1
|
Wu Y, Ma B, Liu C, Li D, Sui G. Pathological Involvement of Protein Phase Separation and Aggregation in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:10187. [PMID: 39337671 PMCID: PMC11432175 DOI: 10.3390/ijms251810187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases are the leading cause of human disability and immensely reduce patients' life span and quality. The diseases are characterized by the functional loss of neuronal cells and share several common pathogenic mechanisms involving the malfunction, structural distortion, or aggregation of multiple key regulatory proteins. Cellular phase separation is the formation of biomolecular condensates that regulate numerous biological processes, including neuronal development and synaptic signaling transduction. Aberrant phase separation may cause protein aggregation that is a general phenomenon in the neuronal cells of patients suffering neurodegenerative diseases. In this review, we summarize the pathological causes of common neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. We discuss the regulation of key amyloidogenic proteins with an emphasis of their aberrant phase separation and aggregation. We also introduce the approaches as potential therapeutic strategies to ameliorate neurodegenerative diseases through intervening protein aggregation. Overall, this review consolidates the research findings of phase separation and aggregation caused by misfolded proteins in a context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yinuo Wu
- Aulin College, Northeast Forestry University, Harbin 150040, China;
| | - Biao Ma
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Chang Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| |
Collapse
|
2
|
Brady ST, Mesnard-Hoaglin NA, Mays S, Priego M, Dziechciowska J, Morris S, Kang M, Tsai MY, Purks JL, Klein A, Gaona A, Melloni A, Connors T, Hyman B, Song Y, Morfini GA. Toxic effects of mutant huntingtin in axons are mediated by its proline-rich domain. Brain 2024; 147:2098-2113. [PMID: 37633260 PMCID: PMC11146425 DOI: 10.1093/brain/awad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/13/2023] [Accepted: 07/17/2023] [Indexed: 08/28/2023] Open
Abstract
Huntington's disease results from expansion of a polyglutamine tract (polyQ) in mutant huntingtin (mHTT) protein, but mechanisms underlying polyQ expansion-mediated toxic gain-of-mHTT function remain elusive. Here, deletion and antibody-based experiments revealed that a proline-rich domain (PRD) adjacent to the polyQ tract is necessary for mHTT to inhibit fast axonal transport and promote axonal pathology in cultured mammalian neurons. Further, polypeptides corresponding to subregions of the PRD sufficed to elicit the toxic effect on fast axonal transport, which was mediated by c-Jun N-terminal kinases (JNKs) and involved PRD binding to one or more SH3-domain containing proteins. Collectively, these data suggested a mechanism whereby polyQ tract expansion in mHTT promotes aberrant PRD exposure and interactions of this domain with SH3 domain-containing proteins including some involved in activation of JNKs. In support, biochemical and immunohistochemical experiments linked aberrant PRD exposure to increased JNK activation in striatal tissues of the zQ175 mouse model and from post-mortem Huntington's disease patients. Together, these findings support a critical role of PRD on mHTT toxicity, suggesting a novel framework for the potential development of therapies aimed to halt or reduce axonal pathology in Huntington's disease.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Sarah Mays
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Mercedes Priego
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joanna Dziechciowska
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Minsu Kang
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Ming Ying Tsai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Alison Klein
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Angelica Gaona
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Alexandra Melloni
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Theresa Connors
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02129, USA
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02129, USA
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
3
|
Skates E, Delattre H, Schofield Z, Asally M, Soyer OS. Thioflavin T indicates mitochondrial membrane potential in mammalian cells. BIOPHYSICAL REPORTS 2023; 3:100134. [PMID: 38026684 PMCID: PMC10679866 DOI: 10.1016/j.bpr.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The fluorescent benzothiazole dye thioflavin T (ThT) is widely used as a marker for protein aggregates, most commonly in the context of neurodegenerative disease research and diagnosis. Recently, this same dye was shown to indicate membrane potential in bacteria due to its cationic nature. This finding prompted a question whether ThT fluorescence is linked to the membrane potential in mammalian cells, which would be important for appropriate utilization of ThT in research and diagnosis. Here, we show that ThT localizes into the mitochondria of HeLa cells in a membrane-potential-dependent manner. Specifically, ThT colocalized in cells with the mitochondrial membrane potential indicator tetramethylrhodamine methyl ester (TMRM) and gave similar temporal responses as TMRM to treatment with a protonophore, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP). Additionally, we found that presence of ThT together with exposure to blue light (λ = 405 nm), but neither factor alone, caused depolarization of mitochondrial membrane potential. This additive effect of the concentration and blue light was recapitulated by a mathematical model implementing the potential-dependent distribution of ThT and its effect on mitochondrial membrane potential through photosensitization. These results show that ThT can act as a mitochondrial membrane potential indicator in mammalian cells, when used at low concentrations and with low blue light exposure. However, it causes dissipation of the mitochondrial membrane potential depending additively on its concentrations and blue light exposure. This conclusion motivates a re-evaluation of ThT's use at micromolar range in live-cell analyses and indicates that this dye can enable future studies on the potential connections between mitochondrial membrane potential dynamics and protein aggregation.
Collapse
Affiliation(s)
- Emily Skates
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, United Kingdom
- Midlands Integrative Doctoral Training Program; University of Warwick, Coventry, United Kingdom
| | - Hadrien Delattre
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Zoe Schofield
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, United Kingdom
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, United Kingdom
| | - Orkun S. Soyer
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, United Kingdom
| |
Collapse
|
4
|
Babi M, Neuman K, Peng CY, Maiuri T, Suart CE, Truant R. Recent Microscopy Advances and the Applications to Huntington’s Disease Research. J Huntingtons Dis 2022; 11:269-280. [PMID: 35848031 PMCID: PMC9484089 DOI: 10.3233/jhd-220536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Huntingtin is a 3144 amino acid protein defined as a scaffold protein with many intracellular locations that suggest functions in these compartments. Expansion of the CAG DNA tract in the huntingtin first exon is the cause of Huntington’s disease. An important tool in understanding the biological functions of huntingtin is molecular imaging at the single-cell level by microscopy and nanoscopy. The evolution of these technologies has accelerated since the Nobel Prize in Chemistry was awarded in 2014 for super-resolution nanoscopy. We are in a new era of light imaging at the single-cell level, not just for protein location, but also for protein conformation and biochemical function. Large-scale microscopy-based screening is also being accelerated by a coincident development of machine-based learning that offers a framework for truly unbiased data acquisition and analysis at very large scales. This review will summarize the newest technologies in light, electron, and atomic force microscopy in the context of unique challenges with huntingtin cell biology and biochemistry.
Collapse
Affiliation(s)
- Mouhanad Babi
- McMaster Centre for Advanced Light Microscopy (CALM) McMaster University, Hamilton, Canada
| | - Kaitlyn Neuman
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Christina Y. Peng
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Tamara Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Celeste E. Suart
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- McMaster Centre for Advanced Light Microscopy (CALM) McMaster University, Hamilton, Canada
| |
Collapse
|
5
|
Wüstner D. Dynamic Mode Decomposition of Fluorescence Loss in Photobleaching Microscopy Data for Model-Free Analysis of Protein Transport and Aggregation in Living Cells. SENSORS (BASEL, SWITZERLAND) 2022; 22:4731. [PMID: 35808232 PMCID: PMC9269098 DOI: 10.3390/s22134731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023]
Abstract
The phase separation and aggregation of proteins are hallmarks of many neurodegenerative diseases. These processes can be studied in living cells using fluorescent protein constructs and quantitative live-cell imaging techniques, such as fluorescence recovery after photobleaching (FRAP) or the related fluorescence loss in photobleaching (FLIP). While the acquisition of FLIP images is straightforward on most commercial confocal microscope systems, the analysis and computational modeling of such data is challenging. Here, a novel model-free method is presented, which resolves complex spatiotemporal fluorescence-loss kinetics based on dynamic-mode decomposition (DMD) of FLIP live-cell image sequences. It is shown that the DMD of synthetic and experimental FLIP image series (DMD-FLIP) allows for the unequivocal discrimination of subcellular compartments, such as nuclei, cytoplasm, and protein condensates based on their differing transport and therefore fluorescence loss kinetics. By decomposing fluorescence-loss kinetics into distinct dynamic modes, DMD-FLIP will enable researchers to study protein dynamics at each time scale individually. Furthermore, it is shown that DMD-FLIP is very efficient in denoising confocal time series data. Thus, DMD-FLIP is an easy-to-use method for the model-free detection of barriers to protein diffusion, of phase-separated protein assemblies, and of insoluble protein aggregates. It should, therefore, find wide application in the analysis of protein transport and aggregation, in particular in relation to neurodegenerative diseases and the formation of protein condensates in living cells.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology and Physics of Life Sciences (PhyLife) Center, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
6
|
Chongtham A, Bornemann DJ, Barbaro BA, Lukacsovich T, Agrawal N, Syed A, Worthge S, Purcell J, Burke J, Chin TM, Marsh JL. Effects of flanking sequences and cellular context on subcellular behavior and pathology of mutant HTT. Hum Mol Genet 2021; 29:674-688. [PMID: 31943010 DOI: 10.1093/hmg/ddaa001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is caused by an expansion of a poly glutamine (polyQ) stretch in the huntingtin protein (HTT) that is necessary to cause pathology and formation of HTT aggregates. Here we ask whether expanded polyQ is sufficient to cause pathology and aggregate formation. By addressing the sufficiency question, one can identify cellular processes and structural parameters that influence HD pathology and HTT subcellular behavior (i.e. aggregation state and subcellular location). Using Drosophila, we compare the effects of expressing mutant full-length human HTT (fl-mHTT) to the effects of mutant human HTTexon1 and to two commonly used synthetic fragments, HTT171 and shortstop (HTT118). Expanded polyQ alone is not sufficient to cause inclusion formation since full-length HTT and HTTex1 with expanded polyQ are both toxic although full-length HTT remains diffuse while HTTex1 forms inclusions. Further, inclusions are not sufficient to cause pathology since HTT171-120Q forms inclusions but is benign and co-expression of HTT171-120Q with non-aggregating pathogenic fl-mHTT recruits fl-mHTT to aggregates and rescues its pathogenicity. Additionally, the influence of sequences outside the expanded polyQ domain is revealed by finding that small modifications to the HTT118 or HTT171 fragments can dramatically alter their subcellular behavior and pathogenicity. Finally, mutant HTT subcellular behavior is strongly modified by different cell and tissue environments (e.g. fl-mHTT appears as diffuse nuclear in one tissue and diffuse cytoplasmic in another but toxic in both). These observations underscore the importance of cellular and structural context for the interpretation and comparison of experiments using different fragments and tissues to report the effects of expanded polyQ.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125
| | - Douglas J Bornemann
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Brett A Barbaro
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Tamas Lukacsovich
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Namita Agrawal
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Adeela Syed
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Shane Worthge
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Judith Purcell
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - John Burke
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Theodore M Chin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| |
Collapse
|
7
|
Yang J, Yang X. Phase Transition of Huntingtin: Factors and Pathological Relevance. Front Genet 2020; 11:754. [PMID: 32849783 PMCID: PMC7396480 DOI: 10.3389/fgene.2020.00754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
Formation of intracellular mutant Huntingtin (mHtt) aggregates is a hallmark of Huntington’s disease (HD). The mechanisms underlying mHtt aggregation, however, are still not fully understood. A few recent studies indicated mHtt undergoes phase transition, bringing new clues to understand how mHtt aggregates assemble. Here in this mini review, we will summarize these findings with a focus on the factors that affect mHtt phase transition. We will also discuss the possible pathological roles of mHtt phase separation in HD.
Collapse
Affiliation(s)
- Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xiaotong Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
He R, Lai X, Sun C, Kung T, Hong J, Jheng Y, Liao W, Chen J, Liao Y, Tu P, Huang JJ. Nanoscopic Insights of Amphiphilic Peptide against the Oligomer Assembly Process to Treat Huntington's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901165. [PMID: 31993280 PMCID: PMC6974936 DOI: 10.1002/advs.201901165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/07/2019] [Indexed: 05/12/2023]
Abstract
Finding an effective therapeutic regimen is an urgent demand for various neurodegenerative disorders including Huntington's disease (HD). For the difficulties in observing the dynamic aggregation and oligomerization process of mutant Huntingtin (mHtt) in vivo, the evaluation of potential drugs at the molecular protein level is usually restricted. By combing lifetime-based fluorescence microscopies and biophysical tools, it is showcased that a designed amphiphilic peptide, which targets the mHtt at an early stage, can perturb the oligomer assembly process nanoscopically, suppress the amyloid property of mHtt, conformationally transform the oligomers and/or aggregates of mHtt, and ameliorate mHtt-induced neurological damage and aggregation in cell and HD mouse models. It is also found that this amphiphilic peptide is able to transport to the brain and rescue the memory deficit through intranasal administration, indicating its targeting specificity in vivo. In summary, a biophotonic platform is provided to investigate the oligomerization/aggregation process in detail that offers insight into the design and effect of a targeted therapeutic agent for Huntington's disease.
Collapse
Affiliation(s)
- Ruei‐Yu He
- Institute of ChemistryAcademia SinicaTaipei11529Taiwan
| | - Xiang‐Me Lai
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
- Division of UrologyDepartment of SurgeryTri‐Service General HospitalNational Defense Medical CenterTaipei11490Taiwan
| | - Chia‐Sui Sun
- Institute of ChemistryAcademia SinicaTaipei11529Taiwan
| | - Te‐Shien Kung
- Institute of ChemistryAcademia SinicaTaipei11529Taiwan
- Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipei10607Taiwan
| | - Jhu‐Ying Hong
- Institute of ChemistryAcademia SinicaTaipei11529Taiwan
| | - Yu‐Song Jheng
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Wei‐Neng Liao
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesMiaoli35053Taiwan
| | - Jen‐Kun Chen
- Division of UrologyDepartment of SurgeryTri‐Service General HospitalNational Defense Medical CenterTaipei11490Taiwan
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesMiaoli35053Taiwan
| | - Yung‐Feng Liao
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei11529Taiwan
| | - Pang‐Hsien Tu
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
- Division of UrologyDepartment of SurgeryTri‐Service General HospitalNational Defense Medical CenterTaipei11490Taiwan
| | | |
Collapse
|
9
|
Kielar C, Morton AJ. Early Neurodegeneration in R6/2 Mice Carrying the Huntington's Disease Mutation with a Super-Expanded CAG Repeat, Despite Normal Lifespan. J Huntingtons Dis 2019; 7:61-76. [PMID: 29480204 DOI: 10.3233/jhd-170265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The threshold of CAG repeat expansion in the HTT gene that causes HD is 36 CAG repeats, although 'superlong' expansions are found in individual neurons in postmortem brains. Previously, we showed that, compared to mice with <250 CAG repeats, onset of disease in R6/2 mice carrying superlong (>440) CAG repeat expansions was delayed, and disease progression was slower. Inclusion pathology also differed from 250 CAG repeat mice, being dominated by a novel kind of extranuclear neuronal inclusion (nENNI) that resembles a class of aggregate seen in patients with the adult onset form of HD. Here, we characterised neuropathology in R6/2 mice with >400 CAG repeats using light and electron microscopy. nENNIs were found with increased frequency and wider distribution with age. Some nENNIs appear to 'mature' as the disease develops, developing a multi-layered cored structure. Mice with superlong CAG repeats do not develop clinical signs until they are around 30-40 weeks of age, and they attain a normal life span (>2 years). Nevertheless, they show brain atrophy and unequivocal neuron loss from the striatum and cortex by 22 weeks of age, an age at which similar pathology is seen in 250 CAG repeat mice. Since this time-point is 'end stage' for a 250 CAG mouse, but very far (at least 18 months) from end stage for a > 440 CAG repeat mouse, our data confirm that the appearance of clinical signs, the formation of inclusions, and neurodegeneration are processes that progress independently. A better understanding of the relationship between CAG repeat length, neurodegenerative pathways, and clinical behavioural signs is essential, if we are to find strategies to delay or reverse the course of this disease.
Collapse
Affiliation(s)
- Catherine Kielar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Levy GR, Shen K, Gavrilov Y, Smith PES, Levy Y, Chan R, Frydman J, Frydman L. Huntingtin's N-Terminus Rearrangements in the Presence of Membranes: A Joint Spectroscopic and Computational Perspective. ACS Chem Neurosci 2019; 10:472-481. [PMID: 30149694 DOI: 10.1021/acschemneuro.8b00353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease is a neurodegenerative disorder resulting from an expanded polyglutamine (polyQ) repeat of the Huntingtin (Htt) protein. Affected tissues often contain aggregates of the N-terminal Htt exon 1 (Htt-Ex1) fragment. The N-terminal N17 domain proximal to the polyQ tract is key to enhance aggregation and modulate Htt toxicity. Htt-Ex1 is intrinsically disordered, yet it has been postulated that under physiological conditions membranes induce the N17 to adopt an α-helical structure, which then plays a key role in regulating Htt protein aggregation. The present study leverages the recently available assignment of NMR peaks in an N17Q17 construct, in order to provide a look into the changes occurring in vitro upon exposing this fragment to various brain extract fragments as well as to synthetic bilayers. Residue-specific changes were observed by 3D HNCO NMR, whose nature was further clarified with ancillary CD and aggregation studies, as well as with molecular dynamic calculations. From this combination of measurements and computations, a unified picture emerges, whereby transient structures consisting of α-helices spanning a fraction of the N17 residues form during N17Q17-membrane interactions. These interactions are fairly dynamic, but they qualitatively mimic more rigid variants that have been discussed in the literature. The nature of these interactions and their potential influence on the aggregation process of these kinds of constructs under physiological conditions are briefly assessed.
Collapse
Affiliation(s)
| | - Koning Shen
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | | | | | | | - Rebecca Chan
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | | |
Collapse
|
12
|
Hansen CV, Schroll HJ, Wüstner D. A discontinuous Galerkin model for fluorescence loss in photobleaching of intracellular polyglutamine protein aggregates. BMC BIOPHYSICS 2018; 11:7. [PMID: 30519460 PMCID: PMC6264036 DOI: 10.1186/s13628-018-0046-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/30/2018] [Indexed: 12/03/2022]
Abstract
Background Intracellular phase separation and aggregation of proteins with extended poly-glutamine (polyQ) stretches are hallmarks of various age-associated neurodegenerative diseases. Progress in our understanding of such processes heavily relies on quantitative fluorescence imaging of suitably tagged proteins. Fluorescence loss in photobleaching (FLIP) is particularly well-suited to study the dynamics of protein aggregation in cellular models of Chorea Huntington and other polyQ diseases, as FLIP gives access to the full spatio-temporal profile of intensity changes in the cell geometry. In contrast to other methods, also dim aggregates become visible during time evolution of fluorescence loss in cellular compartments. However, methods for computational analysis of FLIP data are sparse, and transport models for estimation of transport and diffusion parameters from experimental FLIP sequences are missing. Results In this paper, we present a computational method for analysis of FLIP imaging experiments of intracellular polyglutamine protein aggregates also called inclusion bodies (IBs). By this method, we can determine the diffusion constant and nuclear membrane transport coefficients of polyQ proteins as well as the exchange rates between aggregates and the cytoplasm. Our method is based on a reaction-diffusion multi-compartment model defined on a mesh obtained by segmentation of the cell images from the FLIP sequence. The discontinuous Galerkin (DG) method is used for numerical implementation of our model in FEniCS, which greatly reduces the computing time. The method is applied to representative experimental FLIP sequences, and consistent estimates of all transport parameters are obtained. Conclusions By directly estimating the transport parameters from live-cell image sequences using our new computational FLIP approach surprisingly fast exchange dynamics of mutant Huntingtin between cytoplasm and dim IBs could be revealed. This is likely relevant also for other polyQ diseases. Thus, our method allows for quantifying protein dynamics at different stages of the protein aggregation process in cellular models of neurodegeneration. Electronic supplementary material The online version of this article (10.1186/s13628-018-0046-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian V Hansen
- 1Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, 5230 Denmark
| | - Hans J Schroll
- 1Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, 5230 Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, Campusvej 55, Odense M, 5230 Denmark
| |
Collapse
|
13
|
Abstract
The 25 years since the identification of the gene responsible for Huntington disease (HD) have stood witness to profound discoveries about the nature of the disease and its pathogenesis. Despite this progress, however, the development of disease-modifying therapies has thus far been slow. Preclinical validation of the therapeutic potential of disrupted pathways in HD has led to the advancement of pharmacological agents, both novel and repurposed, for clinical evaluation. The most promising therapeutic approaches include huntingtin (HTT) lowering and modification as well as modulation of neuroinflammation and synaptic transmission. With clinical trials for many of these approaches imminent or currently ongoing, the coming years are promising not only for HD but also for more prevalent neurodegenerative disorders, such as Alzheimer and Parkinson disease, in which many of these pathways have been similarly implicated.
Collapse
|
14
|
Peskett TR, Rau F, O'Driscoll J, Patani R, Lowe AR, Saibil HR. A Liquid to Solid Phase Transition Underlying Pathological Huntingtin Exon1 Aggregation. Mol Cell 2018; 70:588-601.e6. [PMID: 29754822 PMCID: PMC5971205 DOI: 10.1016/j.molcel.2018.04.007] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022]
Abstract
Huntington's disease is caused by an abnormally long polyglutamine tract in the huntingtin protein. This leads to the generation and deposition of N-terminal exon1 fragments of the protein in intracellular aggregates. We combined electron tomography and quantitative fluorescence microscopy to analyze the structural and material properties of huntingtin exon1 assemblies in mammalian cells, in yeast, and in vitro. We found that huntingtin exon1 proteins can form reversible liquid-like assemblies, a process driven by huntingtin's polyQ tract and proline-rich region. In cells and in vitro, the liquid-like assemblies converted to solid-like assemblies with a fibrillar structure. Intracellular phase transitions of polyglutamine proteins could play a role in initiating irreversible pathological aggregation.
Collapse
Affiliation(s)
- Thomas R Peskett
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK.
| | - Frédérique Rau
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jonathan O'Driscoll
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - Rickie Patani
- Institute of Neurology, University College London, London, WC1N 3BG, UK; The Francis Crick Institute, London, NW1 1AT, UK
| | - Alan R Lowe
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK; London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK.
| |
Collapse
|
15
|
Conformation Polymorphism of Polyglutamine Proteins. Trends Biochem Sci 2018; 43:424-435. [PMID: 29636213 DOI: 10.1016/j.tibs.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/29/2023]
Abstract
Expanded polyglutamine (polyQ) stretches within endogenous proteins cause at least nine human diseases. The structural basis of polyQ pathogenesis is the key to understanding fundamental mechanisms of these diseases, but it remains unclear and controversial due to a lack of polyQ protein structures at the single-atom level. Various hypotheses have been proposed to explain the structure-cytotoxicity relationship of pathogenic proteins with polyQ expansion, largely based on indirect evidence. Here we review these hypotheses and their supporting evidence, along with additional insights from recent structural biology and chemical biology studies, with a focus on Huntingtin (HTT), the most extensively studied polyQ disease protein. Lastly, we propose potential novel strategies that may further clarify the conformation-cytotoxicity relationship of polyQ proteins.
Collapse
|
16
|
Abstract
Huntington's disease is caused by the expansion of a polyglutamine (polyQ) tract in the N-terminal exon of huntingtin (HttEx1), but the cellular mechanisms leading to neurodegeneration remain poorly understood. Here we present in situ structural studies by cryo-electron tomography of an established yeast model system of polyQ toxicity. We find that expression of polyQ-expanded HttEx1 results in the formation of unstructured inclusion bodies and in some cases fibrillar aggregates. This contrasts with recent findings in mammalian cells, where polyQ inclusions were exclusively fibrillar. In yeast, polyQ toxicity correlates with alterations in mitochondrial and lipid droplet morphology, which do not arise from physical interactions with inclusions or fibrils. Quantitative proteomic analysis shows that polyQ aggregates sequester numerous cellular proteins and cause a major change in proteome composition, most significantly in proteins related to energy metabolism. Thus, our data point to a multifaceted toxic gain-of-function of polyQ aggregates, driven by sequestration of endogenous proteins and mitochondrial and lipid droplet dysfunction.
Collapse
|
17
|
Khoshnan A, Sabbaugh A, Calamini B, Marinero SA, Dunn DE, Yoo JH, Ko J, Lo DC, Patterson PH. IKKβ and mutant huntingtin interactions regulate the expression of IL-34: implications for microglial-mediated neurodegeneration in HD. Hum Mol Genet 2018; 26:4267-4277. [PMID: 28973132 DOI: 10.1093/hmg/ddx315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/07/2017] [Indexed: 01/04/2023] Open
Abstract
Neuronal interleukin-34 (IL-34) promotes the expansion of microglia in the central nervous system-microglial activation and expansion are in turn implicated in the pathogenesis of Huntington's disease (HD). We thus examined whether the accumulation of an amyloidogenic exon-1 fragment of mutant huntingtin (mHTTx1) modulates the expression of IL-34 in dopaminergic neurons derived from a human embryonic stem cell line. We found that mHTTx1 aggregates induce IL-34 production selectively in post-mitotic neurons. Exposure of neurons to DNA damaging agents or the excitotoxin NMDA elicited similar results suggesting that IL-34 induction may be a general response to neuronal stress including the accumulation of misfolded mHTTx1. We further determined that knockdown or blocking the activity of IκB kinase beta (IKKβ) prevented the aggregation of mHTTx1 and subsequent IL-34 production. While elevated IL-34 itself had no effect on the aggregation or the toxicity of mHTTx1 in neuronal culture, IL-34 expression in a rodent brain slice model with intact neuron-microglial networks exacerbated mHTTx1-induced degeneration of striatal medium-sized spiny neurons. Conversely, an inhibitor of the IL-34 receptor reduced microglial numbers and ameliorated mHTTx1-mediated neurodegeneration. Together, these findings uncover a novel function for IKKβ/mHTTx1 interactions in regulating IL-34 production, and implicate a role for IL-34 in non-cell-autonomous, microglial-dependent neurodegeneration in HD.
Collapse
Affiliation(s)
- Ali Khoshnan
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adam Sabbaugh
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Steven A Marinero
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Denise E Dunn
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Jung Hyun Yoo
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jan Ko
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Donald C Lo
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul H Patterson
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
18
|
Maiuri T, Mocle AJ, Hung CL, Xia J, van Roon-Mom WMC, Truant R. Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex. Hum Mol Genet 2017; 26:395-406. [PMID: 28017939 DOI: 10.1093/hmg/ddw395] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/11/2016] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease (HD) is an age-dependent neurodegenerative disease. DNA repair pathways have recently been implicated as the most predominant modifiers of age of onset in HD patients. We report that endogenous huntingtin protein directly participates in oxidative DNA damage repair. Using novel chromobodies to detect endogenous human huntingtin in live cells, we show that localization of huntingtin to DNA damage sites is dependent on the kinase activity of ataxia telangiectasia mutated (ATM) protein. Super-resolution microscopy and biochemical assays revealed that huntingtin co-localizes with and scaffolds proteins of the DNA damage response pathway in response to oxidative stress. In HD patient fibroblasts bearing typical clinical HD allele lengths, we demonstrate that there is deficient oxidative DNA damage repair. We propose that DNA damage in HD is caused by dysfunction of the mutant huntingtin protein in DNA repair, and accumulation of DNA oxidative lesions due to elevated reactive oxygen species may contribute to the onset of HD.
Collapse
Affiliation(s)
- Tamara Maiuri
- Department of Biochemistry and Biomedical Research, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Canada L8N3Z5
| | - Andrew J Mocle
- Department of Biochemistry and Biomedical Research, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Canada L8N3Z5
| | - Claudia L Hung
- Department of Biochemistry and Biomedical Research, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Canada L8N3Z5
| | - Jianrun Xia
- Department of Biochemistry and Biomedical Research, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Canada L8N3Z5
| | - Willeke M C van Roon-Mom
- Center for Human and Clinical Genetics, Leiden University Medical Center, Postzone S4-0P, P.O. Box 9600 2300RC Leiden, The Netherlands
| | - Ray Truant
- Department of Biochemistry and Biomedical Research, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Canada L8N3Z5
| |
Collapse
|
19
|
Branco-Santos J, Herrera F, Poças GM, Pires-Afonso Y, Giorgini F, Domingos PM, Outeiro TF. Protein phosphatase 1 regulates huntingtin exon 1 aggregation and toxicity. Hum Mol Genet 2017; 26:3763-3775. [DOI: 10.1093/hmg/ddx260] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022] Open
|
20
|
Büning S, Sharma A, Vachharajani S, Newcombe E, Ormsby A, Gao M, Gnutt D, Vöpel T, Hatters DM, Ebbinghaus S. Conformational dynamics and self-association of intrinsically disordered Huntingtin exon 1 in cells. Phys Chem Chem Phys 2017; 19:10738-10747. [DOI: 10.1039/c6cp08167c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-cell temperature jump experiments induce monomer collapse, misfolding and self-association of the Huntingtin exon 1 protein.
Collapse
Affiliation(s)
- Steffen Büning
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Abhishek Sharma
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | | | - Estella Newcombe
- Department of Biochemistry and Molecular Biology & Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Melbourne
- Australia
| | - Angelique Ormsby
- Department of Biochemistry and Molecular Biology & Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Melbourne
- Australia
| | - Mimi Gao
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - David Gnutt
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Tobias Vöpel
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Danny M. Hatters
- Department of Biochemistry and Molecular Biology & Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Melbourne
- Australia
| | - Simon Ebbinghaus
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| |
Collapse
|
21
|
Shen K, Calamini B, Fauerbach JA, Ma B, Shahmoradian SH, Serrano Lachapel IL, Chiu W, Lo DC, Frydman J. Control of the structural landscape and neuronal proteotoxicity of mutant Huntingtin by domains flanking the polyQ tract. eLife 2016; 5. [PMID: 27751235 PMCID: PMC5135392 DOI: 10.7554/elife.18065] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases are linked to amyloid aggregation. In Huntington’s disease (HD), neurotoxicity correlates with an increased aggregation propensity of a polyglutamine (polyQ) expansion in exon 1 of mutant huntingtin protein (mHtt). Here we establish how the domains flanking the polyQ tract shape the mHtt conformational landscape in vitro and in neurons. In vitro, the flanking domains have opposing effects on the conformation and stabilities of oligomers and amyloid fibrils. The N-terminal N17 promotes amyloid fibril formation, while the C-terminal Proline Rich Domain destabilizes fibrils and enhances oligomer formation. However, in neurons both domains act synergistically to engage protective chaperone and degradation pathways promoting mHtt proteostasis. Surprisingly, when proteotoxicity was assessed in rat corticostriatal brain slices, either flanking region alone sufficed to generate a neurotoxic conformation, while the polyQ tract alone exhibited minimal toxicity. Linking mHtt structural properties to its neuronal proteostasis should inform new strategies for neuroprotection in polyQ-expansion diseases. DOI:http://dx.doi.org/10.7554/eLife.18065.001 Huntington’s disease is a neurodegenerative disorder in which misshapen proteins accumulate in the brain and kill neurons. The misshapen proteins form as a result of specific mutations in the gene that encodes a protein called huntingtin. These mutations result in a region of the protein called the polyQ tract being longer than normal. Other regions of huntingtin that are near to the polyQ tract can dramatically change the behavior of the mutant protein. Shen et al. investigated how these regions control the shape of mutant huntingtin and how this affects the toxicity of the mutant protein in neurons. The experiments found that the two regions on either side of the polyQ tract dramatically change the shape of mutant huntingtin proteins. In the absence of these flanking regions, the extended polyQ region is not very toxic, demonstrating that the flanking sequences play important roles in generating the toxic protein shapes. These flanking regions help mutant huntingtin to form a particular shape that was strongly linked with the death of neurons in rat brain slices. The flanking regions also change the way that the cellular machinery in neurons recognizes mutated huntingtin proteins and acts to prevent them from causing harm. Misshapen forms of other proteins are responsible for causing other neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Therefore, the findings of Shen et al. may help researchers to develop new drugs for these conditions, as well as for Huntingdon’s disease. DOI:http://dx.doi.org/10.7554/eLife.18065.002
Collapse
Affiliation(s)
- Koning Shen
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Barbara Calamini
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Jonathan A Fauerbach
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Boxue Ma
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Sarah H Shahmoradian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Ivana L Serrano Lachapel
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Donald C Lo
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| |
Collapse
|
22
|
DiGiovanni LF, Mocle AJ, Xia J, Truant R. Huntingtin N17 domain is a reactive oxygen species sensor regulating huntingtin phosphorylation and localization. Hum Mol Genet 2016; 25:3937-3945. [PMID: 27466181 PMCID: PMC5291230 DOI: 10.1093/hmg/ddw234] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 11/12/2022] Open
Abstract
The N17 domain of the huntingtin protein is post-translationally modified and is the master regulator of huntingtin intracellular localization. In Huntington's disease (HD), mutant huntingtin is hypo-phosphorylated at serines 13 and 16 within N17, and increasing N17 phosphorylation has been shown to be protective in HD mouse models. Thus, N17 phosphorylation is defined as a sub-target of huntingtin for potential therapeutic intervention. We have previously shown that cellular stress can affect huntingtin nuclear entry and phosphorylation. Here, we demonstrate that huntingtin localization can be specifically affected by reactive oxygen species (ROS) stress. We have located the sensor of this stress to the N17 domain, specifically to a highly conserved methionine at position 8. In vitro, we show by circular dichroism spectroscopy structural studies that the alpha-helical structure of N17 changes in response to redox conditions and show that the consequence of this change is enhanced N17 phosphorylation and nuclear targeting of endogenous huntingtin. Using N17 substitution point mutants, we demonstrate that N17 sulphoxidation enhances N17 dissociation from the endoplasmic reticulum (ER) membrane. This enhanced solubility makes N17 a better substrate for phosphorylation and subsequent nuclear retention. This ability of huntingtin to sense ROS levels at the ER, with phosphorylation and nuclear localization as a response, suggests that ROS stress due to aging could be a critical molecular trigger of huntingtin functions and dysfunctions in HD and may explain the age-onset nature of the disorder.
Collapse
Affiliation(s)
- Laura F DiGiovanni
- Department of Biochemistry and Biomedical Research, McMaster University, Hamilton, ON L8N3Z5, Canada
| | - Andrew J Mocle
- Department of Biochemistry and Biomedical Research, McMaster University, Hamilton, ON L8N3Z5, Canada
| | - Jianrun Xia
- Department of Biochemistry and Biomedical Research, McMaster University, Hamilton, ON L8N3Z5, Canada
| | - Ray Truant
- Department of Biochemistry and Biomedical Research, McMaster University, Hamilton, ON L8N3Z5, Canada
| |
Collapse
|
23
|
Zhemkov VA, Kulminskaya AA, Bezprozvanny IB, Kim M. The 2.2-Angstrom resolution crystal structure of the carboxy-terminal region of ataxin-3. FEBS Open Bio 2016; 6:168-78. [PMID: 27047745 PMCID: PMC4794786 DOI: 10.1002/2211-5463.12029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/15/2023] Open
Abstract
An expansion of polyglutamine (polyQ) sequence in ataxin‐3 protein causes spinocerebellar ataxia type 3, an inherited neurodegenerative disorder. The crystal structure of the polyQ‐containing carboxy‐terminal fragment of human ataxin‐3 was solved at 2.2‐Å resolution. The Atxn3 carboxy‐terminal fragment including 14 glutamine residues adopts both random coil and α‐helical conformations in the crystal structure. The polyQ sequence in α‐helical structure is stabilized by intrahelical hydrogen bonds mediated by glutamine side chains. The intrahelical hydrogen‐bond interactions between glutamine side chains along the axis of the polyQ α‐helix stabilize the secondary structure. Analysis of this structure furthers our understanding of the polyQ‐structural characteristics that likely underlie the pathogenesis of polyQ‐expansion disorders.
Collapse
Affiliation(s)
- Vladimir A Zhemkov
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Laboratory of Enzymology National Research Center «Kurchatov Institute»B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Russia
| | - Anna A Kulminskaya
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Laboratory of Enzymology National Research Center «Kurchatov Institute»B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Department of Physiology University of Texas Southwestern Medical Center Dallas TX USA
| | - Meewhi Kim
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Department of Physiology University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
24
|
Conformational switch of polyglutamine-expanded huntingtin into benign aggregates leads to neuroprotective effect. Sci Rep 2015; 5:14992. [PMID: 26450664 PMCID: PMC4598856 DOI: 10.1038/srep14992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 01/05/2023] Open
Abstract
The abundant accumulation of inclusion bodies containing polyglutamine-expanded mutant huntingtin (mHTT) aggregates is considered as the key pathological event in Huntington's disease (HD). Here, we demonstrate that FKBP12, an isomerase that exhibits reduced expression in HD, decreases the amyloidogenicity of mHTT, interrupts its oligomerization process, and structurally promotes the formation of amorphous deposits. By combining fluorescence-activated cell sorting with multiple biophysical techniques, we confirm that FKBP12 reduces the amyloid property of these ultrastructural-distinct mHTT aggregates within cells. Moreover, the neuroprotective effect of FKBP12 is demonstrated in both cellular and nematode models. Finally, we show that FKBP12 also inhibit the fibrillization process of other disease-related and aggregation-prone peptides. Our results suggest a novel function of FKBP12 in ameliorating the proteotoxicity in mHTT, which may shed light on unraveling the roles of FKBP12 in different neurodegenerative diseases and developing possible therapeutic strategies.
Collapse
|
25
|
Ruff KM, Khan SJ, Pappu RV. A coarse-grained model for polyglutamine aggregation modulated by amphipathic flanking sequences. Biophys J 2015; 107:1226-1235. [PMID: 25185558 DOI: 10.1016/j.bpj.2014.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/25/2014] [Accepted: 07/09/2014] [Indexed: 02/06/2023] Open
Abstract
The aggregation of proteins with expanded polyglutamine (polyQ) tracts is directly relevant to the formation of neuronal intranuclear inclusions in Huntington's disease. In vitro studies have uncovered the effects of flanking sequences as modulators of the driving forces and mechanisms of polyQ aggregation in sequence segments associated with HD. Specifically, a seventeen-residue amphipathic stretch (N17) that is directly N-terminal to the polyQ tract in huntingtin decreases the overall solubility, destabilizes nonfibrillar aggregates, and accelerates fibril formation. Published results from atomistic simulations showed that the N17 module reduces the frequency of intermolecular association. Our reanalysis of these simulation results demonstrates that the N17 module also reduces interchain entanglements between polyQ domains. These two effects, which are observed on the smallest lengthscales, are incorporated into phenomenological pair potentials and used in coarse-grained Brownian dynamics simulations to investigate their impact on large-scale aggregation. We analyze the results from Brownian dynamics simulations using the framework of diffusion-limited cluster aggregation. When entanglements prevail, which is true in the absence of N17, small spherical clusters and large linear aggregates form on distinct timescales, in accord with in vitro experiments. Conversely, when entanglements are quenched and a barrier to intermolecular associations is introduced, both of which are attributable to N17, the timescales for forming small species and large linear aggregates become similar. Therefore, the combination of a reduction of interchain entanglements through homopolymeric polyQ and barriers to intermolecular associations appears to be sufficient for providing a minimalist phenomenological rationalization of in vitro observations regarding the effects of N17 on polyQ aggregation.
Collapse
Affiliation(s)
- Kiersten M Ruff
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri; Division of Biology and Biomedical Sciences, Computational and Systems Biology Program, Washington University in St. Louis, St. Louis, Missouri
| | - Siddique J Khan
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
26
|
Darrow MC, Sergeeva OA, Isas JM, Galaz-Montoya JG, King JA, Langen R, Schmid MF, Chiu W. Structural Mechanisms of Mutant Huntingtin Aggregation Suppression by the Synthetic Chaperonin-like CCT5 Complex Explained by Cryoelectron Tomography. J Biol Chem 2015; 290:17451-61. [PMID: 25995452 DOI: 10.1074/jbc.m115.655373] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/06/2022] Open
Abstract
Huntington disease, a neurodegenerative disorder characterized by functional deficits and loss of striatal neurons, is linked to an expanded and unstable CAG trinucleotide repeat in the huntingtin gene (HTT). This DNA sequence translates to a polyglutamine repeat in the protein product, leading to mutant huntingtin (mHTT) protein aggregation. The aggregation of mHTT is inhibited in vitro and in vivo by the TCP-1 ring complex (TRiC) chaperonin. Recently, a novel complex comprised of a single type of TRiC subunit has been reported to inhibit mHTT aggregation. Specifically, the purified CCT5 homo-oligomer complex, when compared with TRiC, has a similar structure, ATP use, and substrate refolding activity, and, importantly, it also inhibits mHTT aggregation. Using an aggregation suppression assay and cryoelectron tomography coupled with a novel computational classification method, we uncover the interactions between the synthetic CCT5 complex (∼ 1 MDa) and aggregates of mutant huntingtin exon 1 containing 46 glutamines (mHTTQ46-Ex1). We find that, in a similar fashion to TRiC, synthetic CCT5 complex caps mHTT fibrils at their tips and encapsulates mHTT oligomers, providing a structural description of the inhibition of mHTTQ46-Ex1 by CCT5 complex and a shared mechanism of mHTT inhibition between TRiC chaperonin and the CCT5 complex: cap and contain.
Collapse
Affiliation(s)
- Michele C Darrow
- From the National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Oksana A Sergeeva
- the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Jose M Isas
- the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Jesús G Galaz-Montoya
- From the National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jonathan A King
- the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Ralf Langen
- the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Michael F Schmid
- From the National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Wah Chiu
- From the National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030,
| |
Collapse
|
27
|
Lu M, Williamson N, Boschetti C, Ellis T, Yoshimi T, Tunnacliffe A. Expression-level dependent perturbation of cell proteostasis and nuclear morphology by aggregation-prone polyglutamine proteins. Biotechnol Bioeng 2015; 112:1883-92. [PMID: 25854808 DOI: 10.1002/bit.25606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/18/2015] [Accepted: 03/20/2015] [Indexed: 12/17/2022]
Abstract
We describe a gene expression system for use in mammalian cells that yields reproducible, inducible gene expression that can be modulated within the physiological range. A synthetic promoter library was generated from which representatives were selected that gave weak, intermediate-strength or strong promoter activity. Each promoter resulted in a tight expression range when used to drive single-copy reporter genes integrated at the same genome location in stable cell lines, in contrast to the broad range of expression typical of transiently transfected cells. To test this new expression system in neurodegenerative disease models, we used each promoter type to generate cell lines carrying single-copy genes encoding polyglutamine-containing proteins. Expression over a period of up to three months resulted in a proportion of cells developing juxtanuclear aggresomes whose rate of formation, penetrance, and morphology were expression-level dependent. At the highest expression levels, fibrillar aggregates deposit close to the nuclear envelope, indicating that cell proteostasis is overwhelmed by misfolded protein species. We also observed expression-level dependent, abnormal nuclear morphology in cells containing aggresomes, with up to ∼80% of cells affected. This system constitutes a valuable tool in gene regulation at different levels and allows the quantitative assessment of gene expression effects when developing disease models or investigating cell function through the introduction of gene constructs.
Collapse
Affiliation(s)
- Meng Lu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom
| | - Neil Williamson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom
| | - Chiara Boschetti
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom
| | - Tom Ellis
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom
| | - Tatsuya Yoshimi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom.
| |
Collapse
|
28
|
Latonen L. Protein aggregation in neurodegenerative disease: the nucleolar connection. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.3.324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Duim WC, Jiang Y, Shen K, Frydman J, Moerner WE. Super-resolution fluorescence of huntingtin reveals growth of globular species into short fibers and coexistence of distinct aggregates. ACS Chem Biol 2014; 9:2767-78. [PMID: 25330023 PMCID: PMC4273975 DOI: 10.1021/cb500335w] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Polyglutamine-expanded
huntingtin, the protein encoded by HTT mutations
associated with Huntington’s disease,
forms aggregate species in vitro and in vivo. Elucidation of the mechanism of growth of fibrillar aggregates
from soluble monomeric protein is critical to understanding the progression
of Huntington’s disease and to designing therapeutics for the
disease, as well as for aggregates implicated in Alzheimer’s
and Parkinson’s diseases. We used the technique of multicolor
single-molecule, super-resolution fluorescence imaging to characterize
the growth of huntingtin exon 1 aggregates. The huntingtin exon 1
aggregation followed a pathway from exclusively spherical or globular
species of ∼80 nm to fibers ∼1 μm in length that
increased in width, but not length, over time with the addition of
more huntingtin monomers. The fibers further aggregated with one another
into aggregate assemblies of increasing size. Seeds created by sonication,
which were comparable in shape and size to the globular species in
the pathway, were observed to grow through multidirectional elongation
into fibers, suggesting a mechanism for growth of globular species
into fibers. The single-molecule sensitivity of our approach made
it possible to characterize the aggregation pathway across a large
range of size scales, from monomers to fiber assemblies, and revealed
the coexistence of different aggregate species (globular species,
fibers, fiber assemblies) even at late time points.
Collapse
Affiliation(s)
- Whitney C. Duim
- Department of Chemistry, ‡Department of Applied Physics, and §Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Yan Jiang
- Department of Chemistry, ‡Department of Applied Physics, and §Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Koning Shen
- Department of Chemistry, ‡Department of Applied Physics, and §Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Judith Frydman
- Department of Chemistry, ‡Department of Applied Physics, and §Department of Biology, Stanford University, Stanford, California 94305, United States
| | - W. E. Moerner
- Department of Chemistry, ‡Department of Applied Physics, and §Department of Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|