1
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Takano T, Kang G, Esparza M, Matsumura B, Stevens LJ, Hiroi YJ, Tanifuji T, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Highly demarcated structural alterations in the brain and impaired social incentive learning in Tbx1 heterozygous mice. Mol Psychiatry 2025; 30:1876-1886. [PMID: 39463450 PMCID: PMC12014486 DOI: 10.1038/s41380-024-02797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and changes in brain structures. However, because CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how each gene encoded in the 22q11.2 region contributes to structural alterations, associated mental illnesses, and their dimensions. Our previous studies identified Tbx1, a T-box family transcription factor encoded in the 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes and behavioral alterations relevant to affected structures in congenic Tbx1 heterozygous mice. Our data showed that the volumes of the anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were most robustly reduced in Tbx1 heterozygous mice. In an amygdala-dependent task, Tbx1 heterozygous mice were impaired in their ability to learn the incentive value of a social partner. The volumes of the primary and secondary auditory cortexes were increased, and acoustic, but not non-acoustic, sensorimotor gating was impaired in Tbx1 heterozygous mice. Our findings identify the brain's regional volume alterations and their relevant behavioral dimensions associated with Tbx1 heterozygosity.
Collapse
Affiliation(s)
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Risa Kato
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | | | - Takeshi Takano
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Gina Kang
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Marisa Esparza
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | | | - Yukiko J Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akihiro Machida
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kensaku Nomoto
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazutaka Mogi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, UT Health, San Antonio, TX, USA.
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.
| |
Collapse
|
2
|
Budisteanu M, Papuc SM, Erbescu A, Glangher A, Andrei E, Rad F, Hinescu ME, Arghir A. Review of structural neuroimaging and genetic findings in autism spectrum disorder - a clinical perspective. Rev Neurosci 2025; 36:295-314. [PMID: 39566028 DOI: 10.1515/revneuro-2024-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental conditions characterized by deficits in social relationships and communication and restrictive, repetitive behaviors and interests. ASDs form a heterogeneous group from a clinical and genetic perspective. Currently, ASDs diagnosis is based on the clinical observation of the individual's behavior. The subjective nature of behavioral diagnoses, in the context of ASDs heterogeneity, contributes to significant variation in the age at ASD diagnosis. Early detection has been proved to be critical in ASDs, as early start of appropriate therapeutic interventions greatly improve the outcome for some children. Structural magnetic resonance imaging (MRI) is widely used in the diagnostic work-up of neurodevelopmental conditions, including ASDs, mostly for brain malformations detection. Recently, the focus of brain imaging shifted towards quantitative MRI parameters, aiming to identify subtle changes that may establish early detection biomarkers. ASDs have a strong genetic component; deletions and duplications of several genomic loci have been strongly associated with ASDs risk. Consequently, a multitude of neuroimaging and genetic findings emerged in ASDs in the recent years. The association of gross or subtle changes in brain morphometry and volumes with different genetic defects has the potential to bring new insights regarding normal development and pathomechanisms of various disorders affecting the brain. Still, the clinical implications of these discoveries and the impact of genetic abnormalities on brain structure and function are unclear. Here we review the literature on brain imaging correlated with the most prevalent genomic imbalances in ASD, and discuss the potential clinical impact.
Collapse
Affiliation(s)
- Magdalena Budisteanu
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, 031593, Calea Vacaresti 187, Bucharest, Romania
| | - Sorina Mihaela Papuc
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| | - Alina Erbescu
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| | - Adelina Glangher
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
| | - Emanuela Andrei
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Florina Rad
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| |
Collapse
|
3
|
Tsujimura K, Ortug A, Alatorre Warren JL, Shiohama T, McDougle CJ, Marcus RE, Tseng CEJ, Zürcher NR, Mercaldo ND, Faja S, Maunakea A, Hooker J, Takahashi E. Structural pathways related to the subventricular zone are decreased in volume with altered microstructure in young adult males with autism spectrum disorder. Cereb Cortex 2025; 35:bhaf041. [PMID: 40055911 DOI: 10.1093/cercor/bhaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 03/22/2025] Open
Abstract
Autism spectrum disorder is a neurodevelopmental condition characterized by reduced social communication and repetitive behaviors. Altered neurogenesis, including disturbed neuronal migration, has been implicated in autism spectrum disorder. Using diffusion MRI, we previously identified neuronal migration pathways in the human fetal brain and hypothesized that similar pathways persist into adulthood, with differences in volume and microstructural characteristics between individuals with autism spectrum disorder and controls. We analyzed diffusion MRI-based tractography of subventricular zone-related pathways in 15 young adult men with autism spectrum disorder and 18 controls at Massachusetts General Hospital, with validation through the Autism Imaging Data Exchange II dataset. Participants with autism spectrum disorder had reduced subventricular zone pathway volumes and fractional anisotropy compared to controls. Furthermore, subventricular zone pathway volume was positively correlated (r: 0.68; 95% CI: 0.25 to 0.88) with symptom severity, suggesting that individuals with more severe symptoms tended to have larger subventricular zone pathway volumes, normalized by brain size. Analysis of the Autism Imaging Data Exchange cohort confirmed these findings of reduced subventricular zone pathway volumes in autism spectrum disorder. While some of these pathways may potentially include inaccurately disconnected pathways that go through the subventricular zone, our results suggest that diffusion MRI-based tractography pathways anatomically linked to the periventricular region are associated with certain symptom types in adult males with autism spectrum disorder.
Collapse
Affiliation(s)
- Keita Tsujimura
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Aichi, Japan
| | - Alpen Ortug
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - José Luis Alatorre Warren
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Christopher J McDougle
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States
| | - Rachel E Marcus
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
| | - Chieh-En Jane Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
| | - Nathaniel D Mercaldo
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Susan Faja
- Division of Developmental Medicine, Department of Pediatrics, Harvard School of Medicine, Boston, MA 02215, United States
| | - Alika Maunakea
- Department of Anatomy, Biochemistry, and Physiology (ABP), John A. Burns School of Medicine (JABSOM), University of Hawaii, Manoa, Honolulu, HI 96813, United States
| | - Jacob Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
4
|
Eom TY, Schmitt JE, Li Y, Davenport CM, Steinberg J, Bonnan A, Alam S, Ryu YS, Paul L, Hansen BS, Khairy K, Pelletier S, Pruett-Miller SM, Roalf DR, Gur RE, Emanuel BS, McDonald-McGinn DM, Smith JN, Li C, Christie JM, Northcott PA, Zakharenko SS. Tbx1 haploinsufficiency leads to local skull deformity, paraflocculus and flocculus dysplasia, and motor-learning deficit in 22q11.2 deletion syndrome. Nat Commun 2024; 15:10510. [PMID: 39638997 PMCID: PMC11621701 DOI: 10.1038/s41467-024-54837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Neurodevelopmental disorders are thought to arise from intrinsic brain abnormalities. Alternatively, they may arise from disrupted crosstalk among tissues. Here we show the local reduction of two vestibulo-cerebellar lobules, the paraflocculus and flocculus, in mouse models and humans with 22q11.2 deletion syndrome (22q11DS). In mice, this paraflocculus/flocculus dysplasia is associated with haploinsufficiency of the Tbx1 gene. Tbx1 haploinsufficiency also leads to impaired cerebellar synaptic plasticity and motor learning. However, neural cell compositions and neurogenesis are not altered in the dysplastic paraflocculus/flocculus. Interestingly, 22q11DS and Tbx1+/- mice have malformations of the subarcuate fossa, a part of the petrous temporal bone, which encapsulates the paraflocculus/flocculus. Single-nuclei RNA sequencing reveals that Tbx1 haploinsufficiency leads to precocious differentiation of chondrocytes to osteoblasts in the petrous temporal bone autonomous to paraflocculus/flocculus cell populations. These findings suggest a previously unrecognized pathogenic structure/function relation in 22q11DS in which local skeletal deformity and cerebellar dysplasia result in behavioral deficiencies.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Eric Schmitt
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Shahinur Alam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Leena Paul
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Medicine, Division of Human Biology and Medical Genetics, Sapienza University, Rome, 00185, Italy
| | - Jesse N Smith
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
5
|
Gur R, Bearden C, Jacquemont S, Jizi K, Amelsvoort van T, van den Bree M, Vorstman J, Sebat J, Ruparel K, Gallagher R, Swillen A, McClellan E, White L, Crowley T, Giunta V, Kushan L, O'Hora K, Verbesselt J, Vandensande A, Vingerhoets C, van Haelst M, Hall J, Harwood J, Chawner S, Patel N, Palad K, Hong O, Guevara J, Martin CO, Bélanger AM, Scherer S, Bassett A, McDonald-McGinn D, Gur R. Neurocognitive Profiles of 22q11.2 and 16p11.2 Deletions and Duplications. RESEARCH SQUARE 2023:rs.3.rs-3393845. [PMID: 38234766 PMCID: PMC10793509 DOI: 10.21203/rs.3.rs-3393845/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are among the most common rare genetic disorders associated with significant risk for neuropsychiatric disorders across the lifespan. Microdeletions and duplications in these loci are associated with neurocognitive deficits, yet there are few studies comparing these groups using the same measures. We address this gap in a prospective international collaboration applying the same computerized neurocognitive assessment. The Penn Computerized Neurocognitive Battery (CNB) was administered in a multi-site study on rare genomic disorders: 22q11.2 deletion (n = 397); 22q11.2 duplication (n = 77); 16p11.2 deletion (n = 94); and 16p11.2 duplication (n = 26). Domains examined include executive functions, episodic memory, complex cognition, social cognition, and sensori-motor speed. Accuracy and speed for each neurocognitive domain were included as dependent measures in a mixed-model repeated measures analysis, with locus (22q11.2, 16p11.2) and copy number (deletion/duplication) as grouping factors and neurocognitive domain as a repeated measures factor, with age and sex as covariates. We also examined correlation with IQ and site effects. We found that 22q11.2 deletions were associated with greater deficits in overall performance accuracy than 22q11.2 duplications, while 16p11.2 duplications were associated with greater deficits than 16p11.2 deletions. Duplications at both loci were associated with reduced speed. Performance profiles differed among the groups with particularly poor performance of 16p11.2 duplication on non-verbal reasoning and social cognition. Average accuracy on the CNB was moderately correlated with Full Scale IQ. No site effects were observed. Deletions and duplications of 22q11.2 and 16p11.2 have varied effects on neurocognition indicating locus specificity, with performance profiles differing among the groups. These profile differences can help inform mechanistic substrates to heterogeneity in presentation and outcome. Future studies could aim to link performance profiles to clinical features and brain function.
Collapse
|
6
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Kang G, Matsumura B, Stevens LJ, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Structural alterations in the amygdala and impaired social incentive learning in a mouse model of a genetic variant associated with neurodevelopmental disorders. RESEARCH SQUARE 2023:rs.3.rs-3070199. [PMID: 37461714 PMCID: PMC10350205 DOI: 10.21203/rs.3.rs-3070199/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1, a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.
Collapse
Affiliation(s)
- Takeshi Hiramoto
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Risa Kato
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | | | - Gina Kang
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Bailey Matsumura
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Lucas J. Stevens
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Akihiro Machida
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kensaku Nomoto
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazutaka Mogi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, Texas 78229, USA
| |
Collapse
|
7
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Kang G, Matsumura B, Stevens LJ, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Structural alterations in the amygdala and impaired social incentive learning in a mouse model of a genetic variant associated with neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545013. [PMID: 37398198 PMCID: PMC10312713 DOI: 10.1101/2023.06.14.545013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1 , a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.
Collapse
|
8
|
Mai L, Inada H, Osumi N. Whole-brain mapping of neuronal activity evoked by maternal separation in neonatal mice: An association with ultrasound vocalization. Neuropsychopharmacol Rep 2023. [PMID: 37128179 DOI: 10.1002/npr2.12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023] Open
Abstract
Neonatal mice emit ultrasonic vocalizations (USVs) when separated from their mothers. Since the USVs attract their mothers' attention and trigger maternal retrieval, they are considered to serve as social signals for communication. We have modeled paternal aging effects on the vocal communication of offspring in mice. However, little is known about the neural basis underlying neonatal USV production. To identify responsible brain regions driving the vocal behavior, we comprehensively mapped the neuronal activity associated with USV production in the entire brain of mice at postnatal day 6 (P6). Using an expression of immediate-early gene c-Fos as a neuronal activity marker, correlations between the numbers of USVs and c-Fos positive neurons were analyzed. We identified 23 candidate brain regions associated with USV production in the mice at P6. Our study would be a first step toward comprehensively understanding the neuronal mechanisms that regulate and develop vocal behaviors in neonatal mice.
Collapse
Affiliation(s)
- Lingling Mai
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8575, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| |
Collapse
|
9
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
10
|
Ishihara K, Takata K, Mizutani KI. Involvement of an Aberrant Vascular System in Neurodevelopmental, Neuropsychiatric, and Neuro-Degenerative Diseases. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010221. [PMID: 36676170 PMCID: PMC9866034 DOI: 10.3390/life13010221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4656
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| |
Collapse
|
11
|
Fiksinski AM, Hoftman GD, Vorstman JAS, Bearden CE. A genetics-first approach to understanding autism and schizophrenia spectrum disorders: the 22q11.2 deletion syndrome. Mol Psychiatry 2023; 28:341-353. [PMID: 36192458 PMCID: PMC9812786 DOI: 10.1038/s41380-022-01783-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023]
Abstract
Recently, increasing numbers of rare pathogenic genetic variants have been identified that are associated with variably elevated risks of a range of neurodevelopmental outcomes, notably including Autism Spectrum Disorders (ASD), Schizophrenia Spectrum Disorders (SSD), and Intellectual Disability (ID). This review is organized along three main questions: First, how can we unify the exclusively descriptive basis of our current psychiatric diagnostic classification system with the recognition of an identifiable, highly penetrant genetic risk factor in an increasing proportion of patients with ASD or SSD? Second, what can be learned from studies of individuals with ASD or SSD who share a common genetic basis? And third, what accounts for the observed variable penetrance and pleiotropy of neuropsychiatric phenotypes in individuals with the same pathogenic variant? In this review, we focus on findings of clinical and preclinical studies of the 22q11.2 deletion syndrome (22q11DS). This particular variant is not only one of the most common among the increasing list of known rare pathogenic variants, but also one that benefits from a relatively long research history. Consequently, 22q11DS is an appealing model as it allows us to: (1) elucidate specific genotype-phenotype associations, (2) prospectively study behaviorally defined classifications, such as ASD or SSD, in the context of a known, well-characterized genetic basis, and (3) elucidate mechanisms underpinning variable penetrance and pleiotropy, phenomena with far-reaching ramifications for research and clinical practice. We discuss how findings from animal and in vitro studies relate to observations in human studies and can help elucidate factors, including genetic, environmental, and stochastic, that impact the expression of neuropsychiatric phenotypes in 22q11DS, and how this may inform mechanisms underlying neurodevelopmental expression in the general population. We conclude with research priorities for the field, which may pave the way for novel therapeutics.
Collapse
Affiliation(s)
- Ania M Fiksinski
- Department of Psychology and Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNS, Maastricht University, Maastricht, The Netherlands
| | - Gil D Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute, and Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Liu C, Liu J, Gong H, Liu T, Li X, Fan X. Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications. Curr Neuropharmacol 2023; 21:2266-2282. [PMID: 36545727 PMCID: PMC10556385 DOI: 10.2174/1570159x21666221220155455] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a cluster of heterogeneous neurodevelopmental conditions with atypical social communication and repetitive sensory-motor behaviors. The formation of new neurons from neural precursors in the hippocampus has been unequivocally demonstrated in the dentate gyrus of rodents and non-human primates. Accumulating evidence sheds light on how the deficits in the hippocampal neurogenesis may underlie some of the abnormal behavioral phenotypes in ASD. In this review, we describe the current evidence concerning pre-clinical and clinical studies supporting the significant role of hippocampal neurogenesis in ASD pathogenesis, discuss the possibility of improving hippocampal neurogenesis as a new strategy for treating ASD, and highlight the prospect of emerging pro-neurogenic therapies for ASD.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
13
|
Mai L, Inada H, Kimura R, Kanno K, Matsuda T, Tachibana RO, Tucci V, Komaki F, Hiroi N, Osumi N. Advanced paternal age diversifies individual trajectories of vocalization patterns in neonatal mice. iScience 2022; 25:104834. [PMID: 36039363 PMCID: PMC9418688 DOI: 10.1016/j.isci.2022.104834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 10/25/2022] Open
Abstract
Infant crying is a communicative behavior impaired in neurodevelopmental disorders (NDDs). Because advanced paternal age is a risk factor for NDDs, we performed computational approaches to evaluate how paternal age affected vocal communication and body weight development in C57BL/6 mouse offspring from young and aged fathers. Analyses of ultrasonic vocalization (USV) consisting of syllables showed that advanced paternal age reduced the number and duration of syllables, altered the syllable composition, and caused lower body weight gain in pups. Pups born to young fathers had convergent vocal characteristics with a rich repertoire, whereas those born to aged fathers exhibited more divergent vocal patterns with limited repertoire. Additional analyses revealed that some pups from aged fathers displayed atypical USV trajectories. Thus, our study indicates that advanced paternal age has a significant effect on offspring's vocal development. Our computational analyses are effective in characterizing altered individual diversity.
Collapse
Affiliation(s)
- Lingling Mai
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.,Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kouta Kanno
- Faculty of Law, Economics and Humanities, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takeru Matsuda
- Statistical Mathematics Unit, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Ryosuke O Tachibana
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Valter Tucci
- Genetics and Epigenetics of Behavior (GEB) Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Fumiyasu Komaki
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan.,Mathematical Informatics Collaboration Unit, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA.,Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
14
|
Alhazmi S, Alzahrani M, Farsi R, Alharbi M, Algothmi K, Alburae N, Ganash M, Azhari S, Basingab F, Almuhammadi A, Alqosaibi A, Alkhatabi H, Elaimi A, Jan M, Aldhalaan HM, Alrafiah A, Alrofaidi A. Multiple Recurrent Copy Number Variations (CNVs) in Chromosome 22 Including 22q11.2 Associated with Autism Spectrum Disorder. Pharmgenomics Pers Med 2022; 15:705-720. [PMID: 35898556 PMCID: PMC9309317 DOI: 10.2147/pgpm.s366826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a developmental disorder that can cause substantial social, communication, and behavioral challenges. Genetic factors play a significant role in ASD, where the risk of ASD has been increased for unclear reasons. Twin studies have shown important evidence of both genetic and environmental contributions in ASD, where the level of contribution of these factors has not been proven yet. It has been suggested that copy number variation (CNV) duplication and the deletion of many genes in chromosome 22 (Ch22) may have a strong association with ASD. This study screened the CNVs in Ch22 in autistic Saudi children and assessed the candidate gene in the CNVs region of Ch22 that is most associated with ASD. Methods This study included 15 autistic Saudi children as well as 4 healthy children as controls; DNA was extracted from samples and analyzed using array comparative genomic hybridization (aCGH) and DNA sequencing. Results The aCGH detected (in only 6 autistic samples) deletion and duplication in many regions of Ch22, including some critical genes. Moreover, DNA sequencing determined a genetic mutation in the TBX1 gene sequence in autistic samples. This study, carried out using aCGH, found that six autistic patients had CNVs in Ch22, and DNA sequencing revealed mutations in the TBX1 gene in autistic samples but none in the control. Conclusion CNV deletion and the duplication of the TBX1 gene could be related to ASD; therefore, this gene needs more analysis in terms of expression levels.
Collapse
Affiliation(s)
- Safiah Alhazmi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam Alzahrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Farsi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khloud Algothmi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Alburae
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdah Ganash
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sheren Azhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany Alqosaibi
- Department of Biology, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Heba Alkhatabi
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Elaimi
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Jan
- College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hesham M Aldhalaan
- Center for Autism Research at King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Aziza Alrafiah
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Correspondence: Aziza Alrafiah, Department of Medical Laboratory Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia, Tel +966 126401000 Ext. 23495, Fax +966 126401000 Ext. 21686, Email
| | - Aisha Alrofaidi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Hiramoto T, Sumiyoshi A, Yamauchi T, Tanigaki K, Shi Q, Kang G, Ryoke R, Nonaka H, Enomoto S, Izumi T, Bhat MA, Kawashima R, Hiroi N. Tbx1, a gene encoded in 22q11.2 copy number variant, is a link between alterations in fimbria myelination and cognitive speed in mice. Mol Psychiatry 2022; 27:929-938. [PMID: 34737458 PMCID: PMC9054676 DOI: 10.1038/s41380-021-01318-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Copy number variants (CNVs) have provided a reliable entry point to identify the structural correlates of atypical cognitive development. Hemizygous deletion of human chromosome 22q11.2 is associated with impaired cognitive function; however, the mechanisms by which the CNVs contribute to cognitive deficits via diverse structural alterations in the brain remain unclear. This study aimed to determine the cellular basis of the link between alterations in brain structure and cognitive functions in mice with a heterozygous deletion of Tbx1, one of the 22q11.2-encoded genes. Ex vivo whole-brain diffusion-tensor imaging (DTI)-magnetic resonance imaging (MRI) in Tbx1 heterozygous mice indicated that the fimbria was the only region with significant myelin alteration. Electron microscopic and histological analyses showed that Tbx1 heterozygous mice exhibited an apparent absence of large myelinated axons and thicker myelin in medium axons in the fimbria, resulting in an overall decrease in myelin. The fimbria of Tbx1 heterozygous mice showed reduced mRNA levels of Ng2, a gene required to produce oligodendrocyte precursor cells. Moreover, postnatal progenitor cells derived from the subventricular zone, a source of oligodendrocytes in the fimbria, produced fewer oligodendrocytes in vitro. Behavioral analyses of these mice showed selectively slower acquisition of spatial memory and cognitive flexibility with no effects on their accuracy or sensory or motor capacities. Our findings provide a genetic and cellular basis for the compromised cognitive speed in patients with 22q11.2 hemizygous deletion.
Collapse
Affiliation(s)
- Takeshi Hiramoto
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kenji Tanigaki
- Research Institute, Shiga Medical Center, 5-4-30 Moriyama, Moriyama-shi, Shiga, Japan
| | - Qian Shi
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Rie Ryoke
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Shingo Enomoto
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Takeshi Izumi
- Department of Pharmacology, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ryuta Kawashima
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
16
|
Benedetti A, Molent C, Barcik W, Papaleo F. Social behavior in 16p11.2 and 22q11.2 copy number variations: Insights from mice and humans. GENES, BRAIN, AND BEHAVIOR 2021; 21:e12787. [PMID: 34889032 PMCID: PMC9744525 DOI: 10.1111/gbb.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
Genetic 16p11.2 and 22q11.2 deletions and duplications in humans may alter behavioral developmental trajectories increasing the risk of autism and schizophrenia spectrum disorders, and of attention-deficit/hyperactivity disorder. In this review, we will concentrate on 16p11.2 and 22q11.2 deletions' effects on social functioning, beyond diagnostic categorization. We highlight diagnostic and social sub-constructs discrepancies. Notably, we contrast evidence from human studies with social profiling performed in several mouse models mimicking 16p11.2 and 22q11.2 deletion syndromes. Given the complexity of social behavior, there is a need to assess distinct social processes. This will be important to better understand the biology underlying such genetic-dependent dysfunctions, as well as to give perspective on how therapeutic strategies can be improved. Bridges and divergent points between human and mouse studies are highlighted. Overall, we give challenges and future perspectives to sort the genetics of social heterogeneity.
Collapse
Affiliation(s)
- Arianna Benedetti
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly,CNRS, GREDEGUniversité Côte d'AzurNiceFrance
| | - Cinzia Molent
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly,Dipartimento di Medicina Sperimentale(Di. Mes) Università degli Studi di GenovaGenoaItaly
| | - Weronika Barcik
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly
| | - Francesco Papaleo
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly,Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
17
|
Hodges SL, Womble PD, Kwok EM, Darner AM, Senger SS, Binder MS, Faust AM, Condon SM, Nolan SO, Quintero SI, Lugo JN. Rapamycin, but not minocycline, significantly alters ultrasonic vocalization behavior in C57BL/6J pups in a flurothyl seizure model. Behav Brain Res 2021; 410:113317. [PMID: 33910029 DOI: 10.1016/j.bbr.2021.113317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Epilepsy is one of the most common neurological disorders, with individuals having an increased susceptibility of seizures in the first few years of life, making children at risk of developing a multitude of cognitive and behavioral comorbidities throughout development. The present study examined the role of PI3K/Akt/mTOR pathway activity and neuroinflammatory signaling in the development of autistic-like behavior following seizures in the neonatal period. Male and female C57BL/6J mice were administered 3 flurothyl seizures on postnatal (PD) 10, followed by administration of minocycline, the mTOR inhibitor rapamycin, or a combined treatment of both therapeutics. On PD12, isolation-induced ultrasonic vocalizations (USVs) of mice were examined to determine the impact of seizures and treatment on communicative behaviors, a component of the autistic-like phenotype. Seizures on PD10 increased the quantity of USVs in female mice and reduced the amount of complex call types emitted in males compared to controls. Inhibition of mTOR with rapamycin significantly reduced the quantity and duration of USVs in both sexes. Changes in USVs were associated with increases in mTOR and astrocyte levels in male mice, however, three PD10 seizures did not result in enhanced proinflammatory cytokine expression in either sex. Beyond inhibition of mTOR activity by rapamycin, both therapeutics did not demonstrate beneficial effects. These findings emphasize the importance of differences that may exist across preclinical seizure models, as three flurothyl seizures did not induce as drastic of changes in mTOR activity or inflammation as observed in other rodent models.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Eliesse M Kwok
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Alyssa M Darner
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Savannah S Senger
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Amanda M Faust
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Siena M Condon
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Saul I Quintero
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
18
|
Yoshizaki K, Kimura R, Kobayashi H, Oki S, Kikkawa T, Mai L, Koike K, Mochizuki K, Inada H, Matsui Y, Kono T, Osumi N. Paternal age affects offspring via an epigenetic mechanism involving REST/NRSF. EMBO Rep 2021; 22:e51524. [PMID: 33399271 PMCID: PMC7857438 DOI: 10.15252/embr.202051524] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Advanced paternal age can have deleterious effects on various traits in the next generation. Here, we establish a paternal‐aging model in mice to understand the molecular mechanisms of transgenerational epigenetics. Whole‐genome target DNA methylome analyses of sperm from aged mice reveal more hypo‐methylated genomic regions enriched in REST/NRSF binding motifs. Gene set enrichment analyses also reveal the upregulation of REST/NRSF target genes in the forebrain of embryos from aged fathers. Offspring derived from young mice administrated with a DNA de‐methylation drug phenocopy the abnormal vocal communication of pups derived from aged fathers. In conclusion, hypo‐methylation of sperm DNA can be a key molecular feature modulating neurodevelopmental programs in offspring by causing fluctuations in the expression of REST/NRSF target genes.
Collapse
Affiliation(s)
- Kaichi Yoshizaki
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Disease Model, Aichi Developmental Disability Center, Aichi, Japan
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan.,Department of Embryology, Nara Medical University, Nara, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Lingling Mai
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kohei Koike
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University School of Medicine, Homburg, Germany
| | - Kentaro Mochizuki
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory of Health and Sports Science, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Yasuhisa Matsui
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tomohiro Kono
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
19
|
Berg EL, Ching TM, Bruun DA, Rivera JK, Careaga M, Ellegood J, Lerch JP, Wöhr M, Lein PJ, Silverman JL. Translational outcomes relevant to neurodevelopmental disorders following early life exposure of rats to chlorpyrifos. J Neurodev Disord 2020; 12:40. [PMID: 33327943 PMCID: PMC7745485 DOI: 10.1186/s11689-020-09342-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs), including intellectual disability, attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), are pervasive, lifelong disorders for which pharmacological interventions are not readily available. Substantial increases in the prevalence of NDDs over a relatively short period may not be attributed solely to genetic factors and/or improved diagnostic criteria. There is now a consensus that multiple genetic loci combined with environmental risk factors during critical periods of neurodevelopment influence NDD susceptibility and symptom severity. Organophosphorus (OP) pesticides have been identified as potential environmental risk factors. Epidemiological studies suggest that children exposed prenatally to the OP pesticide chlorpyrifos (CPF) have significant mental and motor delays and strong positive associations for the development of a clinical diagnosis of intellectual delay or disability, ADHD, or ASD. METHODS We tested the hypothesis that developmental CPF exposure impairs behavior relevant to NDD phenotypes (i.e., deficits in social communication and repetitive, restricted behavior). Male and female rat pups were exposed to CPF at 0.1, 0.3, or 1.0 mg/kg (s.c.) from postnatal days 1-4. RESULTS These CPF doses did not significantly inhibit acetylcholinesterase activity in the blood or brain but significantly impaired pup ultrasonic vocalizations (USV) in both sexes. Social communication in juveniles via positive affiliative 50-kHz USV playback was absent in females exposed to CPF at 0.3 mg/kg and 1.0 mg/kg. In contrast, this CPF exposure paradigm had no significant effect on gross locomotor abilities or contextual and cued fear memory. Ex vivo magnetic resonance imaging largely found no differences between the CPF-exposed rats and the corresponding vehicle controls using strict false discovery correction; however, there were interesting trends in females in the 0.3 mg/kg dose group. CONCLUSIONS This work generated and characterized a rat model of developmental CPF exposure that exhibits adverse behavioral phenotypes resulting from perinatal exposures at levels that did not significantly inhibit acetylcholinesterase activity in the brain or blood. These data suggest that current regulations regarding safe levels of CPF need to be reconsidered.
Collapse
Affiliation(s)
- Elizabeth L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Tianna M Ching
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Donald A Bruun
- MIND Institute and Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Josef K Rivera
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Milo Careaga
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany
- Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Pamela J Lein
- MIND Institute and Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
20
|
Yamauchi T, Kang G, Hiroi N. Heterozygosity of murine Crkl does not recapitulate behavioral dimensions of human 22q11.2 hemizygosity. GENES BRAIN AND BEHAVIOR 2020; 20:e12719. [PMID: 33269541 DOI: 10.1111/gbb.12719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023]
Abstract
Deletions in 22q11.2 human chromosome are known to be associated with psychiatric disorders, such as intellectual disability, schizophrenia, autism spectrum disorder, and anxiety disorders. This copy number variation includes a 3.0 Mb deletion and a nested proximal 1.5 Mb hemizygous deletion in the same region. Evidence indicates that the distal 22q11.2 region outside the nested 1.5 Mb deletion also might be contributory in humans. However, the precise genetic architecture within the distal region responsible for psychiatric disorders remains unclear, and this issue cannot be experimentally evaluated beyond the correlation in humans. As CRKL (CRK-like Proto-Oncogene, Adaptor Protein) is one of the genes encoded in the distal 22q11.2 segment and its homozygous deletion causes physical phenotypes of 22q11.2 hemizygous deletion, we tested the hypothesis that its murine homolog Crkl contributes to behavioral phenotypes relevant to psychiatric disorders in mice. Congenic Crkl heterozygosity reduced thigmotaxis, an anxiety-related behavior, in an inescapable open field, but had no apparent effect on social interaction, spontaneous alternation in a T-maze, anxiety-like behavior in an elevated plus maze, or motor activity in an open field. Our data indicate that the heterozygosity of murine Crkl does not recapitulate social deficits, working memory deficits, repetitive behavior traits or hyperactivity of human 22q11.2 hemizygous deletion. Moreover, while 22q11.2 hemizygous deletion is associated with high levels of phobia and anxiety in humans, our data suggest that Crkl heterozygosity rather acts as a protective factor for phobia-like behavior in an open field.
Collapse
Affiliation(s)
- Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
21
|
Delgado-Sequera A, Hidalgo-Figueroa M, Barrera-Conde M, Duran-Ruiz MC, Castro C, Fernández-Avilés C, de la Torre R, Sánchez-Gomar I, Pérez V, Geribaldi-Doldán N, Robledo P, Berrocoso E. Olfactory Neuroepithelium Cells from Cannabis Users Display Alterations to the Cytoskeleton and to Markers of Adhesion, Proliferation and Apoptosis. Mol Neurobiol 2020; 58:1695-1710. [PMID: 33237429 DOI: 10.1007/s12035-020-02205-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
Cannabis is the third most commonly used psychoactive substance of abuse, yet it also receives considerable attention as a potential therapeutic drug. Therefore, it is essential to fully understand the actions of cannabis in the human brain. The olfactory neuroepithelium (ON) is a peripheral nervous tissue that represents an interesting surrogate model to study the effects of drugs in the brain, since it is closely related to the central nervous system, and sensory olfactory neurons are continually regenerated from populations of stem/progenitor cells that undergo neurogenesis throughout life. In this study, we used ON cells from chronic cannabis users and healthy control subjects to assess alterations in relevant cellular processes, and to identify changes in functional proteomic pathways due to cannabis consumption. The ON cells from cannabis users exhibited alterations in the expression of proteins that were related to the cytoskeleton, cell proliferation and cell death, as well as, changes in proteins implicated in cancer, gastrointestinal and neurodevelopmental pathologies. Subsequent studies showed cannabis provoked an increase in cell size and morphological alterations evident through β-Tubulin III staining, as well as, enhanced beta-actin expression and a decrease in the ability of ON cells to undergo cell attachment, suggesting abnormalities of the cytoskeleton and cell adhesion system. Furthermore, these cells proliferated more and underwent less cell death. Our results indicate that cannabis may alter key processes of the developing brain, some of which are similar to those reported in mental disorders like DiGeorge syndrome, schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Alejandra Delgado-Sequera
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Campus Universitario Río San Pedro s/n, 11510, Puerto Real, Cadiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - María Hidalgo-Figueroa
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Campus Universitario Río San Pedro s/n, 11510, Puerto Real, Cadiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Barrera-Conde
- Integrative Pharmacology and Systems Neuroscience, Neurosciences Research Programme, IMIM-Hospital del Mar Research Institute, PRBB, Calle Dr. Aiguader 88, 08003, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Mª Carmen Duran-Ruiz
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cádiz, Cádiz, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cádiz, Cádiz, Spain
| | | | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, Neurosciences Research Programme, IMIM-Hospital del Mar Research Institute, PRBB, Calle Dr. Aiguader 88, 08003, Barcelona, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cádiz, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Ismael Sánchez-Gomar
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cádiz, Cádiz, Spain
| | - Víctor Pérez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, Barcelona, Spain
| | - Noelia Geribaldi-Doldán
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Department of Human Anatomy and Embriology, University of Cádiz, Cádiz, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, Neurosciences Research Programme, IMIM-Hospital del Mar Research Institute, PRBB, Calle Dr. Aiguader 88, 08003, Barcelona, Spain.
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain.
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Campus Universitario Río San Pedro s/n, 11510, Puerto Real, Cadiz, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
22
|
Gudbrandsen M, Mann C, Bletsch A, Daly E, Murphy CM, Stoencheva V, Blackmore CE, Rogdaki M, Kushan L, Bearden CE, Murphy DGM, Craig MC, Ecker C. Patterns of Cortical Folding Associated with Autistic Symptoms in Carriers and Noncarriers of the 22q11.2 Microdeletion. Cereb Cortex 2020; 30:5281-5292. [PMID: 32420595 PMCID: PMC7566689 DOI: 10.1093/cercor/bhaa108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a genetic condition accompanied by a range of psychiatric manifestations, including autism spectrum disorder (ASD). It remains unknown, however, whether these symptoms are mediated by the same or distinct neural mechanisms as in idiopathic ASD. Here, we examined differences in lGI associated with ASD in 50 individuals with 22q11.2DS (n = 25 with ASD, n = 25 without ASD) and 81 individuals without 22q11.2DS (n = 40 with ASD, n = 41 typically developing controls). We initially utilized a factorial design to identify the set of brain regions where lGI is associated with the main effect of 22q11.2DS, ASD, and with the 22q11.2DS-by-ASD interaction term. Subsequently, we employed canonical correlation analysis (CCA) to compare the multivariate association between variability in lGI and the complex clinical phenotype of ASD between 22q11.2DS carriers and noncarriers. Across approaches, we established that even though there is a high degree of clinical similarity across groups, the associated patterns of lGI significantly differed between carriers and noncarriers of the 22q11.2 microdeletion. Our results suggest that ASD symptomatology recruits different neuroanatomical underpinnings across disorders and that 22q11.2DS individuals with ASD represent a neuroanatomically distinct subgroup that differs from 22q11.2DS individuals without ASD and from individuals with idiopathic ASD.
Collapse
Affiliation(s)
- Maria Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Caroline Mann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
- Brain Imaging Center, Goethe University, Frankfurt, Germany
| | - Anke Bletsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
- Brain Imaging Center, Goethe University, Frankfurt, Germany
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Clodagh M Murphy
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
- Behavioural Genetics Clinic, Adult Autism and ADHD Services, Behavioural and Developmental Clinical Academic Group, South London and Maudsley Foundation, NHS, UK
| | - Vladimira Stoencheva
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
- Behavioural Genetics Clinic, Adult Autism and ADHD Services, Behavioural and Developmental Clinical Academic Group, South London and Maudsley Foundation, NHS, UK
| | - Charlotte E Blackmore
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
- Behavioural Genetics Clinic, Adult Autism and ADHD Services, Behavioural and Developmental Clinical Academic Group, South London and Maudsley Foundation, NHS, UK
| | - Maria Rogdaki
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
- Behavioural Genetics Clinic, Adult Autism and ADHD Services, Behavioural and Developmental Clinical Academic Group, South London and Maudsley Foundation, NHS, UK
| | - Michael C Craig
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
- National Autism Unit, Bethlem Royal Hospital, London, UK
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
- Brain Imaging Center, Goethe University, Frankfurt, Germany
| |
Collapse
|
23
|
Consequences of 22q11.2 Microdeletion on the Genome, Individual and Population Levels. Genes (Basel) 2020; 11:genes11090977. [PMID: 32842603 PMCID: PMC7563277 DOI: 10.3390/genes11090977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Chromosomal 22q11.2 deletion syndrome (22q11.2DS) (ORPHA: 567) caused by microdeletion in chromosome 22 is the most common chromosomal microdeletion disorder in humans. Despite the same change on the genome level, like in the case of monozygotic twins, phenotypes are expressed differently in 22q11.2 deletion individuals. The rest of the genome, as well as epigenome and environmental factors, are not without influence on the variability of phenotypes. The penetrance seems to be more genotype specific than deleted locus specific. The transcript levels of deleted genes are not usually reduced by 50% as assumed due to haploinsufficiency. 22q11.2DS is often an undiagnosed condition, as each patient may have a different set out of 180 possible clinical manifestations. Diverse dysmorphic traits are present in patients from different ethnicities, which makes diagnosis even more difficult. 22q11.2 deletion syndrome serves as an example of a genetic syndrome that is not easy to manage at all stages: diagnosis, consulting and dealing with.
Collapse
|
24
|
Lin A, Vajdi A, Kushan-Wells L, Helleman G, Hansen LP, Jonas RK, Jalbrzikowski M, Kingsbury L, Raznahan A, Bearden CE. Reciprocal Copy Number Variations at 22q11.2 Produce Distinct and Convergent Neurobehavioral Impairments Relevant for Schizophrenia and Autism Spectrum Disorder. Biol Psychiatry 2020; 88:260-272. [PMID: 32143830 PMCID: PMC7354903 DOI: 10.1016/j.biopsych.2019.12.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND 22q11.2 deletions and duplications are copy number variations (CNVs) that predispose to developmental neuropsychiatric disorders. Both CNVs are associated with autism spectrum disorder (ASD), while the deletion confers disproportionate risk for schizophrenia. Neurobehavioral profiles associated with these reciprocal CNVs in conjunction with brain imaging measures have not been reported. METHODS We profiled the impact of 22q11.2 CNVs on neurobehavioral measures relevant to ASD and psychosis in 106 22q11.2 deletion carriers, 38 22q11.2 duplication carriers, and 82 demographically matched healthy control subjects. To determine whether brain-behavior relationships were altered in CNV carriers, we further tested for interactions between group and regional brain structure on neurobehavioral domains. RESULTS Cognitive deficits were observed in both CNV groups, with the lowest IQs in deletion carriers. ASD and dimensionally measured ASD traits were elevated in both CNV groups; however, duplication carriers exhibited increased stereotypies compared to deletion carriers. Moreover, discriminant analysis using ASD subdomains distinguished between CNV cases with 76% accuracy. Both psychotic disorder diagnosis and dimensionally measured positive and negative symptoms were elevated in deletion carriers. Finally, healthy control subjects showed an inverse relationship between processing speed and cortical thickness in heteromodal association areas, which was absent in both CNV groups. CONCLUSIONS 22q11.2 CNVs differentially modulate intellectual functioning and psychosis-related symptomatology but converge on broad ASD-related symptomatology. However, subtle differences in ASD profiles distinguish CNV groups. Processing speed impairments, coupled with the lack of normative relationship between processing speed and cortical thickness in CNV carriers, implicate aberrant development of the cortical mantle in the pathology underlying impaired processing speed ability.
Collapse
Affiliation(s)
- Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Gerhard Helleman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Laura Pacheco Hansen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Rachel K Jonas
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lyle Kingsbury
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California; Department of Neurobiology, University of California, Los Angeles, Los Angeles, California
| | - Armin Raznahan
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
25
|
Kato R, Machida A, Nomoto K, Kang G, Hiramoto T, Tanigaki K, Mogi K, Hiroi N, Kikusui T. Maternal approach behaviors toward neonatal calls are impaired by mother's experiences of raising pups with a risk gene variant for autism. Dev Psychobiol 2020; 63:108-113. [PMID: 32573780 DOI: 10.1002/dev.22006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 06/01/2020] [Indexed: 11/06/2022]
Abstract
How the intrinsic sequence structure of neonatal mouse pup ultrasonic vocalization (USV) and maternal experiences determine maternal behaviors in mice is poorly understood. Our previous work showed that pups with a Tbx1 heterozygous (HT) mutation, a genetic risk for autism spectrum disorder (ASD), emit altered call sequences that do not induce maternal approach behaviors in C57BL6/J mothers. Here, we tested how maternal approach behaviors induced by wild-type and HT USVs are influenced by the mother's experience in raising pups of these two genotypes. The results showed that wild-type USVs were effective in inducing maternal approach behaviors when mothers raised wild-type but not HT pups. The USVs of HT pups were ineffective regardless of whether mothers raised HT or wild-type pups. However, the sequence structure of pup USVs had no effect on the general, non-directional incentive motivation of maternal behaviors. Our data show how the mother's experience with a pup with a genetic risk for ASD alters the intrinsic incentive values of USV sequences in maternal approach behaviors.
Collapse
Affiliation(s)
- Risa Kato
- School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan
| | - Akihiro Machida
- School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan
| | - Kensaku Nomoto
- School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Takeshi Hiramoto
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kenji Tanigaki
- Shiga Medical Center Research Institute, Moriyama-shi, Shiga, Japan
| | - Kazutaka Mogi
- School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara-shi, Kanagawa, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Cell Systems Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Takefumi Kikusui
- School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara-shi, Kanagawa, Japan
| |
Collapse
|
26
|
AUTS2 Regulation of Synapses for Proper Synaptic Inputs and Social Communication. iScience 2020; 23:101183. [PMID: 32498016 PMCID: PMC7267731 DOI: 10.1016/j.isci.2020.101183] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 01/11/2023] Open
Abstract
Impairments in synapse development are thought to cause numerous psychiatric disorders. Autism susceptibility candidate 2 (AUTS2) gene has been associated with various psychiatric disorders, such as autism and intellectual disabilities. Although roles for AUTS2 in neuronal migration and neuritogenesis have been reported, its involvement in synapse regulation remains unclear. In this study, we found that excitatory synapses were specifically increased in the Auts2-deficient primary cultured neurons as well as Auts2 mutant forebrains. Electrophysiological recordings and immunostaining showed increases in excitatory synaptic inputs as well as c-fos expression in Auts2 mutant brains, suggesting that an altered balance of excitatory and inhibitory inputs enhances brain excitability. Auts2 mutant mice exhibited autistic-like behaviors including impairments in social interaction and altered vocal communication. Together, these findings suggest that AUTS2 regulates excitatory synapse number to coordinate E/I balance in the brain, whose impairment may underlie the pathology of psychiatric disorders in individuals with AUTS2 mutations. AUTS2 regulates excitatory synapse number in forebrain pyramidal neurons Loss of Auts2 leads to increased spine formation in development and adulthood Loss of Auts2 alters the balance of excitatory and inhibitory synaptic inputs Auts2 mutant mice exhibit cognitive and sociobehavioral deficits
Collapse
|
27
|
New Horizons for Molecular Genetics Diagnostic and Research in Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2020; 24:43-81. [PMID: 32006356 DOI: 10.1007/978-3-030-30402-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a highly heritable, heterogeneous, and complex pervasive neurodevelopmental disorder (PND) characterized by distinctive abnormalities of human cognitive functions, social interaction, and speech development.Nowadays, several genetic changes including chromosome abnormalities, genetic variations, transcriptional epigenetics, and noncoding RNA have been identified in ASD. However, the association between these genetic modifications and ASDs has not been confirmed yet.The aim of this review is to summarize the key findings in ASD from genetic viewpoint that have been identified from the last few decades of genetic and molecular research.
Collapse
|
28
|
Zinkstok JR, Boot E, Bassett AS, Hiroi N, Butcher NJ, Vingerhoets C, Vorstman JAS, van Amelsvoort TAMJ. Neurobiological perspective of 22q11.2 deletion syndrome. Lancet Psychiatry 2019; 6:951-960. [PMID: 31395526 PMCID: PMC7008533 DOI: 10.1016/s2215-0366(19)30076-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/20/2022]
Abstract
22q11.2 deletion syndrome is characterised by a well defined microdeletion that is associated with a high risk of neuropsychiatric disorders, including intellectual disability, schizophrenia, attention-deficit hyperactivity disorder, autism spectrum disorder, anxiety disorders, seizures and epilepsy, and early-onset Parkinson's disease. Preclinical and clinical data reveal substantial variability of the neuropsychiatric phenotype despite the shared underlying deletion in this genetic model. Factors that might explain this variability include genetic background effects, additional rare pathogenic variants, and potential regulatory functions of some genes in the 22q11.2 deletion region. These factors might also be relevant to the pathophysiology of these neuropsychiatric disorders in the general population. We review studies that might provide insight into pathophysiological mechanisms underlying the expression of neuropsychiatric disorders in 22q11.2 deletion syndrome, and potential implications for these common disorders in the general (non-deleted) population. The recurrent hemizygous 22q11.2 deletion, associated with 22q11.2 deletion syndrome, has attracted attention as a genetic model for common neuropsychiatric disorders because of its association with substantially increased risk of such disorders.1 Studying such a model has many advantages. First, 22q11.2 deletion has been genetically well characterised.2 Second, most genes present in the region typically deleted at the 22q11.2 locus are expressed in the brain.3-5 Third, genetic diagnosis might be made early in life, long before recognisable neuropsychiatric disorders have emerged. Thus, this genetic condition offers a unique opportunity for early intervention, and monitoring individuals with 22q11.2 deletion syndrome throughout life could provide important information on factors contributing to disease risk and protection. Despite the commonly deleted region being shared by about 90% of individuals with 22q11.2 deletion syndrome, neuropsychiatric outcomes are highly variable between individuals and across the lifespan. A clear link remains to be established between genotype and phenotype.3,5 In this Review, we summarise preclinical and clinical studies investigating biological mechanisms in 22q11.2 deletion syndrome, with a focus on those that might provide insight into mechanisms underlying neuropsychiatric disorders in 22q11.2 deletion syndrome and in the general population.
Collapse
Affiliation(s)
- Janneke R Zinkstok
- Department of Psychiatry and Brain Center, University Medical Center, Utrecht, Netherlands.
| | - Erik Boot
- 's Heeren Loo Zorggroep, Amersfoort, Netherlands; The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, University Health Network, Toronto, ON, Canada; Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Anne S Bassett
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, University Health Network, Toronto, ON, Canada; Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Toronto, ON, Canada; Division of Cardiology & Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Noboru Hiroi
- Department of Pharmacology, Department of Cellular and Integrative Physiology, Department of Cell Systems and Anatomy, and Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nancy J Butcher
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jacob A S Vorstman
- Sick Children Research Institute, Genetics & Genome Biology Program, Toronto, ON, Canada
| | | |
Collapse
|
29
|
Akiyama K, Saito A, Saito S, Ozeki Y, Watanabe T, Fujii K, Shimoda K. Association of genetic variants at 22q11.2 chromosomal region with cognitive performance in Japanese patients with schizophrenia. Schizophr Res Cogn 2019; 17:100134. [PMID: 31193788 PMCID: PMC6543121 DOI: 10.1016/j.scog.2019.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 11/11/2022] Open
Abstract
22q11.2 heterozygous multigene deletions confer an increased risk of schizophrenia with marked impairment of cognition. We explored whether genes on 22q11.2 are associated with cognitive performance in patients with idiopathic schizophrenia. A total of 240 schizophrenia patients and 240 healthy controls underwent the Japanese-language version of the Brief Assessment of Cognition in Schizophrenia (BACS) and were genotyped for 115 tag single-nucleotide polymorphisms (tag SNPs) at the 22q11.2 region using the golden gate assay (Illumina®). Associations between z-scores of the BACS cognitive domains and SNPs and haplotypes were analyzed using linear regression in PLINK 1.07. An additional set of 149 patients with bipolar disorder were included for cognitive assessment and selected SNPs were genotyped using real-time PCR. Patients with schizophrenia and bipolar disorder showed qualitatively comparable profiles of cognitive impairment across BACS subdomains, as revealed by significant correlation between the two groups in the resulting cognitive effect sizes relative to controls. rs4819522 (TBX1) and rs2238769 (UFD1L) were significantly and nominally associated, respectively, with symbol coding in patients with schizophrenia. Haplotype analyses revealed that haplotypes containing the A allele at rs4819522 and G allele at rs2238769 showed significant negative associations with symbol coding in patients with schizophrenia. There was no effect of any haplotypes on cognition in patients with bipolar disorder. Our results have implications for the understanding of the role of haplotypes of UFD1L and TBX1 genes associated with symbol coding in patients with schizophrenia. Further replication studies in a cohort of newly diagnosed patients and other ethnicities are warranted.
Collapse
|
30
|
Hiroi N, Yamauchi T. Modeling and Predicting Developmental Trajectories of Neuropsychiatric Dimensions Associated With Copy Number Variations. Int J Neuropsychopharmacol 2019; 22:488-500. [PMID: 31135887 PMCID: PMC6672556 DOI: 10.1093/ijnp/pyz026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
Copy number variants, such as duplications and hemizygous deletions at chromosomal loci of up to a few million base pairs, are highly associated with psychiatric disorders. Hemizygous deletions at human chromosome 22q11.2 were found to be associated with elevated instances of schizophrenia and autism spectrum disorder in 1992 and 2002, respectively. Following these discoveries, many mouse models have been developed and tested to analyze the effects of gene dose alterations in small chromosomal segments and single genes of 22q11.2. Despite several limitations to modeling mental illness in mice, mouse models have identified several genes on 22q11.2-Tbx1, Dgcr8, Comt, Sept5, and Prodh-that contribute to dimensions of autism spectrum disorder and schizophrenia, including working memory, social communication and interaction, and sensorimotor gating. Mouse studies have identified that heterozygous deletion of Tbx1 results in defective social communication during the neonatal period and social interaction deficits during adolescence/adulthood. Overexpression of Tbx1 or Comt in adult neural progenitor cells in the hippocampus delays the developmental maturation of working memory capacity. Collectively, mouse models of variants of these 4 genes have revealed several potential neuronal mechanisms underlying various aspects of psychiatric disorders, including adult neurogenesis, microRNA processing, catecholamine metabolism, and synaptic transmission. The validity of the mouse data would be ultimately tested when therapies or drugs based on such potential mechanisms are applied to humans.
Collapse
Affiliation(s)
- Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Takahira Yamauchi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
31
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
32
|
Nolan SO, Hodges SL, Condon SM, Muhammed I, Tomac L, Binder MS, Reynolds CD, Lugo JN. High seizure load during sensitive periods of development leads to broad shifts in ultrasonic vocalization behavior in neonatal male and female C57BL/6J mice. Epilepsy Behav 2019; 95:26-33. [PMID: 31022661 PMCID: PMC6546518 DOI: 10.1016/j.yebeh.2019.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
There is increasing evidence that seizures during early development can impact ultrasonic vocalizations (USVs) emitted from neonatal mice. However, most of the effects of early-life seizures have been reported using chemoconvulsants that produce continuous seizures (status epilepticus). In the present study, we evaluated the impact of different seizure frequency loads during early-life vocalization development in C57BL/6J male and female mice. For the high seizure load (HSL) paradigm, we administered 3 flurothyl seizures to mice on postnatal day (PD) 7 through PD11, and recorded USVs on PD12. We found that the induction of seizures across PD7-11 resulted in increased average duration (P < 0.05) and cumulative duration (P < 0.05) of USVs across both sexes. Call-type analyses indicated several call-type changes, including reduced production of complex call-types from males' HSL condition. For the low seizure load (LSL) paradigm, we induced 3 flurothyl seizures only on PD10 and recorded USVs on PD12. We found no change in any spectral or temporal features of USVs. However, call-type production analyses indicated that both male and female animals from the LSL paradigm also produced changes in call-types. This study provides evidence that the magnitude of communication impairment following seizures is significantly impacted by seizure frequency load early in development.
Collapse
Affiliation(s)
- Suzanne O. Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | | | - Siena M. Condon
- University Scholars Program, Baylor University, Waco, TX 76798, USA
| | - Ilyasah Muhammed
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Lindsay Tomac
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Matthew S. Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Conner D. Reynolds
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA,,Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA,,Department of Biology, Baylor University, Waco, TX 76798, USA,,Corresponding author: Joaquin N. Lugo, PhD, Baylor University, Department of Psychology and Neuroscience, One Bear Place # 97334, Waco, TX 76798, Phone: 254-710-2389; FAX: 254-710-3033,
| |
Collapse
|
33
|
Moore SM, Seidman JS, Ellegood J, Gao R, Savchenko A, Troutman TD, Abe Y, Stender J, Lee D, Wang S, Voytek B, Lerch JP, Suh H, Glass CK, Muotri AR. Setd5 haploinsufficiency alters neuronal network connectivity and leads to autistic-like behaviors in mice. Transl Psychiatry 2019; 9:24. [PMID: 30655503 PMCID: PMC6336863 DOI: 10.1038/s41398-018-0344-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023] Open
Abstract
SETD5, a gene linked to intellectual disability (ID) and autism spectrum disorder (ASD), is a member of the SET-domain family and encodes a putative histone methyltransferase (HMT). To date, the mechanism by which SETD5 haploinsufficiency causes ASD/ID remains an unanswered question. Setd5 is the highly conserved mouse homolog, and although the Setd5 null mouse is embryonic lethal, the heterozygote is viable. Morphological tracing and multielectrode array was used on cultured cortical neurons. MRI was conducted of adult mouse brains and immunohistochemistry of juvenile mouse brains. RNA-Seq was used to investigate gene expression in the developing cortex. Behavioral assays were conducted on adult mice. Setd5+/- cortical neurons displayed significantly reduced synaptic density and neuritic outgrowth in vitro, with corresponding decreases in network activity and synchrony by electrophysiology. A specific subpopulation of fetal Setd5+/- cortical neurons showed altered gene expression of neurodevelopment-related genes. Setd5+/- animals manifested several autism-like behaviors, including hyperactivity, cognitive deficit, and altered social interactions. Anatomical differences were observed in Setd5+/- adult brains, accompanied by a deficit of deep-layer cortical neurons in the developing brain. Our data converge on a picture of abnormal neurodevelopment driven by Setd5 haploinsufficiency, consistent with a highly penetrant risk factor.
Collapse
Affiliation(s)
- Spencer M Moore
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jason S Seidman
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
- Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Richard Gao
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Alex Savchenko
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ty D Troutman
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA
| | - Yohei Abe
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA
| | - Josh Stender
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA
| | - Daehoon Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sicong Wang
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bradley Voytek
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- 5Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, La Jolla, CA, USA
| | - Jason P Lerch
- Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Hoonkyo Suh
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, School of Medicine, Universityof California, San Diego, La Jolla, CA, USA.
- Kavli Institute for Brain and Mind, La Jolla, CA, USA.
- Rady Children's Hospital San Diego, San Diego, CA, USA.
- Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
- Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
34
|
Esposito G, Azhari A, Borelli JL. Gene × Environment Interaction in Developmental Disorders: Where Do We Stand and What's Next? Front Psychol 2018; 9:2036. [PMID: 30416467 PMCID: PMC6212589 DOI: 10.3389/fpsyg.2018.02036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/03/2018] [Indexed: 02/01/2023] Open
Abstract
Although the field of psychiatry has witnessed the proliferation of studies on Gene × Environment (G×E) interactions, still limited is the knowledge we possess of G×E interactions regarding developmental disorders. In this perspective paper, we discuss why G×E interaction studies are needed to broaden our knowledge of developmental disorders. We also discuss the different roles of hazardous versus self-generated environmental factors and how these types of factors may differentially engage with an individual's genetic background in predicting a resulting phenotype. Then, we present examplar studies that highlight the role of G×E in predicting atypical developmental trajectories as well as provide insight regarding treatment outcomes. Supported by these examples, we explore the need to move beyond merely examining statistical interactions between genes and the environment, and the motivation to investigate specific genetic susceptibility and environmental contexts that drive developmental disorders. We propose that further parsing of genetic and environmental components is required to fully understand the unique contribution of each factor to the etiology of developmental disorders. Finally, with a greater appreciation of the complexities of G×E interaction, this discussion will converge upon the potential implications for clinical and translational research.
Collapse
Affiliation(s)
- Gianluca Esposito
- Psychology Program, Nanyang Technological University, Singapore, Singapore
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Atiqah Azhari
- Psychology Program, Nanyang Technological University, Singapore, Singapore
| | - Jessica L. Borelli
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
35
|
Rezazadeh A, Bercovici E, Kiehl TR, Chow EW, Krings T, Bassett AS, Andrade DM. Periventricular nodular heterotopia in 22q11.2 deletion and frontal lobe migration. Ann Clin Transl Neurol 2018; 5:1314-1322. [PMID: 30480026 PMCID: PMC6243376 DOI: 10.1002/acn3.641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/04/2018] [Accepted: 08/10/2018] [Indexed: 01/03/2023] Open
Abstract
Objective We aimed to delineate the distribution of periventricular nodular heterotopia (PNH) in patients with 22q11.2 microdeletion syndrome (22q11.2DS) and place this in the context of other genetic forms of PNH. Methods We retrospectively analyzed brain imaging and postmortem data available for adult patients with 22q11.2DS. We included only those with good quality MRI data (n = 29) in addition to two patients with PNH identified through postmortem studies. We also reviewed the pattern of PNH in all genetic conditions reported with this phenotype. Results Of the total seven patients (M = 4, F = 3; age: 19–61 years) identified to have PNH, six had a history of seizures, six had schizophrenia, six had variable levels of intellectual disability, and two had obsessive compulsive disorder. In all seven patients, the nodules were located over the dorsal pole of the frontal horn of the lateral ventricles. The nodules were small, noncontiguous, and ranged in number from 1 to 10 per individual. Our review identified 37 genetic conditions associated with PNH. With the cases reported here, 22q11.2DS becomes the fifth most commonly reported genetic condition, and the third most common copy number variation, associated with PNH. Interpretation The neuropsychiatric manifestations in our patients with PNH support other data indicating abnormal neurodevelopment as part of the pathogenesis of 22q11.2DS.The location and cellular characteristics of PNH in 22q11.2DS overlaps with a group of migrating postnatal interneurons termed Arc cells, although more research is needed to confirm that PNH in 22q11.2DS represents Arc cells arrested in their migratory pathway.
Collapse
Affiliation(s)
- Arezoo Rezazadeh
- Division of Neurology Department of Medicine Krembil Neuroscience Centre Toronto Western Hospital University of Toronto Toronto Ontario Canada
| | - Eduard Bercovici
- Division of Neurology Department of Medicine Krembil Neuroscience Centre Toronto Western Hospital University of Toronto Toronto Ontario Canada
| | - Tim-Rasmus Kiehl
- Department of Pathology University Health Network University of Toronto Toronto Ontario Canada
| | - Eva W Chow
- Clinical Genetics Research Program Centre for Addiction and Mental Health and Department of Psychiatry Toronto Ontario Canada
| | - Timo Krings
- Division of Neuroradiology Joint Department of Medical Imaging Toronto Western Hospital University Health Network University of Toronto Toronto Canada
| | - Anne S Bassett
- Clinical Genetics Research Program Centre for Addiction and Mental Health and Department of Psychiatry Toronto Ontario Canada.,Dalglish Family 22q Clinic Toronto General Research Institute and Department of Psychiatry Campbell Family Mental Health Research Institute University Health Network Centre for Addiction and Mental Health Toronto Ontario Canada
| | - Danielle M Andrade
- Division of Neurology Department of Medicine Krembil Neuroscience Centre Toronto Western Hospital University of Toronto Toronto Ontario Canada.,Krembil Neurosciences Epilepsy Genetics Program Toronto Western Hospital University of Toronto Toronto Ontario Canada
| |
Collapse
|
36
|
Broin PÓ, Beckert MV, Takahashi T, Izumi T, Ye K, Kang G, Pouso P, Topolski M, Pena JL, Hiroi N. Computational Analysis of Neonatal Mouse Ultrasonic Vocalization. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2018; 8:e46. [PMID: 29927553 PMCID: PMC6055925 DOI: 10.1002/cpmo.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neonatal vocalization is structurally altered in mouse models of autism spectrum disorder (ASD). Our published data showed that pup vocalization, under conditions of maternal separation, contains sequences whose alterations in a genetic mouse model of ASD impair social communication between pups and mothers. We describe details of a method which reveals the statistical structure of call sequences that are functionally critical for optimal maternal care. Entropy analysis determines the degree of non-random call sequencing. A Markov model determines the actual call sequences used by pups. Sparse partial least squares discriminant analysis (sPLS-DA) identifies call sequences that differentiate groups and reveals the degrees of individual variability in call sequences between groups. These three sets of analyses can be used to identify the otherwise hidden call structure that is altered in mouse models of developmental neuropsychiatric disorders, including not only autism but also schizophrenia. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Pilib Ó Broin
- School of Mathematics, Statistics & Applied Mathematics,
National University of Ireland Galway, Galway, Ireland
| | - Michael V. Beckert
- Department of Neuroscience, Albert Einstein College of Medicine,
Bronx, NY, USA
| | - Tomohisa Takahashi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Takeshi Izumi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology & Population Health, Albert
Einstein College of Medicine, Bronx, NY, USA
| | - Gina Kang
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Patricia Pouso
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Mackenzie Topolski
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Jose L. Pena
- Department of Neuroscience, Albert Einstein College of Medicine,
Bronx, NY, USA
| | - Noboru Hiroi
- Department of Neuroscience, Albert Einstein College of Medicine,
Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx,
NY, USA
| |
Collapse
|
37
|
Hiroi N. Critical reappraisal of mechanistic links of copy number variants to dimensional constructs of neuropsychiatric disorders in mouse models. Psychiatry Clin Neurosci 2018; 72:301-321. [PMID: 29369447 PMCID: PMC5935536 DOI: 10.1111/pcn.12641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/27/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022]
Abstract
Copy number variants are deletions and duplications of a few thousand to million base pairs and are associated with extraordinarily high levels of autism spectrum disorder, schizophrenia, intellectual disability, or attention-deficit hyperactivity disorder. The unprecedented levels of robust and reproducible penetrance of copy number variants make them one of the most promising and reliable entry points to delve into the mechanistic bases of many mental disorders. However, the precise mechanistic bases of these associations still remain elusive in humans due to the many genes encoded in each copy number variant and the diverse associated phenotypic features. Genetically engineered mice have provided a technical means to ascertain precise genetic mechanisms of association between copy number variants and dimensional aspects of mental illnesses. Molecular, cellular, and neuronal phenotypes can be detected as potential mechanistic substrates for various behavioral constructs of mental illnesses. However, mouse models come with many technical pitfalls. Genetic background is not well controlled in many mouse models, leading to rather obvious interpretative issues. Dose alterations of many copy number variants and single genes within copy number variants result in some molecular, cellular, and neuronal phenotypes without a behavioral phenotype or with a behavioral phenotype opposite to what is seen in humans. In this review, I discuss technical and interpretative pitfalls of mouse models of copy number variants and highlight well-controlled studies to suggest potential neuronal mechanisms of dimensional aspects of mental illnesses. Mouse models of copy number variants represent toeholds to achieve a better understanding of the mechanistic bases of dimensions of neuropsychiatric disorders and thus for development of mechanism-based therapeutic options in humans.
Collapse
Affiliation(s)
- Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, USA.,Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.,Department of Genetics, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
38
|
Copy number elevation of 22q11.2 genes arrests the developmental maturation of working memory capacity and adult hippocampal neurogenesis. Mol Psychiatry 2018; 23:985-992. [PMID: 28827761 PMCID: PMC5823706 DOI: 10.1038/mp.2017.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 01/08/2023]
Abstract
Working memory capacity, a critical component of executive function, expands developmentally from childhood through adulthood. Anomalies in this developmental process are seen in individuals with autism spectrum disorder (ASD), schizophrenia and intellectual disabilities (ID), implicating this atypical process in the trajectory of developmental neuropsychiatric disorders. However, the cellular and neuronal substrates underlying this process are not understood. Duplication and triplication of copy number variants of 22q11.2 are consistently and robustly associated with cognitive deficits of ASD and ID in humans, and overexpression of small 22q11.2 segments recapitulates dimensional aspects of developmental neuropsychiatric disorders in mice. We capitalized on these two lines of evidence to delve into the cellular substrates for this atypical development of working memory. Using a region- and cell-type-selective gene expression approach, we demonstrated that copy number elevations of catechol-O-methyl-transferase (COMT) or Tbx1, two genes encoded in the two small 22q11.2 segments, in adult neural stem/progenitor cells in the hippocampus prevents the developmental maturation of working memory capacity in mice. Moreover, copy number elevations of COMT or Tbx1 reduced the proliferation of adult neural stem/progenitor cells in a cell-autonomous manner in vitro and migration of their progenies in the hippocampus granular layer in vivo. Our data provide evidence for the novel hypothesis that copy number elevations of these 22q11.2 genes alter the developmental trajectory of working memory capacity via suboptimal adult neurogenesis in the hippocampus.
Collapse
|
39
|
Hisaoka T, Komori T, Kitamura T, Morikawa Y. Abnormal behaviours relevant to neurodevelopmental disorders in Kirrel3-knockout mice. Sci Rep 2018; 8:1408. [PMID: 29362445 PMCID: PMC5780462 DOI: 10.1038/s41598-018-19844-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
In the nervous system, Kirrel3 is involved in neuronal migration, axonal fasciculation, and synapse formation. Recently, genetic links have been reported between mutations in the KIRREL3 gene and increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD) and intellectual disability. To elucidate the causal relationship between KIRREL3 deficiency and behavioural abnormalities relevant to neurodevelopmental disorders, we generated global Kirrel3-knockout (Kirrel3−/−) mice and investigated the detailed behavioural phenotypes. In the three-chambered social approach test, Kirrel3−/− mice displayed a significant preference for a mouse over a non-social object but no significant preference for a stranger mouse over a familiar mouse. Ultrasonic communications, including pup-to-mother calls, male-female courtship vocalisation and resident responses to intruder, were significantly impaired in Kirrel3−/− mice. Significant increases in locomotor activity and repetitive rearing were also observed in Kirrel3−/− mice. Furthermore, the performance of Kirrel3−/− mice in the rotarod test was significantly better than that of wild-type mice. In the acoustic startle test, Kirrel3−/− mice were significantly hypersensitive to acoustic stimuli. Anxiety-related behaviours and spatial or fear memory acquisition were normal in Kirrel3−/− mice. These findings suggest that Kirrel3−/− mice exhibit autistic-like behaviours, including social and communicative deficits, repetitive behaviours, and sensory abnormalities, as well as hyperactivity.
Collapse
Affiliation(s)
- Tomoko Hisaoka
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Tadasuke Komori
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshihiro Morikawa
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
40
|
Nomura J, Kannan G, Takumi T. Rodent models of genetic and chromosomal variations in psychiatric disorders. Psychiatry Clin Neurosci 2017; 71:508-517. [PMID: 28317218 DOI: 10.1111/pcn.12524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Elucidating the molecular basis of complex human psychiatric disorders is challenging due to the multitude of factors that underpin these disorders. Genetic and chromosomal changes are two factors that have been suggested to be involved in psychiatric disorders. Indeed, numerous risk loci have been identified in autism spectrum disorders, schizophrenia, and related psychiatric disorders. Here, we introduce genetic animal models that disturb excitatory-inhibitory balance in the brain and animal models mirroring human chromosomal abnormalities, both of which may be implicated in autism spectrum disorder pathophysiology. In addition, we discuss recent unique translational research using rodent models, such as Cntnap2 knockout mouse, Mecp2 mutant mouse, Pick1 knockout mouse, and neonatal ventral hippocampal lesion rat. By using these models, several types of drugs are administered during the developmental period to see the effect on psychotic symptoms and neural activities in adults. The accumulating evidence from recent animal studies provides an informative intervention strategy as a translational research.
Collapse
Affiliation(s)
- Jun Nomura
- RIKEN Brain Science Institute, Saitama, Japan
| | - Geetha Kannan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, USA
| | - Toru Takumi
- RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
41
|
Esposito G, Hiroi N, Scattoni ML. Cry, baby, cry: Expression of Distress as a Biomarker and Modulator in Autism Spectrum Disorder. Int J Neuropsychopharmacol 2017; 20:2997212. [PMID: 28204487 PMCID: PMC5458334 DOI: 10.1093/ijnp/pyx014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Early diagnosis of autism spectrum disorder is critical, because early intensive treatment greatly improves its prognosis. Methods: We review studies that examined vocalizations of infants with autism spectrum disorder and mouse models of autism spectrum disorder as a potential means to identify autism spectrum disorder before the symptomatic elements of autism spectrum disorder emerge. We further discuss clinical implications and future research priorities in the field. Results: Atypical early vocal calls (i.e., cry) may represent an early biomarker for autism spectrum disorder (or at least for a subgroup of children with autism spectrum disorder), and thus can assist with early detection. Moreover, cry is likely more than an early biomarker of autism spectrum disorder; it is also an early causative factor in the development of the disorder. Specifically, atypical crying, as recently suggested, might induce a “self-generated environmental factor” that in turn, influences the prognosis of the disorder. Because atypical crying in autism spectrum disorder is difficult to understand, it may have a negative impact on the quality of care by the caregiver (see graphical abstract). Conclusions: Evidence supports the hypothesis that atypical vocalization is an early, functionally integral component of autism spectrum disorder.
Collapse
Affiliation(s)
| | | | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
42
|
A Self-Generated Environmental Factor as a Potential Contributor to Atypical Early Social Communication in Autism. Neuropsychopharmacology 2017; 42:378. [PMID: 27909329 PMCID: PMC5143512 DOI: 10.1038/npp.2016.225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Copy number variability in Parkinson's disease: assembling the puzzle through a systems biology approach. Hum Genet 2016; 136:13-37. [PMID: 27896429 PMCID: PMC5214768 DOI: 10.1007/s00439-016-1749-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder of aging, was long believed to be a non-genetic sporadic origin syndrome. The proof that several genetic loci are responsible for rare Mendelian forms has represented a revolutionary breakthrough, enabling to reveal molecular mechanisms underlying this debilitating still incurable condition. While single nucleotide polymorphisms (SNPs) and small indels constitute the most commonly investigated DNA variations accounting for only a limited number of PD cases, larger genomic molecular rearrangements have emerged as significant PD-causing mutations, including submicroscopic Copy Number Variations (CNVs). CNVs constitute a prevalent source of genomic variations and substantially participate in each individual’s genomic makeup and phenotypic outcome. However, the majority of genetic studies have focused their attention on single candidate-gene mutations or on common variants reaching a significant statistical level of acceptance. This gene-centric approach is insufficient to uncover the genetic background of polygenic multifactorial disorders like PD, and potentially masks rare individual CNVs that all together might contribute to disease development or progression. In this review, we will discuss literature and bioinformatic data describing the involvement of CNVs on PD pathobiology. We will analyze the most frequent copy number changes in familiar PD genes and provide a “systems biology” overview of rare individual rearrangements that could functionally act on commonly deregulated molecular pathways. Assessing the global genome-wide burden of CNVs in PD patients may reveal new disease-related molecular mechanisms, and open the window to a new possible genetic scenario in the unsolved PD puzzle.
Collapse
|
44
|
Ping LY, Chuang YA, Hsu SH, Tsai HY, Cheng MC. Screening for Mutations in the TBX1 Gene on Chromosome 22q11.2 in Schizophrenia. Genes (Basel) 2016; 7:genes7110102. [PMID: 27879657 PMCID: PMC5126788 DOI: 10.3390/genes7110102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 01/22/2023] Open
Abstract
A higher-than-expected frequency of schizophrenia in patients with 22q11.2 deletion syndrome suggests that chromosome 22q11.2 harbors the responsive genes related to the pathophysiology of schizophrenia. The TBX1 gene, which maps to the region on chromosome 22q11.2, plays a vital role in neuronal functions. Haploinsufficiency of the TBX1 gene is associated with schizophrenia endophenotype. This study aimed to investigate whether the TBX1 gene is associated with schizophrenia. We searched for mutations in the TBX1 gene in 652 patients with schizophrenia and 567 control subjects using a re-sequencing method and conducted a reporter gene assay. We identified six SNPs and 25 rare mutations with no association with schizophrenia from Taiwan. Notably, we identified two rare schizophrenia-specific mutations (c.-123G>C and c.-11delC) located at 5' UTR of the TBX1 gene. The reporter gene assay showed that c.-123C significantly decreased promoter activity, while c.-11delC increased promoter activity compared with the wild-type. Our findings suggest that the TBX1 gene is unlikely a major susceptible gene for schizophrenia in an ethnic Chinese population for Taiwan, but a few rare mutations in the TBX1 gene may contribute to the pathogenesis of schizophrenia in some patients.
Collapse
Affiliation(s)
- Lieh-Yung Ping
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan.
| | - Yang-An Chuang
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan.
| | - Shih-Hsin Hsu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan.
| | - Hsin-Yao Tsai
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan.
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan.
- Center for General Education, St. Mary's Junior College of Medicine, Nursing and Management, Yilan County 26644, Taiwan.
| |
Collapse
|
45
|
Takahashi T, Okabe S, Ó Broin P, Nishi A, Ye K, Beckert MV, Izumi T, Machida A, Kang G, Abe S, Pena JL, Golden A, Kikusui T, Hiroi N. Structure and function of neonatal social communication in a genetic mouse model of autism. Mol Psychiatry 2016; 21:1208-14. [PMID: 26666205 PMCID: PMC4909589 DOI: 10.1038/mp.2015.190] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 11/17/2022]
Abstract
A critical step toward understanding autism spectrum disorder (ASD) is to identify both genetic and environmental risk factors. A number of rare copy number variants (CNVs) have emerged as robust genetic risk factors for ASD, but not all CNV carriers exhibit ASD and the severity of ASD symptoms varies among CNV carriers. Although evidence exists that various environmental factors modulate symptomatic severity, the precise mechanisms by which these factors determine the ultimate severity of ASD are still poorly understood. Here, using a mouse heterozygous for Tbx1 (a gene encoded in 22q11.2 CNV), we demonstrate that a genetically triggered neonatal phenotype in vocalization generates a negative environmental loop in pup-mother social communication. Wild-type pups used individually diverse sequences of simple and complicated call types, but heterozygous pups used individually invariable call sequences with less complicated call types. When played back, representative wild-type call sequences elicited maternal approach, but heterozygous call sequences were ineffective. When the representative wild-type call sequences were randomized, they were ineffective in eliciting vigorous maternal approach behavior. These data demonstrate that an ASD risk gene alters the neonatal call sequence of its carriers and this pup phenotype in turn diminishes maternal care through atypical social communication. Thus, an ASD risk gene induces, through atypical neonatal call sequences, less than optimal maternal care as a negative neonatal environmental factor.
Collapse
Affiliation(s)
- Tomohisa Takahashi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
| | - Shota Okabe
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Pilib Ó Broin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
| | - Akira Nishi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
- Department of Psychiatry, Course of Integrated Brain Sciences and Medical Informatics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
| | - Michael V. Beckert
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
| | - Takeshi Izumi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
- Department of Neuropharmacology, Graduate School of Hokkaido University College of Medicine, Sapporo, Japan
| | - Akihiro Machida
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Gina Kang
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
| | - Seiji Abe
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
| | - Jose L. Pena
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
| | - Aaron Golden
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
- Department of Mathematical Sciences, Yeshiva University, New York, NY, 10033 USA
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
| |
Collapse
|
46
|
Abstract
Recent data have paved the way to mechanistic studies into the role of Tbx1 during development. Tbx1 is haploinsufficient and is involved in an important genetic disorder. The gene encodes a T-box transcription factor that is expressed from approximately E7.5 in mouse embryos and continues to be expressed in a highly dynamic manner. It is neither a strong transcriptional activator nor a strong repressor, but it regulates a large number of genes through epigenetic modifications. Here, we review recent literature concerning mechanisms of gene regulation by Tbx1 and its role in mammalian development, with a special focus on the cardiac, vascular, and central nervous systems.
Collapse
|
47
|
Ergaz Z, Weinstein-Fudim L, Ornoy A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod Toxicol 2016; 64:116-40. [PMID: 27142188 DOI: 10.1016/j.reprotox.2016.04.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal and postnatal etiologies. We discuss the known animal models, mostly in mice and rats, of ASD that helps us to understand the etiology, pathogenesis and treatment of human ASD. We describe only models where behavioral testing has shown autistic like behaviors. Some genetic models mimic known human syndromes like fragile X where ASD is part of the clinical picture, and others are without defined human syndromes. Among the environmentally induced ASD models in rodents, the most common model is the one induced by valproic acid (VPA) either prenatally or early postnatally. VPA induces autism-like behaviors following single exposure during different phases of brain development, implying that the mechanism of action is via a general biological mechanism like epigenetic changes. Maternal infection and inflammation are also associated with ASD in man and animal models.
Collapse
Affiliation(s)
- Zivanit Ergaz
- Laboratory of Teratology, Department of Medical Neurobiology Hebrew University Hadassah Medical School and Hadassah Hospital, Jerusalem, Israel
| | - Liza Weinstein-Fudim
- Laboratory of Teratology, Department of Medical Neurobiology Hebrew University Hadassah Medical School and Hadassah Hospital, Jerusalem, Israel
| | - Asher Ornoy
- Laboratory of Teratology, Department of Medical Neurobiology Hebrew University Hadassah Medical School and Hadassah Hospital, Jerusalem, Israel.
| |
Collapse
|
48
|
Tamura M, Mukai J, Gordon JA, Gogos JA. Developmental Inhibition of Gsk3 Rescues Behavioral and Neurophysiological Deficits in a Mouse Model of Schizophrenia Predisposition. Neuron 2016; 89:1100-9. [PMID: 26898776 DOI: 10.1016/j.neuron.2016.01.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/07/2015] [Accepted: 01/08/2016] [Indexed: 11/24/2022]
Abstract
While the genetic basis of schizophrenia is increasingly well characterized, novel treatments will require establishing mechanistic relationships between specific risk genes and core phenotypes. Rare, highly penetrant risk genes such as the 22q11.2 microdeletion are promising in this regard. Df(16)A(+/-) mice, which carry a homologous microdeletion, have deficits in hippocampal-prefrontal connectivity that correlate with deficits in spatial working memory. These mice also have deficits in axonal development that are accompanied by dysregulated Gsk3β signaling and can be rescued by Gsk3 antagonists. Here we show that developmental inhibition of Gsk3 rescues deficits in hippocampal-prefrontal connectivity, task-related neural activity, and spatial working memory behavior in Df(16)A(+/-) mice. Taken together, these results provide mechanistic insight into how the microdeletion results in cognitive deficits, and they suggest possible targets for novel therapies.
Collapse
Affiliation(s)
- Makoto Tamura
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Pharmacology Research Laboratories I, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | - Jun Mukai
- Department of Physiology and Cellular Biophysics, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA; Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Joshua A Gordon
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA; Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
49
|
Gonzales ELT, Jang JH, Mabunga DFN, Kim JW, Ko MJ, Cho KS, Bahn GH, Hong M, Ryu JH, Kim HJ, Cheong JH, Shin CY. Supplementation of Korean Red Ginseng improves behavior deviations in animal models of autism. Food Nutr Res 2016; 60:29245. [PMID: 26837496 PMCID: PMC4737717 DOI: 10.3402/fnr.v60.29245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is heterogeneous neurodevelopmental disorders that primarily display social and communication impairments and restricted/repetitive behaviors. ASD prevalence has increased in recent years, yet very limited therapeutic targets and treatments are available to counteract the incapacitating disorder. Korean Red Ginseng (KRG) is a popular herbal plant in South Korea known for its wide range of therapeutic effects and nutritional benefits and has recently been gaining great scientific attention, particularly for its positive effects in the central nervous system. Objectives Thus, in this study, we investigated the therapeutic potential of KRG in alleviating the neurobehavioral deficits found in the valproic acid (VPA)-exposed mice models of ASD. Design Starting at 21 days old (P21), VPA-exposed mice were given daily oral administrations of KRG solution (100 or 200 mg/kg) until the termination of all experiments. From P28, mice behaviors were assessed in terms of social interaction capacity (P28–29), locomotor activity (P30), repetitive behaviors (P32), short-term spatial working memory (P34), motor coordination (P36), and seizure susceptibility (P38). Results VPA-exposed mice showed sociability and social novelty preference deficits, hyperactivity, increased repetitive behavior, impaired spatial working memory, slightly affected motor coordination, and high seizure susceptibility. Remarkably, long-term KRG treatment in both dosages normalized all the ASD-related behaviors in VPA-exposed mice, except motor coordination ability. Conclusion As a food and herbal supplement with various known benefits, KRG demonstrated its therapeutic potential in rescuing abnormal behaviors related to autism caused by prenatal environmental exposure to VPA.
Collapse
Affiliation(s)
- Edson Luck T Gonzales
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Jong-Hwa Jang
- Department of Dental Hygiene, Hanseo University, Seosan, Korea
| | - Darine Froy N Mabunga
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Ji-Woon Kim
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Mee Jung Ko
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Kyu Suk Cho
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Minha Hong
- Department of Psychiatry, School of Medicine, Dankook University Hospital, Cheonan, Korea
| | - Jong Hoon Ryu
- Department of Oriental Medicine, Kyung Hee University, Seoul, Korea
| | - Hee Jin Kim
- Department of Pharmacy, Sahmyook University, Seoul, Korea
| | | | - Chan Young Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea;
| |
Collapse
|
50
|
Asaba A, Kato M, Koshida N, Kikusui T. Determining Ultrasonic Vocalization Preferences in Mice using a Two-choice Playback Test. J Vis Exp 2015. [PMID: 26381885 DOI: 10.3791/53074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mice emit ultrasonic vocalizations (USVs) during a variety of conditions, such as pup isolation and adult social interactions. These USVs differ with age, sex, condition, and genetic background of the emitting animal. Although many studies have characterized these differences, whether receiver mice can discriminate among objectively different USVs and show preferences for particular sound traits remains to be elucidated. To determine whether mice can discriminate between different characteristics of USVs, a playback experiment was developed recently, in which preference responses of mice to two different USVs could be evaluated in the form of a place preference. First, USVs from mice were recorded. Then, the recorded USVs were edited, trimmed accordingly, and exported as stereophonic sound files. Next, the USV amplitudes generated by the two ultrasound emitters used in the experiment were adjusted to the same sound pressure level. Nanocrystalline silicon thermo-acoustic emitters were used to play the USVs back. Finally, to investigate the preference of subject mice to selected USVs, pairs of two differing USV signals were played back simultaneously in a two-choice test box. By repeatedly entering a defined zone near an ultrasound emitter and searching the wire mesh in front of the emitter, the mouse reveals its preference for one sound over another. This model allows comparing the attractiveness of the various features of mouse USVs, in various contexts.
Collapse
Affiliation(s)
- Akari Asaba
- School of Veterinary Medicine, Azabu University
| | | | - Nobuyoshi Koshida
- Division of Electric and Information Engineering, Tokyo University of Agriculture and Technology
| | | |
Collapse
|