1
|
Bisson JA, Gordillo M, Kumar R, de Silva N, Yang E, Banks KM, Shi ZD, Lee K, Yang D, Chung WK, Huangfu D, Evans T. GATA6 regulates WNT and BMP programs to pattern precardiac mesoderm during the earliest stages of human cardiogenesis. eLife 2025; 13:RP100797. [PMID: 40080060 PMCID: PMC11906159 DOI: 10.7554/elife.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers, suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hr of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.
Collapse
Affiliation(s)
- Joseph A Bisson
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Ritu Kumar
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | | | - Ellen Yang
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Kelly M Banks
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Kihyun Lee
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Wendy K Chung
- Childrens Hospital, Harvard Medical SchoolBostonUnited States
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Todd Evans
- Department of Surgery, Weill Cornell MedicineNew YorkUnited States
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell MedicineNew YorkUnited States
- Center for Genomic Health, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
2
|
Qi JL, Chen HX, Hou HT, Chen Z, Liu LX, Yang Q, He GW. Molecular and cellular role of variants of the promoter region of HAND1 gene in sporadic and isolated ventricular septal defect. Mol Cell Biochem 2025; 480:1657-1667. [PMID: 39107573 DOI: 10.1007/s11010-024-05088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/01/2024] [Indexed: 02/21/2025]
Abstract
Ventricular septal defect (VSD) is the most common type of congenital heart disease. HAND1 gene plays a crucial role in the development of the heart, but the role of the variants in the HAND1 gene promoter region in patients with VSD has not been explored yet. From 588 participants (300 with isolated and sporadic VSD and 288 healthy controls), DNA was extracted from blood samples. Variants at the HAND1 gene promoter region were analyzed through Sanger sequencing. Subsequently, cell functional validation was conducted through cell experiments, including dual-luciferase reporter gene analysis, electrophoretic mobility shift analysis, and bioinformatics analysis was also conducted. The promoter region of HAND1 gene had a total of 9 identified variant sites. Among them, 4 variants were exclusively found in VSD patients, and 1 variant (g.3631A>C) was newly discovered. Cell functional experiments indicated that all four variants decreased the transcriptional activity of HAND1 gene promoter with three of them reached statistical significance (p < 0.05). Subsequent analysis using JASPAR (a transcription factor binding profile database) suggests that these variants may alter the binding sites of transcription factors, potentially contributing to the formation of VSD. Our study for the first time identified variants in the promoter region of HAND1 gene in Chinese patients with isolated and sporadic VSD. These variants significantly decreased the expression of HAND1 gene, impacting transcription factor binding sites, and thereby demonstrating pathogenicity. This study offers new insights into the role of HAND1 gene promoter region, contributing to a better understanding of the genetic basis of VSD formation.
Collapse
Affiliation(s)
- Jia-Le Qi
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, No.61, the 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Huan-Xin Chen
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, No.61, the 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Hai-Tao Hou
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, No.61, the 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Zhuo Chen
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, No.61, the 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Li-Xin Liu
- Pediatric Cardiothoracic Surgery, Maternal and Child Health Hospital of Tangshan, Tangshan, Hebei, China
| | - Qin Yang
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, No.61, the 3rd Ave, TEDA, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, No.61, the 3rd Ave, TEDA, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China.
| |
Collapse
|
3
|
Bisson JA, Gordillo M, Kumar R, de Silva N, Yang E, Banks KM, Shi ZD, Lee K, Yang D, Chung WK, Huangfu D, Evans T. GATA6 regulates WNT and BMP programs to pattern precardiac mesoderm during the earliest stages of human cardiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.602666. [PMID: 39026742 PMCID: PMC11257636 DOI: 10.1101/2024.07.09.602666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hours of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.
Collapse
Affiliation(s)
- Joseph A. Bisson
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ritu Kumar
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
- current address: Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ellen Yang
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kelly M. Banks
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Kihyun Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
- current address: College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Wendy K. Chung
- Childrens Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
4
|
Feng H, Yang S, Zhang L, Zhu J, Li J, Yang Z. A new Prdm1-Cre line is suitable for studying the second heart field development. Dev Biol 2024; 514:78-86. [PMID: 38880275 DOI: 10.1016/j.ydbio.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
The second heart field (SHF) plays a pivotal role in heart development, particularly in outflow tract (OFT) morphogenesis and septation, as well as in the expansion of the right ventricle (RV). Two mouse Cre lines, the Mef2c-AHF-Cre (Mef2c-Cre) and Isl1-Cre, have been widely used to study the SHF development. However, Cre activity is triggered not only in the SHF but also in the RV in the Mef2c-Cre mice, and in the Isl1-Cre mice, Cre activation is not SHF-specific. Therefore, a more suitable SHF-Cre line is desirable for better understanding SHF development. Here, we generated and characterized the Prdm1-Cre knock-in mice. In comparison with Mef2c-Cre mice, the Cre activity is similar in the pharyngeal and splanchnic mesoderm, and in the OFT of the Prdm1-Cre mice. Nonetheless, it was noticed that Cre expression is largely reduced in the RV of Prdm1-Cre mice compared to the Mef2c-Cre mice. Furthermore, we deleted Hand2, Nkx2-5, Pdk1 and Tbx20 using both Mef2c-Cre and Prdm1-Cre mice to study OFT morphogenesis and septation, making a comparison between these two Cre lines. New insights were obtained in understanding SHF development including differentiation into cardiomyocytes in the OFT using Prdm1-Cre mice. In conclusion, we found that Prdm1-Cre mouse line is a more appropriate tool to monitor SHF development, while the Mef2c-Cre mice are excellent in studying the role and function of the SHF in OFT morphogenesis and septation.
Collapse
Affiliation(s)
- Haiyue Feng
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Jingai Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
5
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:777-796. [PMID: 38884748 DOI: 10.1007/978-3-031-44087-8_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The great arteries of the vertebrate carry blood from the heart to the systemic circulation and are derived from the pharyngeal arch arteries. In higher vertebrates, the pharyngeal arch arteries are a symmetrical series of blood vessels that rapidly remodel during development to become the asymmetric aortic arch arteries carrying oxygenated blood from the left ventricle via the outflow tract. At the base of the aorta, as well as the pulmonary trunk, are the semilunar valves. These valves each have three leaflets and prevent the backflow of blood into the heart. During development, the process of aortic arch and valve formation may go wrong, resulting in cardiovascular defects, and these may, at least in part, be caused by genetic mutations. In this chapter, we will review models harboring genetic mutations that result in cardiovascular defects affecting the great arteries and the semilunar valves.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Simon D Bamforth
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Buckingham M, Kelly RG. Cardiac Progenitor Cells of the First and Second Heart Fields. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:103-124. [PMID: 38884707 DOI: 10.1007/978-3-031-44087-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior. Multipotent cells in this field can also contribute cardiac endothelial and smooth muscle cells. Furthermore, the skeletal muscles of the head and neck are clonally related to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, Paris, France.
| | - Robert G Kelly
- Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France.
| |
Collapse
|
7
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of d-Transposition of the Great Arteries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:683-696. [PMID: 38884742 DOI: 10.1007/978-3-031-44087-8_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
During normal cardiovascular development, the outflow tract becomes septated and rotates so that the separate aorta and pulmonary trunk are correctly aligned with the left and right ventricles, respectively. However, when this process goes wrong, the aorta and pulmonary trunk are incorrectly positioned, resulting in oxygenated blood being directly returned to the lungs, with deoxygenated blood being delivered to the systemic circulation. This is termed transposition of the great arteries (TGA). The precise etiology of TGA is not known, but the use of animal models has elucidated that genes involved in determination of the left- embryonic body axis play key roles. Other factors such as retinoic acid levels are also crucial. This chapter reviews the animal models presenting with TGA that have been generated by genetic manipulation or with exogenous agents.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle, UK
| | | |
Collapse
|
8
|
Wu X, Zhang N, Yu J, Liang M, Xu H, Hu J, Lin S, Qiu J, Lin C, Liu W, Chai D, Zeng K. The underlying mechanism of transcription factor IRF1, PRDM1, and ZNF263 involved in the regulation of NPPB rs3753581 on pulse pressure hypertension. Gene 2023:147580. [PMID: 37339722 DOI: 10.1016/j.gene.2023.147580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/10/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
To investigate the correlation between NPPB gene variants and pulse pressure hypertension and the underlying regulatory mechanisms and try to confirm that NPPB may be a potential molecular target of gene therapy for pulse pressure hypertension. A total of 898 participants were recruited from the First Affiliated Hospital of Fujian Medical University and the plasmids with differential expression of NPPB were constructed. Genotype distribution of NPPB(rs3753581, rs198388, and rs198389)was analyzed and the expression of N-terminal pro-B-type natriuretic peptide(NT-proBNP) and renin-angiotensin -aldosterone system(RAAS) related indicators were identified in the groups studied. According to a genotype analysis, there was a significant difference in the genotype distribution of NPPB rs3753581 among the groups (P=0.034). In logistic regression analysis, NPPB rs3753581 TT was associated with a 1.8-fold greater risk of pulse pressure hypertension than NPPB rs3753581 GG (odds ratio = 1.801; 95% confidence interval: 1.070-3.032; P=0.027). The expression of NT-proBNP and RAAS related indicators in clinical and laboratory samples showed striking differences. The activity of firefly and Renilla luciferase in pGL-3-NPPB-luc (-1299G) was higher than pGL-3-NPPBmut-luc(-1299T)(P<0.05). The binding of NPPB gene promoter rs3753581 (-1299G) with transcription factors IRF1, PRDM1, and ZNF263 was predicted and validated by the bioinformatics software TESS and chromatin immunoprecipitation(P<0.05). NPPB rs3753581 was correlated with genetic susceptibility to pulse pressure hypertension and the transcription factors IRF1, PRDM1, and ZNF263 may be involved in the regulation of NPPB rs3753581 promoter (-1299G) on the expression of NT-proBNP/RAAS.
Collapse
Affiliation(s)
- Xiaodan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Na Zhang
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianjun Yu
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Min Liang
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Haojie Xu
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiamin Hu
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shizhu Lin
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jingjia Qiu
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caizhu Lin
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Weilin Liu
- Department of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Dajun Chai
- Department of Cardiovascular, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Kai Zeng
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
9
|
Gao Y, Ding Q, Li W, Gu R, Zhang P, Zhang L. Role and Mechanism of a Micro-/Nano-Structured Porous Zirconia Surface in Regulating the Biological Behavior of Bone Marrow Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36913521 DOI: 10.1021/acsami.2c22736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Zirconia as a promising dental implant material has attracted much attention in recent years. Improving the bone binding ability of zirconia is critical for clinical applications. Here, we established a distinct micro-/nano-structured porous zirconia through dry-pressing with addition of pore-forming agents followed by hydrofluoric acid etching (POROHF). Porous zirconia without hydrofluoric acid treatment (PORO), sandblasting plus acid-etching zirconia, and sintering zirconia surface were applied as controls. After human bone marrow mesenchymal stem cells (hBMSCs) were seeded on these four groups of zirconia specimens, we observed the highest cell affinity and extension on POROHF. In addition, the POROHF surface displayed an improved osteogenic phenotype in contrast to the other groups. Moreover, the POROHF surface facilitated angiogenesis of hBMSCs, as confirmed by optimal stimulation of vascular endothelial growth factor B and angiopoietin 1 (ANGPT1) expression. Most importantly, the POROHF group demonstrated the most obvious bone matrix development in vivo. To investigate further the underlying mechanism, RNA sequencing was employed and critical target genes modulated by POROHF were identified. Taken together, this study established an innovative micro-/nano-structured porous zirconia surface that significantly promoted osteogenesis and investigated the potential underlying mechanism. Our present work will improve the osseointegration of zirconia implants and help further clinical applications.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Qian Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Wenjin Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Lei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| |
Collapse
|
10
|
Varshney A, Chahal G, Santos L, Stolper J, Hallab JC, Nim HT, Nikolov M, Yip A, Ramialison M. Human Cardiac Transcription Factor Networks. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
11
|
França MM, Funari MFA, Lerario AM, Santos MG, Nishi MY, Domenice S, Moraes DR, Costalonga EF, Maciel GAR, Maciel-Guerra AT, Guerra-Junior G, Mendonca BB. Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency. PLoS One 2020; 15:e0240795. [PMID: 33095795 PMCID: PMC7584253 DOI: 10.1371/journal.pone.0240795] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a heterogeneous disorder associated with several genes. The majority of cases are still unsolved. Our aim was to identify the molecular diagnosis of a Brazilian cohort with POI. Genetic analysis was performed using a customized panel of targeted massively parallel sequencing (TMPS) and the candidate variants were confirmed by Sanger sequencing. Additional copy number variation (CNV) analysis of TMPS samples was performed by CONTRA. Fifty women with POI (29 primary amenorrhea and 21 secondary amenorrhea) of unknown molecular diagnosis were included in this study, which was conducted in a tertiary referral center of clinical endocrinology. A genetic defect was obtained in 70% women with POI using the customized TMPS panel. Twenty-four pathogenic variants and two CNVs were found in 48% of POI women. Of these variants, 16 genes were identified as BMP8B, CPEB1, INSL3, MCM9, GDF9, UBR2, ATM, STAG3, BMP15, BMPR2, DAZL, PRDM1, FSHR, EIF4ENIF1, NOBOX, and GATA4. Moreover, a microdeletion and microduplication in the CPEB1 and SYCE1 genes, respectively, were also identified in two distinct patients. The genetic analysis of eleven patients was classified as variants of uncertain clinical significance whereas this group of patients harbored at least two variants in different genes. Thirteen patients had benign or no rare variants, and therefore the genetic etiology remained unclear. In conclusion, next-generation sequencing (NGS) is a highly effective approach to identify the genetic diagnoses of heterogenous disorders, such as POI. A molecular etiology allowed us to improve the disease knowledge, guide decisions about prevention or treatment, and allow familial counseling avoiding future comorbidities.
Collapse
Affiliation(s)
- Monica M. França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| | - Mariana F. A. Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Antonio M. Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Mariza G. Santos
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mirian Y. Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo FMUSP, São Paulo, SP, Brazil
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniela R. Moraes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Everlayny F. Costalonga
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gustavo A. R. Maciel
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrea T. Maciel-Guerra
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Gil Guerra-Junior
- Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Berenice B. Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo FMUSP, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Shull LC, Sen R, Menzel J, Goyama S, Kurokawa M, Artinger KB. The conserved and divergent roles of Prdm3 and Prdm16 in zebrafish and mouse craniofacial development. Dev Biol 2020; 461:132-144. [PMID: 32044379 DOI: 10.1016/j.ydbio.2020.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifiers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.
Collapse
Affiliation(s)
- Lomeli Carpio Shull
- Department of Craniofacial Biology, School of Dental Medicine, Aurora, CO, USA
| | - Rwik Sen
- Department of Craniofacial Biology, School of Dental Medicine, Aurora, CO, USA
| | - Johannes Menzel
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
13
|
Hu J, Shi Y, Xia M, Liu Z, Zhang R, Luo H, Zhang T, Yang Z, Yuan B. WDR1-regulated actin dynamics is required for outflow tract and right ventricle development. Dev Biol 2018; 438:124-137. [PMID: 29654745 DOI: 10.1016/j.ydbio.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 10/17/2022]
Abstract
Outflow tract (OFT) anomalies account for about 30% of human congenital heart defects detected at birth. The second heart field (SHF) progenitors contribute to OFT and right ventricle (RV) development, but the process largely remains unknown. WDR1 (WD-repeat domain 1) is a major co-factor of actin depolymerizing factor (ADF)/cofilin that actively disassembles ADF/cofilin-bound actin filaments. Its function in embryonic heart development has been unknown. Using Wdr1 floxed mice and Nkx2.5-Cre, we deleted Wdr1 in embryonic heart (Wdr1F/F;Nkx2.5-Cre) and found that these mice exhibited embryonic lethality, and hypoplasia of OFT and RV. To investigate the role of WDR1 in OFT and RV development, we generated SHF progenitors-specific Wdr1 deletion mice (shfKO). shfKO mice began to die at embryonic day 11.5 (E11.5), and displayed decreased size of the proximal OFT and RV at E10.5. In shfKO embryos, neither the number of SHF cells deployment to OFT nor cell proliferation and the cell number were changed, whereas the cellular organization and myofibrillar assembly of cardiomyocytes were severely disrupted. In the proximal OFT and RV of both shfKO and Wdr1F/F;Nkx2.5-Cre embryos, cardiomyocytes were dissociated from the outer compact myocardial layer and loosely and disorderly arranged into multilayered myocardium. Our results demonstrate that WDR1 is indispensable for normal OFT and RV development, and suggest that WDR1-mediated actin dynamics functions in controlling the size of OFT and RV, which might through regulating the spatial arrangement of cardiomyocytes.
Collapse
Affiliation(s)
- Jisheng Hu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Yingchao Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Meng Xia
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Zhongying Liu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Ruirui Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Hongmei Luo
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Tongcun Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China.
| | - Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.
| |
Collapse
|
14
|
Wiegering A, Rüther U, Gerhardt C. The Role of Hedgehog Signalling in the Formation of the Ventricular Septum. J Dev Biol 2017; 5:E17. [PMID: 29615572 PMCID: PMC5831794 DOI: 10.3390/jdb5040017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022] Open
Abstract
An incomplete septation of the ventricles in the vertebrate heart that disturbes the strict separation between the contents of the two ventricles is termed a ventricular septal defect (VSD). Together with bicuspid aortic valves, it is the most frequent congenital heart disease in humans. Until now, life-threatening VSDs are usually treated surgically. To avoid surgery and to develop an alternative therapy (e.g., a small molecule therapy), it is necessary to understand the molecular mechanisms underlying ventricular septum (VS) development. Consequently, various studies focus on the investigation of signalling pathways, which play essential roles in the formation of the VS. In the past decade, several reports found evidence for an involvement of Hedgehog (HH) signalling in VS development. In this review article, we will summarise the current knowledge about the association between HH signalling and VS formation and discuss the use of such knowledge to design treatment strategies against the development of VSDs.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
15
|
Bardot P, Vincent SD, Fournier M, Hubaud A, Joint M, Tora L, Pourquié O. The TAF10-containing TFIID and SAGA transcriptional complexes are dispensable for early somitogenesis in the mouse embryo. Development 2017; 144:3808-3818. [PMID: 28893950 DOI: 10.1242/dev.146902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 09/02/2017] [Indexed: 01/09/2023]
Abstract
During development, tightly regulated gene expression programs control cell fate and patterning. A key regulatory step in eukaryotic transcription is the assembly of the pre-initiation complex (PIC) at promoters. PIC assembly has mainly been studied in vitro, and little is known about its composition during development. In vitro data suggest that TFIID is the general transcription factor that nucleates PIC formation at promoters. Here we show that TAF10, a subunit of TFIID and of the transcriptional co-activator SAGA, is required for the assembly of these complexes in the mouse embryo. We performed Taf10 conditional deletions during mesoderm development and show that Taf10 loss in the presomitic mesoderm (PSM) does not prevent cyclic gene transcription or PSM segmental patterning, whereas lateral plate differentiation is profoundly altered. During this period, global mRNA levels are unchanged in the PSM, with only a minor subset of genes dysregulated. Together, our data strongly suggest that the TAF10-containing canonical TFIID and SAGA complexes are dispensable for early paraxial mesoderm development, arguing against the generic role in transcription proposed for these fully assembled holo-complexes.
Collapse
Affiliation(s)
- Paul Bardot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Marjorie Fournier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Alexis Hubaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Mathilde Joint
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| |
Collapse
|
16
|
Scott CA, Marsden AN, Rebagliati MR, Zhang Q, Chamling X, Searby CC, Baye LM, Sheffield VC, Slusarski DC. Nuclear/cytoplasmic transport defects in BBS6 underlie congenital heart disease through perturbation of a chromatin remodeling protein. PLoS Genet 2017; 13:e1006936. [PMID: 28753627 PMCID: PMC5550010 DOI: 10.1371/journal.pgen.1006936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/09/2017] [Accepted: 07/20/2017] [Indexed: 01/31/2023] Open
Abstract
Mutations in BBS6 cause two clinically distinct syndromes, Bardet-Biedl syndrome (BBS), a syndrome caused by defects in cilia transport and function, as well as McKusick-Kaufman syndrome, a genetic disorder characterized by congenital heart defects. Congenital heart defects are rare in BBS, and McKusick-Kaufman syndrome patients do not develop retinitis pigmentosa. Therefore, the McKusick-Kaufman syndrome allele may highlight cellular functions of BBS6 distinct from the presently understood functions in the cilia. In support, we find that the McKusick-Kaufman syndrome disease-associated allele, BBS6H84Y; A242S, maintains cilia function. We demonstrate that BBS6 is actively transported between the cytoplasm and nucleus, and that BBS6H84Y; A242S, is defective in this transport. We developed a transgenic zebrafish with inducible bbs6 to identify novel binding partners of BBS6, and we find interaction with the SWI/SNF chromatin remodeling protein Smarcc1a (SMARCC1 in humans). We demonstrate that through this interaction, BBS6 modulates the sub-cellular localization of SMARCC1 and find, by transcriptional profiling, similar transcriptional changes following smarcc1a and bbs6 manipulation. Our work identifies a new function for BBS6 in nuclear-cytoplasmic transport, and provides insight into the disease mechanism underlying the congenital heart defects in McKusick-Kaufman syndrome patients. To understand how mutations in one gene can cause two distinct human syndromes (McKusick-Kaufman syndrome and Bardet-Bield syndrome), we investigated the cellular functions of the implicated gene BBS6. We found that BBS6 is actively transported between the cytoplasm and nucleus, and this interaction is disrupted in McKusick-Kaufman syndrome, but not Bardet-Biedl syndrome. We find that by manipulating BBS6, we can affect another protein, SMARCC1, which has a direct role in regulating gene expression. When we profiled these changes in gene expression, we find that many genes, which can be directly linked to the symptoms of McKusick-Kaufman syndrome, are affected. Therefore, our data support that the nuclear-cytoplasmic transport defect of BBS6, through disruption of proteins controlling gene expression, cause the symptoms observed in McKusick-Kaufman syndrome patients.
Collapse
Affiliation(s)
- Charles Anthony Scott
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Autumn N. Marsden
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael R. Rebagliati
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Qihong Zhang
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Xitiz Chamling
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Charles C. Searby
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Lisa M. Baye
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Val C. Sheffield
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Wynn Institute for Vision Research University of Iowa, Iowa City, Iowa, United States of America
| | - Diane C. Slusarski
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Wynn Institute for Vision Research University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Twenty years ago, chromosomal abnormalities were the only identifiable genetic causes of a small fraction of congenital heart defects (CHD). Today, a de novo or inherited genetic abnormality can be identified as pathogenic in one-third of cases. We refer to them here as monogenic causes, insofar as the genetic abnormality has a readily detectable, large effect. What explains the other two-thirds? This review considers a complex genetic basis. That is, a combination of genetic mutations or variants that individually may have little or no detectable effect contribute to the pathogenesis of a heart defect. Genes in the embryo that act directly in cardiac developmental pathways have received the most attention, but genes in the mother that establish the gestational milieu via pathways related to metabolism and aging also have an effect. A growing body of evidence highlights the pathogenic significance of genetic interactions in the embryo and maternal effects that have a genetic basis. The investigation of CHD as guided by a complex genetic model could help estimate risk more precisely and logically lead to a means of prevention.
Collapse
Affiliation(s)
- Ehiole Akhirome
- Department of Pediatrics, Washington University School of Medicine
| | - Nephi A Walton
- Department of Pediatrics, Washington University School of Medicine
| | - Julie M Nogee
- Department of Pediatrics, Washington University School of Medicine
| | - Patrick Y Jay
- Department of Pediatrics, Washington University School of Medicine
| |
Collapse
|
18
|
Abstract
T-box genes are important development regulators in vertebrates with specific patterns of expression and precise roles during embryogenesis. They encode transcription factors that regulate gene transcription, often in the early stages of development. The hallmark of this family of proteins is the presence of a conserved DNA binding motif, the "T-domain." Mutations in T-box genes can cause developmental disorders in humans, mostly due to functional deficiency of the relevant proteins. Recent studies have also highlighted the role of some T-box genes in cancer and in cardiomyopathy, extending their role in human disease. In this review, we focus on ten T-box genes with a special emphasis on their roles in human disease.
Collapse
Affiliation(s)
- T K Ghosh
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - J D Brook
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| | - A Wilsdon
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
19
|
Fayzullina S, Martin LJ. DNA Damage Response and DNA Repair in Skeletal Myocytes From a Mouse Model of Spinal Muscular Atrophy. J Neuropathol Exp Neurol 2016; 75:889-902. [PMID: 27452406 DOI: 10.1093/jnen/nlw064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We studied DNA damage response (DDR) and DNA repair capacities of skeletal muscle cells from a mouse model of infantile spinal muscular atrophy (SMA) caused by loss-of-function mutation of survival of motor neuron (Smn). Primary myocyte cultures derived from skeletal muscle satellite cells of neonatal control and mutant SMN mice had similar myotube length, myonuclei, satellite cell marker Pax7 and differentiated myotube marker myosin, and acetylcholine receptor clustering. DNA damage was induced in differentiated skeletal myotubes by γ-irradiation, etoposide, and methyl methanesulfonate (MMS). Unexposed control and SMA myotubes had stable genome integrity. After γ-irradiation and etoposide, myotubes repaired most DNA damage equally. Control and mutant myotubes exposed to MMS exhibited equivalent DNA damage without repair. Control and SMA myotube nuclei contained DDR proteins phospho-p53 and phospho-H2AX foci that, with DNA damage, dispersed and then re-formed similarly after recovery. We conclude that mouse primary satellite cell-derived myotubes effectively respond to and repair DNA strand-breaks, while DNA alkylation repair is underrepresented. Morphological differentiation, genome stability, genome sensor, and DNA strand-break repair potential are preserved in mouse SMA myocytes; thus, reduced SMN does not interfere with myocyte differentiation, genome integrity, and DNA repair, and faulty DNA repair is unlikely pathogenic in SMA.
Collapse
Affiliation(s)
- Saniya Fayzullina
- From the Department of Pathology, Division of Neuropathology, and the Pathobiology Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA (SF, LJM)
| | - Lee J Martin
- From the Department of Pathology, Division of Neuropathology, and the Pathobiology Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA (SF, LJM)
| |
Collapse
|
20
|
Scialdone A, Tanaka Y, Jawaid W, Moignard V, Wilson NK, Macaulay IC, Marioni JC, Göttgens B. Resolving early mesoderm diversification through single-cell expression profiling. Nature 2016; 535:289-293. [PMID: 27383781 PMCID: PMC4947525 DOI: 10.1038/nature18633] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the mouse embryo at embryonic day 6.5, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition and ingress through the primitive streak. Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac, umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast, but the plasticity of cells within the embryo and the function of key cell-type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1(+) mesoderm of gastrulating mouse embryos using single-cell RNA sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knockout mice, we study the function of Tal1, a key haematopoietic transcription factor, and demonstrate, contrary to previous studies performed using retrospective assays, that Tal1 knockout does not immediately bias precursor cells towards a cardiac fate.
Collapse
Affiliation(s)
- Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust
Genome Campus, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Yosuke Tanaka
- Department of Haematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Cambridge, UK
| | - Wajid Jawaid
- Department of Haematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Cambridge, UK
| | - Victoria Moignard
- Department of Haematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Cambridge, UK
| | - Nicola K. Wilson
- Department of Haematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Cambridge, UK
| | | | - John C. Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust
Genome Campus, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge,
UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Liu C, Liu W, Fan L, Liu J, Li P, Zhang W, Gao J, Li Z, Zhang Q, Wang X. Sequences analyses and expression profiles in tissues and embryos of Japanese flounder (Paralichthys olivaceus) PRDM1. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:467-482. [PMID: 26508172 DOI: 10.1007/s10695-015-0152-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
PRDM1 (PRDI-BF1-RIZ1 homologous domain containing 1) appears to be a pleiotropic regulatory factor in various processes. It contains a PR (PRDI-BF1-RIZ1 homologous) domain protein and five zinc fingers. In the present study, a gene coding the homolog of prdm1 and the 5' regulatory region of prdm1 was identified from the Paralichthys olivaceus (denoted Po-prdm1). Results of real-time quantitative polymerase chain reaction amplification (RT-qPCR) and in situ hybridization (ISH) in embryos revealed that Po-prdm1 was highly expressed between the early gastrula and tail bud stages, with its expression peaking in the mid-gastrula stage, whereas the results of RT-qPCR and ISH in tissues demonstrated that Po-prdm1 transcripts were ubiquitously detected in all tissues, which indicates its pleiotropic function in multiple processes. ISH of gonadal tissues revealed that the transcripts were located in the nucleus and cytoplasm of the oocytes in the ovaries but only in the spermatogonia and not in the spermatocytes in the testes. The Po-prdm1 transcription factor binding sites and their conserved binding region among vertebrates were analyzed in this study. The combined results suggest that Po-PRDM1 has a conserved function in teleosts and mammals.
Collapse
Affiliation(s)
- Conghui Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Wei Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Lin Fan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Peizhen Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Wei Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Jinning Gao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Zan Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
22
|
Abstract
The heart is the first organ to form during embryonic development. Given the complex nature of cardiac differentiation and morphogenesis, it is not surprising that some form of congenital heart disease is present in ≈1 percent of newborns. The molecular determinants of heart development have received much attention over the past several decades. This has been driven in large part by an interest in understanding the causes of congenital heart disease coupled with the potential of using knowledge from developmental biology to generate functional cells and tissues that could be used for regenerative medicine purposes. In this review, we highlight the critical signaling pathways and transcription factor networks that regulate cardiomyocyte lineage specification in both in vivo and in vitro models. Special focus will be given to epigenetic regulators that drive the commitment of cardiomyogenic cells from nascent mesoderm and their differentiation into chamber-specific myocytes, as well as regulation of myocardial trabeculation.
Collapse
Affiliation(s)
- Sharon L Paige
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Karolina Plonowska
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Adele Xu
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Sean M Wu
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA.
| |
Collapse
|