1
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Vesely C, Jantsch MF. Editing specificity of ADAR isoforms. Methods Enzymol 2024; 710:77-98. [PMID: 39870452 DOI: 10.1016/bs.mie.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine to inosine deaminases acting on RNA (ADARs) enzymes are found in all metazoa. Their sequence and protein organization is conserved but also shows distinct differences. Moreover, the number of ADAR genes differs between organisms, ranging from one in flies to three in mammals. The distinct isoforms of ADARs and their specific roles determine the complexity of A-to-I RNA editing, its regulation and the versatility of these enzymes. Understanding the different isoform-specific functions and targets will provide a deeper understanding of the diverse biological processes influenced by ADARs, either through ADAR editing of dsRNAs or the interaction with RNAs and proteins. The detailed identification and assigning of isoform-specific targets is a crucial step towards our understanding of functional differences amongst ADAR isoforms and will help us to understand their individual implications for health and disease. This chapter delves into unique characteristics and functional implications of ADAR isoforms. We describe the ectopic overexpression in editing free cells and the use of RNA immunoprecipitation coupled with sequencing to determine isoform-specific interactions with RNAs and their editing sites. Additionally, we discuss new challenges in editing detection by different ADARs in the context of other modifications and provide ideas for potentially better methods to determine the "true editome".
Collapse
Affiliation(s)
- Cornelia Vesely
- Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria.
| | - Michael F Jantsch
- Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria.
| |
Collapse
|
3
|
Checa-Robles FJ, Salvetat N, Cayzac C, Menhem M, Favier M, Vetter D, Ouna I, Nani JV, Hayashi MAF, Brietzke E, Weissmann D. RNA Editing Signatures Powered by Artificial Intelligence: A New Frontier in Differentiating Schizophrenia, Bipolar, and Schizoaffective Disorders. Int J Mol Sci 2024; 25:12981. [PMID: 39684694 DOI: 10.3390/ijms252312981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Mental health disorders are devastating illnesses, often misdiagnosed due to overlapping clinical symptoms. Among these conditions, bipolar disorder, schizophrenia, and schizoaffective disorder are particularly difficult to distinguish, as they share alternating positive and negative mood symptoms. Accurate and timely diagnosis of these diseases is crucial to ensure effective treatment and to tailor therapeutic management to each individual patient. In this context, it is essential to move beyond standard clinical assessment and employ innovative approaches to identify new biomarkers that can be reliably quantified. We previously identified a panel of RNA editing biomarkers capable of differentiating healthy controls from depressed patients and, among depressed patients, those with major depressive disorder and those with bipolar disorder. In this study, we integrated Adenosine-to-Inosine RNA editing blood biomarkers with clinical data through machine learning algorithms to establish specific signatures for bipolar disorder and schizophrenia spectrum disorders. This groundbreaking study paves the way for the application of RNA editing in other psychiatric disorders, such as schizophrenia and schizoaffective disorder. It represents a first proof-of-concept and provides compelling evidence for the establishment of an RNA editing signature for the diagnosis of these psychiatric conditions.
Collapse
Affiliation(s)
- Francisco J Checa-Robles
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Nicolas Salvetat
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Christopher Cayzac
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Mary Menhem
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Mathieu Favier
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Diana Vetter
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Ilhème Ouna
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo CEP 04044-20, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto CEP 14040-900, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo CEP 04044-20, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto CEP 14040-900, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, School of Medicine, Queen's University, Kingston, ON K7L 7X3, Canada
| | - Dinah Weissmann
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| |
Collapse
|
4
|
Jin YY, Liang YP, Wei ZY, Sui WJ, Chen JH. Hippocampal adenosine-to-inosine RNA editing in sepsis: dynamic changes and influencing factors. Brain Commun 2024; 6:fcae260. [PMID: 39135964 PMCID: PMC11317967 DOI: 10.1093/braincomms/fcae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Sepsis-associated encephalopathy is a diffuse brain dysfunction secondary to infection. It has been established that factors such as age and sex can significantly contribute to the development of sepsis-associated encephalopathy. Our recent study implicated a possible link between adenosine-to-inosine RNA editing and sepsis-associated encephalopathy, yet the dynamics of adenosine-to-inosine RNA editing during sepsis-associated encephalopathy and how it could be influenced by factors such as age, sex and antidepressants remain uninvestigated. Our current study analysed and validated transcriptome-wide changes in adenosine-to-inosine RNA editing in the hippocampus of different septic mouse models. Seventy-four sites in 64 genes showed significant differential RNA editing over time in septic mice induced by caecal ligation and perforation. The differential RNA editing might contribute to the RNA expression regulation of the edited genes, with 42.2% differentially expressed. These differentially edited genes, especially those with missense editing, such as glutamate receptor, ionotropic, kainate 2 (Grik2, p.M620V), filamin A (Flna, p.S2331G) and capicua transcriptional repressor (Cic, p.E2270G), were mainly involved in abnormal social behaviour and neurodevelopmental and psychiatric disorders. Significant effects of age and sex were also observed on sepsis-associated RNA editing. Further comparison highlighted 40 common differential RNA editing sites that caecal ligation and perforation-induced and lipopolysaccharide-induced septic mouse models shared. Interestingly, these findings demonstrate temporal dynamics of adenosine-to-inosine RNA editing in the mouse hippocampus during sepsis, add to the understanding of age and sex differences in the disease and underscore the role of the epigenetic process in sepsis-associated encephalopathy.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Jia Sui
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Rey F, Esposito L, Maghraby E, Mauri A, Berardo C, Bonaventura E, Tonduti D, Carelli S, Cereda C. Role of epigenetics and alterations in RNA metabolism in leukodystrophies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1854. [PMID: 38831585 DOI: 10.1002/wrna.1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Leukodystrophies are a class of rare heterogeneous disorders which affect the white matter of the brain, ultimately leading to a disruption in brain development and a damaging effect on cognitive, motor and social-communicative development. These disorders present a great clinical heterogeneity, along with a phenotypic overlap and this could be partially due to contributions from environmental stimuli. It is in this context that there is a great need to investigate what other factors may contribute to both disease insurgence and phenotypical heterogeneity, and novel evidence are raising the attention toward the study of epigenetics and transcription mechanisms that can influence the disease phenotype beyond genetics. Modulation in the epigenetics machinery including histone modifications, DNA methylation and non-coding RNAs dysregulation, could be crucial players in the development of these disorders, and moreover an aberrant RNA maturation process has been linked to leukodystrophies. Here, we provide an overview of these mechanisms hoping to supply a closer step toward the analysis of leukodystrophies not only as genetically determined but also with an added level of complexity where epigenetic dysregulation is of key relevance. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNA RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Erika Maghraby
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
- Department of Biology and Biotechnology "L. Spallanzani" (DBB), University of Pavia, Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Eleonora Bonaventura
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| |
Collapse
|
6
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Nomiya H, Sakurai K, Miyamoto Y, Oka M, Yoneda Y, Hikida T, Yamada M. A Kpna1-deficient psychotropic drug-induced schizophrenia model mouse for studying gene-environment interactions. Sci Rep 2024; 14:3376. [PMID: 38336912 PMCID: PMC10858057 DOI: 10.1038/s41598-024-53237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.
Collapse
Affiliation(s)
- Hirotaka Nomiya
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases Osaka University, Integrated Life Science Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 3-9-1, Bunkyo, Fukui-City, Fukui, 910-8507, Japan.
| |
Collapse
|
8
|
Bortoletto E, Pieretti F, Brun P, Venier P, Leonardi A, Rosani U. Meta-Analysis of Keratoconus Transcriptomic Data Revealed Altered RNA Editing Levels Impacting Keratin Genomic Clusters. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 37279397 DOI: 10.1167/iovs.64.7.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Introduction Keratoconus (KC) is an ocular disorder with a multifactorial origin. Transcriptomic analyses (RNA-seq) revealed deregulations of coding (mRNA) and non-coding RNAs (ncRNAs) in KC, suggesting that mRNA-ncRNA co-regulations can promote the onset of KC. The present study investigates the modulation of RNA editing mediated by the adenosine deaminase acting on dsRNA (ADAR) enzyme in KC. Materials The level of ADAR-mediated RNA editing in KC and healthy corneas were determined by two indexes in two different sequencing datasets. REDIportal was used to localize known editing sites, whereas new putative sites were de novo identified in the most extended dataset only and their possible impact was evaluated. Western Blot analysis was used to measure the level of ADAR1 in the cornea from independent samples. Results KC was characterized by a statistically significant lower RNA-editing level compared to controls, resulting in a lower editing frequency, and less edited bases. The distribution of the editing sites along the human genome showed considerable differences between groups, particularly relevant in the chromosome 12 regions encoding for Keratin type II cluster. A total of 32 recoding sites were characterized, 17 representing novel sites. JUP, KRT17, KRT76, and KRT79 were edited with higher frequencies in KC than in controls, whereas BLCAP, COG3, KRT1, KRT75, and RRNAD1 were less edited. Both gene expression and protein levels of ADAR1 appeared not regulated between diseased and controls. Conclusions Our findings demonstrated an altered RNA-editing in KC possibly linked to the peculiar cellular conditions. The functional implications should be further investigated.
Collapse
Affiliation(s)
| | - Fabio Pieretti
- Department of Molecular Medicine, Histology Unit, University of Padova, Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padova, Italy
| | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
| | - Andrea Leonardi
- Department of Neuroscience, Ophthalmology Unit, University of Padova, Padova, Italy
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Choudhury M, Fu T, Amoah K, Jun HI, Chan TW, Park S, Walker DW, Bahn JH, Xiao X. Widespread RNA hypoediting in schizophrenia and its relevance to mitochondrial function. SCIENCE ADVANCES 2023; 9:eade9997. [PMID: 37027465 PMCID: PMC10081846 DOI: 10.1126/sciadv.ade9997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
RNA editing, the endogenous modification of nucleic acids, is known to be altered in genes with important neurological function in schizophrenia (SCZ). However, the global profile and molecular functions of disease-associated RNA editing remain unclear. Here, we analyzed RNA editing in postmortem brains of four SCZ cohorts and uncovered a significant and reproducible trend of hypoediting in patients of European descent. We report a set of SCZ-associated editing sites via WGCNA analysis, shared across cohorts. Using massively parallel reporter assays and bioinformatic analyses, we observed that differential 3' untranslated region (3'UTR) editing sites affecting host gene expression were enriched for mitochondrial processes. Furthermore, we characterized the impact of two recoding sites in the mitofusin 1 (MFN1) gene and showed their functional relevance to mitochondrial fusion and cellular apoptosis. Our study reveals a global reduction of editing in SCZ and a compelling link between editing and mitochondrial function in the disease.
Collapse
Affiliation(s)
- Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Ting Fu
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Kofi Amoah
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Tracey W. Chan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Sungwoo Park
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Singer P, Yee BK. The adenosine hypothesis of schizophrenia into its third decade: From neurochemical imbalance to early life etiological risks. Front Cell Neurosci 2023; 17:1120532. [PMID: 36998267 PMCID: PMC10043328 DOI: 10.3389/fncel.2023.1120532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
The adenosine hypothesis of schizophrenia was conceptualized about two decades ago in an attempt to integrate two prominent theories of neurochemical imbalance that attribute the pathogenesis of schizophrenia to hyperfunction of the mesocorticolimbic dopamine neurotransmission and hypofunction of cortical glutamate neurotransmission. Given its unique position as an endogenous modulator of both dopamine and glutamate signaling in the brain, adenosine was postulated as a potential new drug target to achieve multiple antipsychotic actions. This new strategy may offer hope for improving treatment, especially in alleviating negative symptoms and cognitive deficits of schizophrenia that do not respond to current medications. To date, however, the adenosine hypothesis has yet led to any significant therapeutic breakthroughs. Here, we address two possible reasons for the impasse. First, neither the presence of adenosine functional deficiency in people with schizophrenia nor its causal relationship to symptom production has been satisfactorily examined. Second, the lack of novel adenosine-based drugs also impedes progress. This review updates the latest preclinical and clinical data pertinent to the construct validity of the adenosine hypothesis and explores novel molecular processes whereby dysregulation of adenosine signaling could be linked to the etiology of schizophrenia. It is intended to stimulate and revitalize research into the adenosine hypothesis towards the development of a new and improved generation of antipsychotic drugs that has eluded us for decades.
Collapse
Affiliation(s)
- Philipp Singer
- Roche Diagnostics International AG, Rotkreuz, Switzerland
- *Correspondence: Philipp Singer Benjamin K. Yee
| | - Benjamin K. Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Philipp Singer Benjamin K. Yee
| |
Collapse
|
11
|
Zhang Y, Zhang Q, Hou Y, Wang R, Wang Y. Comparative functional RNA editomes of neural differentiation from human PSCs. LIFE MEDICINE 2022; 1:221-235. [PMID: 39871920 PMCID: PMC11749364 DOI: 10.1093/lifemedi/lnac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/09/2022] [Indexed: 01/29/2025]
Abstract
RNA editing is a fundamental mechanism that constitutes the epitranscriptomic complexity. A-to-G editing is the predominant type catalyzed by ADAR1 and ADAR2 in human. Using a CRISPR/Cas9 approach to knockout ADAR1/2, we identified a regulatory role of RNA editing in directed differentiation of human embryonic stem cells (hESCs) toward neural progenitor cells (NPCs). Genome-wide landscapes of A-to-G editing in hESCs and four derivative cell lineages representing all three germ layers and the extraembryonic cell fate were profiled, with a particular focus on neural differentiation. Furthermore, a bioinformatics-guided case study identified a potential functional editing event in ZYG11B 3'UTR that might play a role in regulation of NPC differentiation through gain of miR6089 targeting. Collectively, our study established the functional role of A-to-G RNA editing in neural lineage differentiation; illustrated the RNA editing landscapes of hESCs and NPC differentiation; and shed new light on molecular insights thereof.
Collapse
Affiliation(s)
- Yu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Mlobio, Singularity Center, Beijing 102200, China
| | - Qu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Experimental Medicine Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Yuhong Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Cell Resource Center, Peking Union Medical College (PUMC), Beijing 100005, China
| | - Ran Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Peking Union Medical College Hospital, Beijing 100730, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
12
|
Raghava Kurup R, Oakes EK, Manning AC, Mukherjee P, Vadlamani P, Hundley HA. RNA binding by ADAR3 inhibits adenosine-to-inosine editing and promotes expression of immune response protein MAVS. J Biol Chem 2022; 298:102267. [PMID: 35850307 PMCID: PMC9418441 DOI: 10.1016/j.jbc.2022.102267] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
Members of the ADAR family of double-stranded RNA–binding proteins regulate one of the most abundant RNA modifications in humans, the deamination of adenosine to inosine. Several transcriptome-wide studies have been carried out to identify RNA targets of the active deaminases ADAR1 and ADAR2. However, our understanding of ADAR3, the brain-specific deaminase-deficient ADAR family member, is limited to a few transcripts. In this study, we identified over 3300 transcripts bound by ADAR3 and observed that binding of ADAR3 correlated with reduced editing of over 400 sites in the glioblastoma transcriptome. We further investigated the impact of ADAR3 on gene regulation of the transcript that encodes MAVS, an essential protein in the innate immune response pathway. We observed reduced editing in the MAVS 3′ UTR in cells expressing increased ADAR3 or reduced ADAR1 suggesting ADAR3 acts as a negative regulator of ADAR1-mediated editing. While neither ADAR1 knockdown or ADAR3 overexpression affected MAVS mRNA expression, we demonstrate increased ADAR3 expression resulted in upregulation of MAVS protein expression. In addition, we created a novel genetic mutant of ADAR3 that exhibited enhanced RNA binding and MAVS upregulation compared with wildtype ADAR3. Interestingly, this ADAR3 mutant no longer repressed RNA editing, suggesting ADAR3 has a unique regulatory role beyond altering editing levels. Altogether, this study provides the first global view of ADAR3-bound RNAs in glioblastoma cells and identifies both a role for ADAR3 in repressing ADAR1-mediated editing and an RNA-binding dependent function of ADAR3 in regulating MAVS expression.
Collapse
Affiliation(s)
| | - Eimile K Oakes
- Department of Biology, Indiana University, Bloomington IN 47405, USA
| | - Aidan C Manning
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington IN 47405, USA.
| |
Collapse
|
13
|
Zhai J, Koh JH, Soong TW. RNA editing of ion channels and receptors in physiology and neurological disorders. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac010. [PMID: 38596706 PMCID: PMC11003377 DOI: 10.1093/oons/kvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional modification that diversifies protein functions by recoding RNA or alters protein quantity by regulating mRNA level. A-to-I editing is catalyzed by adenosine deaminases that act on RNA. Millions of editing sites have been reported, but they are mostly found in non-coding sequences. However, there are also several recoding editing sites in transcripts coding for ion channels or transporters that have been shown to play important roles in physiology and changes in editing level are associated with neurological diseases. These editing sites are not only found to be evolutionary conserved across species, but they are also dynamically regulated spatially, developmentally and by environmental factors. In this review, we discuss the current knowledge of A-to-I RNA editing of ion channels and receptors in the context of their roles in physiology and pathological disease. We also discuss the regulation of editing events and site-directed RNA editing approaches for functional study that offer a therapeutic pathway for clinical applications.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Joanne Huifen Koh
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore 117456, Singapore
| |
Collapse
|
14
|
Gaidin SG, Kosenkov AM. mRNA editing of kainate receptor subunits: what do we know so far? Rev Neurosci 2022; 33:641-655. [DOI: 10.1515/revneuro-2021-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Kainate receptors (KARs) are considered one of the key modulators of synaptic activity in the mammalian central nervous system. These receptors were discovered more than 30 years ago, but their role in brain functioning remains unclear due to some peculiarities. One such feature of these receptors is the editing of pre-mRNAs encoding GluK1 and GluK2 subunits. Despite the long history of studying this phenomenon, numerous questions remain unanswered. This review summarizes the current data about the mechanism and role of pre-mRNA editing of KAR subunits in the mammalian brain and proposes a perspective of future investigations.
Collapse
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| |
Collapse
|
15
|
Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev 2021; 131:988-1004. [PMID: 34592258 DOI: 10.1016/j.neubiorev.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.
Collapse
Affiliation(s)
- Manci Li
- University of Minnesota, St. Paul, MN, 55108, United States
| | - Peter A Larsen
- University of Minnesota, St. Paul, MN, 55108, United States.
| |
Collapse
|
16
|
Nascimento FP, Macedo-Júnior SJ, Lapa-Costa FR, Cezar-Dos-Santos F, Santos ARS. Inosine as a Tool to Understand and Treat Central Nervous System Disorders: A Neglected Actor? Front Neurosci 2021; 15:703783. [PMID: 34504414 PMCID: PMC8421806 DOI: 10.3389/fnins.2021.703783] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Since the 1970s, when ATP was identified as a co-transmitter in sympathetic and parasympathetic nerves, it and its active metabolite adenosine have been considered relevant signaling molecules in biological and pathological processes in the central nervous system (CNS). Meanwhile, inosine, a naturally occurring purine nucleoside formed by adenosine breakdown, was considered an inert adenosine metabolite and remained a neglected actor on the purinergic signaling scene in the CNS. However, this scenario began to change in the 1980s. In the last four decades, an extensive group of shreds of evidence has supported the importance of mediated effects by inosine in the CNS. Also, inosine was identified as a natural trigger of adenosine receptors. This evidence has shed light on the therapeutic potential of inosine on disease processes involved in neurological and psychiatric disorders. Here, we highlight the clinical and preclinical studies investigating the involvement of inosine in chronic pain, schizophrenia, epilepsy, depression, anxiety, and in neural regeneration and neurodegenerative diseases, such as Parkinson and Alzheimer. Thus, we hope that this review will strengthen the knowledge and stimulate more studies about the effects promoted by inosine in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Francisney Pinto Nascimento
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | | | | | - Fernando Cezar-Dos-Santos
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Adair R S Santos
- Programa de Pós-Graduação em Neurociências, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
17
|
Herbrechter R, Hube N, Buchholz R, Reiner A. Splicing and editing of ionotropic glutamate receptors: a comprehensive analysis based on human RNA-Seq data. Cell Mol Life Sci 2021; 78:5605-5630. [PMID: 34100982 PMCID: PMC8257547 DOI: 10.1007/s00018-021-03865-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) play key roles for signaling in the central nervous system. Alternative splicing and RNA editing are well-known mechanisms to increase iGluR diversity and to provide context-dependent regulation. Earlier work on isoform identification has focused on the analysis of cloned transcripts, mostly from rodents. We here set out to obtain a systematic overview of iGluR splicing and editing in human brain based on RNA-Seq data. Using data from two large-scale transcriptome studies, we established a workflow for the de novo identification and quantification of alternative splice and editing events. We detected all canonical iGluR splice junctions, assessed the abundance of alternative events described in the literature, and identified new splice events in AMPA, kainate, delta, and NMDA receptor subunits. Notable events include an abundant transcript encoding the GluA4 amino-terminal domain, GluA4-ATD, a novel C-terminal GluD1 (delta receptor 1) isoform, GluD1-b, and potentially new GluK4 and GluN2C isoforms. C-terminal GluN1 splicing may be controlled by inclusion of a cassette exon, which shows preference for one of the two acceptor sites in the last exon. Moreover, we identified alternative untranslated regions (UTRs) and species-specific differences in splicing. In contrast, editing in exonic iGluR regions appears to be mostly limited to ten previously described sites, two of which result in silent amino acid changes. Coupling of proximal editing/editing and editing/splice events occurs to variable degree. Overall, this analysis provides the first inventory of alternative splicing and editing in human brain iGluRs and provides the impetus for further transcriptome-based and functional investigations.
Collapse
Affiliation(s)
- Robin Herbrechter
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Nadine Hube
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Raoul Buchholz
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
18
|
Buchumenski I, Holler K, Appelbaum L, Eisenberg E, Junker JP, Levanon EY. Systematic identification of A-to-I RNA editing in zebrafish development and adult organs. Nucleic Acids Res 2021; 49:4325-4337. [PMID: 33872356 PMCID: PMC8096273 DOI: 10.1093/nar/gkab247] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/05/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
A-to-I RNA editing is a common post transcriptional mechanism, mediated by the Adenosine deaminase that acts on RNA (ADAR) enzymes, that increases transcript and protein diversity. The study of RNA editing is limited by the absence of editing maps for most model organisms, hindering the understanding of its impact on various physiological conditions. Here, we mapped the vertebrate developmental landscape of A-to-I RNA editing, and generated the first comprehensive atlas of editing sites in zebrafish. Tens of thousands unique editing events and 149 coding sites were identified with high-accuracy. Some of these edited sites are conserved between zebrafish and humans. Sequence analysis of RNA over seven developmental stages revealed high levels of editing activity in early stages of embryogenesis, when embryos rely on maternal mRNAs and proteins. In contrast to the other organisms studied so far, the highest levels of editing were detected in the zebrafish ovary and testes. This resource can serve as the basis for understanding of the role of editing during zebrafish development and maturity.
Collapse
Affiliation(s)
- Ilana Buchumenski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Karoline Holler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
19
|
Transcriptomic expression of AMPA receptor subunits and their auxiliary proteins in the human brain. Neurosci Lett 2021; 755:135938. [PMID: 33915226 DOI: 10.1016/j.neulet.2021.135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022]
Abstract
Receptors to glutamate of the AMPA type (AMPARs) serve as the major gates of excitation in the human brain, where they participate in fundamental processes underlying perception, cognition and movement. Due to their central role in brain function, dysregulation of these receptors has been implicated in neuropathological states associated with a large variety of diseases that manifest with abnormal behaviors. The participation of functional abnormalities of AMPARs in brain disorders is strongly supported by genomic, transcriptomic and proteomic studies. Most of these studies have focused on the expression and function of the subunits that make up the channel and define AMPARs (GRIA1-GRIA4), as well of some accessory proteins. However, it is increasingly evident that native AMPARs are composed of a complex array of accessory proteins that regulate their trafficking, localization, kinetics and pharmacology, and a better understanding of the diversity and regional expression of these accessory proteins is largely needed. In this review we will provide an update on the state of current knowledge of AMPA receptors subunits in the context of their accessory proteins at the transcriptome level. We also summarize the regional expression in the human brain and its correlation with the channel forming subunits. Finally, we discuss some of the current limitations of transcriptomic analysis and propose potential ways to overcome them.
Collapse
|
20
|
Human Brain Shows Recurrent Non-Canonical MicroRNA Editing Events Enriched for Seed Sequence with Possible Functional Consequence. Noncoding RNA 2020; 6:ncrna6020021. [PMID: 32498345 PMCID: PMC7345632 DOI: 10.3390/ncrna6020021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
RNA editing is a post-transcriptional modification, which can provide tissue-specific functions not encoded in DNA. Adenosine-to-inosine is the predominant editing event and, along with cytosine-to-uracil changes, constitutes canonical editing. The rest is non-canonical editing. In this study, we have analysed non-canonical editing of microRNAs in the human brain. We have performed massively parallel small RNA sequencing of frontal cortex (FC) and corpus callosum (CC) pairs from nine normal individuals (post-mortem). We found 113 and 90 unique non-canonical editing events in FC and CC samples, respectively. More than 70% of events were in the miRNA seed sequence—implicating an altered set of target mRNAs and possibly resulting in a functional consequence. Up to 15% of these events were recurring and found in at least three samples, also supporting the biological relevance of such variations. Two specific sequence variations, C-to-A and G-to-U, accounted for over 80% of non-canonical miRNA editing events—and revealed preferred sequence motifs. Our study is one of the first reporting non-canonical editing in miRNAs in the human brain. Our results implicate miRNA non-canonical editing as one of the contributing factors towards transcriptomic diversity in the human brain.
Collapse
|
21
|
Abstract
Modifications of RNA affect its function and stability. RNA editing is unique among these modifications because it not only alters the cellular fate of RNA molecules but also alters their sequence relative to the genome. The most common type of RNA editing is A-to-I editing by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. Recent transcriptomic studies have identified a number of 'recoding' sites at which A-to-I editing results in non-synonymous substitutions in protein-coding sequences. Many of these recoding sites are conserved within (but not usually across) lineages, are under positive selection and have functional and evolutionary importance. However, systematic mapping of the editome across the animal kingdom has revealed that most A-to-I editing sites are located within mobile elements in non-coding parts of the genome. Editing of these non-coding sites is thought to have a critical role in protecting against activation of innate immunity by self-transcripts. Both recoding and non-coding events have implications for genome evolution and, when deregulated, may lead to disease. Finally, ADARs are now being adapted for RNA engineering purposes.
Collapse
|
22
|
Circular RNA biogenesis is decreased in postmortem cortical gray matter in schizophrenia and may alter the bioavailability of associated miRNA. Neuropsychopharmacology 2019; 44:1043-1054. [PMID: 30786269 PMCID: PMC6461776 DOI: 10.1038/s41386-019-0348-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) are a covalently closed subclass of non-coding RNA molecules formed by back splicing of linear precursor RNA. These molecules are relatively stable and particularly abundant in the mammalian brain and therefore may participate in neural development and function. With the emergence of circRNAs activity in gene regulation, these molecules have been implicated in several biological processes, including synaptic plasticity, and we therefore suspect they may have a role in neurobehavioral disorders. Here, we profile cortical circRNAs expression in 35 postmortem cortical gray matter (BA46) schizophrenia and a non-psychiatric comparison group, using circRNA enrichment sequencing. While more than 90,000 circRNAs species were identified in the dorsolateral prefrontal cortex (DLPFC), we observed lower complexity and substantial depletion in subjects with the disorder. Although circRNAs expression was independent of their host gene transcription, alternative splicing rates were lower in samples from cases compared to controls. Gene set analysis of differentially expressed circRNAs host genes revealed significant enrichment of neural functions and neurological disorders. Many of these depleted circRNAs are also predicted to sequester miRNAs that were shown previously to be increased in the disorder, potentially exacerbating the functional impact of their dysregulation through posttranscriptional gene silencing. While this is the first reported exploration of circRNAs in schizophrenia, there is significant potential for dysregulation more broadly in other major mental illnesses and behavioral disorders. Given their capacity for modulating miRNA function, circRNA may play a significant role in the pathophysiology of disease and even be targeted for therapeutic manipulation.
Collapse
|
23
|
Chimienti F, Cavarec L, Vincent L, Salvetat N, Arango V, Underwood MD, Mann JJ, Pujol JF, Weissmann D. Brain region-specific alterations of RNA editing in PDE8A mRNA in suicide decedents. Transl Psychiatry 2019; 9:91. [PMID: 30770787 PMCID: PMC6377659 DOI: 10.1038/s41398-018-0331-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Phosphodiesterases (PDE) are key modulators of signal transduction and are involved in inflammatory cell activation, memory and cognition. There is a two-fold decrease in the expression of phosphodiesterase 8A (PDE8A) in the temporal cortex of major depressive disorder (MDD) patients. Here, we studied PDE8A mRNA-editing profile in two architectonically distinct neocortical regions in a clinically well-characterized cohort of age- and sex-matched non-psychiatric drug-free controls and depressed suicide decedents. By using capillary electrophoresis single-stranded conformational polymorphism (CE-SSCP), a previously validated technique to identify A-to-I RNA modifications, we report the full editing profile of PDE8A in the brain, including identification of two novel editing sites. Editing of PDE8A mRNA displayed clear regional difference when comparing dorsolateral prefrontal cortex (BA9) and anterior cingulate cortex (BA24). Furthermore, we report significant intra-regional differences between non-psychiatric control individuals and depressed suicide decedents, which could discriminate the two populations. Taken together, our results (i) highlight the importance of immune/inflammatory markers in major depressive disorder and suicide and (ii) establish a direct relationship between A-to-I RNA modifications of peripheral markers and A-to-I RNA editing-related modifications in brain. This work provides the first immune response-related brain marker for suicide and could pave the way for the identification of a blood-based biomarker that predicts suicidal behavior.
Collapse
Affiliation(s)
- Fabrice Chimienti
- ALCEDIAG/ Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France.
| | - Laurent Cavarec
- grid.465535.4Genomic Vision, Green Square, 80-84 rue des Meuniers, 92220 Bagneux, France
| | - Laurent Vincent
- grid.457349.8Commissariat à l’Energie Atomique, Fontenay aux Roses, France
| | - Nicolas Salvetat
- ALCEDIAG/ Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Victoria Arango
- 0000 0000 8499 1112grid.413734.6Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY USA ,0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Mark D. Underwood
- 0000 0000 8499 1112grid.413734.6Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY USA ,0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - J. John Mann
- 0000 0000 8499 1112grid.413734.6Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY USA ,0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA
| | | | - Dinah Weissmann
- ALCEDIAG/ Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| |
Collapse
|
24
|
Dick ALW, Khermesh K, Paul E, Stamp F, Levanon EY, Chen A. Adenosine-to-Inosine RNA Editing Within Corticolimbic Brain Regions Is Regulated in Response to Chronic Social Defeat Stress in Mice. Front Psychiatry 2019; 10:277. [PMID: 31133890 PMCID: PMC6512728 DOI: 10.3389/fpsyt.2019.00277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a co-/posttranscriptional modification of double-stranded RNA, catalyzed by the adenosine deaminase acting on RNA (ADAR) family of enzymes, which results in recognition of inosine as guanosine by translational and splicing machinery causing potential recoding events in amino acid sequences. A-to-I editing is prominent within brain-specific transcripts, and dysregulation of editing at several well-studied loci (e.g., Gria2, Htr2c) has been implicated in acute and chronic stress in rodents as well as neurological (e.g., Alzheimer's) and psychopathological disorders such as schizophrenia and major depressive disorder. However, only a small fraction of recoding sites has been investigated within the brain following stress, and our understanding of the role of RNA editing in transcriptome regulation following environmental stimuli remains poorly understood. Thus, we aimed to investigate A-to-I editing at hundreds of loci following chronic social defeat stress (CSDS) in mice within corticolimbic regions responsive to chronic stress regulation. Adult male mice were subjected to CSDS or control conditions for 21 days and dynamic regulation of A-to-I editing was investigated 2 and 8 days following the final defeat within both the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA). Employing a targeted resequencing approach, which utilizes microfluidics-based multiplex polymerase chain reaction (PCR) coupled with next-generation sequencing, we analyzed A-to-I editing at ∼100 high-confidence editing sites within the mouse brain. CSDS resulted in acute regulation of transcripts encoding several ADAR enzymes, which normalized 8 days following the final defeat and was specific for susceptible mice. In contrast, sequencing analysis revealed modest and dynamic regulation of A-to-I editing within numerous transcripts in both the mPFC and BLA of resilient and susceptible mice at both 2 and 8 days following CSDS with minimal overlap between regions and time points. Editing within the Htr2c transcript and relative abundance of Htr2c messenger RNA (mRNA)variants were also observed within the BLA of susceptible mice 2 days following CSDS. These results indicate dynamic RNA editing within discrete brain regions following CSDS in mice, further implicating A-to-I editing as a stress-sensitive molecular mechanism within the brain of potential relevance to resiliency and susceptibility to CSDS.
Collapse
Affiliation(s)
- Alec L W Dick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Evan Paul
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Fabian Stamp
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of LifeSciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
26
|
Shevchenko G, Morris KV. All I's on the RADAR: role of ADAR in gene regulation. FEBS Lett 2018; 592:2860-2873. [PMID: 29770436 DOI: 10.1002/1873-3468.13093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022]
Abstract
Adenosine to inosine (A-to-I) editing is the most abundant form of RNA modification in mammalian cells, which is catalyzed by adenosine deaminase acting on the double-stranded RNA (ADAR) protein family. A-to-I editing is currently known to be involved in the regulation of the immune system, RNA splicing, protein recoding, microRNA biogenesis, and formation of heterochromatin. Editing occurs within regions of double-stranded RNA, particularly within inverted Alu repeats, and is associated with many diseases including cancer, neurological disorders, and metabolic syndromes. However, the significance of RNA editing in a large portion of the transcriptome remains unknown. Here, we review the current knowledge about the prevalence and function of A-to-I editing by the ADAR protein family, focusing on its role in the regulation of gene expression. Furthermore, RNA editing-independent regulation of cellular processes by ADAR and the putative role(s) of this process in gene regulation will be discussed.
Collapse
Affiliation(s)
- Galina Shevchenko
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Kevin V Morris
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
27
|
Azad MTA, Bhakta S, Tsukahara T. Site-directed RNA editing by adenosine deaminase acting on RNA for correction of the genetic code in gene therapy. Gene Ther 2017; 24:779-786. [PMID: 28984845 DOI: 10.1038/gt.2017.90] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
Abstract
Site-directed RNA editing is an important technique for correcting gene sequences and ultimately tuning protein function. In this study, we engineered the deaminase domain of adenosine deaminase acting on RNA (ADAR1) and the MS2 system to target-specific adenosines, with the goal of correcting G-to-A mutations at the RNA level. For this purpose, the ADAR1 deaminase domain was fused downstream of the RNA-binding protein MS2, which has affinity for the MS2 RNA. To direct editing to specific targets, we designed guide RNAs complementary to target RNAs. The guide RNAs directed the ADAR1 deaminase to the desired editing site, where it converted adenosine to inosine. To provide proof of principle, we used an allele of enhanced green fluorescent protein (EGFP) bearing a mutation at the 58th amino acid (TGG), encoding Trp, into an amber (TAG) or ochre (TAA) stop codon. In HEK-293 cells, our system could convert stop codons to read-through codons, thereby turning on fluorescence. We confirmed the specificity of editing at the DNA level by restriction fragment length polymorphism analysis and sequencing, and at the protein level by western blotting. The editing efficiency of this enzyme system was ~5%. We believe that this system could be used to treat genetic diseases resulting from G-to-A point mutations.
Collapse
Affiliation(s)
- Md T A Azad
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
- Department of Veterinary and Animal Sciences, Faculty of Agriculture, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - S Bhakta
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | - T Tsukahara
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| |
Collapse
|
28
|
Filippini A, Bonini D, Lacoux C, Pacini L, Zingariello M, Sancillo L, Bosisio D, Salvi V, Mingardi J, La Via L, Zalfa F, Bagni C, Barbon A. Absence of the Fragile X Mental Retardation Protein results in defects of RNA editing of neuronal mRNAs in mouse. RNA Biol 2017. [PMID: 28640668 PMCID: PMC5785225 DOI: 10.1080/15476286.2017.1338232] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The fragile X syndrome (FXS), the most common form of inherited intellectual disability, is due to the absence of FMRP, a protein regulating RNA metabolism. Recently, an unexpected function of FMRP in modulating the activity of Adenosine Deaminase Acting on RNA (ADAR) enzymes has been reported both in Drosophila and Zebrafish. ADARs are RNA-binding proteins that increase transcriptional complexity through a post-transcriptional mechanism called RNA editing. To evaluate the ADAR2-FMRP interaction in mammals we analyzed several RNA editing re-coding sites in the fmr1 knockout (KO) mice. Ex vivo and in vitro analysis revealed that absence of FMRP leads to an increase in the editing levels of brain specific mRNAs, indicating that FMRP might act as an inhibitor of editing activity. Proximity Ligation Assay (PLA) in mouse primary cortical neurons and in non-neuronal cells revealed that ADAR2 and FMRP co-localize in the nucleus. The ADAR2-FMRP co-localization was further observed by double-immunogold Electron Microscopy (EM) in the hippocampus. Moreover, ADAR2-FMRP interaction appeared to be RNA independent. Because changes in the editing pattern are associated with neuropsychiatric and neurodevelopmental disorders, we propose that the increased editing observed in the fmr1-KO mice might contribute to the FXS molecular phenotypes.
Collapse
Affiliation(s)
- Alice Filippini
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Daniela Bonini
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Caroline Lacoux
- b Department of Biomedicine and Prevention , University of Rome Tor Vergata , Rome , Italy
| | - Laura Pacini
- b Department of Biomedicine and Prevention , University of Rome Tor Vergata , Rome , Italy
| | - Maria Zingariello
- c Department of Medicine , Campus Bio-Medico University , via Álvaro del Portillo 21, Rome , Italy
| | - Laura Sancillo
- d Department of Medicine and Aging Sciences, Section of Human Morphology , University G. D'Annunzio of Chieti-Pescara , Chieti , Italy
| | - Daniela Bosisio
- e Immunology Unit; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Valentina Salvi
- e Immunology Unit; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Jessica Mingardi
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Luca La Via
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Francesca Zalfa
- c Department of Medicine , Campus Bio-Medico University , via Álvaro del Portillo 21, Rome , Italy
| | - Claudia Bagni
- b Department of Biomedicine and Prevention , University of Rome Tor Vergata , Rome , Italy.,f VIB Center for the Biology of Disease and Center for Human Genetics , Leuven , Belgium.,g Department of Fundamental Neuroscience , University of Lausanne , Lausanne , Switzerland
| | - Alessandro Barbon
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| |
Collapse
|
29
|
Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs. Nat Immunol 2017; 18:962-972. [PMID: 28829444 PMCID: PMC9830650 DOI: 10.1038/ni.3771] [Citation(s) in RCA: 520] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.
Collapse
Affiliation(s)
- Y Grace Chen
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.,These authors contributed equally to this work
| | - Ansuman T Satpathy
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,These authors contributed equally to this work
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
30
|
Orecchini E, Frassinelli L, Michienzi A. Restricting retrotransposons: ADAR1 is another guardian of the human genome. RNA Biol 2017. [PMID: 28640667 DOI: 10.1080/15476286.2017.1341033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ADAR1 is an enzyme that belongs to the Adenosine Deaminases Acting on RNA (ADARs) family. These enzymes deaminate adenosines to inosines (RNA editing A-to-I) within double-stranded RNA regions in transcripts. Since inosines are recognized as guanosines by the cellular machinery, RNA editing mediated by ADARs can either lead to the formation of an altered protein (recoding) or affect different aspects of RNA metabolism. Recently, a proteomic analysis led to the identification of novel ADAR1-associated factors and found that a good fraction of them is shared with the Long Interspersed Element 1 (LINE-1 or L1) ribonucleoparticles (RNPs). This evidence suggested a possible role of ADAR1 in regulating the L1 life cycle. By taking advantage of the use of cell culture retrotransposition assays, a novel function of this deaminase as an inhibitor of L1 retrotransposition was demonstrated. These results pave the way toward a better comprehension of the mechanisms of restriction of retrotransposons.
Collapse
Affiliation(s)
- Elisa Orecchini
- a Department of Biomedicine and Prevention , University of Rome 'Tor Vergata' , Rome , Italy
| | - Loredana Frassinelli
- a Department of Biomedicine and Prevention , University of Rome 'Tor Vergata' , Rome , Italy
| | - Alessandro Michienzi
- a Department of Biomedicine and Prevention , University of Rome 'Tor Vergata' , Rome , Italy
| |
Collapse
|
31
|
Ye LQ, Zhao H, Zhou HJ, Ren XD, Liu LL, Otecko NO, Wang ZB, Yang MM, Zeng L, Hu XT, Yao YG, Zhang YP, Wu DD. The RNA editome of Macaca mulatta and functional characterization of RNA editing in mitochondria. Sci Bull (Beijing) 2017; 62:820-830. [PMID: 36659315 DOI: 10.1016/j.scib.2017.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 01/21/2023]
Abstract
RNA editing was first discovered in mitochondrial RNA molecular. However, whether adenosine-to-inosine (A-to-I) RNA editing has functions in nuclear genes involved in mitochondria remains elusive. Here, we retrieved 707,246 A-to-I RNA editing sites in Macaca mulatta leveraging massive transcriptomes of 30 different tissues and genomes of nine tissues, together with the reported data, and found that A-to-I RNA editing occurred frequently in nuclear genes that have functions in mitochondria. The mitochondrial structure, the level of ATP production, and the expression of some key genes involved in mitochondrial function were dysregulated after knocking down the expression of ADAR1 and ADAR2, the key genes encoding the enzyme responsible for RNA editing. When investigating dynamic changes of RNA editing during brain development, an amino-acid-changing RNA editing site (I234/V) in MFN1, a mediator of mitochondrial fusion, was identified to be significantly correlated with age, and could influence the function of MFN1. When studying transcriptomes of brain disorder, we found that dysregulated RNA editing sites in autism were also enriched within genes having mitochondrial functions. These data indicated that RNA editing had a significant function in mitochondria via their influence on nuclear genes.
Collapse
Affiliation(s)
- Ling-Qun Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - He-Jiang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Die Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Lin-Lin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Zheng-Bo Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Min-Min Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
32
|
Abstract
Inosine is one of the most common modifications found in human RNAs and the Adenosine Deaminases that act on RNA (ADARs) are the main enzymes responsible for its production. ADARs were first discovered in the 1980s and since then our understanding of ADARs has advanced tremendously. For instance, it is now known that defective ADAR function can cause human diseases. Furthermore, recently solved crystal structures of the human ADAR2 deaminase bound to RNA have provided insights regarding the catalytic and substrate recognition mechanisms. In this chapter, we describe the occurrence of inosine in human RNAs and the newest perspective on the ADAR family of enzymes, including their substrate recognition, catalytic mechanism, regulation as well as the consequences of A-to-I editing, and their relation to human diseases.
Collapse
|
33
|
Wettengel J, Reautschnig P, Geisler S, Kahle PJ, Stafforst T. Harnessing human ADAR2 for RNA repair - Recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res 2017; 45:2797-2808. [PMID: 27907896 PMCID: PMC5389476 DOI: 10.1093/nar/gkw911] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
Site-directed A-to-I RNA editing is a technology for re-programming genetic information at the RNA-level. We describe here the first design of genetically encodable guideRNAs that enable the re-addressing of human ADAR2 toward specific sites in user-defined mRNA targets. Up to 65% editing yield has been achieved in cell culture for the recoding of a premature Stop codon (UAG) into tryptophan (UIG). In the targeted gene, editing was very specific. We applied the technology to recode a recessive loss-of-function mutation in PINK1 (W437X) in HeLa cells and showed functional rescue of PINK1/Parkin-mediated mitophagy, which is linked to the etiology of Parkinson's disease. In contrast to other editing strategies, this approach requires no artificial protein. Our novel guideRNAs may allow for the development of a platform technology that requires only the administration or expression of a guideRNA to recode genetic information, with high potential for application in biology and medicine.
Collapse
Affiliation(s)
- Jacqueline Wettengel
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Philipp Reautschnig
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Sven Geisler
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases, Otfried-Müller-Strasse 23, 72076 Tübingen, Germany
| | - Philipp J. Kahle
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases, Otfried-Müller-Strasse 23, 72076 Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
34
|
van der Laan S, Salvetat N, Weissmann D, Molina F. Emerging RNA editing biomarkers will foster drug development. Drug Discov Today 2017; 22:1056-1063. [PMID: 28188894 DOI: 10.1016/j.drudis.2017.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 01/02/2023]
Abstract
Unanticipated adverse drug reactions (ADRs) on the central nervous system are a major cause of clinical attrition and market withdrawal. Current practices for their prospective assessment still lean on extensive analysis of rodent behaviour despite their highly controversial predictive value. Human-derived in vitro models that objectively quantify mechanism-related biomarkers can greatly contribute to better ADR prediction at early developmental stages. Adenosine-to-inosine RNA editing constitutes a physiological cellular process that translates environmental cues by regulating protein function at the synaptic level in health and disease. Robust solutions based on NGS-based quantification of RNA editing biomarkers have emerged to predict the likelihood of treatment-related suicidal ideation and behaviour allowing cost-effective high-throughput drug screening as a strategy for risk mitigation.
Collapse
Affiliation(s)
- Siem van der Laan
- Sys2Diag FRE3690 CNRS/ALCEDIAG, Complex System Modeling and Engineering for Diagnosis, Cap delta/Parc Euromédecine, 1682 rue de la Valsière CS 61003, 34184 Montpellier Cedex 4, France.
| | - Nicolas Salvetat
- Sys2Diag FRE3690 CNRS/ALCEDIAG, Complex System Modeling and Engineering for Diagnosis, Cap delta/Parc Euromédecine, 1682 rue de la Valsière CS 61003, 34184 Montpellier Cedex 4, France
| | - Dinah Weissmann
- Sys2Diag FRE3690 CNRS/ALCEDIAG, Complex System Modeling and Engineering for Diagnosis, Cap delta/Parc Euromédecine, 1682 rue de la Valsière CS 61003, 34184 Montpellier Cedex 4, France
| | - Franck Molina
- Sys2Diag FRE3690 CNRS/ALCEDIAG, Complex System Modeling and Engineering for Diagnosis, Cap delta/Parc Euromédecine, 1682 rue de la Valsière CS 61003, 34184 Montpellier Cedex 4, France.
| |
Collapse
|
35
|
Heep M, Mach P, Reautschnig P, Wettengel J, Stafforst T. Applying Human ADAR1p110 and ADAR1p150 for Site-Directed RNA Editing-G/C Substitution Stabilizes GuideRNAs against Editing. Genes (Basel) 2017; 8:genes8010034. [PMID: 28098820 PMCID: PMC5295028 DOI: 10.3390/genes8010034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
Site-directed RNA editing is an approach to reprogram genetic information at the RNA level. We recently introduced a novel guideRNA that allows for the recruitment of human ADAR2 to manipulate genetic information. Here, we show that the current guideRNA design is already able to recruit another human deaminase, ADAR1, in both isoforms, p110 and p150. However, further optimization seems necessary as the current design is less efficient for ADAR1 isoforms. Furthermore, we describe hotspots at which the guideRNA itself is edited and show a way to circumvent this auto-editing without losing editing efficiency at the target. Both findings are important for the advancement of site-directed RNA editing as a tool in basic biology or as a platform for therapeutic editing.
Collapse
Affiliation(s)
- Madeleine Heep
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| | - Pia Mach
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| | - Philipp Reautschnig
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| | - Jacqueline Wettengel
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| |
Collapse
|
36
|
Karanović J, Ivković M, Jovanović VM, Šviković S, Pantović-Stefanović M, Brkušanin M, Damjanović A, Brajušković G, Savić-Pavićević D. Effect of childhood general traumas on suicide attempt depends on TPH2 and ADARB1 variants in psychiatric patients. J Neural Transm (Vienna) 2017; 124:621-629. [PMID: 28084537 DOI: 10.1007/s00702-017-1677-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022]
Abstract
Suicidal behavior has been associated with a deficient serotonin neurotransmission which is likely a consequence of individual genetic architecture, exposure to environmental factors and interactions of those factors. We examined whether the interaction of child abuse, TPH2 (tryptophan hydroxylase 2) variant rs4290270, affecting alternative splicing and editing of TPH2 pre-mRNAs, and ADARB1 (adenosine deaminase acting on RNA B1) variants rs4819035 and rs9983925 may influence the risk for suicide attempt in psychiatric patients. TPH2 rs4290270 was genotyped in 165 suicide attempters and 188 suicide non-attempters diagnosed with major depressive disorder, bipolar disorder and schizophrenia. Genotyping data for ADARB1 variants were taken over from our previous study. Child abuse before the age of 18 years was assessed using the Early Trauma Inventory-Self Report. Generalized linear models and backward selection were applied to identify the main and interacting effects of environmental and genetic factors, including psychiatric diagnoses, patients' gender and age as covariates. Childhood general traumas were independently associated with suicide attempt. Two-way interaction between TPH2 rs4290270 and general traumas revealed that TT homozygotes with a history of general traumas had an increased risk for suicide attempt. Three-way interaction of general traumas, TPH2 rs4290270 and ADARB1 rs4819035 indicated that the highest predisposition to suicide attempt was observed in individuals who experienced general traumas and were TT homozygote for rs4290270 and TT homozygote for rs4819035. Our findings suggest that the risk for suicide attempt in psychiatric patients exposed to an adverse childhood environment may depend on TPH2 and ADARB1 variants.
Collapse
Affiliation(s)
- Jelena Karanović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Maja Ivković
- Clinic for Psychiatry, Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia.,Medical School, University of Belgrade, Doktora Subotića 8, Belgrade, 11000, Serbia
| | - Vladimir M Jovanović
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11000, Serbia
| | - Saša Šviković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | | | - Miloš Brkušanin
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Aleksandar Damjanović
- Clinic for Psychiatry, Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia.,Medical School, University of Belgrade, Doktora Subotića 8, Belgrade, 11000, Serbia
| | - Goran Brajušković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Dušanka Savić-Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia.
| |
Collapse
|
37
|
Fisher AJ, Beal PA. Effects of Aicardi-Goutières syndrome mutations predicted from ADAR-RNA structures. RNA Biol 2016; 14:164-170. [PMID: 27937139 DOI: 10.1080/15476286.2016.1267097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adenosine (A) to inosine (I) RNA editing is important for life in metazoan organisms. Dysregulation or mutations that compromise the efficacy of A to I editing results in neurological disorders and a shorten life span. These reactions are catalyzed by adenosine deaminases acting on RNA (ADARs), which hydrolytically deaminate adenosines in regions of duplex RNA. Because inosine mimics guanosine in hydrogen bonding, this prolific RNA editing alters the sequence and structural information in the RNA landscape. Aicardi-Goutières syndrome (AGS) is a severe childhood autoimmune disease that is one of a broader set of inherited disorders characterized by constitutive upregulation of type I interferon (IFN) referred to as type I interferonopathies. AGS is caused by mutations in multiple genes whose protein products, including ADAR1, are all involved in nucleic acid metabolism or sensing. The recent crystal structures of human ADAR2 deaminase domain complexed with duplex RNA substrates enabled modeling of how AGS causing mutations may influence RNA binding and catalysis. The mutations can be broadly characterized into three groups; mutations on RNA-binding loops that directly affect RNA binding, "second-layer" mutations that can alter the disposition of RNA-binding loops, and mutations that can alter the position of an α-helix bearing an essential catalytic residue.
Collapse
Affiliation(s)
- Andrew J Fisher
- a Department of Chemistry , University of California , Davis , CA , USA.,b Department of Molecular and Cellular Biology , University of California , Davis , CA , USA
| | - Peter A Beal
- a Department of Chemistry , University of California , Davis , CA , USA
| |
Collapse
|
38
|
Filippini A, Bonini D, La Via L, Barbon A. The Good and the Bad of Glutamate Receptor RNA Editing. Mol Neurobiol 2016; 54:6795-6805. [DOI: 10.1007/s12035-016-0201-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022]
|
39
|
Kim JS, Lee SH. Influence of interactions between genes and childhood trauma on refractoriness in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:162-9. [PMID: 26827636 DOI: 10.1016/j.pnpbp.2016.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 01/18/2023]
Abstract
Psychiatric disorders are excellent disease models in which gene-environmental interaction play a significant role in the pathogenesis. Childhood trauma has been known as a significant environmental factor in the progress of, and prognosis for psychiatric illness. Patients with refractory illness usually have more severe symptoms, greater disability, lower quality of life and are at greater risk of suicide than other psychiatric patients. Our literature review uncovered some important clinical factors which modulate response to treatment in psychiatric patients who have experienced childhood trauma. Childhood trauma seems to be a critical determinant of treatment refractoriness in psychotic disorder, bipolar disorder, major depressive disorder, and post-traumatic stress disorder. In patients with psychotic disorders, the relationship between childhood trauma and treatment-refractoriness appears to be mediated by cognitive impairment. In the case of bipolar disorder, the relationship appears to be mediated by greater affective disturbance and earlier onset, while in major depressive disorder the mediating factors are persistent, severe symptoms and frequent recurrence. In suicidal individuals, childhood maltreatment was associated with violent suicidal attempts. In the case of PTSD patients, it appears that childhood trauma makes the brain more vulnerable to subsequent trauma, thus resulting in more severe, refractory symptoms. Given that several studies have suggested that there are distinct subtypes of genetic vulnerability to childhood trauma, it is important to understand how gene-environment interactions influence the course of psychiatric illnesses in order to improve therapeutic strategies.
Collapse
Affiliation(s)
- Ji Sun Kim
- Clinical Emotion and Cognition Research Laboratory, Goyang, Republic of Korea; Department of Psychiatry, Inje University College of Medicine, Goyang, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Goyang, Republic of Korea; Department of Psychiatry, Inje University College of Medicine, Goyang, Republic of Korea.
| |
Collapse
|
40
|
Wang IX, Grunseich C, Chung YG, Kwak H, Ramrattan G, Zhu Z, Cheung VG. RNA-DNA sequence differences in Saccharomyces cerevisiae. Genome Res 2016; 26:1544-1554. [PMID: 27638543 PMCID: PMC5088596 DOI: 10.1101/gr.207878.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023]
Abstract
Alterations of RNA sequences and structures, such as those from editing and alternative splicing, result in two or more RNA transcripts from a DNA template. It was thought that in yeast, RNA editing only occurs in tRNAs. Here, we found that Saccharomyces cerevisiae have all 12 types of RNA–DNA sequence differences (RDDs) in the mRNA. We showed these sequence differences are propagated to proteins, as we identified peptides encoded by the RNA sequences in addition to those by the DNA sequences at RDD sites. RDDs are significantly enriched at regions with R-loops. A screen of yeast mutants showed that RDD formation is affected by mutations in genes regulating R-loops. Loss-of-function mutations in ribonuclease H, senataxin, and topoisomerase I that resolve RNA–DNA hybrids lead to increases in RDD frequency. Our results demonstrate that RDD is a conserved process that diversifies transcriptomes and proteomes and provide a mechanistic link between R-loops and RDDs.
Collapse
Affiliation(s)
- Isabel X Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Youree G Chung
- College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hojoong Kwak
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Girish Ramrattan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Zhengwei Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vivian G Cheung
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Departments of Pediatrics and Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
41
|
Differential regulation of expression of RNA-editing enzymes, ADAR1 and ADAR2, by 5-aza-2'-deoxycytidine and trichostatin A in human neuronal SH-SY5Y cells. Neuroreport 2016; 26:1089-94. [PMID: 26485095 DOI: 10.1097/wnr.0000000000000474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenosine deaminase acting on RNA (ADAR) enzymes, ADAR1 and ADAR2, mediates adenosine-to-inosine RNA editing, and their mRNA expressions are altered during developmental, physiological, and pathophysiological processes in the nervous system. The present study attempted to investigate the involvement of epigenetic modifying enzymes, such as DNA methyltransferase (DNMT) and histone deacetylase (HDAC), in the regulation of ADAR1 and ADAR2 mRNA expressions in neuronal cells. Using human neuronal SH-SY5Y cells, we found that the DNMT inhibitor 5-aza-2'-deoxycytidine led to an increase in ADAR2, but not ADAR1, mRNA expression in a concentration-dependent and time-dependent manner. However, treatment with HDAC inhibitor trichostatin A elicited an increase in ADAR2 mRNA expression and a decrease in ADAR1 mRNA expression, and these changes were blocked by actinomycin D, a transcription inhibitor. Taken together, these findings suggest that ADAR1 and ADAR2 expressions are subject to different regulations by DNMT and HDAC enzymes in neuronal SH-SY5Y cells.
Collapse
|
42
|
Nuvolone M, Hermann M, Sorce S, Russo G, Tiberi C, Schwarz P, Minikel E, Sanoudou D, Pelczar P, Aguzzi A. Strictly co-isogenic C57BL/6J-Prnp-/- mice: A rigorous resource for prion science. J Exp Med 2016; 213:313-27. [PMID: 26926995 PMCID: PMC4813672 DOI: 10.1084/jem.20151610] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/25/2016] [Indexed: 12/18/2022] Open
Abstract
Although its involvement in prion replication and neurotoxicity during transmissible spongiform encephalopathies is undisputed, the physiological role of the cellular prion protein (PrP(C)) remains enigmatic. A plethora of functions have been ascribed to PrP(C) based on phenotypes of Prnp(-/-) mice. However, all currently available Prnp(-/-) lines were generated in embryonic stem cells from the 129 strain of the laboratory mouse and mostly crossed to non-129 strains. Therefore, Prnp-linked loci polymorphic between 129 and the backcrossing strain resulted in systematic genetic confounders and led to erroneous conclusions. We used TALEN-mediated genome editing in fertilized mouse oocytes to create the Zurich-3 (ZH3) Prnp-ablated allele on a pure C57BL/6J genetic background. Genomic, transcriptional, and phenotypic characterization of Prnp(ZH3/ZH3) mice failed to identify phenotypes previously described in non-co-isogenic Prnp(-/-) mice. However, aged Prnp(ZH3/ZH3) mice developed a chronic demyelinating peripheral neuropathy, confirming the crucial involvement of PrP(C) in peripheral myelin maintenance. This new line represents a rigorous genetic resource for studying the role of PrP(C) in physiology and disease.
Collapse
Affiliation(s)
- Mario Nuvolone
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Mario Hermann
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland Institute of Laboratory Animal Science, University of Zurich, 8091 Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zurich (FGCZ), 8057 Zurich, Switzerland
| | - Cinzia Tiberi
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Eric Minikel
- Prion Alliance, Cambridge, MA 02139 Broad Institute, Cambridge, MA 02142 Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Attikon Hospital, Medical School, University of Athens, 115 27 Athens, Greece
| | - Pawel Pelczar
- Institute of Laboratory Animal Science, University of Zurich, 8091 Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
43
|
Controlling the Editor: The Many Roles of RNA-Binding Proteins in Regulating A-to-I RNA Editing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:189-213. [PMID: 27256387 DOI: 10.1007/978-3-319-29073-7_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA editing is a cellular process used to expand and diversify the RNA transcripts produced from a generally immutable genome. In animals, the most prevalent type of RNA editing is adenosine (A) to inosine (I) deamination catalyzed by the ADAR family. Throughout development, A-to-I editing levels increase while ADAR expression is constant, suggesting cellular mechanisms to regulate A-to-I editing exist. Furthermore, in several disease states, ADAR expression levels are similar to the normal state, but A-to-I editing levels are altered. Therefore, understanding how these enzymes are regulated in normal tissues and misregulated in disease states is of profound importance. This chapter will both discuss how to identify A-to-I editing sites across the transcriptome and explore the mechanisms that regulate ADAR editing activity, with particular focus on the diverse types of RNA-binding proteins implicated in regulating A-to-I editing in vivo.
Collapse
|
44
|
Wheeler EC, Washburn MC, Major F, Rusch DB, Hundley HA. Noncoding regions of C. elegans mRNA undergo selective adenosine to inosine deamination and contain a small number of editing sites per transcript. RNA Biol 2015; 12:162-74. [PMID: 25826568 DOI: 10.1080/15476286.2015.1017220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
ADARs (Adenosine deaminases that act on RNA) "edit" RNA by converting adenosines to inosines within double-stranded regions. The primary targets of ADARs are long duplexes present within noncoding regions of mRNAs, such as introns and 3' untranslated regions (UTRs). Because adenosine and inosine have different base-pairing properties, editing within these regions can alter splicing and recognition by small RNAs. However, despite numerous studies identifying multiple editing sites in these genomic regions, little is known about the extent to which editing sites co-occur on individual transcripts or the functional output of these combinatorial editing events. To begin to address these questions, we performed an ultra-deep sequencing analysis of 4 Caenorhabditis elegans 3' UTRs that are known ADAR targets. Synchronous editing events were determined for the long duplexes in vivo. Furthermore, the validity of each editing event was confirmed by sequencing the same regions of mRNA from worms that lack A-to-I editing. This analysis identified a large number of editing sites that can occur within each 3' UTR, but interestingly, each individual transcript contained only a small fraction of these A-to-I editing events. In addition, editing patterns were not random, indicating that an editing event can affect the efficiency of editing at subsequent adenosines. Furthermore, we identified specific sites that can be both positively and negatively correlated with additional sites leading to mutually exclusive editing patterns. These results suggest that editing in noncoding regions is selective and hyper-editing of cellular RNAs is rare.
Collapse
Affiliation(s)
- Emily C Wheeler
- a Medical Sciences Program ; Indiana University ; Bloomington , IN USA
| | | | | | | | | |
Collapse
|
45
|
Bonini D, Filippini A, La Via L, Fiorentini C, Fumagalli F, Colombi M, Barbon A. Chronic glutamate treatment selectively modulates AMPA RNA editing and ADAR expression and activity in primary cortical neurons. RNA Biol 2015; 12:43-53. [PMID: 25625181 DOI: 10.1080/15476286.2015.1008365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adenosine-to-inosine RNA editing is a post-transcriptional process, catalyzed by ADAR enzymes, with an important role in diversifying the number of proteins derived from a single gene. In neurons, editing of ionotropic AMPA glutamate receptors has been shown to be altered under several experimental conditions, including severe pathologies, thus highlighting the potential significance of its modulation. In this study, we treated rat primary cortical cell cultures with a sub-lethal dose of glutamate (10 μM), focusing on RNA editing and ADAR activity. We found that chronic glutamate treatment down-regulates RNA editing levels at the R/G site of GluA2-4 subunits of AMPA receptors and at the K/E site of CYFIP2. These changes are site-specific since they were not observed either for the GluA2 Q/R site or for other non-glutamatergic sites. Glutamate treatment also down-regulates the protein expression levels of both ADAR1 and ADAR2 enzymes, through a pathway that is Ca(2+)- and calpain-dependent. Given that AMPA receptors containing unedited subunits show a slower recovery rate from desensitization compared to those containing edited forms, the reduced editing at the R/G site may, at least in part, compensate for glutamate over-stimulation, perhaps through the reduced activation of postsynaptic receptors. In summary, our data provide direct evidence of the involvement of ADAR1 and ADAR2 activity as a possible compensatory mechanism for neuronal protection following glutamate over-stimulation.
Collapse
Affiliation(s)
- Daniela Bonini
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; National Institute of Neuroscience; University of Brescia ; Brescia , Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Liscovitch N, Bazak L, Levanon EY, Chechik G. Positive correlation between ADAR expression and its targets suggests a complex regulation mediated by RNA editing in the human brain. RNA Biol 2015; 11:1447-56. [PMID: 25692240 DOI: 10.4161/15476286.2014.992286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism.
Collapse
Affiliation(s)
- Noa Liscovitch
- a Gonda Multidisiplinary Brain Research Center ; Bar-Ilan University ; Ramat Gan , Israel
| | | | | | | |
Collapse
|
47
|
Profiling RNA editing in human tissues: towards the inosinome Atlas. Sci Rep 2015; 5:14941. [PMID: 26449202 PMCID: PMC4598827 DOI: 10.1038/srep14941] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/09/2015] [Indexed: 12/26/2022] Open
Abstract
Adenine to Inosine RNA editing is a widespread co- and post-transcriptional mechanism mediated by ADAR enzymes acting on double stranded RNA. It has a plethora of biological effects, appears to be particularly pervasive in humans with respect to other mammals, and is implicated in a number of diverse human pathologies. Here we present the first human inosinome atlas comprising 3,041,422 A-to-I events identified in six tissues from three healthy individuals. Matched directional total-RNA-Seq and whole genome sequence datasets were generated and analysed within a dedicated computational framework, also capable of detecting hyper-edited reads. Inosinome profiles are tissue specific and edited gene sets consistently show enrichment of genes involved in neurological disorders and cancer. Overall frequency of editing also varies, but is strongly correlated with ADAR expression levels. The inosinome database is available at: http://srv00.ibbe.cnr.it/editing/.
Collapse
|
48
|
Karanović J, Šviković S, Pantović M, Durica S, Brajušković G, Damjanović A, Jovanović V, Ivković M, Romac S, Savić Pavićević D. Joint effect of ADARB1 gene, HTR2C gene and stressful life events on suicide attempt risk in patients with major psychiatric disorders. World J Biol Psychiatry 2015; 16:261-71. [PMID: 25732952 DOI: 10.3109/15622975.2014.1000374] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Adenosine to inosine RNA editing, serotonin 2C receptor (HTR2C), and stressful life events (SLEs) have all been implicated in suicidal behaviour. We examined the main and moderating effects of RNA editing (ADAR, ADARB1) and HTR2C genes, childhood trauma (CT), recent SLEs and psychiatric disorders as contributors to suicide attempt (SA) vulnerability. METHODS Study included 165 suicide attempters and 188 suicide non-attempters, all diagnosed with one of major psychiatric disorders. CT and recent SLEs were assessed using Early Trauma Inventory-Self Report and List of Threatening Experiences Questionnaire, respectively. Selected ADAR and ADARB1 tag-variants, and HTR2C rs6318 were pre-screened for association with SA, while generalized linear models and backward selection were applied to identify individual and interacting SA risk factors. RESULTS ADARB1 rs9983925 and rs4819035 and HTR2C rs6318 were associated with SA. The best minimal model found emotional abuse, recent SLEs, rs9983925 and rs6318 as independent SA risk factors, and general traumas as a factor moderating the effect of psychiatric disorders and emotional abuse. CONCLUSIONS SA vulnerability in psychiatric patients is related to the joint effect of ADARB1 and HTR2C variants, the existing mood disorder and the cumulative exposures to a various childhood and recent stressful experiences.
Collapse
Affiliation(s)
- Jelena Karanović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade , Belgrade , Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang X, Cairns MJ. Understanding complex transcriptome dynamics in schizophrenia and other neurological diseases using RNA sequencing. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 116:127-52. [PMID: 25172474 DOI: 10.1016/b978-0-12-801105-8.00006-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
How the human brain develops and adapts with its trillions of functionally integrated synapses remains one of the greatest mysteries of life. With tremendous advances in neuroscience, genetics, and molecular biology, we are beginning to appreciate the scope of this complexity and define some of the parameters of the systems that make it possible. These same tools are also leading to advances in our understanding of the pathophysiology of neurocognitive and neuropsychiatric disorders. Like the substrate for these problems, the etiology is usually complex-involving an array of genetic and environmental influences. To resolve these influences and derive better interventions, we need to reveal every aspect of this complexity and model their interactions and define the systems and their regulatory structure. This is particularly important at the tissue-specific molecular interface between the underlying genetic and environmental influence defined by the transcriptome. Recent advances in transcriptome analysis facilitated by RNA sequencing (RNA-Seq) can provide unprecedented insight into the functional genomics of neurological disorders. In this review, we outline the advantages of this approach and highlight some early application of this technology in the investigation of the neuropathology of schizophrenia. Recent progress of RNA-Seq studies in schizophrenia has shown that there is extraordinary transcriptome dynamics with significant levels of alternative splicing. These studies only scratch the surface of this complexity and therefore future studies with greater depth and samples size will be vital to fully explore transcriptional diversity and its underlying influences in schizophrenia and provide the basis for new biomarkers and improved treatments.
Collapse
Affiliation(s)
- Xi Wang
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia; The Schizophrenia Research Institute, Sydney, Australia.
| |
Collapse
|
50
|
Abstract
Modified RNA molecules have recently been shown to regulate nervous system functions. This mini-review and associated mini-symposium provide an overview of the types and known functions of novel modified RNAs in the nervous system, including covalently modified RNAs, edited RNAs, and circular RNAs. We discuss basic molecular mechanisms involving RNA modifications as well as the impact of modified RNAs and their regulation on neuronal processes and disorders, including neural fate specification, intellectual disability, neurodegeneration, dopamine neuron function, and substance use disorders.
Collapse
|