1
|
Liu H, Chehade L, Deguise MO, De Repentigny Y, Kothary R. SMN depletion impairs skeletal muscle formation and maturation in a mouse model of SMA. Hum Mol Genet 2025; 34:21-31. [PMID: 39505369 PMCID: PMC11756284 DOI: 10.1093/hmg/ddae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by low levels of the ubiquitously expressed Survival Motor Neuron (SMN) protein, leading to progressive muscle weakness and atrophy. Skeletal muscle satellite cells play a crucial role in muscle fiber maintenance, repair, and remodelling. While the effects of SMN depletion in muscle are well documented, its precise role in satellite cell function remains largely unclear. Using the Smn2B/- mouse model, we investigated SMN-depleted satellite cell biology through single fiber culture studies. Myofibers from Smn2B/- mice were smaller in size, shorter in length, had reduced myonuclear domain size, and reduced sub-synaptic myonuclear clusters-all suggesting impaired muscle function and integrity. These changes were accompanied by a reduction in the number of myonuclei in myofibers from Smn2B/- mice across all disease stages examined. Although the number of satellite cells in myofibers was significantly reduced, those remaining retained their capacity for myogenic activation and proliferation. These findings support the idea that a dysregulated myogenic process could be occurring as early in muscle stem cells during muscle formation and maturation in SMA. Targeting those pathways could offer additional options for combinatorial therapies for SMA.
Collapse
MESH Headings
- Animals
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/metabolism
- Mice
- Disease Models, Animal
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle Development/genetics
- Survival of Motor Neuron 1 Protein/genetics
- Survival of Motor Neuron 1 Protein/metabolism
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Survival of Motor Neuron 2 Protein/genetics
- Mice, Knockout
- Humans
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Cell Proliferation
Collapse
Affiliation(s)
- Hong Liu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Lucia Chehade
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Center for Neuromuscular Disease, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Center for Neuromuscular Disease, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
2
|
Berciano MT, Gatius A, Puente-Bedia A, Rufino-Gómez A, Tarabal O, Rodríguez-Rey JC, Calderó J, Lafarga M, Tapia O. SMN Deficiency Induces an Early Non-Atrophic Myopathy with Alterations in the Contractile and Excitatory Coupling Machinery of Skeletal Myofibers in the SMN∆7 Mouse Model of Spinal Muscular Atrophy. Int J Mol Sci 2024; 25:12415. [PMID: 39596480 PMCID: PMC11595111 DOI: 10.3390/ijms252212415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Spinal muscular atrophy (SMA) is caused by a deficiency of the ubiquitously expressed survival motor neuron (SMN) protein. The main pathological hallmark of SMA is the degeneration of lower motor neurons (MNs) with subsequent denervation and atrophy of skeletal muscle. However, increasing evidence indicates that low SMN levels not only are detrimental to the central nervous system (CNS) but also directly affect other peripheral tissues and organs, including skeletal muscle. To better understand the potential primary impact of SMN deficiency in muscle, we explored the cellular, ultrastructural, and molecular basis of SMA myopathy in the SMNΔ7 mouse model of severe SMA at an early postnatal period (P0-7) prior to muscle denervation and MN loss (preneurodegenerative [PND] stage). This period contrasts with the neurodegenerative (ND) stage (P8-14), in which MN loss and muscle atrophy occur. At the PND stage, we found that SMN∆7 mice displayed early signs of motor dysfunction with overt myofiber alterations in the absence of atrophy. We provide essential new ultrastructural data on focal and segmental lesions in the myofibrillar contractile apparatus. These lesions were observed in association with specific myonuclear domains and included abnormal accumulations of actin-thin myofilaments, sarcomere disruption, and the formation of minisarcomeres. The sarcoplasmic reticulum and triads also exhibited ultrastructural alterations, suggesting decoupling during the excitation-contraction process. Finally, changes in intermyofibrillar mitochondrial organization and dynamics, indicative of mitochondrial biogenesis overactivation, were also found. Overall, our results demonstrated that SMN deficiency induces early and MN loss-independent alterations in myofibers that essentially contribute to SMA myopathy. This strongly supports the growing body of evidence indicating the existence of intrinsic alterations in the skeletal muscle in SMA and further reinforces the relevance of this peripheral tissue as a key therapeutic target for the disease.
Collapse
Affiliation(s)
- María T. Berciano
- Department of Molecular Biology, University of Cantabria, 39011 Santander, Spain; (M.T.B.); (J.C.R.-R.)
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Alaó Gatius
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - Alba Puente-Bedia
- Department of Physiology and Pharmacology, University of Cantabria, 39011 Santander, Spain;
| | - Alexis Rufino-Gómez
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38200 San Cristobal de la Laguna, Spain;
| | - Olga Tarabal
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - José C. Rodríguez-Rey
- Department of Molecular Biology, University of Cantabria, 39011 Santander, Spain; (M.T.B.); (J.C.R.-R.)
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Jordi Calderó
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - Miguel Lafarga
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Department of Anatomy and Cell Biology, University of Cantabria, 39011 Santander, Spain
| | - Olga Tapia
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38200 San Cristobal de la Laguna, Spain;
| |
Collapse
|
3
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
5
|
Reilly A, Yaworski R, Beauvais A, Schneider BL, Kothary R. Long term peripheral AAV9-SMN gene therapy promotes survival in a mouse model of spinal muscular atrophy. Hum Mol Genet 2024; 33:510-519. [PMID: 38073249 PMCID: PMC10908349 DOI: 10.1093/hmg/ddad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/03/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by motor neuron loss and skeletal muscle atrophy. SMA is caused by the loss of the SMN1 gene and low SMN protein levels. Current SMA therapies work by increasing SMN protein in the body. Although SMA is regarded as a motor neuron disorder, growing evidence shows that several peripheral organs contribute to SMA pathology. A gene therapy treatment, onasemnogene abeparvovec, is being explored in clinical trials via both systemic and central nervous system (CNS) specific delivery, but the ideal route of delivery as well as the long-term effectiveness is unclear. To investigate the impact of gene therapy long term, we assessed SMA mice at 6 months after treatment of either intravenous (IV) or intracerebroventricular (ICV) delivery of scAAV9-cba-SMN. Interestingly, we observed that SMN protein levels were restored in the peripheral tissues but not in the spinal cord at 6 months of age. However, ICV injections provided better motor neuron and motor function protection than IV injection, while IV-injected mice demonstrated better protection of neuromuscular junctions and muscle fiber size. Surprisingly, both delivery routes resulted in an equal rescue on survival, weight, and liver and pancreatic defects. These results demonstrate that continued peripheral AAV9-SMN gene therapy is beneficial for disease improvement even in the absence of SMN restoration in the spinal cord.
Collapse
Affiliation(s)
- Aoife Reilly
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501, Smyth Road, Ottawa K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Rebecca Yaworski
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501, Smyth Road, Ottawa K1H 8L6, Canada
| | - Ariane Beauvais
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501, Smyth Road, Ottawa K1H 8L6, Canada
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501, Smyth Road, Ottawa K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
- Department of Medicine, University of Ottawa, 501 Smyth Road, Ottawa K1H 8L6, Canada
| |
Collapse
|
6
|
Urzi A, Lahmann I, Nguyen LVN, Rost BR, García-Pérez A, Lelievre N, Merritt-Garza ME, Phan HC, Bassell GJ, Rossoll W, Diecke S, Kunz S, Schmitz D, Gouti M. Efficient generation of a self-organizing neuromuscular junction model from human pluripotent stem cells. Nat Commun 2023; 14:8043. [PMID: 38114482 PMCID: PMC10730704 DOI: 10.1038/s41467-023-43781-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
The complex neuromuscular network that controls body movements is the target of severe diseases that result in paralysis and death. Here, we report the development of a robust and efficient self-organizing neuromuscular junction (soNMJ) model from human pluripotent stem cells that can be maintained long-term in simple adherent conditions. The timely application of specific patterning signals instructs the simultaneous development and differentiation of position-specific brachial spinal neurons, skeletal muscles, and terminal Schwann cells. High-content imaging reveals self-organized bundles of aligned muscle fibers surrounded by innervating motor neurons that form functional neuromuscular junctions. Optogenetic activation and pharmacological interventions show that the spinal neurons actively instruct the synchronous skeletal muscle contraction. The generation of a soNMJ model from spinal muscular atrophy patient-specific iPSCs reveals that the number of NMJs and muscle contraction is severely affected, resembling the patient's pathology. In the future, the soNMJ model could be used for high-throughput studies in disease modeling and drug development. Thus, this model will allow us to address unmet needs in the neuromuscular disease field.
Collapse
Affiliation(s)
- Alessia Urzi
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Ines Lahmann
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Lan Vi N Nguyen
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Benjamin R Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Angélica García-Pérez
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Noemie Lelievre
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Megan E Merritt-Garza
- Department of Cell Biology, Laboratory for Translational Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Han C Phan
- Department of Pediatrics, University of Alabama, Birmingham, AL, 35294, USA
| | - Gary J Bassell
- Department of Cell Biology, Laboratory for Translational Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sebastian Diecke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, 13125, Berlin, Germany
| | - Severine Kunz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Electron Microscopy, 13125, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Berlin Institute of Health, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mina Gouti
- Stem Cell Modeling of Development & Disease Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| |
Collapse
|
7
|
Nafchi NAM, Chilcott EM, Brown S, Fuller HR, Bowerman M, Yáñez-Muñoz RJ. Enhanced expression of the human Survival motor neuron 1 gene from a codon-optimised cDNA transgene in vitro and in vivo. Gene Ther 2023; 30:812-825. [PMID: 37322133 DOI: 10.1038/s41434-023-00406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease particularly characterised by degeneration of ventral motor neurons. Survival motor neuron (SMN) 1 gene mutations cause SMA, and gene addition strategies to replace the faulty SMN1 copy are a therapeutic option. We have developed a novel, codon-optimised hSMN1 transgene and produced integration-proficient and integration-deficient lentiviral vectors with cytomegalovirus (CMV), human synapsin (hSYN) or human phosphoglycerate kinase (hPGK) promoters to determine the optimal expression cassette configuration. Integrating, CMV-driven and codon-optimised hSMN1 lentiviral vectors resulted in the highest production of functional SMN protein in vitro. Integration-deficient lentiviral vectors also led to significant expression of the optimised transgene and are expected to be safer than integrating vectors. Lentiviral delivery in culture led to activation of the DNA damage response, in particular elevating levels of phosphorylated ataxia telangiectasia mutated (pATM) and γH2AX, but the optimised hSMN1 transgene showed some protective effects. Neonatal delivery of adeno-associated viral vector (AAV9) vector encoding the optimised transgene to the Smn2B/- mouse model of SMA resulted in a significant increase of SMN protein levels in liver and spinal cord. This work shows the potential of a novel codon-optimised hSMN1 transgene as a therapeutic strategy for SMA.
Collapse
Affiliation(s)
- Neda A M Nafchi
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Ellie M Chilcott
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Sharon Brown
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK
| | - Melissa Bowerman
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK
- School of Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
8
|
Dysfunctional mitochondria accumulate in a skeletal muscle knockout model of Smn1, the causal gene of spinal muscular atrophy. Cell Death Dis 2023; 14:162. [PMID: 36849544 PMCID: PMC9971247 DOI: 10.1038/s41419-023-05573-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 03/01/2023]
Abstract
The approved gene therapies for spinal muscular atrophy (SMA), caused by loss of survival motor neuron 1 (SMN1), greatly ameliorate SMA natural history but are not curative. These therapies primarily target motor neurons, but SMN1 loss has detrimental effects beyond motor neurons and especially in muscle. Here we show that SMN loss in mouse skeletal muscle leads to accumulation of dysfunctional mitochondria. Expression profiling of single myofibers from a muscle specific Smn1 knockout mouse model revealed down-regulation of mitochondrial and lysosomal genes. Albeit levels of proteins that mark mitochondria for mitophagy were increased, morphologically deranged mitochondria with impaired complex I and IV activity and respiration and that produced excess reactive oxygen species accumulated in Smn1 knockout muscles, because of the lysosomal dysfunction highlighted by the transcriptional profiling. Amniotic fluid stem cells transplantation that corrects the SMN knockout mouse myopathic phenotype restored mitochondrial morphology and expression of mitochondrial genes. Thus, targeting muscle mitochondrial dysfunction in SMA may complement the current gene therapy.
Collapse
|
9
|
Chiriboga CA. Pharmacotherapy for Spinal Muscular Atrophy in Babies and Children: A Review of Approved and Experimental Therapies. Paediatr Drugs 2022; 24:585-602. [PMID: 36028610 DOI: 10.1007/s40272-022-00529-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive degenerative neuromuscular disorder characterized by loss of spinal motor neurons leading to muscle weakness and atrophy that is caused by survival motor neuron (SMN) protein deficiency resulting from the biallelic loss of the SMN1 gene. The SMN2 gene modulates the SMA phenotype, as a small fraction of its transcripts are alternatively spliced to produce full-length SMN (fSMN) protein. SMN-targeted therapies increase SMN protein; mRNA therapies, nusinersen and risdiplam, increase the amount of fSMN transcripts alternatively spliced from the SMN2 gene, while gene transfer therapy, onasemnogene abeparvovec xioi, increases SMN protein by introducing the hSMN gene into various tissues, including spinal cord via an AAV9 vector. These SMN-targeted therapies have been found effective in improving outcomes and are approved for use in SMA in the US and elsewhere. This article discusses the clinical trial results for SMN-directed therapies with a focus on efficacy, side effects and treatment response predictors. It also discusses preliminary data from muscle-targeted trials, as single agents and in combination with SMN-targeted therapies, as well as other classes of SMA treatments.
Collapse
Affiliation(s)
- Claudia A Chiriboga
- Division of Child Neurology, Department of Neurology, Columbia University Medical Center, 180 Fort Washington Ave, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Dumas SA, Villalón E, Bergman EM, Wilson KJ, Marugan JJ, Lorson CL, Burnett BG. A combinatorial approach increases SMN level in SMA model mice. Hum Mol Genet 2022; 31:2989-3000. [PMID: 35419606 PMCID: PMC9433732 DOI: 10.1093/hmg/ddac068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/01/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by reduced expression of the survival motor neuron (SMN) protein. Current disease-modifying therapies increase SMN levels and dramatically improve survival and motor function of SMA patients. Nevertheless, current treatments are not cures and autopsy data suggest that SMN induction is variable. Our group and others have shown that combinatorial approaches that target different modalities can improve outcomes in rodent models of SMA. Here we explore if slowing SMN protein degradation and correcting SMN splicing defects could synergistically increase SMN production and improve the SMA phenotype in model mice. We show that co-administering ML372, which inhibits SMN ubiquitination, with an SMN-modifying antisense oligonucleotide (ASO) increases SMN production in SMA cells and model mice. In addition, we observed improved spinal cord, neuromuscular junction and muscle pathology when ML372 and the ASO were administered in combination. Importantly, the combinatorial approach resulted in increased motor function and extended survival of SMA mice. Our results demonstrate that a combination of treatment modalities synergistically increases SMN levels and improves pathophysiology of SMA model mice over individual treatment.
Collapse
Affiliation(s)
- Samantha A Dumas
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda, MD 20814, USA
| | - Eric Villalón
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | - Elizabeth M Bergman
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda, MD 20814, USA
| | - Kenneth J Wilson
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892-2152, USA
| | - Juan J Marugan
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892-2152, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
11
|
Chehade L, Deguise MO, De Repentigny Y, Yaworski R, Beauvais A, Gagnon S, Hensel N, Kothary R. Suppression of the necroptotic cell death pathways improves survival in Smn2B/− mice. Front Cell Neurosci 2022; 16:972029. [PMID: 35990890 PMCID: PMC9381707 DOI: 10.3389/fncel.2022.972029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a monogenic neuromuscular disease caused by low levels of the Survival Motor Neuron (SMN) protein. Motor neuron degeneration is the central hallmark of the disease. However, the SMN protein is ubiquitously expressed and depletion of the protein in peripheral tissues results in intrinsic disease manifestations, including muscle defects, independent of neurodegeneration. The approved SMN-restoring therapies have led to remarkable clinical improvements in SMA patients. Yet, the presence of a significant number of non-responders stresses the need for complementary therapeutic strategies targeting processes which do not rely solely on restoring SMN. Dysregulated cell death pathways are candidates for SMN-independent pathomechanisms in SMA. Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 have been widely recognized as critical therapeutic targets of necroptosis, an important form of programmed cell death. In addition, Caspase-1 plays a fundamental role in inflammation and cell death. In this study, we evaluate the role of necroptosis, particularly RIPK3 and Caspase-1, in the Smn2B/− mouse model of SMA. We have generated a triple mutant (TKO), the Smn2B/−; Ripk3−/−; Casp1−/− mouse. TKO mice displayed a robust increase in survival and improved motor function compared to Smn2B/− mice. While there was no protection against motor neuron loss or neuromuscular junction pathology, larger muscle fibers were observed in TKO mice compared to Smn2B/− mice. Our study shows that necroptosis modulates survival, motor behavior and muscle fiber size independent of SMN levels and independent of neurodegeneration. Thus, small-molecule inhibitors of necroptosis as a combinatorial approach together with SMN-restoring drugs could be a future strategy for the treatment of SMA.
Collapse
Affiliation(s)
- Lucia Chehade
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca Yaworski
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ariane Beauvais
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Niko Hensel
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Rashmi Kothary
| |
Collapse
|
12
|
Meijboom KE, Sutton ER, McCallion E, McFall E, Anthony D, Edwards B, Kubinski S, Tapken I, Bünermann I, Hazell G, Ahlskog N, Claus P, Davies KE, Kothary R, Wood MJA, Bowerman M. Dysregulation of Tweak and Fn14 in skeletal muscle of spinal muscular atrophy mice. Skelet Muscle 2022; 12:18. [PMID: 35902978 PMCID: PMC9331072 DOI: 10.1186/s13395-022-00301-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a childhood neuromuscular disorder caused by depletion of the survival motor neuron (SMN) protein. SMA is characterized by the selective death of spinal cord motor neurons, leading to progressive muscle wasting. Loss of skeletal muscle in SMA is a combination of denervation-induced muscle atrophy and intrinsic muscle pathologies. Elucidation of the pathways involved is essential to identify the key molecules that contribute to and sustain muscle pathology. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/TNF receptor superfamily member fibroblast growth factor-inducible 14 (Fn14) pathway has been shown to play a critical role in the regulation of denervation-induced muscle atrophy as well as muscle proliferation, differentiation, and metabolism in adults. However, it is not clear whether this pathway would be important in highly dynamic and developing muscle. METHODS We thus investigated the potential role of the TWEAK/Fn14 pathway in SMA muscle pathology, using the severe Taiwanese Smn-/-; SMN2 and the less severe Smn2B/- SMA mice, which undergo a progressive neuromuscular decline in the first three post-natal weeks. We also used experimental models of denervation and muscle injury in pre-weaned wild-type (WT) animals and siRNA-mediated knockdown in C2C12 muscle cells to conduct additional mechanistic investigations. RESULTS Here, we report significantly dysregulated expression of Tweak, Fn14, and previously proposed downstream effectors during disease progression in skeletal muscle of the two SMA mouse models. In addition, siRNA-mediated Smn knockdown in C2C12 myoblasts suggests a genetic interaction between Smn and the TWEAK/Fn14 pathway. Further analyses of SMA, Tweak-/-, and Fn14-/- mice revealed dysregulated myopathy, myogenesis, and glucose metabolism pathways as a common skeletal muscle feature, providing further evidence in support of a relationship between the TWEAK/Fn14 pathway and Smn. Finally, administration of the TWEAK/Fn14 agonist Fc-TWEAK improved disease phenotypes in the two SMA mouse models. CONCLUSIONS Our study provides mechanistic insights into potential molecular players that contribute to muscle pathology in SMA and into likely differential responses of the TWEAK/Fn14 pathway in developing muscle.
Collapse
Affiliation(s)
- Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Gene Therapy Center, UMass Medical School, Worcester, USA
| | - Emma R Sutton
- School of Medicine, Keele University, Staffordshire, UK
| | - Eve McCallion
- School of Medicine, Keele University, Staffordshire, UK
| | - Emily McFall
- Regenerative Medicine Program and Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Canada
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Benjamin Edwards
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sabrina Kubinski
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Ines Tapken
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Ines Bünermann
- SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Peter Claus
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Rashmi Kothary
- Regenerative Medicine Program and Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Canada
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,School of Medicine, Keele University, Staffordshire, UK. .,Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK.
| |
Collapse
|
13
|
Ravel-Chapuis A, Haghandish A, Daneshvar N, Jasmin BJ, Côté J. A novel CARM1-HuR axis involved in muscle differentiation and plasticity misregulated in spinal muscular atrophy. Hum Mol Genet 2021; 31:1453-1470. [PMID: 34791230 DOI: 10.1093/hmg/ddab333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by the loss of alpha motor neurons in the spinal cord and a progressive muscle weakness and atrophy. SMA is caused by loss-of-function mutations and/or deletions in the survival of motor neuron (SMN) gene. The role of SMN in motor neurons has been extensively studied, but its function and the consequences of its loss in muscle has also emerged as a key aspect of SMA pathology. In this study, we explore the molecular mechanisms involved in muscle defects in SMA. First, we show in C2C12 myoblasts, that arginine methylation by CARM1 controls myogenic differentiation. More specifically, the methylation of HuR on K217 regulates HuR levels and subcellular localization during myogenic differentiation, and the formation of myotubes. Furthermore, we demonstrate that SMN and HuR interact in C2C12 myoblasts. Interestingly, the SMA-causing E134K point mutation within the SMN Tudor domain, and CARM1 depletion, modulate the SMN-HuR interaction. In addition, using the Smn2B/- mouse model, we report that CARM1 levels are markedly increased in SMA muscles and that HuR fails to properly respond to muscle denervation, thereby affecting the regulation of its mRNA targets. Altogether, our results show a novel CARM1-HuR axis in the regulation of muscle differentiation and plasticity as well as in the aberrant regulation of this axis caused by the absence of SMN in SMA muscle. With the recent developments of therapeutics targeting motor neurons, this study further indicates the need for more global therapeutic approaches for SMA.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Amir Haghandish
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nasibeh Daneshvar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
14
|
Zhao X, Feng Z, Risher N, Mollin A, Sheedy J, Ling KKY, Narasimhan J, Dakka A, Baird JD, Ratni H, Lutz C, Chen K, Naryshkin N, Ko CP, Welch E, Metzger F, Weetall M. SMN protein is required throughout life to prevent spinal muscular atrophy disease progression. Hum Mol Genet 2021; 31:82-96. [PMID: 34368854 DOI: 10.1093/hmg/ddab220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by the loss of the survival motor neuron 1 (SMN1) gene function. The related SMN2 gene partially compensates but produces insufficient levels of SMN protein due to alternative splicing of exon 7. Evrysdi™ (risdiplam), recently approved for the treatment of SMA, and related compounds promote exon 7 inclusion to generate full-length SMN2 mRNA and increase SMN protein levels. SMNΔ7 type I SMA mice survive without treatment for ~ 17 days. SMN2 mRNA splicing modulators increase survival of SMN∆7 mice with treatment initiated at postnatal day 3 (PND3). To define SMN requirements for adult mice, SMNΔ7 mice were dosed with a SMN2 mRNA splicing modifier from PND3 to PND40, then dosing was stopped. Mice not treated after PND40 showed progressive weight loss, necrosis, and muscle atrophy after ~ 20 days. Male mice presented a more severe phenotype than female mice. Mice dosed continuously did not show disease symptoms. The estimated half-life of SMN protein is 2 days indicating that the SMA phenotype reappeared after SMN protein levels returned to baseline. Although SMN protein levels decreased with age in mice and SMN protein levels were higher in brain than in muscle, our studies suggest that SMN protein is required throughout the life of the mouse and is especially essential in adult peripheral tissues including muscle. These studies indicate that drugs such as risdiplam will be optimally therapeutic when given as early as possible after diagnosis and potentially will be required for the life of an SMA patient.
Collapse
Affiliation(s)
- Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicole Risher
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Anna Mollin
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | - Karen K Y Ling
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Amal Dakka
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - John D Baird
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Hasane Ratni
- F. Hoffmann-La Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | | | | | | | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ellen Welch
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Friedrich Metzger
- F. Hoffmann-La Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| |
Collapse
|
15
|
McCormack NM, Villalón E, Viollet C, Soltis AR, Dalgard CL, Lorson CL, Burnett BG. Survival motor neuron deficiency slows myoblast fusion through reduced myomaker and myomixer expression. J Cachexia Sarcopenia Muscle 2021; 12:1098-1116. [PMID: 34115448 PMCID: PMC8350220 DOI: 10.1002/jcsm.12740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy is an inherited neurodegenerative disease caused by insufficient levels of the survival motor neuron (SMN) protein. Recently approved treatments aimed at increasing SMN protein levels have dramatically improved patient survival and have altered the disease landscape. While restoring SMN levels slows motor neuron loss, many patients continue to have smaller muscles and do not achieve normal motor milestones. While timing of treatment is important, it remains unclear why SMN restoration is insufficient to fully restore muscle size and function. We and others have shown that SMN-deficient muscle precursor cells fail to efficiently fuse into myotubes. However, the role of SMN in myoblast fusion is not known. METHODS In this study, we show that SMN-deficient myoblasts readily fuse with wild-type myoblasts, demonstrating fusion competency. Conditioned media from wild type differentiating myoblasts do not rescue the fusion deficit of SMN-deficient cells, suggesting that compromised fusion may primarily be a result of altered membrane dynamics at the cell surface. Transcriptome profiling of skeletal muscle from SMN-deficient mice revealed altered expression of cell surface fusion molecules. Finally, using cell and mouse models, we investigate if myoblast fusion can be rescued in SMN-deficient myoblast and improve the muscle pathology in SMA mice. RESULTS We found reduced expression of the muscle fusion proteins myomaker (P = 0.0060) and myomixer (P = 0.0051) in the muscle of SMA mice. Suppressing SMN expression in C2C12 myoblast cells reduces expression of myomaker (35% reduction; P < 0.0001) and myomixer, also known as myomerger and minion, (30% reduction; P < 0.0001) and restoring SMN levels only partially restores myomaker and myomixer expression. Ectopic expression of myomixer improves myofibre number (55% increase; P = 0.0006) and motor function (35% decrease in righting time; P = 0.0089) in SMA model mice and enhances motor function (82% decrease in righting time; P < 0.0001) and extends survival (28% increase; P < 0.01) when administered in combination with an antisense oligonucleotide that increases SMN protein levels. CONCLUSIONS Here, we identified reduced expression of muscle fusion proteins as a key factor in the fusion deficits of SMN-deficient myoblasts. This discovery provides a novel target to improve SMA muscle pathology and motor function, which in combination with SMN increasing therapy could enhance clinical outcomes for SMA patients.
Collapse
Affiliation(s)
- Nikki M McCormack
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Eric Villalón
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Coralie Viollet
- Collaborative Health Initiative Research Program, Uniformed Services University of the Heath Sciences, Bethesda, MD, USA
| | - Anthony R Soltis
- Collaborative Health Initiative Research Program, Uniformed Services University of the Heath Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA.,Collaborative Health Initiative Research Program, Uniformed Services University of the Heath Sciences, Bethesda, MD, USA.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA
| |
Collapse
|
16
|
Sansa A, Hidalgo I, Miralles MP, de la Fuente S, Perez-Garcia MJ, Munell F, Soler RM, Garcera A. Spinal Muscular Atrophy autophagy profile is tissue-dependent: differential regulation between muscle and motoneurons. Acta Neuropathol Commun 2021; 9:122. [PMID: 34217376 PMCID: PMC8254901 DOI: 10.1186/s40478-021-01223-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular genetic disease caused by reduced survival motor neuron (SMN) protein. SMN is ubiquitous and deficient levels cause spinal cord motoneurons (MNs) degeneration and muscle atrophy. Nevertheless, the mechanism by which SMN reduction in muscle contributes to SMA disease is not fully understood. Therefore, studies evaluating atrophy mechanisms in SMA muscles will contribute to strengthening current knowledge of the pathology. Here we propose to evaluate autophagy in SMA muscle, a pathway altered in myotube atrophy. We analized autophagy proteins and mTOR in muscle biopsies, fibroblasts, and lymphoblast cell lines from SMA patients and in gastrocnemius muscles from a severe SMA mouse model. Human MNs differentiated from SMA and unaffected control iPSCs were also included in the analysis of the autophagy. Muscle biopsies, fibroblasts, and lymphoblast cell lines from SMA patients showed reduction of the autophagy marker LC3-II. In SMA mouse gastrocnemius, we observed lower levels of LC3-II, Beclin 1, and p62/SQSTM1 proteins at pre-symptomatic stage. mTOR phosphorylation at Ser2448 was decreased in SMA muscle cells. However, in mouse and human cultured SMA MNs mTOR phosphorylation and LC3-II levels were increased. These results suggest a differential regulation in SMA of the autophagy process in muscle cells and MNs. Opposite changes in autophagy proteins and mTOR phosphorylation between muscle cells and neurons were observed. These differences may reflect a specific response to SMN reduction, which could imply diverse tissue-dependent reactions to therapies that should be taken into account when treating SMA patients.
Collapse
|
17
|
Fulceri F, Biagioni F, Limanaqi F, Busceti CL, Ryskalin L, Lenzi P, Fornai F. Ultrastructural characterization of peripheral denervation in a mouse model of Type III spinal muscular atrophy. J Neural Transm (Vienna) 2021; 128:771-791. [PMID: 33999256 PMCID: PMC8205903 DOI: 10.1007/s00702-021-02353-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Spinal muscular atrophy (SMA) is a heritable, autosomal recessive neuromuscular disorder characterized by a loss of the survival of motor neurons (SMN) protein, which leads to degeneration of lower motor neurons, and muscle atrophy. Despite SMA being nosographically classified as a motor neuron disease, recent advances indicate that peripheral alterations at the level of the neuromuscular junction (NMJ), involving the muscle, and axons of the sensory-motor system, occur early, and may even precede motor neuron loss. In the present study, we used a mouse model of slow progressive (type III) SMA, whereby the absence of the mouse SMN protein is compensated by the expression of two human genes (heterozygous SMN1A2G, and SMN2). This leads to late disease onset and prolonged survival, which allows for dissecting slow degenerative steps operating early in SMA pathogenesis. In this purely morphological study carried out at transmission electron microscopy, we extend the examination of motor neurons and proximal axons towards peripheral components, including distal axons, muscle fibers, and also muscle spindles. We document remarkable ultrastructural alterations being consistent with early peripheral denervation in SMA, which may shift the ultimate anatomical target in neuromuscular disease from the spinal cord towards the muscle. This concerns mostly mitochondrial alterations within distal axons and muscle, which are quantified here through ultrastructural morphometry. The present study is expected to provide a deeper knowledge of early pathogenic mechanisms in SMA.
Collapse
Affiliation(s)
- Federica Fulceri
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Carla L Busceti
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy. .,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
18
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
19
|
Gollapalli K, Kim JK, Monani UR. Emerging concepts underlying selective neuromuscular dysfunction in infantile-onset spinal muscular atrophy. Neural Regen Res 2021; 16:1978-1984. [PMID: 33642371 PMCID: PMC8343306 DOI: 10.4103/1673-5374.308073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Infantile-onset spinal muscular atrophy is the quintessential example of a disorder characterized by a predominantly neurodegenerative phenotype that nevertheless stems from perturbations in a housekeeping protein. Resulting from low levels of the Survival of Motor Neuron (SMN) protein, spinal muscular atrophy manifests mainly as a lower motor neuron disease. Why this is so and whether other cell types contribute to the classic spinal muscular atrophy phenotype continue to be the subject of intense investigation and are only now gaining appreciation. Yet, what is emerging is sometimes as puzzling as it is instructive, arguing for a careful re-examination of recent study outcomes, raising questions about established dogma in the field and making the case for a greater focus on milder spinal muscular atrophy models as tools to identify key mechanisms driving selective neuromuscular dysfunction in the disease. This review examines the evidence for novel molecular and cellular mechanisms that have recently been implicated in spinal muscular atrophy, highlights breakthroughs, points out caveats and poses questions that ought to serve as the basis of new investigations to better understand and treat this and other more common neurodegenerative disorders.
Collapse
Affiliation(s)
- Kishore Gollapalli
- Department of Neurology; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY, USA
| | - Jeong-Ki Kim
- Department of Neurology; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY, USA
| | - Umrao R Monani
- Department of Neurology; Department of Pathology & Cell Biology; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
20
|
Yeo CJJ, Darras BT. Overturning the Paradigm of Spinal Muscular Atrophy as Just a Motor Neuron Disease. Pediatr Neurol 2020; 109:12-19. [PMID: 32409122 DOI: 10.1016/j.pediatrneurol.2020.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/31/2022]
Abstract
Spinal muscular atrophy is typically characterized as a motor neuron disease. Untreated patients with the most severe form, spinal muscular atrophy type 1, die early with infantile-onset progressive skeletal, bulbar, and respiratory muscle weakness. Such patients are now living longer due to new disease-modifying treatments such as gene replacement therapy (onasemnogene abeparvovec), recently approved by the US Food and Drug Administration, and nusinersen, a central nervous system-directed treatment which was approved by the US Food and Drug Administration three years ago. This has created an area of pressing clinical need: if spinal muscular atrophy is a multisystem disease, dysfunction of peripheral tissues and organs may become significant comorbidities as these patients survive into childhood and adulthood. In this review, we have compiled autopsy data, case reports, and cohort studies of peripheral tissue involvement in patients and animal models with spinal muscular atrophy. We have also evaluated preclinical studies addressing the question of whether peripheral expression of survival motor neuron is necessary and/or sufficient for motor neuron function and survival. Indeed, spinal muscular atrophy patient data suggest that spinal muscular atrophy is a multisystem disease with dysfunction in skeletal muscle, heart, kidney, liver, pancreas, spleen, bone, connective tissues, and immune systems. The peripheral requirement of SMN in each organ and how these contribute to motor neuron function and survival remains to be answered. A systemic (peripheral and central nervous system) approach to therapy during early development is most likely to effectively maximize positive clinical outcome.
Collapse
Affiliation(s)
- Crystal Jing Jing Yeo
- Department of Neurology, Neuromuscular Center and SMA Program, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Translational Neuromuscular Medicine Laboratory, Institute of Molecular and Cell Biology, Singapore; Experimental Drug Development Center, Singapore.
| | - Basil T Darras
- Department of Neurology, Neuromuscular Center and SMA Program, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
21
|
Berciano MT, Castillo-Iglesias MS, Val-Bernal JF, Lafarga V, Rodriguez-Rey JC, Lafarga M, Tapia O. Mislocalization of SMN from the I-band and M-band in human skeletal myofibers in spinal muscular atrophy associates with primary structural alterations of the sarcomere. Cell Tissue Res 2020; 381:461-478. [PMID: 32676861 DOI: 10.1007/s00441-020-03236-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by a deletion or mutation of the survival motor neuron 1 (SMN1) gene. Reduced SMN levels lead to motor neuron degeneration and muscular atrophy. SMN protein localizes to the cytoplasm and Cajal bodies. Moreover, in myofibrils from Drosophila and mice, SMN is a sarcomeric protein localized to the Z-disc. Although SMN participates in multiple functions, including the biogenesis of spliceosomal small nuclear ribonucleoproteins, its role in the sarcomere is unclear. Here, we analyzed the sarcomeric organization of SMN in human control and type I SMA skeletal myofibers. In control sarcomeres, we demonstrate that human SMN is localized to the titin-positive M-band and actin-positive I-band, and to SMN-positive granules that flanked the Z-discs. Co-immunoprecipitation assays revealed that SMN interacts with the sarcomeric protein actin, α-actinin, titin, and profilin2. In the type I SMA muscle, SMN levels were reduced, and atrophic (denervated) and hypertrophic (nondenervated) myofibers coexisted. The hypertrophied myofibers, which are potential primary targets of SMN deficiency, exhibited sites of focal or segmental alterations of the actin cytoskeleton, where the SMN immunostaining pattern was altered. Moreover, SMN was relocalized to the Z-disc in overcontracted minisarcomeres from hypertrophic myofibers. We propose that SMN could have an integrating role in the molecular components of the sarcomere. Consequently, low SMN levels might impact the normal sarcomeric architecture, resulting in the disruption of myofibrils found in SMA muscle. This primary effect might be independent of the neurogenic myopathy produced by denervation and contribute to pathophysiology of the SMA myopathy.
Collapse
Affiliation(s)
- María T Berciano
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | | | - J Fernando Val-Bernal
- Unidad de Patología, Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Vanesa Lafarga
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - José C Rodriguez-Rey
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Miguel Lafarga
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain.
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain.
| | - Olga Tapia
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain.
- Universidad Europea del Atlántico, Santander, Spain.
| |
Collapse
|
22
|
Zhou H, Meng J, Malerba A, Catapano F, Sintusek P, Jarmin S, Feng L, Lu-Nguyen N, Sun L, Mariot V, Dumonceaux J, Morgan JE, Gissen P, Dickson G, Muntoni F. Myostatin inhibition in combination with antisense oligonucleotide therapy improves outcomes in spinal muscular atrophy. J Cachexia Sarcopenia Muscle 2020; 11:768-782. [PMID: 32031328 PMCID: PMC7296258 DOI: 10.1002/jcsm.12542] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by genetic defects in the survival motor neuron 1 (SMN1) gene that lead to SMN deficiency. Different SMN-restoring therapies substantially prolong survival and function in transgenic mice of SMA. However, these therapies do not entirely prevent muscle atrophy and restore function completely. To further improve the outcome, we explored the potential of a combinatorial therapy by modulating SMN production and muscle-enhancing approach as a novel therapeutic strategy for SMA. METHODS The experiments were performed in a mouse model of severe SMA. A previously reported 25-mer morpholino antisense oligomer PMO25 was used to restore SMN expression. The adeno-associated virus-mediated expression of myostatin propeptide was used to block the myostatin pathway. Newborn SMA mice were treated with a single subcutaneous injection of 40 μg/g (therapeutic dose) or 10 μg/g (low-dose) PMO25 on its own or together with systemic delivery of a single dose of adeno-associated virus-mediated expression of myostatin propeptide. The multiple effects of myostatin inhibition on survival, skeletal muscle phenotype, motor function, neuromuscular junction maturation, and proprioceptive afferences were evaluated. RESULTS We show that myostatin inhibition acts synergistically with SMN-restoring antisense therapy in SMA mice treated with the higher therapeutic dose PMO25 (40 μg/g), by increasing not only body weight (21% increase in male mice at Day 40), muscle mass (38% increase), and fibre size (35% increase in tibialis anterior muscle in 3 month female SMA mice), but also motor function and physical performance as measured in hanging wire test (two-fold increase in time score) and treadmill exercise test (two-fold increase in running distance). In SMA mice treated with low-dose PMO25 (10 μg/g), the early application of myostatin inhibition prolongs survival (40% increase), improves neuromuscular junction maturation (50% increase) and innervation (30% increase), and increases both the size of sensory neurons in dorsal root ganglia (60% increase) and the preservation of proprioceptive synapses in the spinal cord (30% increase). CONCLUSIONS These data suggest that myostatin inhibition, in addition to the well-known effect on muscle mass, can also positively influence the sensory neural circuits that may enhance motor neurons function. While the availability of the antisense drug Spinraza for SMA and other SMN-enhancing therapies has provided unprecedented improvement in SMA patients, there are still unmet needs in these patients. Our study provides further rationale for considering myostatin inhibitors as a therapeutic intervention in SMA patients, in combination with SMN-restoring drugs.
Collapse
Affiliation(s)
- Haiyan Zhou
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alberto Malerba
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Francesco Catapano
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Palittiya Sintusek
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Paediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Susan Jarmin
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Lucy Feng
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ngoc Lu-Nguyen
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Lianwen Sun
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Virginie Mariot
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Julie Dumonceaux
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - George Dickson
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
23
|
Besse A, Astord S, Marais T, Roda M, Giroux B, Lejeune FX, Relaix F, Smeriglio P, Barkats M, Biferi MG. AAV9-Mediated Expression of SMN Restricted to Neurons Does Not Rescue the Spinal Muscular Atrophy Phenotype in Mice. Mol Ther 2020; 28:1887-1901. [PMID: 32470325 PMCID: PMC7403319 DOI: 10.1016/j.ymthe.2020.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/30/2020] [Accepted: 05/12/2020] [Indexed: 01/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease mainly caused by mutations or deletions in the survival of motor neuron 1 (SMN1) gene and characterized by the degeneration of motor neurons and progressive muscle weakness. A viable therapeutic approach for SMA patients is a gene replacement strategy that restores functional SMN expression using adeno-associated virus serotype 9 (AAV9) vectors. Currently, systemic or intra-cerebrospinal fluid (CSF) delivery of AAV9-SMN is being explored in clinical trials. In this study, we show that the postnatal delivery of an AAV9 that expresses SMN under the control of the neuron-specific promoter synapsin selectively targets neurons without inducing re-expression in the peripheral organs of SMA mice. However, this approach is less efficient in restoring the survival and neuromuscular functions of SMA mice than the systemic or intra-CSF delivery of an AAV9 in which SMN is placed under the control of a ubiquitous promoter. This study suggests that further efforts are needed to understand the extent to which SMN is required in neurons and peripheral organs for a successful therapeutic effect.
Collapse
Affiliation(s)
- Aurore Besse
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France
| | - Stephanie Astord
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France
| | - Thibaut Marais
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France
| | - Marianne Roda
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France
| | - Benoit Giroux
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France
| | - François-Xavier Lejeune
- Institut du Cerveau et de la Moelle épinière (ICM), Bioinformatics and Biostatistics Core Facility (iCONICS), Sorbonne Université, INSERM U1127, CNRS UMR 7225, GH Pitié-Salpêtrière, 75013 Paris, France
| | - Frederic Relaix
- Université Paris Est Créteil, INSERM, EnvA, AP-HP, 94000 Créteil, France
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France
| | - Martine Barkats
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France
| | - Maria Grazia Biferi
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, 75013 Paris, France.
| |
Collapse
|
24
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
25
|
Rehorst WA, Thelen MP, Nolte H, Türk C, Cirak S, Peterson JM, Wong GW, Wirth B, Krüger M, Winter D, Kye MJ. Muscle regulates mTOR dependent axonal local translation in motor neurons via CTRP3 secretion: implications for a neuromuscular disorder, spinal muscular atrophy. Acta Neuropathol Commun 2019; 7:154. [PMID: 31615574 PMCID: PMC6794869 DOI: 10.1186/s40478-019-0806-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder, which causes dysfunction/loss of lower motor neurons and muscle weakness as well as atrophy. While SMA is primarily considered as a motor neuron disease, recent data suggests that survival motor neuron (SMN) deficiency in muscle causes intrinsic defects. We systematically profiled secreted proteins from control and SMN deficient muscle cells with two combined metabolic labeling methods and mass spectrometry. From the screening, we found lower levels of C1q/TNF-related protein 3 (CTRP3) in the SMA muscle secretome and confirmed that CTRP3 levels are indeed reduced in muscle tissues and serum of an SMA mouse model. We identified that CTRP3 regulates neuronal protein synthesis including SMN via mTOR pathway. Furthermore, CTRP3 enhances axonal outgrowth and protein synthesis rate, which are well-known impaired processes in SMA motor neurons. Our data revealed a new molecular mechanism by which muscles regulate the physiology of motor neurons via secreted molecules. Dysregulation of this mechanism contributes to the pathophysiology of SMA.
Collapse
|
26
|
Kline RA, Dissanayake KN, Hurtado ML, Martínez NW, Ahl A, Mole AJ, Lamont DJ, Court FA, Ribchester RR, Wishart TM, Murray LM. Altered mitochondrial bioenergetics are responsible for the delay in Wallerian degeneration observed in neonatal mice. Neurobiol Dis 2019; 130:104496. [PMID: 31176719 PMCID: PMC6704473 DOI: 10.1016/j.nbd.2019.104496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative and neuromuscular disorders can manifest throughout the lifespan of an individual, from infant to elderly individuals. Axonal and synaptic degeneration are early and critical elements of nearly all human neurodegenerative diseases and neural injury, however the molecular mechanisms which regulate this process are yet to be fully elucidated. Furthermore, how the molecular mechanisms governing degeneration are impacted by the age of the individual is poorly understood. Interestingly, in mice which are under 3 weeks of age, the degeneration of axons and synapses following hypoxic or traumatic injury is significantly slower. This process, known as Wallerian degeneration (WD), is a molecularly and morphologically distinct subtype of neurodegeneration by which axons and synapses undergo distinct fragmentation and death following a range of stimuli. In this study, we first use an ex-vivo model of axon injury to confirm the significant delay in WD in neonatal mice. We apply tandem mass-tagging quantitative proteomics to profile both nerve and muscle between P12 and P24 inclusive. Application of unbiased in silico workflows to relevant protein identifications highlights a steady elevation in oxidative phosphorylation cascades corresponding to the accelerated degeneration rate. We demonstrate that inhibition of Complex I prevents the axotomy-induced rise in reactive oxygen species and protects axons following injury. Furthermore, we reveal that pharmacological activation of oxidative phosphorylation significantly accelerates degeneration at the neuromuscular junction in neonatal mice. In summary, we reveal dramatic changes in the neuromuscular proteome during post-natal maturation of the neuromuscular system, and demonstrate that endogenous dynamics in mitochondrial bioenergetics during this time window have a functional impact upon regulating the stability of the neuromuscular system.
Collapse
Affiliation(s)
- Rachel A Kline
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Kosala N Dissanayake
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Maica Llavero Hurtado
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Nicolás W Martínez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Alexander Ahl
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Alannah J Mole
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Douglas J Lamont
- Fingerprints Proteomics Facility, Dundee University, Dundee DD1 4HN, United Kingdom
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, United States
| | - Richard R Ribchester
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Thomas M Wishart
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Lyndsay M Murray
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.
| |
Collapse
|
27
|
Qian X, Du Y, Jiang G, Lin F, Yao L. Survival Motor Neuron (SMN) Protein Insufficiency Exacerbates Renal Ischemia/Reperfusion Injury. Front Physiol 2019; 10:559. [PMID: 31139093 PMCID: PMC6527877 DOI: 10.3389/fphys.2019.00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
The survival of motor neuron (SMN) protein is ubiquitously involved in spliceosome assembly and ribonucleoprotein biogenesis. SMN protein is expressed in kidney and can affect cell death processes. However, the role of SMN in acute kidney injury (AKI) is largely unknown. In the current study, we found that the expression of SMN in the kidney was significantly reduced in both clinical ischemic AKI and a mouse model of renal ischemia-reperfusion injury (IRI). We then used SMN heterozygous knockout (SMN+/-) mice and found that the declines in renal function, tubular injury, and tubular cell apoptosis after experimental IRI were significantly more severe in SMN+/- mice than those in their wild-type littermates. Concomitantly, the canonical transcription factor nuclear factor-κb (NFκb) signaling was enhanced in ischemic SMN+/- mice. In vitro, cobalt dichloride (CoCl2) treatment reduced SMN expression in proximal tubular epithelial cells. In addition, CoCl2-induced apoptosis and activation of NFκb signaling pathway were enhanced by transient transfection of a small-interfering RNA (siRNA) against SMN while attenuated by transient transfection of a full-length SMN plasmid. Taken together, this study for the first time supported the protective role of SMN in ischemic AKI.
Collapse
Affiliation(s)
- Xiaoqian Qian
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Centre for Rare Disease, Shanghai, China
| | - Yichao Du
- Sichuan Provincial Academician (Expert) Workstation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Centre for Rare Disease, Shanghai, China
| | - Fujun Lin
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Centre for Rare Disease, Shanghai, China
| | - Lei Yao
- Sichuan Provincial Academician (Expert) Workstation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
Groen EJN, Perenthaler E, Courtney NL, Jordan CY, Shorrock HK, van der Hoorn D, Huang YT, Murray LM, Viero G, Gillingwater TH. Temporal and tissue-specific variability of SMN protein levels in mouse models of spinal muscular atrophy. Hum Mol Genet 2019; 27:2851-2862. [PMID: 29790918 PMCID: PMC6077828 DOI: 10.1093/hmg/ddy195] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 02/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by deleterious variants in SMN1 that lead to a marked decrease in survival motor neuron (SMN) protein expression. Humans have a second SMN gene (SMN2) that is almost identical to SMN1. However, due to alternative splicing the majority of SMN2 messenger ribonucleic acid (mRNA) is translated into a truncated, unstable protein that is quickly degraded. Because the presence of SMN2 provides a unique opportunity for therapy development in SMA patients, the mechanisms that regulate SMN2 splicing and mRNA expression have been elucidated in great detail. In contrast, how much SMN protein is produced at different developmental time points and in different tissues remains under-characterized. In this study, we addressed this issue by determining SMN protein expression levels at three developmental time points across six different mouse tissues and in two distinct mouse models of SMA (‘severe’ Taiwanese and ‘intermediate’ Smn2B/− mice). We found that, in healthy control mice, SMN protein expression was significantly influenced by both age and tissue type. When comparing mouse models of SMA, we found that, despite being transcribed from genetically different alleles, control SMN levels were relatively similar. In contrast, the degree of SMN depletion between tissues in SMA varied substantially over time and between the two models. These findings offer an explanation for the differential vulnerability of tissues and organs observed in SMA and further our understanding of the systemic and temporal requirements for SMN with direct relevance for developing effective therapies for SMA.
Collapse
Affiliation(s)
- Ewout J N Groen
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Elena Perenthaler
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Natalie L Courtney
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Crispin Y Jordan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences
| | - Hannah K Shorrock
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Dinja van der Hoorn
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Yu-Ting Huang
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, 38123 Povo, Trento, Italy
| | - Thomas H Gillingwater
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
29
|
Walter LM, Deguise MO, Meijboom KE, Betts CA, Ahlskog N, van Westering TLE, Hazell G, McFall E, Kordala A, Hammond SM, Abendroth F, Murray LM, Shorrock HK, Prosdocimo DA, Haldar SM, Jain MK, Gillingwater TH, Claus P, Kothary R, Wood MJA, Bowerman M. Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice. EBioMedicine 2018; 31:226-242. [PMID: 29735415 PMCID: PMC6013932 DOI: 10.1016/j.ebiom.2018.04.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/15/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling. SMA is a neuromuscular disease characterized by motoneuron loss, muscle abnormalities and metabolic perturbations. The regulatory GC-KLF15-BCAA pathway is dysregulated in serum and skeletal muscle of SMA mice during disease progression. Modulating GC-KLF15-BCAA signaling by pharmacological, dietary and genetic interventions improves phenotype of SMA mice.
Spinal muscular atrophy (SMA) is a devastating and debilitating childhood genetic disease. Although nerve cells are mainly affected, muscle is also severely impacted. The normal communication between the glucocorticoid (GC) hormone, the protein KLF15 and the dietary branched-chain amino acids (BCAAs) maintains muscle and whole-body health. In this study, we identified an abnormal activity of GC-KLF15- BCAA in blood and muscle of SMA mice. Importantly, targeting GC-KLF15-BCAA activity with an existing drug or a specific diet improved disease progression in SMA mice. Our research uncovers GCs, KLF15 and BCAAs as therapeutic targets to ameliorate SMA muscle and whole-body health.
Collapse
Affiliation(s)
- Lisa M Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Marc-Olivier Deguise
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily McFall
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anna Kordala
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Suzan M Hammond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frank Abendroth
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Lyndsay M Murray
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Medicine, Division of Cardiology University of California, San Francisco, CA, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
30
|
Bowerman M, Becker CG, Yáñez-Muñoz RJ, Ning K, Wood MJA, Gillingwater TH, Talbot K. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis Model Mech 2018; 10:943-954. [PMID: 28768735 PMCID: PMC5560066 DOI: 10.1242/dmm.030148] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of motor neurons and muscle atrophy, generally presenting in childhood. SMA is caused by low levels of the survival motor neuron protein (SMN) due to inactivating mutations in the encoding gene SMN1. A second duplicated gene, SMN2, produces very little but sufficient functional protein for survival. Therapeutic strategies to increase SMN are in clinical trials, and the first SMN2-directed antisense oligonucleotide (ASO) therapy has recently been licensed. However, several factors suggest that complementary strategies may be needed for the long-term maintenance of neuromuscular and other functions in SMA patients. Pre-clinical SMA models demonstrate that the requirement for SMN protein is highest when the structural connections of the neuromuscular system are being established, from late fetal life throughout infancy. Augmenting SMN may not address the slow neurodegenerative process underlying progressive functional decline beyond childhood in less severe types of SMA. Furthermore, individuals receiving SMN-based treatments may be vulnerable to delayed symptoms if rescue of the neuromuscular system is incomplete. Finally, a large number of older patients living with SMA do not fulfill the present criteria for inclusion in gene therapy and ASO clinical trials, and may not benefit from SMN-inducing treatments. Therefore, a comprehensive whole-lifespan approach to SMA therapy is required that includes both SMN-dependent and SMN-independent strategies that treat the CNS and periphery. Here, we review the range of non-SMN pathways implicated in SMA pathophysiology and discuss how various model systems can serve as valuable tools for SMA drug discovery. Summary: Translational research for spinal muscular atrophy (SMA) should address the development of non-CNS and survival motor neuron (SMN)-independent therapeutic approaches to complement and enhance the benefits of CNS-directed and SMN-dependent therapies.
Collapse
Affiliation(s)
- Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Catherina G Becker
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | |
Collapse
|
31
|
Catenaccio A, Llavero Hurtado M, Diaz P, Lamont DJ, Wishart TM, Court FA. Molecular analysis of axonal-intrinsic and glial-associated co-regulation of axon degeneration. Cell Death Dis 2017; 8:e3166. [PMID: 29120410 PMCID: PMC5775402 DOI: 10.1038/cddis.2017.489] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022]
Abstract
Wallerian degeneration is an active program tightly associated with axonal degeneration, required for axonal regeneration and functional recovery after nerve damage. Here we provide a functional molecular foundation for our undertstanding of the complex non-cell autonomous role of glial cells in the regulation of axonal degeneration. To shed light on the complexity of the molecular machinery governing axonal degeneration we employ a multi-model, unbiased, in vivo approach combining morphological assesment and quantitative proteomics with in silico-based higher order functional clustering to genetically uncouple the intrinsic and extrinsic processes governing Wallerian degeneration. Highlighting a pivotal role for glial cells in the early stages fragmenting the axon by a cytokinesis-like process and a cell autonomous stage of axonal disintegration associated to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Alejandra Catenaccio
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Paula Diaz
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Douglas J Lamont
- FingerPrints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas M Wishart
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
32
|
Hosseinibarkooie S, Schneider S, Wirth B. Advances in understanding the role of disease-associated proteins in spinal muscular atrophy. Expert Rev Proteomics 2017. [PMID: 28635376 DOI: 10.1080/14789450.2017.1345631] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is a neurodegenerative disorder characterized by alpha motor neuron loss in the spinal cord due to reduced survival motor neuron (SMN) protein level. While the genetic basis of SMA is well described, the specific molecular pathway underlying SMA is still not fully understood. Areas covered: This review discusses the recent advancements in understanding the molecular pathways in SMA using different omics approaches and genetic modifiers identified in both vertebrate and invertebrate systems. The findings that are summarized in this article were deduced from original articles and reviews with a particular focus on the latest advancements in the field. Expert commentary: The identification of genetic modifiers such as PLS3 and NCALD in humans or of SMA modulators such as Elavl4 (HuD), Copa, Uba1, Mapk10 (Jnk3), Nrxn2 and Tmem41b (Stasimon) in various SMA animal models improved our knowledge of impaired cellular pathways in SMA. Inspiration from modifier genes and their functions in motor neuron and neuromuscular junctions may open a new avenue for future SMA combinatorial therapies.
Collapse
Affiliation(s)
- Seyyedmohsen Hosseinibarkooie
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany
| | - Svenja Schneider
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany
| | - Brunhilde Wirth
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany.,d Center for Rare Diseases Cologne , University Hospital of Cologne, University of Cologne , Cologne , Germany
| |
Collapse
|
33
|
Farrar MA, Park SB, Vucic S, Carey KA, Turner BJ, Gillingwater TH, Swoboda KJ, Kiernan MC. Emerging therapies and challenges in spinal muscular atrophy. Ann Neurol 2017; 81:355-368. [PMID: 28026041 PMCID: PMC5396275 DOI: 10.1002/ana.24864] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 12/14/2022]
Abstract
Spinal muscular atrophy (SMA) is a hereditary neurodegenerative disease with severity ranging from progressive infantile paralysis and premature death (type I) to limited motor neuron loss and normal life expectancy (type IV). Without disease‐modifying therapies, the impact is profound for patients and their families. Improved understanding of the molecular basis of SMA, disease pathogenesis, natural history, and recognition of the impact of standardized care on outcomes has yielded progress toward the development of novel therapeutic strategies and are summarized. Therapeutic strategies in the pipeline are appraised, ranging from SMN1 gene replacement to modulation of SMN2 encoded transcripts, to neuroprotection, to an expanding repertoire of peripheral targets, including muscle. With the advent of preliminary trial data, it can be reasonably anticipated that the SMA treatment landscape will transform significantly. Advancement in presymptomatic diagnosis and screening programs will be critical, with pilot newborn screening studies underway to facilitate preclinical diagnosis. The development of disease‐modifying therapies will necessitate monitoring programs to determine the long‐term impact, careful evaluation of combined treatments, and further acceleration of improvements in supportive care. In advance of upcoming clinical trial results, we consider the challenges and controversies related to the implementation of novel therapies for all patients and set the scene as the field prepares to enter an era of novel therapies. Ann Neurol 2017;81:355–368
Collapse
Affiliation(s)
- Michelle A Farrar
- Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
| | - Susanna B Park
- Brain & Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Steve Vucic
- Department of Neurology, Westmead Hospital and Western Clinical School, University of Sydney, Sydney, Australia
| | - Kate A Carey
- Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburg, Edinburg, United Kingdom
| | - Kathryn J Swoboda
- Center for Human Genetics Research, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Matthew C Kiernan
- Brain & Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
Maurya SR, Mahalakshmi R. Mitochondrial VDAC2 and cell homeostasis: highlighting hidden structural features and unique functionalities. Biol Rev Camb Philos Soc 2016; 92:1843-1858. [PMID: 28980434 DOI: 10.1111/brv.12311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
Voltage-dependent anion channels (VDACs) are the gateway to mitochondrial processes, interlinking the cytosolic and mitochondrial compartments. The mitochondrion acts as a storehouse for cytochrome c, the effector of apoptosis, and hence VDACs become intricately involved in the apoptotic pathway. Isoform 1 of VDAC is abundant in the outer mitochondrial membrane of many cell types, while isoform 2 is the preferred channel in specialized cells including brain and some cancer cells. The primary role of VDACs is metabolite flux. The pro- and anti-apoptotic role of VDAC1 and VDAC2, respectively, are secondary, and are influenced by external factors and interacting proteins. Herein, we focus on the less-studied VDAC2, and shed light on its unique functions and features. VDAC2, along with sharing many of its functions with VDAC1, such as metabolite and Ca2+ transport, also has many delineating functions. VDAC2 is closely engaged in the gametogenesis and steroidogenesis pathways and in protection from oxidative stress as well as in neurodegenerative diseases like Alzheimer's and epilepsy. A closer examination of the functional pathways of VDACs indicates that the unique functions of VDAC2 are a result of the different interactome of this isoform. We couple functional differences to the structural and biophysical evidence obtained for the VDACs, and present a testament of why the two VDAC isoforms with >90% sequence similarity, are functionally diverse. Based on these differences, we suggest that the VDAC isoforms now be considered as paralogs. An in-depth understanding of VDAC2 will help us to design better biomolecule targets for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India
| |
Collapse
|
35
|
Thomson AK, Somers E, Powis RA, Shorrock HK, Murphy K, Swoboda KJ, Gillingwater TH, Parson SH. Survival of motor neurone protein is required for normal postnatal development of the spleen. J Anat 2016; 230:337-346. [PMID: 27726134 DOI: 10.1111/joa.12546] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2016] [Indexed: 01/09/2023] Open
Abstract
Spinal muscular atrophy (SMA), traditionally described as a predominantly childhood form of motor neurone disease, is the leading genetic cause of infant mortality. Although motor neurones are undoubtedly the primary affected cell type, the severe infantile form of SMA (Type I SMA) is now widely recognised to represent a multisystem disorder where a variety of organs and systems in the body are also affected. Here, we report that the spleen is disproportionately small in the 'Taiwanese' murine model of severe SMA (Smn-/- ;SMN2tg/0 ), correlated to low levels of cell proliferation and increased cell death. Spleen lacks its distinctive red appearance and presents with a degenerated capsule and a disorganised fibrotic architecture. Histologically distinct white pulp failed to form and this was reflected in an almost complete absence of B lymphocytes necessary for normal immune function. In addition, megakaryoctyes persisted in the red pulp. However, the vascular density remained unchanged in SMA spleen. Assessment of the spleen in SMA patients with the infantile form of the disease indicated a range of pathologies. We conclude that development of the spleen fails to occur normally in SMA mouse models and human patients. Thus, further analysis of immune function is likely to be required to fully understand the full extent of systemic disease pathology in SMA.
Collapse
Affiliation(s)
- Alison K Thomson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland.,Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland
| | - Eilidh Somers
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland.,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Rachael A Powis
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland.,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland.,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Kelley Murphy
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Kathryn J Swoboda
- Department of Neurology, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland.,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Simon H Parson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland.,Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, Scotland
| |
Collapse
|
36
|
Powis RA, Karyka E, Boyd P, Côme J, Jones RA, Zheng Y, Szunyogova E, Groen EJ, Hunter G, Thomson D, Wishart TM, Becker CG, Parson SH, Martinat C, Azzouz M, Gillingwater TH. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight 2016; 1:e87908. [PMID: 27699224 PMCID: PMC5033939 DOI: 10.1172/jci.insight.87908] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The autosomal recessive neuromuscular disease spinal muscular atrophy (SMA) is caused by loss of survival motor neuron (SMN) protein. Molecular pathways that are disrupted downstream of SMN therefore represent potentially attractive therapeutic targets for SMA. Here, we demonstrate that therapeutic targeting of ubiquitin pathways disrupted as a consequence of SMN depletion, by increasing levels of one key ubiquitination enzyme (ubiquitin-like modifier activating enzyme 1 [UBA1]), represents a viable approach for treating SMA. Loss of UBA1 was a conserved response across mouse and zebrafish models of SMA as well as in patient induced pluripotent stem cell-derive motor neurons. Restoration of UBA1 was sufficient to rescue motor axon pathology and restore motor performance in SMA zebrafish. Adeno-associated virus serotype 9-UBA1 (AAV9-UBA1) gene therapy delivered systemic increases in UBA1 protein levels that were well tolerated over a prolonged period in healthy control mice. Systemic restoration of UBA1 in SMA mice ameliorated weight loss, increased survival and motor performance, and improved neuromuscular and organ pathology. AAV9-UBA1 therapy was also sufficient to reverse the widespread molecular perturbations in ubiquitin homeostasis that occur during SMA. We conclude that UBA1 represents a safe and effective therapeutic target for the treatment of both neuromuscular and systemic aspects of SMA.
Collapse
Affiliation(s)
- Rachael A. Powis
- Euan MacDonald Centre for Motor Neurone Disease Research and,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Evangelia Karyka
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Boyd
- Euan MacDonald Centre for Motor Neurone Disease Research and,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Julien Côme
- INSERM/UEVE UMR861, Institute for Stem cell Therapy and Exploration of Monogenic Diseases (I-Stem), Corbeil-Essonnes, France
| | - Ross A. Jones
- Euan MacDonald Centre for Motor Neurone Disease Research and,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yinan Zheng
- Euan MacDonald Centre for Motor Neurone Disease Research and,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Eva Szunyogova
- Euan MacDonald Centre for Motor Neurone Disease Research and,The Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ewout J.N. Groen
- Euan MacDonald Centre for Motor Neurone Disease Research and,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian Hunter
- Euan MacDonald Centre for Motor Neurone Disease Research and,Department of Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | | | - Thomas M. Wishart
- Euan MacDonald Centre for Motor Neurone Disease Research and,The Roslin Institute, and
| | - Catherina G. Becker
- Euan MacDonald Centre for Motor Neurone Disease Research and,Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon H. Parson
- Euan MacDonald Centre for Motor Neurone Disease Research and,The Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Cécile Martinat
- INSERM/UEVE UMR861, Institute for Stem cell Therapy and Exploration of Monogenic Diseases (I-Stem), Corbeil-Essonnes, France
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research and,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Hunter G, Powis RA, Jones RA, Groen EJN, Shorrock HK, Lane FM, Zheng Y, Sherman DL, Brophy PJ, Gillingwater TH. Restoration of SMN in Schwann cells reverses myelination defects and improves neuromuscular function in spinal muscular atrophy. Hum Mol Genet 2016; 25:2853-2861. [PMID: 27170316 PMCID: PMC5181642 DOI: 10.1093/hmg/ddw141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein, primarily affecting lower motor neurons. Recent evidence from SMA and related conditions suggests that glial cells can influence disease severity. Here, we investigated the role of glial cells in the peripheral nervous system by creating SMA mice selectively overexpressing SMN in myelinating Schwann cells (Smn−/−;SMN2tg/0;SMN1SC). Restoration of SMN protein levels restricted solely to Schwann cells reversed myelination defects, significantly improved neuromuscular function and ameliorated neuromuscular junction pathology in SMA mice. However, restoration of SMN in Schwann cells had no impact on motor neuron soma loss from the spinal cord or ongoing systemic and peripheral pathology. This study provides evidence for a defined, intrinsic contribution of glial cells to SMA disease pathogenesis and suggests that therapies designed to include Schwann cells in their target tissues are likely to be required in order to rescue myelination defects and associated disease symptoms.
Collapse
Affiliation(s)
- Gillian Hunter
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK,
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Rachael A Powis
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Ross A Jones
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Ewout J N Groen
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Fiona M Lane
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Yinan Zheng
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Diane L Sherman
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Peter J Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| |
Collapse
|
38
|
Zaworski P, von Herrmann KM, Taylor S, Sunshine SS, McCarthy K, Risher N, Newcomb T, Weetall M, Prior TW, Swoboda KJ, Chen KS, Paushkin S. SMN Protein Can Be Reliably Measured in Whole Blood with an Electrochemiluminescence (ECL) Immunoassay: Implications for Clinical Trials. PLoS One 2016; 11:e0150640. [PMID: 26953792 PMCID: PMC4783032 DOI: 10.1371/journal.pone.0150640] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by defects in the survival motor neuron 1 (SMN1) gene that encodes survival motor neuron (SMN) protein. The majority of therapeutic approaches currently in clinical development for SMA aim to increase SMN protein expression and there is a need for sensitive methods able to quantify increases in SMN protein levels in accessible tissues. We have developed a sensitive electrochemiluminescence (ECL)-based immunoassay for measuring SMN protein in whole blood with a minimum volume requirement of 5μL. The SMN-ECL immunoassay enables accurate measurement of SMN in whole blood and other tissues. Using the assay, we measured SMN protein in whole blood from SMA patients and healthy controls and found that SMN protein levels were associated with SMN2 copy number and were greater in SMA patients with 4 copies, relative to those with 2 and 3 copies. SMN protein levels did not vary significantly in healthy individuals over a four-week period and were not affected by circadian rhythms. Almost half of the SMN protein was found in platelets. We show that SMN protein levels in C/C-allele mice, which model a mild form of SMA, were high in neonatal stage, decreased in the first few weeks after birth, and then remained stable throughout the adult stage. Importantly, SMN protein levels in the CNS correlated with SMN levels measured in whole blood of the C/C-allele mice. These findings have implications for the measurement of SMN protein induction in whole blood in response to SMN-upregulating therapy.
Collapse
Affiliation(s)
| | | | - Shannon Taylor
- PharmOptima, Portage, Michigan, United States of America
| | - Sara S. Sunshine
- Spinal Muscular Atrophy Foundation, New York, New York, United States of America
| | - Kathleen McCarthy
- Spinal Muscular Atrophy Foundation, New York, New York, United States of America
| | - Nicole Risher
- PTC Therapeutics, South Plainfield, New Jersey, United States of America
| | - Tara Newcomb
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Marla Weetall
- PTC Therapeutics, South Plainfield, New Jersey, United States of America
| | - Thomas W. Prior
- Department of Molecular Pathology, Wexner Medical Center, Ohio State University, Columbus, Ohio, United States of America
| | - Kathryn J. Swoboda
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Karen S. Chen
- Spinal Muscular Atrophy Foundation, New York, New York, United States of America
| | - Sergey Paushkin
- Spinal Muscular Atrophy Foundation, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Neve A, Trüb J, Saxena S, Schümperli D. Central and peripheral defects in motor units of the diaphragm of spinal muscular atrophy mice. Mol Cell Neurosci 2016; 70:30-41. [PMID: 26621405 DOI: 10.1016/j.mcn.2015.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/30/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by motoneuron loss and muscle weakness. However, the structural and functional deficits that lead to the impairment of the neuromuscular system remain poorly defined. By electron microscopy, we previously found that neuromuscular junctions (NMJs) and muscle fibres of the diaphragm are among the earliest affected structures in the severe mouse SMA model. Because of certain anatomical features, i.e. its thinness and its innervation from the cervical segments of the spinal cord, the diaphragm is particularly suitable to characterize both central and peripheral events. Here we show by immunohistochemistry that, at postnatal day 3, the cervical motoneurons of SMA mice receive less stimulatory synaptic inputs. Moreover, their mitochondria become less elongated which might represent an early stage of degeneration. The NMJs of the diaphragm of SMA mice show a loss of synaptic vesicles and active zones. Moreover, the partly innervated endplates lack S100 positive perisynaptic Schwann cells (PSCs). We also demonstrate the feasibility of comparing the proteomic composition between diaphragm regions enriched and poor in NMJs. By this approach we have identified two proteins that are significantly upregulated only in the NMJ-specific regions of SMA mice. These are apoptosis inducing factor 1 (AIFM1), a mitochondrial flavoprotein that initiates apoptosis in a caspase-independent pathway, and four and a half Lim domain protein 1 (FHL1), a regulator of skeletal muscle mass that has been implicated in several myopathies.
Collapse
Affiliation(s)
- Anuja Neve
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Judith Trüb
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Daniel Schümperli
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
40
|
Powis RA, Gillingwater TH. Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy. J Anat 2015; 228:443-51. [PMID: 26576026 DOI: 10.1111/joa.12419] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 02/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease characterised primarily by loss of lower motor neurons from the ventral grey horn of the spinal cord and proximal muscle atrophy. Recent experiments utilising mouse models of SMA have demonstrated that not all motor neurons are equally susceptible to the disease, revealing that other populations of neurons can also be affected. Here, we have extended investigations of selective vulnerability of neuronal populations in the spinal cord of SMA mice to include comparative assessments of alpha motor neuron (α-MN) and gamma motor neuron (γ-MN) pools, as well as other populations of cholinergic neurons. Immunohistochemical analyses of late-symptomatic SMA mouse spinal cord revealed that numbers of α-MNs were significantly reduced at all levels of the spinal cord compared with controls, whereas numbers of γ-MNs remained stable. Likewise, the average size of α-MN cell somata was decreased in SMA mice with no change occurring in γ-MNs. Evaluation of other pools of spinal cord cholinergic neurons revealed that pre-ganglionic sympathetic neurons, central canal cluster interneurons, partition interneurons and preganglionic autonomic dorsal commissural nucleus neuron numbers all remained unaffected in SMA mice. Taken together, these findings indicate that α-MNs are uniquely vulnerable among cholinergic neuron populations in the SMA mouse spinal cord, with γ-MNs and other cholinergic neuronal populations being largely spared.
Collapse
Affiliation(s)
- Rachael A Powis
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Mora M, Angelini C, Bignami F, Bodin AM, Crimi M, Di Donato JH, Felice A, Jaeger C, Karcagi V, LeCam Y, Lynn S, Meznaric M, Moggio M, Monaco L, Politano L, de la Paz MP, Saker S, Schneiderat P, Ensini M, Garavaglia B, Gurwitz D, Johnson D, Muntoni F, Puymirat J, Reza M, Voit T, Baldo C, Bricarelli FD, Goldwurm S, Merla G, Pegoraro E, Renieri A, Zatloukal K, Filocamo M, Lochmüller H. The EuroBioBank Network: 10 years of hands-on experience of collaborative, transnational biobanking for rare diseases. Eur J Hum Genet 2015; 23:1116-23. [PMID: 25537360 PMCID: PMC4538193 DOI: 10.1038/ejhg.2014.272] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/15/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022] Open
Abstract
The EuroBioBank (EBB) network (www.eurobiobank.org) is the first operating network of biobanks in Europe to provide human DNA, cell and tissue samples as a service to the scientific community conducting research on rare diseases (RDs). The EBB was established in 2001 to facilitate access to RD biospecimens and associated data; it obtained funding from the European Commission in 2002 (5th framework programme) and started operation in 2003. The set-up phase, during the EC funding period 2003-2006, established the basis for running the network; the following consolidation phase has seen the growth of the network through the joining of new partners, better network cohesion, improved coordination of activities, and the development of a quality-control system. During this phase the network participated in the EC-funded TREAT-NMD programme and was involved in planning of the European Biobanking and Biomolecular Resources Research Infrastructure. Recently, EBB became a partner of RD-Connect, an FP7 EU programme aimed at linking RD biobanks, registries, and bioinformatics data. Within RD-Connect, EBB contributes expertise, promotes high professional standards, and best practices in RD biobanking, is implementing integration with RD patient registries and 'omics' data, thus challenging the fragmentation of international cooperation on the field.
Collapse
Affiliation(s)
- Marina Mora
- Muscle Cell Biology Lab, Neuromuscular Diseases and Neuroimmunolgy Unit, Fondazione Istituto Neurologico C. Besta, Milano, Italy
| | - Corrado Angelini
- IRCCS Fondazione San Camillo Hospital, Lido Venice, Italy
- Department of Neurosciences, NPSRR University of Padova, Padova, Italy
| | | | - Anne-Mary Bodin
- EURORDIS, European Organisation for Rare Diseases, Paris, France
| | | | | | - Alex Felice
- Laboratory of Molecular Genetics and Malta BioBank, University of Malta, and Thalassaemia Clinic, Mater Dei Hospital, Msida, Malta
| | | | - Veronika Karcagi
- Department of Molecular Genetics and Diagnostics, National Institute of Environmental Health, Budapest, Hungary
| | - Yann LeCam
- EURORDIS, European Organisation for Rare Diseases, Paris, France
| | - Stephen Lynn
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Marija Meznaric
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maurizio Moggio
- Neuromuscular Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | | | - Luisa Politano
- Division of Cardiomyology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Manuel Posada de la Paz
- Manuel Posada de la Paz, Institute of Rare Diseases Research, IIER, ISCIII and Spain RDR & CIBERER, Madrid, Spain
| | | | - Peter Schneiderat
- Muscle Tissue Culture Collection, Friedrich-Baur-Institute, Neurological Department, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Monica Ensini
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Barbara Garavaglia
- Molecular Neurogenetics Unit, Fondazione Istituto Neurologico C. Besta, Milano, Italy
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Diana Johnson
- Dubowitz Neuromuscular Centre, MRC Neuromuscular Centre at UCL Institute of Child Health, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, MRC Neuromuscular Centre at UCL Institute of Child Health, London, UK
| | - Jack Puymirat
- Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Quebec, Canada
| | - Mojgan Reza
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Thomas Voit
- Inserm U974—Institute of Myology, University Pierre and Marie Curie Paris 6, Paris, France
| | - Chiara Baldo
- Laboratorio di Genetica Umana, E.O. Ospedali Galliera, Genova, Italy
| | | | - Stefano Goldwurm
- Parkinson Institute, Istituti Clinici di Perfezionamento, Milano, Italy
| | - Giuseppe Merla
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Elena Pegoraro
- Department of Neurosciences, NPSRR University of Padova, Padova, Italy
| | - Alessandra Renieri
- Division of Medical Genetics, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Mirella Filocamo
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto G. Gaslini, Genova, Italy
| | - Hanns Lochmüller
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| |
Collapse
|
42
|
Abstract
Spinal muscular atrophies (SMAs) are a group of inherited disorders characterized by motor neuron loss in the spinal cord and lower brainstem, muscle weakness, and atrophy. The clinical and genetic phenotypes incorporate a wide spectrum that is differentiated based on age of onset, pattern of muscle involvement, and inheritance pattern. Over the past several years, rapid advances in genetic technology have accelerated the identification of causative genes and provided important advances in understanding the molecular and biological basis of SMA and insights into the selective vulnerability of the motor neuron. Common pathophysiological themes include defects in RNA metabolism and splicing, axonal transport, and motor neuron development and connectivity. Together these have revealed potential novel treatment strategies, and extensive efforts are being undertaken towards expedited therapeutics. While a number of promising therapies for SMA are emerging, defining therapeutic windows and developing sensitive and relevant biomarkers are critical to facilitate potential success in clinical trials. This review incorporates an overview of the clinical manifestations and genetics of SMA, and describes recent advances in the understanding of mechanisms of disease pathogenesis and development of novel treatment strategies.
Collapse
Affiliation(s)
- Michelle A. Farrar
- />Discipline of Paediatrics, School of Women’s and Children’s Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Department of Neurology, Sydney Children’s Hospital, Randwick, NSW 2031 Australia
| | - Matthew C. Kiernan
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
43
|
Zheleznyakova GY, Nilsson EK, Kiselev AV, Maretina MA, Tishchenko LI, Fredriksson R, Baranov VS, Schiöth HB. Methylation levels of SLC23A2 and NCOR2 genes correlate with spinal muscular atrophy severity. PLoS One 2015; 10:e0121964. [PMID: 25821969 PMCID: PMC4378931 DOI: 10.1371/journal.pone.0121964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a monogenic neurodegenerative disorder subdivided into four different types. Whole genome methylation analysis revealed 40 CpG sites associated with genes that are significantly differentially methylated between SMA patients and healthy individuals of the same age. To investigate the contribution of methylation changes to SMA severity, we compared the methylation level of found CpG sites, designed as "targets", as well as the nearest CpG sites in regulatory regions of ARHGAP22, CDK2AP1, CHML, NCOR2, SLC23A2 and RPL9 in three groups of SMA patients. Of notable interest, compared to type I SMA male patients, the methylation level of a target CpG site and one nearby CpG site belonging to the 5'UTR of SLC23A2 were significantly hypomethylated 19-22% in type III-IV patients. In contrast to type I SMA male patients, type III-IV patients demonstrated a 16% decrease in the methylation levels of a target CpG site, belonging to the 5'UTR of NCOR2. To conclude, this study validates the data of our previous study and confirms significant methylation changes in the SLC23A2 and NCOR2 regulatory regions correlates with SMA severity.
Collapse
Affiliation(s)
- Galina Yu. Zheleznyakova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory for Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics and Gynecology RAMS, Saint-Petersburg, Russia
- * E-mail:
| | - Emil K. Nilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anton V. Kiselev
- Laboratory for Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics and Gynecology RAMS, Saint-Petersburg, Russia
| | - Marianna A. Maretina
- Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory for Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics and Gynecology RAMS, Saint-Petersburg, Russia
| | | | | | - Vladislav S. Baranov
- Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory for Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics and Gynecology RAMS, Saint-Petersburg, Russia
| | | |
Collapse
|
44
|
Iascone DM, Henderson CE, Lee JC. Spinal muscular atrophy: from tissue specificity to therapeutic strategies. F1000PRIME REPORTS 2015; 7:04. [PMID: 25705387 PMCID: PMC4311279 DOI: 10.12703/p7-04] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is the most frequent genetic cause of death in infants and toddlers. All cases of spinal muscular atrophy result from reductions in levels of the survival motor neuron (SMN) protein, and so SMN upregulation is a focus of many preclinical and clinical studies. We examine four issues that may be important in planning for therapeutic success. First, neuromuscular phenotypes in the SMNΔ7 mouse model closely match those in human patients but peripheral disease manifestations differ, suggesting that endpoints other than mouse lifespan may be more useful in predicting clinical outcome. Second, SMN plays important roles in multiple central and peripheral cell types, not just motor neurons, and it remains unclear which of these cell types need to be targeted therapeutically. Third, should SMN-restoration therapy not be effective in all patients, blocking molecular changes downstream of SMN reduction may confer significant benefit, making it important to evaluate therapeutic targets other than SMN. Lastly, for patients whose disease progression is slowed, but who retain significant motor dysfunction, additional approaches used to enhance regeneration of the neuromuscular system may be of value.
Collapse
Affiliation(s)
- Daniel M Iascone
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| | - Christopher E Henderson
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| | - Justin C Lee
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| |
Collapse
|
45
|
Meyer K, Ferraiuolo L, Schmelzer L, Braun L, McGovern V, Likhite S, Michels O, Govoni A, Fitzgerald J, Morales P, Foust KD, Mendell JR, Burghes AHM, Kaspar BK. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol Ther 2014; 23:477-87. [PMID: 25358252 DOI: 10.1038/mt.2014.210] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/24/2014] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Laura Ferraiuolo
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Leah Schmelzer
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lyndsey Braun
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vicki McGovern
- Department of Molecular & Cellular Biochemistry, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Shibi Likhite
- 1] The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA [2] Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Olivia Michels
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alessandra Govoni
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Pablo Morales
- Mannheimer Foundation, Inc., Homestead, Florida, USA
| | - Kevin D Foust
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Jerry R Mendell
- 1] The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA [2] Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA [3] Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Arthur H M Burghes
- Department of Molecular & Cellular Biochemistry, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Brian K Kaspar
- 1] The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA [2] Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA [3] Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
46
|
Hunter G, Roche SL, Somers E, Fuller HR, Gillingwater TH. The influence of storage parameters on measurement of survival motor neuron (SMN) protein levels: implications for pre-clinical studies and clinical trials for spinal muscular atrophy. Neuromuscul Disord 2014; 24:973-7. [PMID: 25047670 DOI: 10.1016/j.nmd.2014.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 12/18/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by low levels of survival motor neuron (SMN) protein. A growing number of potential therapeutic strategies for SMA are entering pre-clinical and clinical testing, including gene therapy and antisense oligonucleotide-based approaches. For many such studies SMN protein levels are used as one major readout of treatment efficacy, often necessitating comparisons between samples obtained at different times and/or using different protocols. Whether differences in tissue sampling strategies or storage parameters have an influence on measurable SMN levels remains to be determined. We assessed murine SMN protein immunoreactivity over time and under differing tissue storage conditions. SMN protein levels, measured using sensitive quantitative fluorescent western blotting, declined rapidly over a period of several days following sample collection, especially when protein was extracted immediately and stored at -20°C. Storage of samples at lower temperatures (-80°C), and as intact tissue, led to significantly better preservation of SMN immunoreactivity. However, considerable deterioration in measurable SMN levels occurred, even under optimal storage conditions. These issues need to be taken into consideration when designing and interpreting pre-clinical and clinical SMA studies where SMN protein levels are being measured.
Collapse
Affiliation(s)
- Gillian Hunter
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sarah L Roche
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Eilidh Somers
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK; Institute for Science and Technology in Medicine, Keele University, Keele, UK.
| |
Collapse
|
47
|
Cortes CJ, Ling SC, Guo LT, Hung G, Tsunemi T, Ly L, Tokunaga S, Lopez E, Sopher BL, Bennett CF, Shelton GD, Cleveland DW, La Spada AR. Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron 2014; 82:295-307. [PMID: 24742458 DOI: 10.1016/j.neuron.2014.03.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 02/07/2023]
Abstract
X-linked spinal and bulbar muscular atrophy (SBMA) is characterized by adult-onset muscle weakness and lower motor neuron degeneration. SBMA is caused by CAG-polyglutamine (polyQ) repeat expansions in the androgen receptor (AR) gene. Pathological findings include motor neuron loss, with polyQ-AR accumulation in intranuclear inclusions. SBMA patients exhibit myopathic features, suggesting a role for muscle in disease pathogenesis. To determine the contribution of muscle, we developed a BAC mouse model featuring a floxed first exon to permit cell-type-specific excision of human AR121Q. BAC fxAR121 mice develop systemic and neuromuscular phenotypes, including shortened survival. After validating termination of AR121 expression and full rescue with ubiquitous Cre, we crossed BAC fxAR121 mice with Human Skeletal Actin-Cre mice. Muscle-specific excision prevented weight loss, motor phenotypes, muscle pathology, and motor neuronopathy and dramatically extended survival. Our results reveal a crucial role for muscle expression of polyQ-AR in SBMA and suggest muscle-directed therapies as effective treatments.
Collapse
Affiliation(s)
- Constanza J Cortes
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuo-Chien Ling
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ling T Guo
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gene Hung
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Taiji Tsunemi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Linda Ly
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seiya Tokunaga
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edith Lopez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bryce L Sopher
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - C Frank Bennett
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - G Diane Shelton
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Albert R La Spada
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
48
|
Bricceno KV, Martinez T, Leikina E, Duguez S, Partridge TA, Chernomordik LV, Fischbeck KH, Sumner CJ, Burnett BG. Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Hum Mol Genet 2014; 23:4745-57. [PMID: 24760765 DOI: 10.1093/hmg/ddu189] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
While spinal muscular atrophy (SMA) is characterized by motor neuron degeneration, it is unclear whether and how much survival motor neuron (SMN) protein deficiency in muscle contributes to the pathophysiology of the disease. There is increasing evidence from patients and SMA model organisms that SMN deficiency causes intrinsic muscle defects. Here we investigated the role of SMN in muscle development using muscle cell lines and primary myoblasts. Formation of multinucleate myotubes by SMN-deficient muscle cells is inhibited at a stage preceding plasma membrane fusion. We found increased expression and reduced induction of key muscle development factors, such as MyoD and myogenin, with differentiation of SMN-deficient cells. In addition, SMN-deficient muscle cells had impaired cell migration and altered organization of focal adhesions and the actin cytoskeleton. Partially restoring SMN inhibited the premature expression of muscle differentiation markers, corrected the cytoskeletal abnormalities and improved myoblast fusion. These findings are consistent with a role for SMN in myotube formation through effects on muscle differentiation and cell motility.
Collapse
Affiliation(s)
- Katherine V Bricceno
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke and Institute of Biomedical Sciences, The George Washington University, Washington, DC, USA
| | | | - Evgenia Leikina
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Duguez
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Terence A Partridge
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Leonid V Chernomordik
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke and
| | - Charlotte J Sumner
- Department of Neurology and Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Barrington G Burnett
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke and Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD, USA
| |
Collapse
|
49
|
Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy. Cell Rep 2014; 7:774-84. [PMID: 24746732 DOI: 10.1016/j.celrep.2014.02.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 01/10/2014] [Accepted: 02/05/2014] [Indexed: 02/07/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is caused by the polyglutamine androgen receptor (polyQ-AR), a protein expressed by both lower motor neurons and skeletal muscle. Although viewed as a motor neuronopathy, data from patients and mouse models suggest that muscle contributes to disease pathogenesis. Here, we tested this hypothesis using AR113Q knockin and human bacterial artificial chromosome/clone (BAC) transgenic mice that express the full-length polyQ-AR and display androgen-dependent weakness, muscle atrophy, and early death. We developed antisense oligonucleotides that suppressed AR gene expression in the periphery but not the CNS after subcutaneous administration. Suppression of polyQ-AR in the periphery rescued deficits in muscle weight, fiber size, and grip strength, reversed changes in muscle gene expression, and extended the lifespan of mutant males. We conclude that polyQ-AR expression in the periphery is an important contributor to pathology in SBMA mice and that peripheral administration of therapeutics should be explored for SBMA patients.
Collapse
|
50
|
Ost M, Werner F, Dokas J, Klaus S, Voigt A. Activation of AMPKα2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity. PLoS One 2014; 9:e94689. [PMID: 24732703 PMCID: PMC3986237 DOI: 10.1371/journal.pone.0094689] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022] Open
Abstract
Transgenic (UCP1-TG) mice with ectopic expression of UCP1 in skeletal muscle (SM) show a phenotype of increased energy expenditure, improved glucose tolerance and increase substrate metabolism in SM. To investigate the potential role of skeletal muscle AMPKα2 activation in the metabolic phenotype of UCP1-TG mice we generated double transgenic (DTG) mice, by crossing of UCP1-TG mice with DN-AMPKα2 mice overexpressing a dominant negative α2 subunit of AMPK in SM which resulted in an impaired AMPKα2 activity by 90±9% in SM of DTG mice. Biometric analysis of young male mice showed decreased body weight, lean and fat mass for both UCP1-TG and DTG compared to WT and DN-AMPKα2 mice. Energy intake and weight-specific total energy expenditure were increased, both in UCP1-TG and DTG mice. Moreover, glucose tolerance, insulin sensitivity and fatty acid oxidation were not altered in DTG compared to UCP1-TG. Also uncoupling induced induction and secretion of fibroblast growth factor 21 (FGF21) from SM was preserved in DTG mice. However, voluntary physical cage activity as well as ad libitum running wheel access during night uncovered a severe activity intolerance of DTG mice. Histological analysis showed a progressive degenerative morphology in SM of DTG mice which was not observed in SM of UCP1-TG mice. Moreover, ATP-depletion related cellular stress response via heat shock protein 70 was highly induced, whereas capillarization regulator VEGF was suppressed in DTG muscle. In addition, AMPKα2-mediated induction of mitophagy regulator ULK1 was suppressed in DTG mice, as well as mitochondrial respiratory capacity and content. In conclusion, we demonstrate that AMPKα2 is dispensable for SM mitochondrial uncoupling induced metabolic effects on whole body energy balance, glucose homeostasis and insulin sensitivity. But strikingly, activation of AMPKα2 seems crucial for maintaining SM function, integrity and the ability to compensate chronic metabolic stress induced by SM mitochondrial uncoupling.
Collapse
Affiliation(s)
- Mario Ost
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, Germany
| | - Franziska Werner
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, Germany
| | - Janine Dokas
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, Germany
| | - Susanne Klaus
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, Germany
- * E-mail:
| | - Anja Voigt
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|