of the IKBKAP gene (c.2204+6T>C), leading to tissue-specific skipping of exon 20 and a decrease in the synthesis of the encoded protein IKAP (also known as ELP1). Small non-coding RNAs known as microRNAs (miRNAs) are important post-transcriptional regulators of gene expression and play an essential role in the nervous system development and function. To better understand the neuronal specificity of IKAP loss, we examined expression of miRNAs in human olfactory ecto-mesenchymal stem cells (hOE-MSCs) from five control individuals and five FD patients. We profiled the expression of 373 miRNAs using microfluidics and reverse transcription coupled to quantitative PCR (RT-qPCR) on two biological replicate series of hOE-MSC cultures from healthy controls and FD patients. This led to the total identification of 26 dysregulated miRNAs in FD, validating the existence of a miRNA signature in FD. We then selected the nine most discriminant miRNAs for further analysis. The signaling pathways affected by these dysregulated miRNAs were largely within the nervous system. In addition, many targets of these dysregulated miRNAs had been previously demonstrated to be affected in FD models. Moreover, we found that four of our nine candidate miRNAs target the neuron-specific splicing factor NOVA1. We demonstrated that overexpression of miR-203a-3p leads to a decrease of NOVA1, counter-balanced by an increase of IKAP, supporting a potential interaction between NOVA1 and IKAP. Taken together, these results reinforce the choice of miRNAs as potential therapeutic targets and suggest that NOVA1 could be a regulator of FD pathophysiology. Summary: A miRNA screening conducted in olfactory stem cells from patients links the neuron-specific splicing factor NOVA1 to neurodegeneration in familial dysautonomia.
Collapse
Affiliation(s)
- Mylène Hervé
- CRN2M-UMR7286, Aix-Marseille Université, CNRS, Faculté de Médecine Nord, Marseille 13344, Cedex 15, France
| | - El Chérif Ibrahim
- CRN2M-UMR7286, Aix-Marseille Université, CNRS, Faculté de Médecine Nord, Marseille 13344, Cedex 15, France
| |
Collapse
|
25
|
Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H. Familial dysautonomia: History, genotype, phenotype and translational research. Prog Neurobiol 2016; 152:131-148. [PMID: 27317387 DOI: 10.1016/j.pneurobio.2016.06.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 01/30/2023]
Abstract
Familial dysautonomia (FD) is a rare neurological disorder caused by a splice mutation in the IKBKAP gene. The mutation arose in the 1500s within the small Jewish founder population in Eastern Europe and became prevalent during the period of rapid population expansion within the Pale of Settlement. The carrier rate is 1:32 in Jews descending from this region. The mutation results in a tissue-specific deficiency in IKAP, a protein involved in the development and survival of neurons. Patients homozygous for the mutations are born with multiple lesions affecting mostly sensory (afferent) fibers, which leads to widespread organ dysfunction and increased mortality. Neurodegenerative features of the disease include progressive optic atrophy and worsening gait ataxia. Here we review the progress made in the last decade to better understand the genotype and phenotype. We also discuss the challenges of conducting controlled clinical trials in this rare medically fragile population. Meanwhile, the search for better treatments as well as a neuroprotective agent is ongoing.
Collapse
Affiliation(s)
| | - Susan A Slaugenhaupt
- Center for Human Genetic Research, Massachusetts General Hospital Research Institute and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Morini E, Dietrich P, Salani M, Downs HM, Wojtkiewicz GR, Alli S, Brenner A, Nilbratt M, LeClair JW, Oaklander AL, Slaugenhaupt SA, Dragatsis I. Sensory and autonomic deficits in a new humanized mouse model of familial dysautonomia. Hum Mol Genet 2016; 25:1116-28. [PMID: 26769677 DOI: 10.1093/hmg/ddv634] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/30/2015] [Indexed: 01/30/2023] Open
Abstract
Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease that affects the development and survival of sensory and autonomic neurons. FD is caused by an mRNA splicing mutation in intron 20 of the IKBKAP gene that results in a tissue-specific skipping of exon 20 and a corresponding reduction of the inhibitor of kappaB kinase complex-associated protein (IKAP), also known as Elongator complex protein 1. To date, several promising therapeutic candidates for FD have been identified that target the underlying mRNA splicing defect, and increase functional IKAP protein. Despite these remarkable advances in drug discovery for FD, we lacked a phenotypic mouse model in which we could manipulate IKBKAP mRNA splicing to evaluate potential efficacy. We have, therefore, engineered a new mouse model that, for the first time, will permit to evaluate the phenotypic effects of splicing modulators and provide a crucial platform for preclinical testing of new therapies. This new mouse model, TgFD9; Ikbkap(Δ20/flox) was created by introducing the complete human IKBKAP transgene with the major FD splice mutation (TgFD9) into a mouse that expresses extremely low levels of endogenous Ikbkap (Ikbkap(Δ20/flox)). The TgFD9; Ikbkap(Δ20/flox) mouse recapitulates many phenotypic features of the human disease, including reduced growth rate, reduced number of fungiform papillae, spinal abnormalities, and sensory and sympathetic impairments, and recreates the same tissue-specific mis-splicing defect seen in FD patients. This is the first mouse model that can be used to evaluate in vivo the therapeutic effect of increasing IKAP levels by correcting the underlying FD splicing defect.
Collapse
Affiliation(s)
| | - Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | | | - Heather M Downs
- Nerve Unit, Departments of Neurology and Pathology (Neuropathology) and
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA and
| | - Shanta Alli
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
27
|
Hertz NT, Berthet A, Sos ML, Thorn KS, Burlingame AL, Nakamura K, Shokat KM. A neo-substrate that amplifies catalytic activity of parkinson's-disease-related kinase PINK1. Cell 2013; 154:737-47. [PMID: 23953109 PMCID: PMC3950538 DOI: 10.1016/j.cell.2013.07.030] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/30/2013] [Accepted: 07/22/2013] [Indexed: 12/22/2022]
Abstract
Mitochondria have long been implicated in the pathogenesis of Parkinson's disease (PD). Mutations in the mitochondrial kinase PINK1 that reduce kinase activity are associated with mitochondrial defects and result in an autosomal-recessive form of early-onset PD. Therapeutic approaches for enhancing the activity of PINK1 have not been considered because no allosteric regulatory sites for PINK1 are known. Here, we show that an alternative strategy, a neo-substrate approach involving the ATP analog kinetin triphosphate (KTP), can be used to increase the activity of both PD-related mutant PINK1(G309D) and PINK1(WT). Moreover, we show that application of the KTP precursor kinetin to cells results in biologically significant increases in PINK1 activity, manifest as higher levels of Parkin recruitment to depolarized mitochondria, reduced mitochondrial motility in axons, and lower levels of apoptosis. Discovery of neo-substrates for kinases could provide a heretofore-unappreciated modality for regulating kinase activity.
Collapse
Affiliation(s)
- Nicholas T. Hertz
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
- Graduate Program in Chemistry and Chemical Biology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Amandine Berthet
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Martin L. Sos
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kurt S. Thorn
- Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Al L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology and Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M. Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
28
|
Bochner R, Ziv Y, Zeevi D, Donyo M, Abraham L, Ashery-Padan R, Ast G. Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model. Hum Mol Genet 2013; 22:2785-94. [PMID: 23515154 DOI: 10.1093/hmg/ddt126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Familial dysautonomia (FD) is a severe neurodegenerative genetic disorder restricted to the Ashkenazi Jewish population. The most common mutation in FD patients is a T-to-C transition at position 6 of intron 20 of the IKBKAP gene. This mutation causes aberrant skipping of exon 20 in a tissue-specific manner, leading to reduction of the IκB kinase complex-associated protein (IKAP) protein in the nervous system. We established a homozygous humanized mouse strain carrying human exon 20 and its two flanking introns; the 3' intron has the transition observed in the IKBKAP gene of FD patients. Although our FD humanized mouse does not display FD symptoms, the unique, tissue-specific splicing pattern of the IKBKAP in these mice allowed us to evaluate the effect of therapies on gene expression and exon 20 splicing. The FD mice were supplemented with phosphatidylserine (PS), a safe food supplement that increases mRNA and protein levels of IKBKAP in cell lines generated from FD patients. Here we demonstrated that PS treatment increases IKBAKP mRNA and IKAP protein levels in various tissues of FD mice without affecting exon 20 inclusion levels. We also observed that genes associated with transcription regulation and developmental processes were up-regulated in the cerebrum of PS-treated mice. Thus, PS holds promise for the treatment of FD.
Collapse
Affiliation(s)
- Ron Bochner
- Department of Human Molecular Genetics and Biochemistry
| | | | | | | | | | | | | |
Collapse
|
29
|
Verhaart IEC, Aartsma-Rus A. The effect of 6-thioguanine on alternative splicing and antisense-mediated exon skipping treatment for duchenne muscular dystrophy. PLOS CURRENTS 2012; 4. [PMID: 23259153 PMCID: PMC3523663 DOI: 10.1371/currents.md.597d700f92eaa70de261ea0d91821377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The severe muscle wasting disorder Duchenne muscular dystrophy (DMD) is caused by genetic defects in the DMD gene, leading to a complete absence of dystrophin protein. Of the therapeutic approaches addressing the underlying genetic defect, exon skipping through antisense oligonucleotides (AONs) is the closest to clinical application. Several strategies to improve the efficiency of this approach are currently being investigated, such as the use of small chemical compounds that improve AONmediated exon skipping levels. Recently, enhanced exon skipping in combination with a guanine analogue, 6-thioguanine (6TG) was reported for phosphorodiamidate morpholino oligomers (PMO). Here the effect of 6TG on the exon skipping efficacy of 2’-O-methyl phosphorothioate RNA (2OMePS) and PMO AONs in vitro and in vivo was further evaluated, as well as the effect of 6TG by itself. Results confirm an increase of exon skipping levels in vitro, however, in contrast to the previous report, no effect was observed in vivo. Importantly, 6TG treatment in vitro resulted in numerous additional DMD exon skipping events. This, in combination with the known cytotoxic effects of 6TG after incorporation in DNA, warrants reconsidering of the use of 6TG as enhancer of AON efficiency in DMD, were chronic treatment will be required.
Collapse
Affiliation(s)
- Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
30
|
Abstract
Dysregulation of splicing and alternative splicing underlies many genetic and acquired diseases. We present an overview of recent strategies and successes in modulating splicing therapeutically in clinical and preclinical contexts. Effective approaches include restoring open reading frames, influencing alternative splicing, and inducing exon inclusion to generate beneficial proteins and remove deleterious ones.
Collapse
Affiliation(s)
- Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | |
Collapse
|
31
|
Barrie ES, Smith RM, Sanford JC, Sadee W. mRNA transcript diversity creates new opportunities for pharmacological intervention. Mol Pharmacol 2012; 81:620-630. [PMID: 22319206 PMCID: PMC3336806 DOI: 10.1124/mol.111.076604] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/07/2012] [Indexed: 12/13/2022] Open
Abstract
Most protein coding genes generate multiple RNA transcripts through alternative splicing, variable 3' and 5'UTRs, and RNA editing. Although drug design typically targets the main transcript, alternative transcripts can have profound physiological effects, encoding proteins with distinct functions or regulatory properties. Formation of these alternative transcripts is tissue-selective and context-dependent, creating opportunities for more effective and targeted therapies with reduced adverse effects. Moreover, genetic variation can tilt the balance of alternative versus constitutive transcripts or generate aberrant transcripts that contribute to disease risk. In addition, environmental factors and drugs modulate RNA splicing, affording new opportunities for the treatment of splicing disorders. For example, therapies targeting specific mRNA transcripts with splice-site-directed oligonucleotides that correct aberrant splicing are already in clinical trials for genetic disorders such as Duchenne muscular dystrophy. High-throughput sequencing technologies facilitate discovery of novel RNA transcripts and protein isoforms, applications ranging from neuromuscular disorders to cancer. Consideration of a gene's transcript diversity should become an integral part of drug design, development, and therapy.
Collapse
Affiliation(s)
- Elizabeth S Barrie
- Program in Pharmacogenomics, Department of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
32
|
Boone N, Bergon A, Loriod B, Devèze A, Nguyen C, Axelrod FB, Ibrahim EC. Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 2012; 33:530-40. [PMID: 22190446 DOI: 10.1002/humu.22010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/08/2011] [Indexed: 11/10/2022]
Abstract
Familial dysautonomia (FD) is a rare inherited neurodegenerative disorder. The most common mutation is a c.2204+6T>C transition in the 5' splice site (5'ss) of IKBKAP intron 20, which causes a tissue-specific skipping of exon 20, resulting in lower synthesis of IKAP/hELP1 protein. To better understand the specificity of neuron loss in FD, we modeled the molecular mechanisms of IKBKAP mRNA splicing by studying human olfactory ecto-mesenchymal stem cells (hOE-MSCs) derived from FD patient nasal biopsies. We explored how the modulation of IKBKAP mRNA alternative splicing impacts the transcriptome at the genome-wide level. We found that the FD transcriptional signature was highly associated with biological functions related to the development of the nervous system. In addition, we identified target genes of kinetin, a plant cytokinin that corrects IKBKAP mRNA splicing and increases the expression of IKAP/hELP1. We identified this compound as a putative regulator of splicing factors and added new evidence for a sequence-specific correction of splicing. In conclusion, hOE-MSCs isolated from FD patients represent a promising avenue for modeling the altered genetic expression of FD, demonstrating a methodology that can be applied to a host of other genetic disorders to test the therapeutic potential of candidate molecules.
Collapse
Affiliation(s)
- Nathalie Boone
- Aix-Marseille Université, NICN, UMR 6184, Marseille, France
| | | | | | | | | | | | | |
Collapse
|