1
|
Oh J, Muralidharan S, Zhao Q, Scholz J, Zelnik ID, Blumenreich S, Joseph T, Dingjan T, Narayanaswamy P, Choi H, Hayen H, Torta F, Futerman AH. Deep sphingolipidomic and metabolomic analyses of ceramide synthase 2 null mice reveal complex pathway-specific effects. J Lipid Res 2025:100832. [PMID: 40449731 DOI: 10.1016/j.jlr.2025.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/25/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025] Open
Abstract
The sphingolipidome contains thousands of structurally distinct sphingolipid (SL) species. This enormous diversity is generated by the combination of different long-chain-bases (LCBs), N-acyl chains and head groups. In mammals, LCBs are N-acylated with different fatty acids (from C14 to C32, with different degrees of saturation) by six ceramide synthases (CerS1-6) to generate dihydroceramides (DHCer), with each CerS exhibiting specificity towards acyl-Coenzyme As of defined chain length. CerS2 synthesizes very-long-chain (VLC) DHCer, and mice in which CerS2 has been deleted display a number of pathologies. We now expand previous analyses of the mouse sphingolipidome by examining 264 individual SL species in 18 different tissues, building an extensive SL tissue atlas of wild type and CerS2 null mice. While many of the changes in SL levels were similar to those reported earlier, a number of unexpected findings in CerS2 null mouse tissues were observed, such as the decrease in ceramide 1-phosphate levels in the brain, the increase in C26-SL levels in the lung and no changes in levels of ceramides containing t18:0-LCBs (phytosphinganine). Furthermore, analysis of levels of other metabolites revealed changes in at least six major metabolic pathways, including some that impinge upon the SL metabolism. Together, these data highlight the complex changes that occur in the lipidome and metabolome upon depletion of CerS2, indicating how sphingolipids are connected to many other pathways and that care must be taken when assigning a relationship between tissue pathology and one or other specific SL species.
Collapse
Affiliation(s)
- Jeongah Oh
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sneha Muralidharan
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qing Zhao
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Johannes Scholz
- Department of Analytical Chemistry, Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Iris D Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shani Blumenreich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tammar Joseph
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Heiko Hayen
- Department of Analytical Chemistry, Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Federico Torta
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Zhu C, Wu J, Chen Y, Ma T, Pan H, Zhai C, Tai Z, Chen Z, Zhu Q. The alleviating effect of Bai-Ju essence on atopic dermatitis through anti-inflammatory and skin barrier repair mechanisms. Mol Cell Biochem 2025:10.1007/s11010-025-05270-7. [PMID: 40394445 DOI: 10.1007/s11010-025-05270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/22/2025] [Indexed: 05/22/2025]
Abstract
Bai-Ju essence (BJE) is a bioactive formulation composed of medicinal plant extracts, utilized in skincare products for its therapeutic potential. Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by epidermal barrier dysfunction and immune dysregulation. This study aimed to evaluate BJE anti-inflammatory and skin-protective effects, and its potential mechanisms in treating AD. The ability of BJE to restore the epidermal barrier was assessed in HaCaT cells. In LPS-induced RAW264.7 cells, the anti-inflammatory potential of BJE was evaluated by measuring NO, IL-6, PGE2, and TNF-α. Western blot analysis was used to assess the regulation of the MAPK pathway. An in vivo AD-like mouse model was established using MC903, and measurements of body weight, ear thickness, and AD symptoms were recorded. Histological analysis quantified mast cell infiltration, while western blot determined FLG, LOR, and ELOVL6 expression. ELISA was used to measure TNF-α, IgE, IL-4, and IL-13 levels. Flow cytometry assessed the effect of BJE on Th cell phenotypes. BJE significantly enhanced skin barrier protein expression (CERS2, LOR, HAS-1, HAS-2, FLG) in HaCaT cells. It significantly reduced the levels of NO, IL-6, PGE2, and TNF-α in LPS-treated RAW264.7, demonstrating its anti-inflammatory potential. Mechanistically, BJE inhibited MAPK activation. BJE decreased ear thickness, improved skin lesions, and relieved AD symptoms in AD-like mice. In addition, BJE effectively suppressed mast cell infiltration and hyperkeratosis. BJE also decreased levels of TNF-α, IgE, IL-4, and IL-13 while increasing LOR, ELOVL6, and FLG expressions. Furthermore, BJE modulated Th1, Th2, and Th17 cell proportions. BJE promoted epidermal barrier repair in HaCaT, suppressed the LPS-induced inflammation in RAW264.7, enhanced the skin barrier integrity in AD-like mice, and exhibited immunomodulatory effects by restoring Th cell balance. These findings highlighted the therapeutic potential of BJE in AD through its dual action of anti-inflammation and skin barrier restoration.
Collapse
Affiliation(s)
- Congcong Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Ya Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Tianyou Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Huijun Pan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Chuntao Zhai
- Shanghai Zhina Biotechnology Technology Co.,Ltd, 666 Jinbi Road, Shanghai, 201404, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| |
Collapse
|
3
|
Hiranuma T, Sassa T, Kihara A. Relationship between time-dependent epidermal ceramide composition changes and skin barrier function in adult mice. Mol Biol Cell 2025; 36:ar57. [PMID: 40072511 DOI: 10.1091/mbc.e24-12-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Ceramides, especially acylceramides and protein-bound ceramides, are important for skin barrier formation. However, due to the neonatal lethality of knockout (KO) of the genes involved in the production of these ceramides, the effects of their KO in adult mice have been unclear. To investigate these effects, we created mice with tamoxifen-inducible conditional KO of the fatty acid elongase Elovl1. Following tamoxifen administration, acylceramide levels began to decrease from day 5. On day 10, impaired formation of lipid lamellae and thickening of the epidermis were observed. On day 15, protein-bound ceramide levels were substantially reduced and transepidermal water loss was increased. Changes in quantities of ceramides other than acylceramides and protein-bound ceramides and shortening of their fatty acid moieties were also observed, but time courses differed among ceramide classes. RNA sequencing revealed changes in the expression levels of genes involved in ceramide metabolism and keratinocyte proliferation and differentiation in Elovl1 conditional-KO mice. In summary, this study reveals that acylceramides and protein-bound ceramides are important for maintaining the skin barrier in adults, although they are not essential for survival. We also observed compensatory responses toward reduced skin barrier function, such as changes in gene expression, epidermal morphology, and ceramide composition.
Collapse
Affiliation(s)
- Taiga Hiranuma
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
4
|
Peters F, Höfs W, Lee H, Brodesser S, Kruse K, Drexler HC, Hu J, Raker VK, Lukas D, von Stebut E, Krönke M, Niessen CM, Wickström SA. Sphingolipid metabolism orchestrates establishment of the hair follicle stem cell compartment. J Cell Biol 2025; 224:e202403083. [PMID: 39879198 PMCID: PMC11778283 DOI: 10.1083/jcb.202403083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis. Deletion of CerS4 prevents the proper development of the adult hair follicle bulge stem cell (HFSC) compartment due to altered differentiation trajectories. Mechanistically, HFSC differentiation defects arise from an imbalance of key ceramides and their derivate sphingolipids, resulting in hyperactivation of noncanonical Wnt signaling. This impaired HFSC compartment establishment leads to disruption of hair follicle architecture and skin barrier function, ultimately triggering a T helper cell 2-dominated immune infiltration resembling human atopic dermatitis. This work uncovers a fundamental role for a cell state-specific sphingolipid profile in stem cell homeostasis and in maintaining an intact skin barrier.
Collapse
Affiliation(s)
- Franziska Peters
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Windie Höfs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hunki Lee
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Susanne Brodesser
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Kai Kruse
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Jiali Hu
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Verena K. Raker
- Department of Dermatology, University of Münster, Münster, Germany
| | - Dominika Lukas
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | - Martin Krönke
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sara A. Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Nguyen PTT, Shiue M, Kuprasertkul N, Costa-Pinheiro P, Izzo LT, Pinheiro LV, Affronti HA, Gugiu G, Ghaisas S, Liu JY, Harris JC, Bradley CW, Seykora JT, Yang X, Kambayashi T, Mesaros C, Capell BC, Wellen KE. Acetyl-CoA synthesis in the skin is a key determinant of systemic lipid homeostasis. Cell Rep 2025; 44:115284. [PMID: 39932848 PMCID: PMC12010789 DOI: 10.1016/j.celrep.2025.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/10/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
ATP-citrate lyase (ACLY) generates cytosolic acetyl-coenzyme A (acetyl-CoA) for lipid synthesis and is a promising therapeutic target in diseases with altered lipid metabolism. Here, we developed inducible whole-body Acly-knockout mice to determine the requirement for ACLY in normal tissue functions, uncovering its crucial role in skin homeostasis. ACLY-deficient skin upregulates the acetyl-CoA synthetase ACSS2; deletion of both Acly and Acss2 from the skin exacerbates skin abnormalities, with differential effects on two major lipid-producing skin compartments. While the epidermis is depleted of barrier lipids, the sebaceous glands increase production of sebum, supplied at least in part by circulating fatty acids and coinciding with adipose lipolysis and fat depletion. Dietary fat supplementation further boosts sebum production and partially rescues both the lipoatrophy and the aberrant skin phenotypes. The data establish a critical role for cytosolic acetyl-CoA synthesis in maintaining skin barrier integrity and highlight the skin as a key organ in systemic lipid regulation.
Collapse
Affiliation(s)
- Phuong T T Nguyen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Mia Shiue
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Nina Kuprasertkul
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA; Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Pedro Costa-Pinheiro
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Luke T Izzo
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura V Pinheiro
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayley A Affronti
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel Gugiu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shivani Ghaisas
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Joyce Y Liu
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Jordan C Harris
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles W Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Seykora
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaolu Yang
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Capell
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Chen YY, Yang CM, Yang CH, Ho TC, Hsieh YT, Lai TT, Tsai TH, Huang SY. Elevated Very-Long-Chain Ceramides in the Vitreous Humor of Patients With Proliferative Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2025; 66:28. [PMID: 39932474 PMCID: PMC11817849 DOI: 10.1167/iovs.66.2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Purpose To quantitate the levels of various ceramide species in the vitreous of patients with proliferative diabetic retinopathy (PDR) and to investigate the role of vitreal ceramides in the pathogenesis of PDR. Study Design A case control study. Methods We collected vitreous samples from 25 type 2 diabetes patients with PDR and 25 age- and sex-matched nondiabetic controls undergoing vitrectomy. The levels of ceramide species (C16:0, 18:0, 20:0, 22:0, 24:1, and 24:0) were measured by ultra-high-performance liquid chromatography-tandem mass spectrometry with positive electrospray ionization mode. The correlation of baseline characteristics, blood test data, and clinical manifestation of PDR were analyzed with vitreal ceramides levels. Results The total level of ceramides was substantially higher in the PDR group than the control group (18.626 ± 19.264 versus 3.524 ± 2.456 pmol/mg protein; P < 0.001). Among ceramides of various acyl chain lengths, the increases of very-long-chain (VLC) ceramides (C22-C24) were more drastic than those of long-chain ceramides (C16-C20). In the PDR group, VLC ceramide species accounted for 76.1%, whereas in the control group, C16 ceramide predominated at 40.5%. Based on the multivariate linear regression analysis, diagnosis of diabetes (β = 14.5751; P = 0.0327) and lower body mass index (β = -2.1396; P = 0.0173) were significantly associated with higher level of VLC ceramides. Intravitreal injection of anti-VEGF leads to insignificant reduction of VLC ceramides (P = 0.068). Conclusions Vitreal ceramide levels were elevated in diabetic subjects, especially the VLC species, which may contribute to the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Ying-Yi Chen
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzyy-Chang Ho
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Hsieh
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tso-Ting Lai
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Luh D, Ghezellou P, Heiles S, Gramberg S, Haeberlein S, Spengler B. Glycolipidomics of Liver Flukes and Host Tissues during Fascioliasis: Insights from Mass Spectrometry Imaging. ACS Infect Dis 2024; 10:4233-4245. [PMID: 39510517 DOI: 10.1021/acsinfecdis.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Fascioliasis, a zoonotic disease caused by liver flukes of the genus Fasciola, poses significant health threats to both humans and livestock. While some infections remain asymptomatic, others can lead to fatal outcomes, particularly during the acute phase characterized by the migration of immature parasites causing severe liver damage. Through the combination of data acquired via high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) and nanohydrophilic interaction chromatography tandem mass spectrometry, we investigated glycosphingolipids (GSLs) in both adult and immature parasite stages as well as the host liver and bile duct to unravel the intricacies of the host-pathogen interplay and associated pathology. Several GSLs showed characteristic distribution patterns within the parasite depending on the fatty acid composition of their ceramides, notably including GSLs carrying very long-chain fatty acids. Additionally, GSL compositions within the tegument of immature versus adult parasites varied, suggestive of tissue remodeling upon maturation. AP-SMALDI MSI further enabled the identification of GSLs potentially involved in in vivo interactions between the host and immature parasites. Moreover, our experiments unveiled alterations in other lipid classes during Fasciola infection, providing a broader understanding of lipidomic changes associated with the disease. Collectively, our findings contribute to a deeper comprehension of the molecular intricacies underlying fascioliasis, with a specific focus on GSLs.
Collapse
Affiliation(s)
- David Luh
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Sven Heiles
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Essen 45141, Germany
| | - Svenja Gramberg
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen 35392, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen 35392, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| |
Collapse
|
8
|
Merz N, Hartel JC, Grösch S. How ceramides affect the development of colon cancer: from normal colon to carcinoma. Pflugers Arch 2024; 476:1803-1816. [PMID: 38635059 PMCID: PMC11582153 DOI: 10.1007/s00424-024-02960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The integrity of the colon and the development of colon cancer depend on the sphingolipid balance in colon epithelial cells. In this review, we summarize the current knowledge on how ceramides and their complex derivatives influence normal colon development and colon cancer development. Ceramides, glucosylceramides and sphingomyelin are essential membrane components and, due to their biophysical properties, can influence the activation of membrane proteins, affecting protein-protein interactions and downstream signalling pathways. Here, we review the cellular mechanisms known to be affected by ceramides and their effects on colon development. We also describe which ceramides are deregulated during colorectal carcinogenesis, the molecular mechanisms involved in ceramide deregulation and how this affects carcinogenesis. Finally, we review new methods that are now state of the art for studying lipid-protein interactions in the physiological environment.
Collapse
Affiliation(s)
- Nadine Merz
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Jennifer Christina Hartel
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Sabine Grösch
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany.
| |
Collapse
|
9
|
Liu J, Koutalos Y, Fan J. Lack of ceramide synthase 5 protects retinal ganglion cells from ocular hypertensive injury. Exp Eye Res 2024; 247:110061. [PMID: 39182597 PMCID: PMC11392625 DOI: 10.1016/j.exer.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Ceramides with varying acyl-chain lengths can have unique biological actions and hence, cellular responses to ceramides may depend not on their overall concentration but on that of individual ceramide species. The purpose of this study was to determine individual ceramide species impacting retinal ganglion cell (RGC) loss under the ocular hypertensive condition. Induced pluripotent stem cell (iPSC)-derived RGCs and primary cultures of human astrocytes were used to determine the effect of individual ceramide species on both RGC viability and astrocyte secretion of inflammatory cytokines in vitro. In in vivo experiments with wild-type (WT) and ceramide synthase 5 (CerS5) knockout mice, intraocular pressure was unilaterally elevated with microbead injection. Retinal function and morphology were evaluated using pattern electroretinography (pERG) and immunofluorescence, respectively. Ceramide levels were determined by LC-MS/MS analysis. Exposure to C16:0-, C18:0-, C18:1-, C20:0- and C24:0-ceramides significantly reduces RGC viability in vitro, with the very long chain C24:0-ceramide being the most neurotoxic; treatment with C18:0-, C18:1- and C24:0-ceramides stimulates an increase of TNF-α secretion by astrocytes. The retinas of CerS5 KO mice have significantly reduced levels of C16:0- and C18:1-ceramides compared to WT; ocular hypertensive eyes of these mice maintain higher pERG amplitudes and RGC numbers compared to WT. Individual ceramides with different chain lengths have different effects on RGCs and astrocytes. Our results demonstrate that suppressing C16:0- and C18:1-ceramide species effectively protects RGCs against ocular hypertensive injury. These results provide a basis for targeting specific ceramide species in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jian Liu
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, 167 Ashley Ave, Charleston, SC, 29425, USA
| | - Yiannis Koutalos
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, 167 Ashley Ave, Charleston, SC, 29425, USA
| | - Jie Fan
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, 167 Ashley Ave, Charleston, SC, 29425, USA.
| |
Collapse
|
10
|
Berdyshev E. Skin Lipid Barrier: Structure, Function and Metabolism. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:445-461. [PMID: 39363765 PMCID: PMC11450438 DOI: 10.4168/aair.2024.16.5.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Lipids are important skin components that provide, together with proteins, barrier function of the skin. Keratinocyte terminal differentiation launches unique metabolic changes to lipid metabolism that result in the predominance of ceramides within lipids of the stratum corneum (SC)-the very top portion of the skin. Differentiating keratinocytes form unique ceramides that can be found only in the skin, and generate specialized extracellular structures known as lamellae. Lamellae establish tight hydrophobic layers between dying keratinocytes to protect the body from water loss and also from penetration of allergens and bacteria. Genetic and immunological factors may lead to the failure of keratinocyte terminal differentiation and significantly alter the proportion between SC components. The consequence of such changes is loss or deterioration of skin barrier function that can lead to pathological changes in the skin. This review summarizes our current understanding of the role of lipids in skin barrier function. It also draws attention to the utility of testing SC for lipid and protein biomarkers to predict future onset of allergic skin diseases.
Collapse
Affiliation(s)
- Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
11
|
Velazquez FN, Luberto C, Canals D, Hannun YA. Enzymes of sphingolipid metabolism as transducers of metabolic inputs. Biochem Soc Trans 2024; 52:1795-1808. [PMID: 39101614 PMCID: PMC11783705 DOI: 10.1042/bst20231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Sphingolipids (SLs) constitute a discrete subdomain of metabolism, and they display both structural and signaling functions. Accumulating evidence also points to intimate connections between intermediary metabolism and SL metabolism. Given that many SLs exhibit bioactive properties (i.e. transduce signals), these raise the possibility that an important function of SLs is to relay information on metabolic changes into specific cell responses. This could occur at various levels. Some metabolites are incorporated into SLs, whereas others may initiate regulatory or signaling events that, in turn, modulate SL metabolism. In this review, we elaborate on the former as it represents a poorly appreciated aspect of SL metabolism, and we develop the hypothesis that the SL network is highly sensitive to several specific metabolic changes, focusing on amino acids (serine and alanine), various fatty acids, choline (and ethanolamine), and glucose.
Collapse
Affiliation(s)
- Fabiola N. Velazquez
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Chiara Luberto
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794
| | - Daniel Canals
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A. Hannun
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
12
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
13
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
14
|
Lyu Y, Yao T, Chen Z, Huangfu R, Cheng H, Ma W, Qi X, Li F, Chen N, Lei C. Genomic characterization of dryland adaptation in endangered Anxi cattle in China. Anim Genet 2024; 55:352-361. [PMID: 38436096 DOI: 10.1111/age.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Local species exhibit distinctive indigenous characteristics while showing unique productive and phenotypic traits. However, the advent of commercialization has posed a substantial threat to the survival of indigenous species. Anxi cattle, an endangered native breed in China, have evolved unique growth and reproductive characteristics in extreme desert and semidesert ecosystems. In this study, we conducted a genomic comparison of 10 Anxi cattle genomes with those of five other global populations/breeds to assess genetic diversity and identify candidate genomic regions in Anxi cattle. Population structure and genetic diversity analyses revealed that Anxi cattle are part of the East Asian cattle clade, exhibiting higher genetic diversity than commercial breeds. Through selective sweep analysis, we identified specific genetic variations linked to the environmental adaptability of Anxi cattle. Notably, we identified several candidate genes, including CERS3 involved in regulating skin permeability and antimicrobial functions, RBFOX2 associated with cardiac development, SLC16A7 participated in the regulation of pancreatic endocrine function, and SPATA3 related to reproduction. Our findings revealed the distinctive genomic features of Anxi cattle in dryland environments, provided invaluable insights for further research and breed preservation, and had important significance for enriching the domestic cattle breeding gene bank.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tingting Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhefu Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ruiyao Huangfu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Weidong Ma
- Shaanxi Province Agriculture & Husbandry Breeding Farm, Fufeng, China
| | - Xingshan Qi
- Animal Huabandry Bureau in Biyang County, Biyang, Henan, China
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd., Lianyuan, Hunan, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Yamaji M, Ohno Y, Shimada M, Kihara A. Alteration of epidermal lipid composition as a result of deficiency in the magnesium transporter Nipal4. J Lipid Res 2024; 65:100550. [PMID: 38692573 PMCID: PMC11153242 DOI: 10.1016/j.jlr.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Lipids in the stratum corneum play an important role in the formation of the skin permeability barrier. The causative gene for congenital ichthyosis, NIPAL4, encodes a Mg2+ transporter and is involved in increases in intracellular Mg2+ concentrations that depend on keratinocyte differentiation. However, the role of this increased Mg2+ concentration in skin barrier formation and its effect on the lipid composition of the stratum corneum has remained largely unknown. Therefore, in the present study, we performed a detailed analysis of epidermal lipids in Nipal4 KO mice via TLC and MS. Compared with WT mice, the Nipal4 KO mice showed compositional changes in many ceramide classes (including decreases in ω-O-acylceramides and increases in ω-hydroxy ceramides), together with increases in ω-hydroxy glucosylceramides, triglycerides, and free fatty acids and decreases in ω-O-acyl hydroxy fatty acids containing a linoleic acid. We also found increases in unusual ω-O-acylceramides containing oleic acid or palmitic acid in the KO mice. However, there was little change in levels of cholesterol or protein-bound ceramides. The TLC analysis showed that some unidentified lipids were increased, and the MS analysis showed that these were special ceramides called 1-O-acylceramides. These results suggest that elevated Mg2+ concentrations in differentiated keratinocytes affect the production of various lipids, resulting in the lipid composition necessary for skin barrier formation.
Collapse
Affiliation(s)
- Marino Yamaji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Madoka Shimada
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
16
|
Komlosi K, Glocker C, Hsu-Rehder HH, Alter S, Kopp J, Hotz A, Zimmer AD, Hausser I, Sandhoff R, Oji V, Fischer J. Autosomal Dominant Lamellar Ichthyosis Due to a Missense Variant in the Gene NKPD1. J Invest Dermatol 2024:S0022-202X(24)00303-8. [PMID: 38642798 DOI: 10.1016/j.jid.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 04/22/2024]
Abstract
The identification of monogenic causes for cornification disorders has enhanced our understanding of epidermal differentiation and skin barrier function. Autosomal dominant lamellar ichthyosis is a rare condition, and ASPRV1 was the only gene linked to autosomal dominant lamellar ichthyosis to date. We identified a heterozygous variant (ENST00000686631.1:c.1372G>T, p.[Val458Phe]) in the NKPD1 gene in 7 individuals from a 4-generation German pedigree with generalized lamellar ichthyosis by whole-exome sequencing. Segregation analysis confirmed its presence in affected individuals, resulting in a logarithm of the odds score of 3.31. NKPD1 encodes the NKPD1 protein, implicated in the plasma membrane; its role in human disease is as yet unknown. Skin histology showed moderate acanthosis and compact orthohyperkeratosis, and the ultrastructure differed clearly from that in ASPRV1-autosomal dominant lamellar ichthyosis. Although NKPD1 mRNA expression increased during keratinocyte differentiation, stratum corneum ceramides exhibited no significant changes. However, affected individuals showed an elevated ratio of protein-bound ceramides to omega-esterified ceramides. This highlights NKPD1's role in autosomal dominant lamellar ichthyosis, impacting ceramide metabolism and skin lipid barrier formation, as demonstrated through functional characterization.
Collapse
Affiliation(s)
- Katalin Komlosi
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Cristina Glocker
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Hao-Hsiang Hsu-Rehder
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Svenja Alter
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Julia Kopp
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Alrun Hotz
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Andreas David Zimmer
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Vinzenz Oji
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Judith Fischer
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Cornification Disorders, Freiburg Center for Rare Diseases, Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Shin KO, Kim B, Choi Y, Bae YJ, Park JH, Park SH, Hwang JT, Choi EH, Uchida Y, Park K. Barrier Abnormalities in Type 1 Diabetes Mellitus: The Roles of Inflammation and Ceramide Metabolism. J Invest Dermatol 2024; 144:802-810.e5. [PMID: 37952608 DOI: 10.1016/j.jid.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Xerosis is a common sign of both type 1 and type 2 diabetes mellitus (DM), and patients with DM and mouse models for DM show a compromised epidermal permeability barrier. Barrier defects then allow the entry of foreign substances into the skin, triggering inflammation, infection, and worsening skin symptoms. Characterizing how barrier abnormalities develop in DM could suggest treatments for xerosis and other skin disease traits. Because the proper ratio, as well as proper bulk amounts, of heterogeneous ceramide species are keys to forming a competent barrier, we investigated how ceramide metabolism is affected in type 1 DM using a mouse model (induced by streptozotocin). Chronic inflammation, evident in the skin of mice with DM, leads to (i) decreased de novo ceramide production through serine racemase activation-mediated attenuation of serine palmitoyl transferase activity by D-serine; (ii) changes in ceramide synthase activities and expression that modify the ratio of ceramide molecular species; and (iii) increased ceramide-1-phosphate, a proinflammatory lipid mediator, that stimulates inflammatory cytokine expression (TNFα and IFN-γ). Together, chronic inflammation affects ceramide metabolism, which attenuates epidermal permeability barrier formation, and ceramide-1-phosphate could amplify this inflammation. Alleviation of chronic inflammation is a credible approach for normalizing barrier function and ameliorating diverse skin abnormalities in DM.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea; LaSS Lipid Institute, LaSS Inc, Chuncheon, Republic of Korea
| | - Bokyung Kim
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea; LaSS Lipid Institute, LaSS Inc, Chuncheon, Republic of Korea
| | - Yerim Choi
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Yoo-Jin Bae
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Soo-Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Yoshikazu Uchida
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea.
| | - Kyungho Park
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
18
|
Zhang J, Ruiz M, Bergh PO, Henricsson M, Stojanović N, Devkota R, Henn M, Bohlooly-Y M, Hernández-Hernández A, Alsheimer M, Borén J, Pilon M, Shibuya H. Regulation of meiotic telomere dynamics through membrane fluidity promoted by AdipoR2-ELOVL2. Nat Commun 2024; 15:2315. [PMID: 38485951 PMCID: PMC10940294 DOI: 10.1038/s41467-024-46718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA. The depletion of VLC-PUFAs and subsequent accumulation of palmitic acid in AdipoR2 knockout testes stiffens the cellular membrane and causes the invagination of the nuclear envelope. This condition impairs the nuclear peripheral distribution of meiotic telomeres, leading to errors in homologous synapsis and recombination. Further, the stiffened membrane impairs the formation of intercellular bridges and the germ cell syncytium, which disrupts the orderly arrangement of cell types within the seminiferous tubules. According to our findings we propose a framework in which the highly-fluid membrane microenvironment shaped by AdipoR2-ELOVL2 underpins meiosis-specific chromosome dynamics in testes.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Nena Stojanović
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Marius Henn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | | | - Abrahan Hernández-Hernández
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- National Genomics Infrastructure, Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
19
|
Mu J, Lam SM, Shui G. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology: emphasis on fatty acyl heterogeneity. J Genet Genomics 2024; 51:268-278. [PMID: 37364711 DOI: 10.1016/j.jgg.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Sphingolipids not only exert structural roles in cellular membranes, but also act as signaling molecules in various physiological and pathological processes. A myriad of studies have shown that abnormal levels of sphingolipids and their metabolic enzymes are associated with a variety of human diseases. Moreover, blood sphingolipids can also be used as biomarkers for disease diagnosis. This review summarizes the biosynthesis, metabolism, and pathological roles of sphingolipids, with emphasis on the biosynthesis of ceramide, the precursor for the biosynthesis of complex sphingolipids with different fatty acyl chains. The possibility of using sphingolipids for disease prediction, diagnosis, and treatment is also discussed. Targeting endogenous ceramides and complex sphingolipids along with their specific fatty acyl chain to promote future drug development will also be discussed.
Collapse
Affiliation(s)
- Jinming Mu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Hernandez-Corbacho M, Canals D. Drug Targeting of Acyltransferases in the Triacylglyceride and 1-O-AcylCeramide Biosynthetic Pathways. Mol Pharmacol 2024; 105:166-178. [PMID: 38164582 DOI: 10.1124/molpharm.123.000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Acyltransferase enzymes (EC 2.3.) are a large group of enzymes that transfer acyl groups to a variety of substrates. This review focuses on fatty acyltransferases involved in the biosynthetic pathways of glycerolipids and sphingolipids and how these enzymes have been pharmacologically targeted in their biologic context. Glycerolipids and sphingolipids, commonly treated independently in their regulation and biologic functions, are put together to emphasize the parallelism in their metabolism and bioactive roles. Furthermore, a newly considered signaling molecule, 1-O-acylceramide, resulting from the acylation of ceramide by DGAT2 enzyme, is discussed. Finally, the implications of DGAT2 as a putative ceramide acyltransferase (CAT) enzyme, with a putative dual role in TAG and 1-O-acylceramide generation, are explored. SIGNIFICANCE STATEMENT: This manuscript reviews the current status of drug development in lipid acyltransferases. These are current targets in metabolic syndrome and other diseases, including cancer. A novel function for a member in this group of lipids has been recently reported in cancer cells. The responsible enzyme and biological implications of this added member are discussed.
Collapse
Affiliation(s)
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
21
|
Richardson WJ, Humphrey SB, Sears SM, Hoffman NA, Orwick AJ, Doll MA, Doll CL, Xia C, Hernandez-Corbacho M, Snider JM, Obeid LM, Hannun YA, Snider AJ, Siskind LJ. Expression of Ceramide Synthases in Mice and Their Roles in Regulating Acyl-Chain Sphingolipids: A Framework for Baseline Levels and Future Implications in Aging and Disease. Mol Pharmacol 2024; 105:131-143. [PMID: 38164625 PMCID: PMC10877707 DOI: 10.1124/molpharm.123.000788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Sphingolipids are an important class of lipids present in all eukaryotic cells that regulate critical cellular processes. Disturbances in sphingolipid homeostasis have been linked to several diseases in humans. Ceramides are central in sphingolipid metabolism and are largely synthesized by six ceramide synthase (CerS) isoforms (CerS1-6), each with a preference for different fatty acyl chain lengths. Although the tissue distribution of CerS mRNA expression in humans and the roles of CerS isoforms in synthesizing ceramides with different acyl chain lengths are known, it is unknown how CerS expression dictates ceramides and downstream metabolites within tissues. In this study, we analyzed sphingolipid levels and CerS mRNA expression in 3-month-old C57BL/6J mouse brain, heart, kidney, liver, lung, and skeletal muscle. The results showed that CerS expression and sphingolipid species abundance varied by tissue and that CerS expression was a predictor of ceramide species within tissues. Interestingly, although CerS expression was not predictive of complex sphingolipid species within all tissues, composite scores for CerSs contributions to total sphingolipids measured in each tissue correlated to CerS expression. Lastly, we determined that the most abundant ceramide species in mouse tissues aligned with CerS mRNA expression in corresponding human tissues (based on chain length preference), suggesting that mice are relevant preclinical models for ceramide and sphingolipid research. SIGNIFICANCE STATEMENT: The current study demonstrates that ceramide synthase (CerS) expression in specific tissues correlates not only with ceramide species but contributes to the generation of complex sphingolipids as well. As many of the CerSs and/or specific ceramide species have been implicated in disease, these studies suggest the potential for CerSs as therapeutic targets and the use of sphingolipid species as diagnostics in specific tissues.
Collapse
Affiliation(s)
- Whitney J Richardson
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Sophia B Humphrey
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Sophia M Sears
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Nicholas A Hoffman
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Andrew J Orwick
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Mark A Doll
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Chelsea L Doll
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Catherine Xia
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Maria Hernandez-Corbacho
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Justin M Snider
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Lina M Obeid
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Yusuf A Hannun
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Ashley J Snider
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Leah J Siskind
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| |
Collapse
|
22
|
Holthaus KB, Eckhart L. Development-Associated Genes of the Epidermal Differentiation Complex (EDC). J Dev Biol 2024; 12:4. [PMID: 38248869 PMCID: PMC10801484 DOI: 10.3390/jdb12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes that encode protein components of the outermost layers of the epidermis in mammals, reptiles and birds. The development of the stratified epidermis from a single-layered ectoderm involves an embryo-specific superficial cell layer, the periderm. An additional layer, the subperiderm, develops in crocodilians and over scutate scales of birds. Here, we review the expression of EDC genes during embryonic development. Several EDC genes are expressed predominantly or exclusively in embryo-specific cell layers, whereas others are confined to the epidermal layers that are maintained in postnatal skin. The S100 fused-type proteins scaffoldin and trichohyalin are expressed in the avian and mammalian periderm, respectively. Scaffoldin forms the so-called periderm granules, which are histological markers of the periderm in birds. Epidermal differentiation cysteine-rich protein (EDCRP) and epidermal differentiation protein containing DPCC motifs (EDDM) are expressed in the avian subperiderm where they are supposed to undergo cross-linking via disulfide bonds. Furthermore, a histidine-rich epidermal differentiation protein and feather-type corneous beta-proteins, also known as beta-keratins, are expressed in the subperiderm. The accumulating evidence for roles of EDC genes in the development of the epidermis has implications on the evolutionary diversification of the skin in amniotes.
Collapse
Affiliation(s)
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Yamamoto Y, Sassa T, Kihara A. Comparison of skin barrier abnormalities and epidermal ceramide profiles among three ω-O-acylceramide synthesis-deficient mouse strains. J Dermatol Sci 2024; 113:10-17. [PMID: 38158274 DOI: 10.1016/j.jdermsci.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The epidermis contains many structurally diverse ceramides, which form the skin permeability barrier (skin barrier). Mutations in genes involved in the synthesis of ω-O-acylceramides (acylceramides) and protein-bound ceramides cause ichthyosis. OBJECTIVE We aimed to elucidate the relationship between the degree of skin barrier impairment and changes in epidermal ceramide profiles caused by mutations in acylceramide synthesis genes. METHODS Knockout (KO) mice of three genes-fatty acid (FA) ω-hydroxylase Cyp4f39 (human CYP4F22 ortholog), FA elongase Elovl1, and acyl-CoA synthetase Fatp4-were subjected to transepidermal water loss measurement, toluidine blue staining, and epidermal ceramide profiling via liquid chromatography coupled with tandem mass spectrometry. RESULTS Transepidermal water loss was highest in Cyp4f39 KO mice, followed by Elovl1 KO and Fatp4 KO mice, and Cyp4f39 KO mice also showed the strongest degree of toluidine blue staining. In Cyp4f39 KO, Elovl1 KO, and Fatp4 KO mice, acylceramide levels were 0.6%, 1.6%, and 12%, respectively, of those in wild-type mice. Protein-bound ceramide levels were 0.2%, 30%, and 33%, respectively, of those in wild-type mice. We also observed a near-complete absence of ω-hydroxy ceramides in Cyp4f39 KO mice, reduced total ceramide levels and shortened FA moieties in Elovl1 KO mice, and increased hydroxylated ceramide levels and slightly shortened FA moieties in Fatp4 KO mice. CONCLUSIONS The degree of reduction in protein-bound ceramide levels is probably related to the severity of skin barrier defects in these three strains. However, reduced acylceramide levels and other changes in ceramide composition unique to each KO strain are also involved.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
24
|
Ohno Y, Nakamura T, Iwasaki T, Katsuyama A, Ichikawa S, Kihara A. Determining the structure of protein-bound ceramides, essential lipids for skin barrier function. iScience 2023; 26:108248. [PMID: 37965138 PMCID: PMC10641502 DOI: 10.1016/j.isci.2023.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Protein-bound ceramides, specialized ceramides covalently bound to corneocyte surface proteins, are essential for skin permeability barrier function. However, their exact structure and target amino acid residues are unknown. Here, we found that epoxy-enone (EE) ceramides, precursors of protein-bound ceramides, as well as their synthetic analog, formed stable conjugates only with Cys among nucleophilic amino acids. NMR spectroscopy revealed that the β-carbon of the enone was attached by the thiol group of Cys via a Michael addition reaction. We confirmed the presence of Cys-bound EE ceramides in mouse epidermis by mass spectrometry analysis of protease-digested epidermis samples. EE ceramides were reversibly released from protein-bound ceramides via sulfoxide elimination. We found that protein-bound ceramides with reversible release properties accounted for approximately 60% of total protein-bound ceramides, indicating that Cys-bound EE ceramides are the predominant protein-bound ceramides. Our findings provide clues to the molecular mechanism of skin barrier formation by protein-bound ceramides.
Collapse
Affiliation(s)
- Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Tetsuya Nakamura
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Takafumi Iwasaki
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
25
|
Barraza-Vergara LF, Carmona-Sarabia L, Torres-García W, Domenech-García M, Mendez-Vega J, Torres-Lugo M. In vitro assessment of inflammatory skin potential of poly(methyl methacrylate) at non-cytotoxic concentrations. J Biomed Mater Res A 2023; 111:1822-1832. [PMID: 37589190 DOI: 10.1002/jbm.a.37591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Poly(methyl methacrylate) (PMMA) is considered an attractive substrate material for fabricating wearable skin sensors such as fitness bands and microfluidic devices. Despite its widespread use, inflammatory and allergic responses have been attributed to the use of this material. Therefore, the main objective of this study was to obtain a comprehensive understanding of potential biological effects triggered by PMMA at non-cytotoxic concentrations using in vitro models of NIH3T3 fibroblasts and reconstructed human epidermis (RhE). It was hypothesized that concentrations that do not reduce cell viability are sufficient to activate pathways of inflammatory processes in the skin. The study included cytotoxicity, cell metabolism, cytokine quantification, histopathological, and gene expression analyses. The NIH3T3 cell line was used as a testbed for screening cell toxicity levels associated with the concentration of PMMA with different molecular weights (MWs) (i.e., MW ~5,000 and ~15,000 g/mol). The lower MW of PMMA had a half-maximal inhibitory concentration (IC50 ) value of 5.7 mg/cm2 , indicating greater detrimental effects than the higher MW (IC50 = 14.0 mg/cm2 ). Non-cytotoxic concentrations of 3.0 mg/cm2 for MW ~15,000 g/mol and 0.9 mg/cm2 for MW ~5,000 g/mol) induced negative metabolic changes in NIH3T3 cells. Cell viability was severely reduced to 7% after the exposure to degradation by-products generated after thermal and photodegradation degradation of PMMA. PMMA at non-cytotoxic concentrations still induced overexpression of pro-inflammatory cytokines, chemokines, and growth factors (IL1B, CXCL10, CCL5, IL1R1, IL7, IL17A, VEGFA, FGF2, IFNG, IL15) on the RhE model. The inflammatory response was also supported by histopathological and gene expression analyses of PMMA-treated RhE, indicating tissue damage and gene overexpression. Results suggested that non-cytotoxic concentrations of PMMA (3.0 to 5.6 mg/cm2 for MW ~15,000 g/mol and 0.9 to 2.1 mg/cm2 for MW ~5,000 g/mol) were sufficient to negatively alter NIH3T3 cells metabolism and activate inflammatory events in the RhE skin.
Collapse
Affiliation(s)
- Luisa F Barraza-Vergara
- Department of Chemical Engineering, University of Puerto Rico at Mayagüez, Mayaguez, Puerto Rico, USA
| | - Lesly Carmona-Sarabia
- Department of Chemistry, University of Puerto Rico at Río Piedras, San Juan, Puerto Rico, USA
| | - Wandaliz Torres-García
- Department of Industrial Engineering, University of Puerto Rico at Mayagüez, Mayaguez, Puerto Rico, USA
| | - Maribella Domenech-García
- Department of Chemical Engineering, University of Puerto Rico at Mayagüez, Mayaguez, Puerto Rico, USA
| | - Janet Mendez-Vega
- Department of Chemical Engineering, University of Puerto Rico at Mayagüez, Mayaguez, Puerto Rico, USA
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico at Mayagüez, Mayaguez, Puerto Rico, USA
| |
Collapse
|
26
|
Alizadeh J, da Silva Rosa SC, Weng X, Jacobs J, Lorzadeh S, Ravandi A, Vitorino R, Pecic S, Zivkovic A, Stark H, Shojaei S, Ghavami S. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol 2023; 102:151337. [PMID: 37392580 DOI: 10.1016/j.ejcb.2023.151337] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiaohui Weng
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Joadi Jacobs
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Rui Vitorino
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
27
|
Ren Y, Mao X, Xu H, Dang Q, Weng S, Zhang Y, Chen S, Liu S, Ba Y, Zhou Z, Han X, Liu Z, Zhang G. Ferroptosis and EMT: key targets for combating cancer progression and therapy resistance. Cell Mol Life Sci 2023; 80:263. [PMID: 37598126 PMCID: PMC10439860 DOI: 10.1007/s00018-023-04907-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
Iron-dependent lipid peroxidation causes ferroptosis, a form of regulated cell death. Crucial steps in the formation of ferroptosis include the accumulation of ferrous ions (Fe2+) and lipid peroxidation, of which are controlled by glutathione peroxidase 4 (GPX4). Its crucial role in stopping the spread of cancer has been shown by numerous studies undertaken in the last ten years. Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells acquire mesenchymal characteristics. EMT is connected to carcinogenesis, invasiveness, metastasis, and therapeutic resistance in cancer. It is controlled by a range of internal and external signals and changes the phenotype from epithelial to mesenchymal like. Studies have shown that mesenchymal cancer cells tend to be more ferroptotic than their epithelial counterparts. Drug-resistant cancer cells are more easily killed by inducers of ferroptosis when they undergo EMT. Therefore, understanding the interaction between ferroptosis and EMT will help identify novel cancer treatment targets. In-depth discussion is given to the regulation of ferroptosis, the potential application of EMT in the treatment of cancer, and the relationships between ferroptosis, EMT, and signaling pathways associated with tumors. Invasion, metastasis, and inflammation in cancer all include ferroptosis and EMT. The goal of this review is to provide suggestions for future research and practical guidance for applying ferroptosis and EMT in clinical practice.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiangrong Mao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
28
|
Yamamoto H, Shimomura N, Oura K, Hasegawa Y. Nacre Extract from Pearl Oyster Shell Prevents D-Galactose-Induced Brain and Skin Aging. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:503-518. [PMID: 36629944 DOI: 10.1007/s10126-022-10192-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Pearl oyster shells comprise two layers, a prismatic and nacreous layer, of calcium carbonate. The nacreous layer has been used in Chinese medicine since ancient times. In this study, we investigated the effects of the extract from the nacreous layer of pearl oysters (nacre extract) on D-galactose-induced brain and skin aging. Treatment with nacre extract led to the recovery of D-galactose-induced memory impairment, as examined using the Barnes maze, novel object recognition, and Y-maze tests. A histological study showed that nacre extract suppressed D-galactose-induced neuronal cell death and the expression of B cell lymphoma 2 (Bcl-2)-associated X protein (Bax), which causes apoptosis in the hippocampus. In addition, the expression levels of brain-derived neurotrophic factor, which counteracts age-related brain dysfunction, and nicotinamide adenine dinucleotide-dependent deacetylase (sirtuin 1), which delays aging and extends lifespan, increased after nacre extract treatment. Moreover, the nacre extract showed anti-aging effects against D-galactose-induced skin aging; it suppressed D-galactose-induced wrinkle formation, decreased skin moisture, decreased epidermal thickness, and destroyed collagen arrangement associated with aging. Furthermore, the nacre extract suppressed oxidative stress associated with aging in the brain and skin by upregulating the expression of catalase and superoxide dismutase. The expression level of the cellular senescence marker p16, which is induced by oxidative stress, was elevated in the hippocampus and skin epidermal layer of D-galactose-treated mice, and it was suppressed by the administration of nacre extract. These results show that the nacre extract can suppress D-galactose-induced aging by enhancing anti-oxidant activity and suppressing p16 expression. Thus, the nacre extract may be an effective anti-aging agent.
Collapse
Affiliation(s)
- Hana Yamamoto
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan
| | - Nanami Shimomura
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan
| | - Kazuma Oura
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan
| | - Yasushi Hasegawa
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan.
| |
Collapse
|
29
|
Zhang M, Li Z, Liu Y, Ding X, Wang Y, Fan S. The ceramide synthase (CERS/LASS) family: Functions involved in cancer progression. Cell Oncol (Dordr) 2023; 46:825-845. [PMID: 36947340 DOI: 10.1007/s13402-023-00798-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Ceramide synthases (CERSes) are also known longevity assurance (LASS) genes. CERSes play important roles in the regulation of cancer progression. The CERS family is expressed in a variety of human tumours and is involved in tumorigenesis. They are closely associated with the progression of liver, breast, cervical, ovarian, colorectal, head and neck squamous cell, gastric, lung, prostate, oesophageal, pancreatic and blood cancers. CERSes play diverse and important roles in the regulation of cell survival, proliferation, apoptosis, migration, invasion, and drug resistance. The differential expression of CERSes in tumour and nontumour cells and survival analysis of cancer patients suggest that some CERSes could be used as potential prognostic markers. They are also important potential targets for cancer therapy. METHODS In this review, we summarize the available evidence on the inhibitory or promotive roles of CERSes in the progression of many cancers. Furthermore, we summarize the identified upstream and downstream molecular mechanisms that may regulate the function of CERSes in cancer settings.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yuwei Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xiao Ding
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
30
|
Lu H, Hong T, Jiang Y, Whiteway M, Zhang S. Candidiasis: From cutaneous to systemic, new perspectives of potential targets and therapeutic strategies. Adv Drug Deliv Rev 2023; 199:114960. [PMID: 37307922 DOI: 10.1016/j.addr.2023.114960] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Candidiasis is an infection caused by fungi from a Candida species, most commonly Candida albicans. C. albicans is an opportunistic fungal pathogen typically residing on human skin and mucous membranes of the mouth, intestines or vagina. It can cause a wide variety of mucocutaneous barrier and systemic infections; and becomes a severe health problem in HIV/AIDS patients and in individuals who are immunocompromised following chemotherapy, treatment with immunosuppressive agents or after antibiotic-induced dysbiosis. However, the immune mechanism of host resistance to C. albicans infection is not fully understood, there are a limited number of therapeutic antifungal drugs for candidiasis, and these have disadvantages that limit their clinical application. Therefore, it is urgent to uncover the immune mechanisms of the host protecting against candidiasis and to develop new antifungal strategies. This review synthesizes current knowledge of host immune defense mechanisms from cutaneous candidiasis to invasive C. albicans infection and documents promising insights for treating candidiasis through inhibitors of potential antifungal target proteins.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ting Hong
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada.
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Qian X, Srinivasan T, He J, Lu J, Jin Y, Gu H, Chen R. Ceramide compensation by ceramide synthases preserves retinal function and structure in a retinal dystrophy mouse model. Dis Model Mech 2023; 16:dmm050168. [PMID: 37466006 PMCID: PMC10387349 DOI: 10.1242/dmm.050168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Increasing evidence has supported the role of ceramide as a mediator of photoreceptor dysfunction or cell death in ceramide accumulation and deficiency contexts. TLCD3B, a non-canonical ceramide synthase, was previously identified in addition to the six canonical ceramide synthases (CerSs), and the Tlcd3b-/- mouse model exhibited both retinal dysfunction and degeneration. As previous canonical CerS-deficient mouse models failed to display retinal degeneration, the mechanisms of how TLCD3B interacts with CerSs have not been investigated. Additionally, as the ceramide profile of each CerS is distinct, it is unclear whether the overall level or the homeostasis of different ceramide species plays a critical role in photoreceptor degeneration. Interactions between TLCD3B with canonical CerSs expressed in the retina were examined by subretinally injecting recombinant adeno-associated virus 8 vectors containing the Cers2 (rAAV8-CerS2), Cers4 (rAAV8-CerS4) and Cers5 (rAAV8-CerS5) genes. Injection of all three rAAV8-CerS vectors restored retinal functions as indicated by improved electroretinogram responses, but only rAAV8-CerS5 successfully retained retinal morphology in Tlcd3b-/- mice. CerSs and TLCD3B played partially redundant roles. Additionally, rather than acting as an integral entity, different ceramide species had different impacts on retinal cells, suggesting that the maintenance of the overall ceramide profile is critical for retinal function.
Collapse
Affiliation(s)
- Xinye Qian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Jiaxiong Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
32
|
Huber LT, Kraus JM, Ezić J, Wanli A, Groth M, Laban S, Hoffmann TK, Wollenberg B, Kestler HA, Brunner C. Liquid biopsy: an examination of platelet RNA obtained from head and neck squamous cell carcinoma patients for predictive molecular tumor markers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:422-446. [PMID: 37455825 PMCID: PMC10344902 DOI: 10.37349/etat.2023.00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2023] [Indexed: 07/18/2023] Open
Abstract
Aim Recently, a tumor cell-platelet interaction was identified in different tumor entities, resulting in a transfer of tumor-derived RNA into platelets, named further "tumor-educated platelets (TEP)". The present pilot study aims to investigate whether such a tumor-platelet transfer of RNA occurs also in patients suffering from head and neck squamous cell carcinoma (HNSCC). Methods Sequencing analysis of RNA derived from platelets of tumor patients (TPs) and healthy donors (HDs) were performed. Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used for verification of differentially expressed genes in platelets from TPs and HDs in a second cohort of patients and HDs. Data were analyzed by applying bioinformatic tools. Results Sequencing of RNA derived from the tumor as well as from platelets of TPs and HDs revealed 426 significantly differentially existing RNA, at which 406 RNA were more and 20 RNA less abundant in platelets from TPs in comparison to that of HDs. In TPs' platelets, abundantly existing RNA coding for 49 genes were detected, characteristically expressed in epithelial cells and RNA, the products of which are involved in tumor progression. Applying bioinformatic tools and verification on a second TP/HD cohort, collagen type I alpha 1 chain (COL1A1) and zinc finger protein 750 (ZNF750) were identified as the strongest potentially platelet-RNA-sequencing (RNA-seq)-based biomarkers for HNSCC. Conclusions These results indicate a transfer of tumor-derived messenger RNA (mRNA) into platelets of HNSCC patients. Therefore, analyses of a patient's platelet RNA could be an efficient option for liquid biopsy in order to diagnose HNSCC or to monitor tumorigenesis as well as therapeutic responses at any time and in real time.
Collapse
Affiliation(s)
- Lisa T. Huber
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Jasmin Ezić
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Amin Wanli
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Marco Groth
- Leibniz Institute of Aging – Fritz Lipmann Institute, CF DNA sequencing, 07745 Jena, Germany
| | - Simon Laban
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Thomas K. Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Barbara Wollenberg
- Clinic for Otorhinolaryngology, Head and Neck Surgery, Technical University of Munich, 80333 Munich, Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| |
Collapse
|
33
|
Sassa T, Kihara A. Involvement of ω-O-acylceramides and protein-bound ceramides in oral permeability barrier formation. Cell Rep 2023; 42:112363. [PMID: 37054712 DOI: 10.1016/j.celrep.2023.112363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
The permeability barrier present in the oral cavity is critical for protection from infection. Although lipids have properties suitable for permeability barrier formation, little is known about their role in oral barrier formation. Here, we show the presence of ω-O-acylceramides (acylceramides) and protein-bound ceramides, which are essential for the formation of permeability barriers in the epidermis, in the oral mucosae (buccal and tongue mucosae), esophagus, and stomach in mice. Conditional knockout of the fatty acid elongase Elovl1, which is involved in the synthesis of ≥C24 ceramides including acylceramides and protein-bound ceramides, in the oral mucosae and esophagus causes increased pigment penetration into the mucosal epithelium of the tongue and enhanced aversive responses to capsaicin-containing water. We find acylceramides in the buccal and gingival mucosae and protein-bound ceramides in the gingival mucosa in humans. These results indicate that acylceramides and protein-bound ceramides are important for oral permeability barrier formation.
Collapse
Affiliation(s)
- Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
34
|
Role of Omega-Hydroxy Ceramides in Epidermis: Biosynthesis, Barrier Integrity and Analyzing Method. Int J Mol Sci 2023; 24:ijms24055035. [PMID: 36902463 PMCID: PMC10003399 DOI: 10.3390/ijms24055035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Attached to the outer surface of the corneocyte lipid envelope (CLE), omega-hydroxy ceramides (ω-OH-Cer) link to involucrin and function as lipid components of the stratum corneum (SC). The integrity of the skin barrier is highly dependent on the lipid components of SC, especially on ω-OH-Cer. Synthetic ω-OH-Cer supplementation has been utilized in clinical practice for epidermal barrier injury and related surgeries. However, the mechanism discussion and analyzing methods are not keeping pace with its clinical application. Though mass spectrometry (MS) is the primary choice for biomolecular analysis, method modifications for ω-OH-Cer identification are lacking in progress. Therefore, finding conclusions on ω-OH-Cer biological function, as well as on its identification, means it is vital to remind further researchers of how the following work should be done. This review summarizes the important role of ω-OH-Cer in epidermal barrier functions and the forming mechanism of ω-OH-Cer. Recent identification methods for ω-OH-Cer are also discussed, which could provide new inspirations for study on both ω-OH-Cer and skin care development.
Collapse
|
35
|
Dysregulated ceramide metabolism in mouse progressive dermatitis resulting from constitutive activation of Jak1. J Lipid Res 2023; 64:100329. [PMID: 36639058 PMCID: PMC9932461 DOI: 10.1016/j.jlr.2023.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023] Open
Abstract
Coordinated lipid metabolism contributes to maintaining skin homeostasis by regulating skin barrier formation, immune reactions, thermogenesis, and perception. Several reports have documented the changes in lipid composition in dermatitis, including in atopic dermatitis (AD); however, the specific mechanism by which these lipid profiles are altered during AD pathogenesis remains unknown. Here, we performed untargeted and targeted lipidomic analyses of an AD-like dermatitis model resulting from constitutive activation of Janus kinase 1 (Spade mice) to capture the comprehensive lipidome profile during dermatitis onset and progression. We successfully annotated over 700 skin lipids, including glycerophospholipids, ceramides, neutral lipids, and fatty acids, many of which were found to be present at significantly changed levels after dermatitis onset, as determined by the pruritus and erythema. Among them, we found the levels of ceramides composed of nonhydroxy fatty acid and dihydrosphingosine containing very long-chain (C22 or more) fatty acids were significantly downregulated before AD onset. Furthermore, in vitro enzyme assays using the skin of Spade mice demonstrated the enhancement of ceramide desaturation. Finally, we revealed topical application of ceramides composed of nonhydroxy fatty acid and dihydrosphingosine before AD onset effectively ameliorated the progression of AD symptoms in Spade mice. Our results suggest that the disruption in epidermal ceramide composition is caused by boosting ceramide desaturation in the initiation phase of AD, which regulates AD pathogenesis.
Collapse
|
36
|
Kleuser B, Bäumer W. Sphingosine 1-Phosphate as Essential Signaling Molecule in Inflammatory Skin Diseases. Int J Mol Sci 2023; 24:ijms24021456. [PMID: 36674974 PMCID: PMC9863039 DOI: 10.3390/ijms24021456] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids are crucial molecules of the mammalian epidermis. The formation of skin-specific ceramides contributes to the formation of lipid lamellae, which are important for the protection of the epidermis from excessive water loss and protect the skin from the invasion of pathogens and the penetration of xenobiotics. In addition to being structural constituents of the epidermal layer, sphingolipids are also key signaling molecules that participate in the regulation of epidermal cells and the immune cells of the skin. While the importance of ceramides with regard to the proliferation and differentiation of skin cells has been known for a long time, it has emerged in recent years that the sphingolipid sphingosine 1-phosphate (S1P) is also involved in processes such as the proliferation and differentiation of keratinocytes. In addition, the immunomodulatory role of this sphingolipid species is becoming increasingly apparent. This is significant as S1P mediates a variety of its actions via G-protein coupled receptors. It is, therefore, not surprising that dysregulation in the signaling pathways of S1P is involved in the pathophysiological conditions of skin diseases. In the present review, the importance of S1P in skin cells, as well as the immune cells of the skin, is elaborated. In particular, the role of the molecule in inflammatory skin diseases will be discussed. This is important because interfering with S1P signaling pathways may represent an innovative option for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2+4, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| | - Wolfgang Bäumer
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| |
Collapse
|
37
|
Qian X, Srinivasan T, He J, Chen R. The Role of Ceramide in Inherited Retinal Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:303-307. [PMID: 37440049 DOI: 10.1007/978-3-031-27681-1_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Ceramide (Cer) plays an essential role in photoreceptor cell death in the retina. On the one hand, Cer accumulation emerges as a common feature during retina neurodegeneration, leading to the death of photoreceptors. On the other hand, Cer deficiency has also recently been associated with retinal dysfunction and degeneration. Although more and more evidence supports the importance of maintaining Cer homeostasis in the retina, mechanistic explanations of the observed phenotypes, especially in the context of Cer deficiency, are still lacking. An enhanced understanding of Cer's role in the retina will help us explore the underlying molecular basis for clinical phenotypes of retinal dystrophies and provide us with potential therapeutic targets.
Collapse
Affiliation(s)
- Xinye Qian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | | | | | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
38
|
Sandhoff R, Sandhoff K. Neuronal Ganglioside and Glycosphingolipid (GSL) Metabolism and Disease : Cascades of Secondary Metabolic Errors Can Generate Complex Pathologies (in LSDs). ADVANCES IN NEUROBIOLOGY 2023; 29:333-390. [PMID: 36255681 DOI: 10.1007/978-3-031-12390-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glycosphingolipids (GSLs) are a diverse group of membrane components occurring mainly on the surfaces of mammalian cells. They and their metabolites have a role in intercellular communication, serving as versatile biochemical signals (Kaltner et al, Biochem J 476(18):2623-2655, 2019) and in many cellular pathways. Anionic GSLs, the sialic acid containing gangliosides (GGs), are essential constituents of neuronal cell surfaces, whereas anionic sulfatides are key components of myelin and myelin forming oligodendrocytes. The stepwise biosynthetic pathways of GSLs occur at and lead along the membranes of organellar surfaces of the secretory pathway. After formation of the hydrophobic ceramide membrane anchor of GSLs at the ER, membrane-spanning glycosyltransferases (GTs) of the Golgi and Trans-Golgi network generate cell type-specific GSL patterns for cellular surfaces. GSLs of the cellular plasma membrane can reach intra-lysosomal, i.e. luminal, vesicles (ILVs) by endocytic pathways for degradation. Soluble glycoproteins, the glycosidases, lipid binding and transfer proteins and acid ceramidase are needed for the lysosomal catabolism of GSLs at ILV-membrane surfaces. Inherited mutations triggering a functional loss of glycosylated lysosomal hydrolases and lipid binding proteins involved in GSL degradation cause a primary lysosomal accumulation of their non-degradable GSL substrates in lysosomal storage diseases (LSDs). Lipid binding proteins, the SAPs, and the various lipids of the ILV-membranes regulate GSL catabolism, but also primary storage compounds such as sphingomyelin (SM), cholesterol (Chol.), or chondroitin sulfate can effectively inhibit catabolic lysosomal pathways of GSLs. This causes cascades of metabolic errors, accumulating secondary lysosomal GSL- and GG- storage that can trigger a complex pathology (Breiden and Sandhoff, Int J Mol Sci 21(7):2566, 2020).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Konrad Sandhoff
- LIMES, c/o Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
39
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
40
|
Xu J, Fang H, Chong Y, Lin L, Xie T, Ji J, Shen C, Shi C, Shan J. Cyclophosphamide Induces Lipid and Metabolite Perturbation in Amniotic Fluid during Rat Embryonic Development. Metabolites 2022; 12:1105. [PMID: 36422245 PMCID: PMC9693482 DOI: 10.3390/metabo12111105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 08/13/2023] Open
Abstract
Cyclophosphamide (CP) has been proven to be an embryo-fetal toxic. However, the mechanism responsible for the toxicity of the teratogenic agent has not been fully explored. This study aimed to examine the teratogenicity of CP when administered in the sensitive period of pregnant rats. The effect of CP on the lipid and metabolic profiles of amniotic fluid was evaluated using a UHPLC-Q-Exactive Orbitrap MS-based method. Metabolome analysis was performed using the MS-DIAL software with LipidBlast and NIST. Initially, we identified 636 and 154 lipid compounds in the positive and negative ion modes and 118 metabolites for differential analysis. Mainly 4 types of oxidized lipids in the amniotic fluid were found to accumulate most significantly after CP treatment, including very-long-chain unsaturated fatty acids (VLCUFAs), polyunsaturated fatty acid (PUFA)-containing triglycerides (TGs), oxidized phosphatidylcholine (PC), and sphingomyelin (SM). Tryptophan and some long-chain saturated fatty acids were lowered pronouncedly after CP treatment. These findings suggest that CP may exert teratogenic toxicity on pregnant rats through maternal and fetal oxidative stress. The UHPLC-Q-Exactive Orbitrap MS-based lipidomics approach is worthy of wider application for evaluating the potential toxicity of other agents (toxicants) during embryonic development.
Collapse
Affiliation(s)
- Jianya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huafeng Fang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chong
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
41
|
Schratter M, Lass A, Radner FPW. ABHD5-A Regulator of Lipid Metabolism Essential for Diverse Cellular Functions. Metabolites 2022; 12:1015. [PMID: 36355098 PMCID: PMC9694394 DOI: 10.3390/metabo12111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2023] Open
Abstract
The α/β-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.
Collapse
Affiliation(s)
- Margarita Schratter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| | - Franz P. W. Radner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
42
|
Ho QWC, Zheng X, Ali Y. Ceramide Acyl Chain Length and Its Relevance to Intracellular Lipid Regulation. Int J Mol Sci 2022; 23:9697. [PMID: 36077094 PMCID: PMC9456274 DOI: 10.3390/ijms23179697] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ceramides are a class of sphingolipids which are implicated in skin disorders, obesity, and other metabolic diseases. As a class with pleiotropic effects, recent efforts have centred on discerning specific ceramide species and their effects on atopic dermatitis, obesity, type 2 diabetes, and cardiovascular diseases. This delineation has allowed the identification of disease biomarkers, with long acyl chain ceramides such as C16- and C18-ceramides linked to metabolic dysfunction and cardiac function decline, while ultra-long acyl chain ceramides (>25 carbon acyl chain) were reported to be essential for maintaining a functional skin barrier. Given the intricate link between free fatty acids with ceramides, especially the de novo synthetic pathway, intracellular lipid droplet formation is increasingly viewed as an important mechanism for preventing accumulation of toxic ceramide species. Here, we review recent reports of various ceramide species involved in skin abnormalities and metabolic diseases, and we propose that promotion of lipid droplet biogenesis can be seen as a potential protective mechanism against deleterious ceramides.
Collapse
Affiliation(s)
- Qing Wei Calvin Ho
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Singapore Eye Research Institute (SERI), Singapore General Hospital, Singapore 168751, Singapore
| |
Collapse
|
43
|
Lyu Y, Guan Y, Deliu L, Humphrey E, Frontera JK, Yang YJ, Zamler D, Kim KH, Mohanty V, Jin K, Mohanty V, Liu V, Dou J, Veillon LJ, Kumar SV, Lorenzi PL, Chen Y, McAndrews KM, Grivennikov S, Song X, Zhang J, Xi Y, Wang J, Chen K, Nagarajan P, Ge Y. KLF5 governs sphingolipid metabolism and barrier function of the skin. Genes Dev 2022; 36:gad.349662.122. [PMID: 36008138 PMCID: PMC9480852 DOI: 10.1101/gad.349662.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 01/03/2023]
Abstract
Stem cells are fundamental units of tissue remodeling whose functions are dictated by lineage-specific transcription factors. Home to epidermal stem cells and their upward-stratifying progenies, skin relies on its secretory functions to form the outermost protective barrier, of which a transcriptional orchestrator has been elusive. KLF5 is a Krüppel-like transcription factor broadly involved in development and regeneration whose lineage specificity, if any, remains unclear. Here we report KLF5 specifically marks the epidermis, and its deletion leads to skin barrier dysfunction in vivo. Lipid envelopes and secretory lamellar bodies are defective in KLF5-deficient skin, accompanied by preferential loss of complex sphingolipids. KLF5 binds to and transcriptionally regulates genes encoding rate-limiting sphingolipid metabolism enzymes. Remarkably, skin barrier defects elicited by KLF5 ablation can be rescued by dietary interventions. Finally, we found that KLF5 is widely suppressed in human diseases with disrupted epidermal secretion, and its regulation of sphingolipid metabolism is conserved in human skin. Altogether, we established KLF5 as a disease-relevant transcription factor governing sphingolipid metabolism and barrier function in the skin, likely representing a long-sought secretory lineage-defining factor across tissue types.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lisa Deliu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ericka Humphrey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Joanna K Frontera
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Youn Joo Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Daniel Zamler
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kun Hee Kim
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kevin Jin
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Vakul Mohanty
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Virginia Liu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lucas J Veillon
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sergei Grivennikov
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Department of Biomedical Sciences, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
44
|
Nohara T, Ohno Y, Kihara A. Impaired production of skin barrier lipid acylceramides and abnormal localization of PNPLA1 due to ichthyosis-causing mutations in PNPLA1. J Dermatol Sci 2022; 107:89-94. [DOI: 10.1016/j.jdermsci.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 10/16/2022]
|
45
|
PNPLA1-Mediated Acylceramide Biosynthesis and Autosomal Recessive Congenital Ichthyosis. Metabolites 2022; 12:metabo12080685. [PMID: 35893253 PMCID: PMC9332298 DOI: 10.3390/metabo12080685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
The stratum corneum of the epidermis acts as a life-sustaining permeability barrier. Unique heterogeneous ceramides, especially ω-O-acylceramides, are key components for the formation of stable lamellar membrane structures in the stratum corneum and are essential for a vital epidermal permeability barrier. Several enzymes involved in acylceramide synthesis have been demonstrated to be associated with ichthyosis. The function of patatin-like phospholipase domain-containing protein 1 (PNPLA1) was a mystery until the finding that PNPLA1 gene mutations were involved in autosomal-recessive congenital ichthyosis (ARCI) patients, both humans and dogs. PNPLA1 plays an essential role in the biosynthesis of acylceramide as a CoA-independent transacylase. PNPLA1 gene mutations cause decreased acylceramide levels and impaired skin barrier function. More and more mutations in PNPLA1 genes have been identified in recent years. Herein, we describe the structural and functional specificity of PNPLA1, highlight its critical roles in acylceramide synthesis and skin barrier maintenance, and summarize the PNPLA1 mutations currently identified in ARCI patients.
Collapse
|
46
|
Kocsis D, Klang V, Schweiger EM, Varga-Medveczky Z, Mihály A, Pongor C, Révész Z, Somogyi Z, Erdő F. Characterization and ex vivo evaluation of excised skin samples as substitutes for human dermal barrier in pharmaceutical and dermatological studies. Skin Res Technol 2022; 28:664-676. [PMID: 35726964 PMCID: PMC9907592 DOI: 10.1111/srt.13165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Excised animal and human skins are frequently used in permeability testing in pharmaceutical research. Several factors exist that may have influence on the results. In the current study some of the skin parameters that may affect drug permeability were analysed for human, mouse, rat and pig skin. MATERIALS AND METHODS Classic biophysical skin parameters were measured (e.g. pH, hydration, permittivity, transepidermal water loss). Physiological characteristics of the skins were also analysed by confocal Raman spectroscopy, scanning electron microscopy and two-photon microscopy. RESULTS Based on biophysical testing, skin barrier function was damaged in psoriatic mouse skin and in marketed pig skin. Hydration and pH values were similar among the species, but freezing and thawing reduced the water content of the skins and shifted the surface pH to acidic. Aging reduced hydration and permittivity, resulting in impaired barrier function. Mechanical sensitization used in permeability studies resulted in proportional thinning of dead epidermis. DISCUSSION Results indicate that depending on the scientific question it should be considered whether fresh or frozen tissue is used, and for certain purposes rodent skins are well usable. The structure of the skin tissue (ceramide, cholesterol, keratin, natural moisturizing factor or urea) is similar in rats and mice, but due to the higher skin thickness the lipid distribution is different in porcine skin. Psoriasis led to irregular chemical composition of the skin. CONCLUSION A comprehensive evaluation of skin samples of four species was performed. The biophysical and microscopic observations should be considered when selecting drug penetration models and experimental conditions.
Collapse
Affiliation(s)
- Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Victoria Klang
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Eva-Maria Schweiger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Zsófia Varga-Medveczky
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Anna Mihály
- Institute of Experimental Medicine, H-1094, Budapest, Hungary
| | - Csaba Pongor
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | | | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
47
|
Voelkel-Johnson C. Sphingolipids in embryonic development, cell cycle regulation, and stemness - Implications for polyploidy in tumors. Semin Cancer Biol 2022; 81:206-219. [PMID: 33429049 PMCID: PMC8263803 DOI: 10.1016/j.semcancer.2020.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The aberrant biology of polyploid giant cancer cells (PGCC) includes dysregulation of the cell cycle, induction of stress responses, and dedifferentiation, all of which are likely accompanied by adaptations in biophysical properties and metabolic activity. Sphingolipids are the second largest class of membrane lipids and play important roles in many aspects of cell biology that are potentially relevant to polyploidy. We have recently shown that the function of the sphingolipid enzyme acid ceramidase (ASAH1) is critical for the ability of PGCC to generate progeny by depolyploidization but mechanisms by which sphingolipids contribute to polyploidy and generation of offspring with stem-like properties remain elusive. This review discusses the role of sphingolipids during embryonic development, cell cycle regulation, and stem cells in an effort to highlight parallels to polyploidy.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
48
|
Opálka L, Meyer JM, Ondrejčeková V, Svatošová L, Radner FPW, Vávrová K. ω-O-Acylceramides but not ω-hydroxy ceramides are required for healthy lamellar phase architecture of skin barrier lipids. J Lipid Res 2022; 63:100226. [PMID: 35568253 PMCID: PMC9192818 DOI: 10.1016/j.jlr.2022.100226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Epidermal omega-O-acylceramides (ω-O-acylCers) are essential components of a competent skin barrier. These unusual sphingolipids with ultralong N-acyl chains contain linoleic acid esterified to the terminal hydroxyl of the N-acyl, the formation of which requires the transacylase activity of patatin-like phospholipase domain containing 1 (PNPLA1). In ichthyosis with dysfunctional PNPLA1, ω-O-acylCer levels are significantly decreased, and ω-hydroxylated Cers (ω-OHCers) accumulate. Here we explore the role of the linoleate moiety in ω-O-acylCers in the assembly of the skin lipid barrier. Ultrastructural studies of skin samples from neonatal Pnpla1+/+ and Pnpla1-/- mice showed that the linoleate moiety in ω-O-acylCers is essential for lamellar pairing in lamellar bodies, as well as for stratum corneum lipid assembly into the long periodicity lamellar phase (LPP). To further study the molecular details of ω-O-acylCer deficiency on skin barrier lipid assembly, we built in vitro lipid models composed of major stratum corneum lipid subclasses containing either ω-O-acylCer (healthy skin model), ω-OHCer (Pnpla1-/- model), or combination of the two. X-ray diffraction, infrared spectroscopy, and permeability studies indicated that ω-OHCers could not substitute for ω-O-acylCers, although in favorable conditions, they form a medium lamellar phase with a 10.8 nm-repeat distance and permeability barrier properties similar to LPP. In the absence of ω-O-acylCers, skin lipids were prone to separation into two phases with diminished barrier properties. The models combining ω-OHCers with ω-O-acylCers indicated that accumulation of ω-OHCers does not prevent ω-O-acylCer-driven lamellar stacking. These data suggest that ω-O-acylCer supplementation may be a viable therapeutic option in patients with PNPLA1 deficiency.
Collapse
Affiliation(s)
- Lukáš Opálka
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Jason M Meyer
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Veronika Ondrejčeková
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Linda Svatošová
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Kateřina Vávrová
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic.
| |
Collapse
|
49
|
Harmon RM, Devany J, Gardel ML. Dia1 coordinates differentiation and cell sorting in a stratified epithelium. J Cell Biol 2022; 221:e202101008. [PMID: 35323863 PMCID: PMC8958268 DOI: 10.1083/jcb.202101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 11/10/2021] [Accepted: 03/01/2022] [Indexed: 11/27/2022] Open
Abstract
Although implicated in adhesion, only a few studies address how the actin assembly factors guide cell positioning in multicellular tissues. The formin, Dia1, localizes to the proliferative basal layer of the epidermis. In organotypic cultures, Dia1 depletion reduced basal cell density and resulted in stratified tissues with disorganized differentiation and proliferative markers. Since crowding induces differentiation in epidermal tissues, we hypothesized that Dia1 is essential to reach densities amenable to differentiation before or during stratification. Consistent with this, forced crowding of Dia1-deficient cells rescued transcriptional abnormalities. We find Dia1 promotes rapid growth of lateral cell-cell adhesions, necessary for the construction of a highly crowded monolayer. In aggregation assays, cells sorted into distinct layers based on Dia1 expression status. These results suggest that as basal cells proliferate, reintegration and packing of Dia1-positive daughter cells is favored, whereas Dia1-negative cells tend to delaminate to a suprabasal compartment. This work elucidates the role of formin expression patterns in constructing distinct cellular domains within stratified epithelia.
Collapse
Affiliation(s)
- Robert M. Harmon
- James Franck Institute, The University of Chicago, Chicago, IL
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
| | - John Devany
- James Franck Institute, The University of Chicago, Chicago, IL
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
- Department of Physics, The University of Chicago, Chicago, IL
| | - Margaret L. Gardel
- James Franck Institute, The University of Chicago, Chicago, IL
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
- Department of Physics, The University of Chicago, Chicago, IL
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL
| |
Collapse
|
50
|
Suzuki M, Ohno Y, Kihara A. Whole picture of human stratum corneum ceramides, including the chain-length diversity of long-chain bases. J Lipid Res 2022; 63:100235. [PMID: 35654151 PMCID: PMC9240646 DOI: 10.1016/j.jlr.2022.100235] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Ceramides are essential lipids for skin permeability barrier function, and a wide variety of ceramide species exist in the stratum corneum (SC). Although ceramides with long-chain bases (LCBs) of various lengths have been identified in the human SC, a quantitative analysis that distinguishes ceramide species with different LCB chain lengths has not been yet published. Therefore, the whole picture of human SC ceramides remains unclear. Here, we conducted LC/MS/MS analyses to detect individual ceramide species differing in both the LCB and FA chain lengths and quantified 1,327 unbound ceramides and 254 protein-bound ceramides: the largest number of ceramide species reported to date. Ceramides containing an LCB whose chain length was C16–26 were present in the human SC. Of these, C18 (28.6%) was the most abundant, followed by C20 (24.8%) and C22 (12.8%). Each ceramide class had a characteristic distribution of LCB chain lengths and was divided into five groups according to this distribution. There was almost no difference in FA composition between the ceramide species containing LCBs of different chain lengths. Furthermore, we demonstrated that one of the serine palmitoyltransferase (SPT) complexes, SPTLC1/SPTLC3/SPTSSB, was able to produce C16–24 LCBs. The expression levels of all subunits constituting the SPT complexes increased during keratinocyte differentiation, resulting in the observed chain-length diversity of LCBs in the human SC. This study provides a molecular basis for elucidating human SC ceramide diversity and the pathogenesis of skin disorders.
Collapse
Affiliation(s)
- Madoka Suzuki
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|