1
|
Ma X, Ma Y, Lin Z, Ji M. The role of the TGF-β1 signaling pathway in the process of amelogenesis. Front Physiol 2025; 16:1586769. [PMID: 40271211 PMCID: PMC12014465 DOI: 10.3389/fphys.2025.1586769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Amelogenesis is a highly regulated process involving multiple signaling pathways, among which the transforming growth factor-β1 (TGF-β1) signaling pathway plays a pivotal role in enamel formation. This review firstly elucidates the critical functions of TGF-β1 in regulating ameloblast behavior and enamel development, encompassing ameloblast proliferation, differentiation, apoptosis, enamel matrix protein synthesis, and mineralization. Secondly, based on emerging evidence, we further discuss potential interactions between TGF-β signaling and circadian regulation in enamel formation, although this relationship requires further experimental validation. Finally, future research directions are proposed to further investigate the relationship between TGF-β1 and the circadian clock in the context of amelogenesis.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Yunjing Ma
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Zhiyong Lin
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mei Ji
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Kegulian NC, Moradian-Oldak J. Deletion within ameloblastin multitargeting domain reduces its interaction with artificial cell membrane. J Struct Biol 2024; 216:108143. [PMID: 39447937 PMCID: PMC11784912 DOI: 10.1016/j.jsb.2024.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In human, mutations in the gene encoding the enamel matrix protein ameloblastin (Ambn) have been identified in cases of amelogenesis imperfecta. In mouse models, perturbations in the Ambn gene have caused loss of enamel and dramatic disruptions in enamel-making ameloblast cell function. Critical roles for Ambn in ameloblast cell signaling and polarization as well as adhesion to the nascent enamel matrix have been supported. Recently, we have identified a multitargeting domain (MTD) in Ambn that interacts with cell membrane, with the majority enamel matrix protein amelogenin, and with itself. This domain includes an amphipathic helix (AH) motif that directly interacts with cell membrane. In this study, we analyzed the sequence of the MTD for evolutionary conservation and found high conservation among mammals within the MTD and particularly within the AH motif. We computationally predicted that the AH motif lost its hydrophobic moment upon deleting hydrophobic but not hydrophilic residues from the motif. Furthermore, we rationally designed peptides that encompassed the Ambn MTD and contained deletions of largely hydrophobic or hydrophilic stretches of residues. To assess their AH-forming and membrane-binding abilities, we combined those peptides with synthetic phospholipid membrane vesicles and performed circular dichroism, membrane leakage, and vesicle clearance measurements. Circular dichroism showed retention of α-helix formation in all peptides except the one with the largest deletion of eleven amino acids including seven that were hydrophobic. This same peptide variant failed to cause leakage or clearance of synthetic membranes, while smaller deletions yielded intermediate membrane interaction as measured by leakage and clearance assays. Our data revealed that deletion of key hydrophobic residues from the AH leads to the most dramatic loss of Ambn-membrane interaction. Pinpointing roles of residues within the MTD has important implications for the multifunctionality of Ambn.
Collapse
Affiliation(s)
- Natalie C Kegulian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
3
|
Kegulian NC, Visakan G, Bapat RA, Moradian-Oldak J. Ameloblastin and its multifunctionality in amelogenesis: A review. Matrix Biol 2024; 131:62-76. [PMID: 38815936 PMCID: PMC11218920 DOI: 10.1016/j.matbio.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Extracellular matrix proteins play crucial roles in the formation of mineralized tissues like bone and teeth via multifunctional mechanisms. In tooth enamel, ameloblastin (Ambn) is one such multifunctional extracellular matrix protein implicated in cell signaling and polarity, cell adhesion to the developing enamel matrix, and stabilization of prismatic enamel morphology. To provide a perspective for Ambn structure and function, we begin this review by describing dental enamel and enamel formation (amelogenesis) followed by a description of enamel extracellular matrix. We then summarize the established domains and motifs in Ambn protein, human amelogenesis imperfecta cases, and genetically engineered mouse models involving mutated or null Ambn. We subsequently delineate in silico, in vitro, and in vivo evidence for the amphipathic helix in Ambn as a proposed cell-matrix adhesive and then more recent in vitro evidence for the multitargeting domain as the basis for dynamic interactions of Ambn with itself, amelogenin, and membranes. The multitargeting domain facilitates tuning between Ambn-membrane interactions and self/co-assembly and supports a likely overall role for Ambn as a matricellular protein. We anticipate that this review will enhance the understanding of multifunctional matrix proteins by consolidating diverse mechanisms through which Ambn contributes to enamel extracellular matrix mineralization.
Collapse
Affiliation(s)
- Natalie C Kegulian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Gayathri Visakan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Rucha Arun Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Iwata E, Sah SK, Chen IP, Reichenberger E. Dental abnormalities in rare genetic bone diseases: Literature review. Clin Anat 2024; 37:304-320. [PMID: 37737444 PMCID: PMC11068025 DOI: 10.1002/ca.24117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Currently, over 500 rare genetic bone disorders are identified. These diseases are often accompanied by dental abnormalities, which are sometimes the first clue for an early diagnosis. However, not many dentists are sufficiently familiar with phenotypic abnormalities and treatment approaches when they encounter patients with rare diseases. Such patients often need dental treatment but have difficulties in finding a dentist who can treat them appropriately. Herein we focus on major dental phenotypes and summarize their potential causes and mechanisms, if known. We discuss representative diseases, dental treatments, and their effect on the oral health of patients and on oral health-related quality of life. This review can serve as a starting point for dentists to contribute to early diagnosis and further investigate the best treatment options for patients with rare disorders, with the goal of optimizing treatment outcomes.
Collapse
Affiliation(s)
- Eiji Iwata
- Department of Oral and Maxillofacial Surgery, Kakogawa Central City Hospital, Kakogawa, Japan
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shyam Kishor Sah
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Ernst Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Yang Y, Qin M, Zhao Y, Wang X. Digenic inheritance accounts for phenotypic variability in amelogenesis imperfecta. Clin Genet 2024; 105:243-253. [PMID: 37937686 DOI: 10.1111/cge.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
Amelogenesis imperfecta (AI) represents a group of clinically and genetically heterogeneous disorders that affect enamel formation and mineralization. Although AI is commonly considered a monogenic disorder, digenic inheritance is rarely reported. In this study, we recruited two nonconsanguineous Chinese families exhibiting diverse phenotypes of enamel defects among affected family members. Digenic variants were discovered in both probands. In family 1, the proband inherited a paternal frameshift variant in LAMA3 (NM_198129.4:c.3712dup) and a maternal deletion encompassing the entire AMELX gene. This resulted in a combined hypoplastic and hypomineralized AI phenotype, which was distinct from the parents' manifestations. In family 2, whole-exome sequencing analysis revealed the proband carried a maternal heterozygous splicing variant in COL17A1 (NC_000010.11 (NM_000494.3): c.4156 + 2dup) and compound heterozygous variants in RELT (paternal: NM_032871.4:c.260A > T; maternal: NM_032871.4:c.521 T > G). These genetic changes caused the abundant irregular enamel defects observed in the proband, whereas other affected family members carrying heterozygous variants in both COL17A1 and RELT displayed only horizontal grooves as their phenotype. The pathogenicity of the novel COL17A1 splice site variant was confirmed through RT-PCR and minigene assay. This study enhances our understanding by highlighting the potential association between the co-occurrence of variants in two genes and variable phenotypes observed in AI patients.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
6
|
Vetyskova V, Hubalek M, Sulc J, Prochazka J, Vondrasek J, Vydra Bousova K. Proteolytic profiles of two isoforms of human AMBN expressed in E. coli by MMP-20 and KLK-4 proteases. Heliyon 2024; 10:e24564. [PMID: 38298721 PMCID: PMC10828707 DOI: 10.1016/j.heliyon.2024.e24564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/16/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Ameloblastin is a protein in biomineralization of tooth enamel. However recent results indicate that this is probably not its only role in an organism. Enamel matrix formation represents a complex process enabled via specific crosslinking of two proteins - the most abundant amelogenin and the ameloblastin (AMBN). The human AMBN (hAMBN) gene possesses 13 protein coding exons with alternatively spliced transcripts and the longest isoform about 447 amino acid residues. It has been described that AMBN molecules in vitro assemble into oligomers via a sequence encoded by exon 5. Enamel is formed by the processing of enamel proteins by two specific proteases - enamelysin (MMP-20) and kallikrein 4 (KLK-4). The scaffold made of AMEL and non-amelogenin proteins is cleaved and removed from the developed tooth enamel. The hAMBN is expressed in two isoforms (ISO I and II), which could lead to their different utilization determined by distinct proteolytic profiles. In this study, we compared proteolytic profiles of both isoforms of hAMBN expressed in E. coli after proteolysis by MMP-20, KLK-4, and their 1:2 mixture. Proteolysis products were analysed and cleavage sites were identified by mass spectrometry. The proteolytic profiles of two AMBN isoforms showed different results, although we have to determine that the analysed AMBN was not post-translationally modified as expressed in prokaryotic cells. These results may lead to the suggestion of potentially divergent roles of AMBN isoforms cleavage products in various cell signalling pathways such as calcium buffering or signalling cascades.
Collapse
Affiliation(s)
- Veronika Vetyskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000, Prague, Czech Republic
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000, Prague, Czech Republic
| | - Josef Sulc
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000, Prague, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Natural Sciences, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 5, 14000, Prague, Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000, Prague, Czech Republic
| | - Kristyna Vydra Bousova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000, Prague, Czech Republic
| |
Collapse
|
7
|
Chun YHP, Tan C, Villanueva O, Colley ME, Quintanilla TJ, Basiouny MS, Hartel CA, Critchfield CS, Bach SBH, Fajardo RJ, Pham CD. Overexpression of ameloblastin in secretory ameloblasts results in demarcated, hypomineralized opacities in enamel. Front Physiol 2024; 14:1233391. [PMID: 38274050 PMCID: PMC10808694 DOI: 10.3389/fphys.2023.1233391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/01/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Developmental defects of the enamel manifest before tooth eruption and include amelogenesis imperfecta, a rare disease of underlying gene mutations, and molar-incisor hypomineralization (MIH), a prevalent disease in children originating from environmental and epigenetic factors. MIH enamel presents as the abnormal enamel marked by loss of translucency, demarcation between the healthy and affected enamel, and reduced mineral content. The pathophysiology of opaque, demarcated enamel lesions is not understood; however, the retention of enamel proteins in the matrix has been suggested. Ameloblastin (Ambn) is an enamel protein of the secreted calcium-binding phosphoproteins (SCPPs) critical for enamel formation. When the Ambn gene is mutated or deleted, teeth are affected by hypoplastic amelogenesis imperfecta. Methods: In this study, enamel formation in mice was analyzed when transgenic Ambn was overexpressed from the amelogenin promoter encoding full-length Ambn. Ambn was under- and overexpressed at six increasing concentrations in separate mouse lines. Results: Mice overexpressing Ambn displayed opaque enamel at low concentrations and demarcated lesions at high concentrations. The severity of enamel lesions increased starting from the inner enamel close to the dentino-enamel junction (DEJ) to span the entire width of the enamel layer in demarcated areas. Associated with the opaque enamel were 17-kDa Ambn cleavage products, a prolonged secretory stage, and a thin basement membrane in the maturation stage. Ambn accumulations found in the innermost enamel close to the DEJ and the mineralization front correlated with reduced mineral content. Demarcated enamel lesions were associated with Ambn species of 17 kDa and higher, prolonged secretory and transition stages, a thin basement membrane, and shortened maturation stages. Hypomineralized opacities were delineated against the surrounding mineralized enamel and adjacent to ameloblasts detached from the enamel surface. Inefficient Ambn cleavage, loss of contact between ameloblasts, and the altered basement membrane curtailed the endocytic activity; thus, enamel proteins remained unresorbed in the matrix. Ameloblasts have the ability to distinguish between Ambn concentration and Ambn cleavage products through finely tuned feedback mechanisms. The under- or overexpression of Ambn in murine secretory ameloblasts results in either hypoplastic amelogenesis imperfecta or hypomineralization with opaque or sharply demarcated boundaries of lesions, similar to MIH.
Collapse
Affiliation(s)
- Yong-Hee Patricia Chun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cell Systems and Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Chunyan Tan
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Omar Villanueva
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Madeline E. Colley
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Travis J. Quintanilla
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mohamed S. Basiouny
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Caldonia A. Hartel
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Cameron S. Critchfield
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Stephan B. H. Bach
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX, United States
| | - Roberto J. Fajardo
- Department of Clinical and Applied Science Education, School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX, United States
| | - Cong-Dat Pham
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
8
|
Wang SK, Lee ZH, Aref P, Chu KY. A novel ODAPH mutation causing amelogenesis imperfecta and its expression in human dental tissues. J Dent Sci 2024; 19:524-531. [PMID: 38303846 PMCID: PMC10829723 DOI: 10.1016/j.jds.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/18/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Amelogenesis imperfecta (AI), an assemblage of genetic diseases with dental enamel malformations, is generally grouped into hypoplastic, hypomaturation, and hypocalcified types. This study aimed to identify the genetic etiology for a consanguineous Iranian family with autosomal recessive hypocalcified AI. Materials and methods Dental defects were characterized, and whole exome analysis conducted to search for disease-causing mutations. Minigene assay and RT-PCR were performed to evaluate molecular consequences of the identified mutation and expression of the causative gene in human dental tissues. Results The defective enamel of erupted teeth showed extensive post-eruptive failure and discoloration. Partial enamel hypoplasia and indistinct dentino-enamel junction were evident on unerupted teeth, resembling hypocalcified AI. A novel homozygous ODAPH (previously designated C4orf26) mutation of single-nucleotide deletion (NG_032974.1:g.5103del, NM_178497.5:c.67+1del) was identified to be disease-causing. The mutation would cause a frameshift to different ODAPH transcript variant (TV) products: p.(Ala23Hisfs∗29) for TV1 and p.(Gly23Aspfs∗140) for TV2. Both dental pulps of developing and exfoliating primary teeth expressed ODAPH TV2. Conclusion Loss-of-function ODAPH mutations can cause AI type IIIB (the hypocalcified, autosomal recessive type), rather than type IIA4 (the hypomaturation, pigmented autosomal recessive type). This study supports a hypothesis that the product of ODAPH TV2 is the single dominant ODAPH protein isoform critical for dental enamel formation and may also play an unappreciated role in development and homeostasis of dentin-pulp complex. Due to genetic heterogeneity and a nonideal genotype-phenotype correlation of AI, it is essential to perform genetic testing for patients with inherited enamel defects to make a definitive diagnosis.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Zhe-Hao Lee
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
| | - Parissa Aref
- Department of Pediatric Dentistry, Islamic Azad University Dental Branch of Tehran, Tehran, Iran
| | - Kuan-Yu Chu
- Department of Pediatric Dentistry, National Taiwan University Children's Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Hany U, Watson C, Liu L, Nikolopoulos G, Smith C, Poulter J, Brown C, Patel A, Rodd H, Balmer R, Harfoush A, Al-Jawad M, Inglehearn C, Mighell A. Novel Ameloblastin Variants, Contrasting Amelogenesis Imperfecta Phenotypes. J Dent Res 2024; 103:22-30. [PMID: 38058155 PMCID: PMC10734210 DOI: 10.1177/00220345231203694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Amelogenesis imperfecta (AI) comprises a group of rare, inherited disorders with abnormal enamel formation. Ameloblastin (AMBN), the second most abundant enamel matrix protein (EMP), plays a critical role in amelogenesis. Pathogenic biallelic loss-of-function AMBN variants are known to cause recessive hypoplastic AI. A report of a family with dominant hypoplastic AI attributed to AMBN missense change p.Pro357Ser, together with data from animal models, suggests that the consequences of AMBN variants in human AI remain incompletely characterized. Here we describe 5 new pathogenic AMBN variants in 11 individuals with AI. These fall within 3 groups by phenotype. Group 1, consisting of 6 families biallelic for combinations of 4 different variants, have yellow hypoplastic AI with poor-quality enamel, consistent with previous reports. Group 2, with 2 families, appears monoallelic for a variant shared with group 1 and has hypomaturation AI of near-normal enamel volume with pitting. Group 3 includes 3 families, all monoallelic for a fifth variant, which are affected by white hypoplastic AI with a thin intact enamel layer. Three variants, c.209C>G; p.(Ser70*) (groups 1 and 2), c.295T>C; p.(Tyr99His) (group 1), and c.76G>A; p.(Ala26Thr) (group 3) were identified in multiple families. Long-read AMBN locus sequencing revealed these variants are on the same conserved haplotype, implying they originate from a common ancestor. Data presented therefore provide further support for possible dominant as well as recessive inheritance for AMBN-related AI and for multiple contrasting phenotypes. In conclusion, our findings suggest pathogenic AMBN variants have a more complex impact on human AI than previously reported.
Collapse
Affiliation(s)
- U. Hany
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.M. Watson
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James’s University Hospital, Leeds, UK
| | - L. Liu
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - G. Nikolopoulos
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.E.L. Smith
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - J.A. Poulter
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.J. Brown
- Birmingham Dental Hospital, Mill Pool Way, Edgbaston, Birmingham, UK
| | - A. Patel
- LCRN West Midlands Core Team, NIHR Clinical Research Network (CRN), Birmingham Research Park (West Wing), Edgbaston, Birmingham, UK
| | - H.D. Rodd
- Academic Unit of Oral Health Dentistry and Society, School of Clinical Dentistry, University of Sheffield, Sheffield, S Yorks, UK
| | - R. Balmer
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - A. Harfoush
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - M. Al-Jawad
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - C.F. Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - A.J. Mighell
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Dong J, Ruan W, Duan X. Molecular-based phenotype variations in amelogenesis imperfecta. Oral Dis 2023; 29:2334-2365. [PMID: 37154292 DOI: 10.1111/odi.14599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/03/2023] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Amelogenesis imperfecta (AI) is one of the typical dental genetic diseases in human. It can occur isolatedly or as part of a syndrome. Previous reports have mainly clarified the types and mechanisms of nonsyndromic AI. This review aimed to compare the phenotypic differences among the hereditary enamel defects with or without syndromes and their underlying pathogenic genes. We searched the articles in PubMed with different strategies or keywords including but not limited to amelogenesis imperfecta, enamel defects, hypoplastic/hypomaturation/hypocalcified, syndrome, or specific syndrome name. The articles with detailed clinical information about the enamel and other phenotypes and clear genetic background were used for the analysis. We totally summarized and compared enamel phenotypes of 18 nonsyndromic AI with 17 causative genes and 19 syndromic AI with 26 causative genes. According to the clinical features, radiographic or ultrastructural changes in enamel, the enamel defects were basically divided into hypoplastic and hypomineralized (hypomaturated and hypocalcified) and presented a higher heterogeneity which were closely related to the involved pathogenic genes, types of mutation, hereditary pattern, X chromosome inactivation, incomplete penetrance, and other mechanisms.The gene-specific enamel phenotypes could be an important indicator for diagnosing nonsyndromic and syndromic AI.
Collapse
Affiliation(s)
- Jing Dong
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenyan Ruan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Bloch-Zupan A, Rey T, Jimenez-Armijo A, Kawczynski M, Kharouf N, Dure-Molla MDL, Noirrit E, Hernandez M, Joseph-Beaudin C, Lopez S, Tardieu C, Thivichon-Prince B, Dostalova T, Macek M, Alloussi ME, Qebibo L, Morkmued S, Pungchanchaikul P, Orellana BU, Manière MC, Gérard B, Bugueno IM, Laugel-Haushalter V. Amelogenesis imperfecta: Next-generation sequencing sheds light on Witkop's classification. Front Physiol 2023; 14:1130175. [PMID: 37228816 PMCID: PMC10205041 DOI: 10.3389/fphys.2023.1130175] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic rare diseases disrupting enamel development (Smith et al., Front Physiol, 2017a, 8, 333). The clinical enamel phenotypes can be described as hypoplastic, hypomineralized or hypomature and serve as a basis, together with the mode of inheritance, to Witkop's classification (Witkop, J Oral Pathol, 1988, 17, 547-553). AI can be described in isolation or associated with others symptoms in syndromes. Its occurrence was estimated to range from 1/700 to 1/14,000. More than 70 genes have currently been identified as causative. Objectives: We analyzed using next-generation sequencing (NGS) a heterogeneous cohort of AI patients in order to determine the molecular etiology of AI and to improve diagnosis and disease management. Methods: Individuals presenting with so called "isolated" or syndromic AI were enrolled and examined at the Reference Centre for Rare Oral and Dental Diseases (O-Rares) using D4/phenodent protocol (www.phenodent.org). Families gave written informed consents for both phenotyping and molecular analysis and diagnosis using a dedicated NGS panel named GenoDENT. This panel explores currently simultaneously 567 genes. The study is registered under NCT01746121 and NCT02397824 (https://clinicaltrials.gov/). Results: GenoDENT obtained a 60% diagnostic rate. We reported genetics results for 221 persons divided between 115 AI index cases and their 106 associated relatives from a total of 111 families. From this index cohort, 73% were diagnosed with non-syndromic amelogenesis imperfecta and 27% with syndromic amelogenesis imperfecta. Each individual was classified according to the AI phenotype. Type I hypoplastic AI represented 61 individuals (53%), Type II hypomature AI affected 31 individuals (27%), Type III hypomineralized AI was diagnosed in 18 individuals (16%) and Type IV hypoplastic-hypomature AI with taurodontism concerned 5 individuals (4%). We validated the genetic diagnosis, with class 4 (likely pathogenic) or class 5 (pathogenic) variants, for 81% of the cohort, and identified candidate variants (variant of uncertain significance or VUS) for 19% of index cases. Among the 151 sequenced variants, 47 are newly reported and classified as class 4 or 5. The most frequently discovered genotypes were associated with MMP20 and FAM83H for isolated AI. FAM20A and LTBP3 genes were the most frequent genes identified for syndromic AI. Patients negative to the panel were resolved with exome sequencing elucidating for example the gene involved ie ACP4 or digenic inheritance. Conclusion: NGS GenoDENT panel is a validated and cost-efficient technique offering new perspectives to understand underlying molecular mechanisms of AI. Discovering variants in genes involved in syndromic AI (CNNM4, WDR72, FAM20A … ) transformed patient overall care. Unravelling the genetic basis of AI sheds light on Witkop's AI classification.
Collapse
Affiliation(s)
- Agnes Bloch-Zupan
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut d’études avancées (USIAS), Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Eastman Dental Institute, University College London, London, United Kingdom
| | - Tristan Rey
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Alexandra Jimenez-Armijo
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Marzena Kawczynski
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Naji Kharouf
- Université de Strasbourg, Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Strasbourg, France
| | | | - Muriel de La Dure-Molla
- Rothschild Hospital, Public Assistance-Paris Hospitals (AP-HP), Reference Center for Rare Oral and Den-tal Diseases (O-Rares), Paris, France
| | - Emmanuelle Noirrit
- Centre Hospitalier Universitaire (CHU) Rangueil, Toulouse, Competence Center for Rare Oral and Den-tal Diseases, Toulouse, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Competence Center for Rare Oral and Dental Diseases, Nancy, France
| | - Clara Joseph-Beaudin
- Centre Hospitalier Universitaire de Nice, Competence Center for Rare Oral and Dental Diseases, Nice, France
| | - Serena Lopez
- Centre Hospitalier Universitaire de Nantes, Competence Center for Rare Oral and Dental Diseases, Nantes, France
| | - Corinne Tardieu
- APHM, Hôpitaux Universitaires de Marseille, Hôpital Timone, Competence Center for Rare Oral and Dental Diseases, Marseille, France
| | - Béatrice Thivichon-Prince
- Centre Hospitalier Universitaire de Lyon, Competence Center for Rare Oral and Dental Diseases, Lyon, France
| | | | - Tatjana Dostalova
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Milan Macek
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | | | - Mustapha El Alloussi
- Faculty of Dentistry, International University of Rabat, CReSS Centre de recherche en Sciences de la Santé, Rabat, Morocco
| | - Leila Qebibo
- Unité de génétique médicale et d’oncogénétique, CHU Hassan II, Fes, Morocco
| | | | | | - Blanca Urzúa Orellana
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Marie-Cécile Manière
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Bénédicte Gérard
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Isaac Maximiliano Bugueno
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Virginie Laugel-Haushalter
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| |
Collapse
|
12
|
da Silva Figueira R, Mustafa Gomes Muniz FW, Costa LC, Silva de Moura M, Moura LDFADD, Mello de Oliveira B, Lima CCB, Rösing CK, de Lima MDDM. Association between genetic factors and molar-incisor hypomineralisation or hypomineralised second primary molar: A systematic review. Arch Oral Biol 2023; 152:105716. [PMID: 37210809 DOI: 10.1016/j.archoralbio.2023.105716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVE To determine the association between genetic factors and molar-incisor hypomineralisation (MIH) and/or hypomineralised second primary molars by means of a systematic review. DESIGN A search was performed in Medline-PubMed, Scopus, Embase and Web of Science databases; manual search and search in gray literature were also performed. Selection of articles was performed independently by two researchers. A third examiner was involved in cases of disagreement. Data extraction was performed using an Excel® spreadsheet and independent analysis was performed for each outcome. RESULTS Sixteen studies were included. There was an association between MIH and genetic variants related to amelogenesis, immune response, xenobiotic detoxification and other genes. Moreover, interactions between amelogenesis and immune response genes, and SNPs in the aquaporin gene and vitamin D receptors were associated with MIH. Greater agreement of MIH was found in pairs of monozygotic twins than dizygotic twins. The heritability of MIH was 20 %. Hypomineralised second primary molars was associated with SNPs in the hypoxia-related HIF-1 gene and methylation in genes related to amelogenesis. CONCLUSION With very low or low certainty of evidence, an association was observed between MIH and SNPs in genes associated with amelogenesis, immune response, xenobiotic detox and ion transport. Interactions between genes related to amelogenesis and immune response as well as aquaporin genes were associated to MIH. With very low certainty of evidence, hypomineralised second primary molars was associated to a hypoxia-related gene and to methylation in genes related to amelogenesis. Moreover, higher agreement of MIH in pairs of monozygotic twins than dizygotic twins was observed.
Collapse
Affiliation(s)
| | | | - Lara Carvalho Costa
- Department of Pathology and Dental Clinic, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Marcoeli Silva de Moura
- Department of Pathology and Dental Clinic, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Bibiana Mello de Oliveira
- Post Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
13
|
Shao C, Bapat RA, Su J, Moradian-Oldak J. Regulation of Hydroxyapatite Nucleation In Vitro through Ameloblastin-Amelogenin Interactions. ACS Biomater Sci Eng 2023; 9:1834-1842. [PMID: 35068157 PMCID: PMC9308824 DOI: 10.1021/acsbiomaterials.1c01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amelogenin (Amel) and ameloblastin (Ambn) are two primary extracellular enamel matrix proteins that play crucial roles for proper thickness, prismatic structure, and robust mechanical properties. Previous studies have shown that Amel and Ambn bind to each other, but the effect of their coassembly on the nucleation of hydroxyapatite (HAP) is unclear. Here, we systematically investigated the coassembly of recombinant mouse Amel and Ambn in various ratios using in situ atomic force microscopy, dynamic light scattering, and transmission electron microscopy. The size of protein particles decreased as the Ambn:Amel ratio increased. To define the coassembly domain on Ambn, we used Ambn-derived peptides and Ambn variants to examine their effects on the amelogenin particle size distribution. We found that the peptide sequence encoded by exon 5 of Ambn affected Amel self-assembly but the variant lacking this sequence did not have any effect on Amel self-assembly. Furthermore, through monitoring the pH change in bulk mineralization solution, we tracked the nucleation behavior of HAP in the presence of Ambn and Amel and found that their coassemblies at different ratios showed varying abilities to stabilize amorphous calcium phosphate. These results demonstrated that Ambn and Amel coassemble with each other via a motif within the sequence encoded by exon 5 of Ambn and cooperate in regulating the nucleation of HAP crystals, enhancing our understanding of the important role of enamel matrix proteins in amelogenesis.
Collapse
Affiliation(s)
- Changyu Shao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Rucha Arun Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Jingtan Su
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| |
Collapse
|
14
|
Kegulian NC, Langen R, Moradian-Oldak J. The Dynamic Interactions of a Multitargeting Domain in Ameloblastin Protein with Amelogenin and Membrane. Int J Mol Sci 2023; 24:3484. [PMID: 36834897 PMCID: PMC9966149 DOI: 10.3390/ijms24043484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The enamel matrix protein Ameloblastin (Ambn) has critical physiological functions, including regulation of mineral formation, cell differentiation, and cell-matrix adhesion. We investigated localized structural changes in Ambn during its interactions with its targets. We performed biophysical assays and used liposomes as a cell membrane model. The xAB2N and AB2 peptides were rationally designed to encompass regions of Ambn that contained self-assembly and helix-containing membrane-binding motifs. Electron paramagnetic resonance (EPR) on spin-labeled peptides showed localized structural gains in the presence of liposomes, amelogenin (Amel), and Ambn. Vesicle clearance and leakage assays indicated that peptide-membrane interactions were independent from peptide self-association. Tryptophan fluorescence and EPR showed competition between Ambn-Amel and Ambn-membrane interactions. We demonstrate localized structural changes in Ambn upon interaction with different targets via a multitargeting domain, spanning residues 57 to 90 of mouse Ambn. Structural changes of Ambn following its interaction with different targets have relevant implications for the multifunctionality of Ambn in enamel formation.
Collapse
Affiliation(s)
- Natalie C. Kegulian
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Ralf Langen
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Polymorphisms in genes expressed during amelogenesis and their association with dental caries: a case–control study. Clin Oral Investig 2022; 27:1681-1695. [PMID: 36422720 PMCID: PMC10102052 DOI: 10.1007/s00784-022-04794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Abstract
Objectives
Dental caries is a widespread multifactorial disease, caused by the demineralization of hard dental tissues. Susceptibility to dental caries is partially genetically conditioned; this study was aimed at finding an association of selected single nucleotide polymorphisms (SNPs) in genes encoding proteins involved in amelogenesis with this disease in children.
Materials and methods
In this case–control study, 15 SNPs in ALOX15, AMBN, AMELX, KLK4, TFIP11, and TUFT1 genes were analyzed in 150 children with primary dentition and 611 children with permanent teeth with/without dental caries from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) cohort.
Results
Dental caries in primary dentition was associated with SNPs in AMELX (rs17878486) and KLK4 (rs198968, rs2242670), and dental caries in permanent dentition with SNPs in AMELX (rs17878486) and KLK4 (rs2235091, rs2242670, rs2978642), (p ≤ 0.05). No significant differences between cases and controls were observed in the allele or genotype frequencies of any of the selected SNPs in ALOX15, AMBN, TFIP11, and TUFT1 genes (p > 0.05). Some KLK4 haplotypes were associated with dental caries in permanent dentition (p ≤ 0.05).
Conclusions
Based on this study, we found that although the SNPs in AMELX and KLK4 are localized in intronic regions and their functional significance has not yet been determined, they are associated with susceptibility to dental caries in children.
Clinical relevance
AMELX and KLK4 variants could be considered in the risk assessment of dental caries, especially in permanent dentition, in the European Caucasian population.
Collapse
|
16
|
Tadano M, Nakamura T, Hoshikawa S, Hino R, Maruya Y, Yamada A, Fukumoto S, Saito K. The Retention Effect of Resin-Based Desensitizing Agents on Hypersensitivity-A Randomized Controlled Trial. MATERIALS 2022; 15:ma15155172. [PMID: 35897604 PMCID: PMC9330500 DOI: 10.3390/ma15155172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
Recently, the development of dental materials has increased the availability of various hyperesthesia desensitizers. However, there are no studies on the duration of retreatment in terms of adherence rates. Thus, the adhesion rates of resin-based desensitizers were investigated. We used a conventional desensitizer and a recently developed desensitizer containing calcium salt of 4-methacryloxyethyl trimellitic acid (C-MET) and 10-methacryloyloxydecyl dihydrogen calcium phosphate (MDCP). These colored agents were applied to the surfaces of premolars and molars, and the area was measured from weekly oral photographs. Areas were statistically analyzed and mean values were calculated using 95% confidence intervals. A p-value of <0.05 was considered statistically significant. These rates were significantly higher on the buccal side of the maxilla and lower on the lingual side of the maxilla. In addition, the desensitizer containing C-MET and MDCP displayed significantly higher adhesion rates. It is suggested that this will require monthly follow-ups and reevaluation because both agents cause less than 10% adherence and there is almost no sealing effect after 4 weeks. In addition, the significantly higher adhesion rate of the desensitizer containing C-MET and MDCP indicated that the novel monomer contributed to the improvement in the adhesion ability.
Collapse
Affiliation(s)
- Manami Tadano
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.T.); (T.N.); (S.H.); (R.H.); (Y.M.); (A.Y.); (S.F.)
| | - Tomoaki Nakamura
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.T.); (T.N.); (S.H.); (R.H.); (Y.M.); (A.Y.); (S.F.)
| | - Seira Hoshikawa
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.T.); (T.N.); (S.H.); (R.H.); (Y.M.); (A.Y.); (S.F.)
| | - Ryoko Hino
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.T.); (T.N.); (S.H.); (R.H.); (Y.M.); (A.Y.); (S.F.)
| | - Yuriko Maruya
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.T.); (T.N.); (S.H.); (R.H.); (Y.M.); (A.Y.); (S.F.)
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.T.); (T.N.); (S.H.); (R.H.); (Y.M.); (A.Y.); (S.F.)
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.T.); (T.N.); (S.H.); (R.H.); (Y.M.); (A.Y.); (S.F.)
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.T.); (T.N.); (S.H.); (R.H.); (Y.M.); (A.Y.); (S.F.)
- Correspondence: ; Tel./Fax: +81-22-717-8382
| |
Collapse
|
17
|
An Intron c.103-3T>C Variant of the AMELX Gene Causes Combined Hypomineralized and Hypoplastic Type of Amelogenesis Imperfecta: Case Series and Review of the Literature. Genes (Basel) 2022; 13:genes13071272. [PMID: 35886055 PMCID: PMC9321068 DOI: 10.3390/genes13071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders of dental enamel. X-linked AI results from disease-causing variants in the AMELX gene. In this paper, we characterise the genetic aetiology and enamel histology of female AI patients from two unrelated families with similar clinical and radiographic findings. All three probands were carefully selected from 40 patients with AI. In probands from both families, scanning electron microscopy confirmed hypoplastic and hypomineralised enamel. A neonatal line separated prenatally and postnatally formed enamel of distinctly different mineralisation qualities. In both families, whole exome analysis revealed the intron variant NM_182680.1: c.103-3T>C, located three nucleotides before exon 4 of the AMELX gene. In family I, an additional variant, c.2363G>A, was found in exon 5 of the FAM83H gene. This report illustrates a variant in the AMELX gene that was not previously reported to be causative for AI as well as an additional variant in the FAM83H gene with probably limited clinical significance.
Collapse
|
18
|
Randall JG, Gatesy J, Springer MS. Molecular evolutionary analyses of tooth genes support sequential loss of enamel and teeth in baleen whales (Mysticeti). Mol Phylogenet Evol 2022; 171:107463. [PMID: 35358696 DOI: 10.1016/j.ympev.2022.107463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The loss of teeth and evolution of baleen racks in Mysticeti was a profound transformation that permitted baleen whales to radiate and diversify into a previously underutilized ecological niche of bulk filter-feeding on zooplankton and other small prey. Ancestral state reconstructions suggest that postnatal teeth were lost in the common ancestor of crown Mysticeti. Genomic studies provide some support for this hypothesis and suggest that the genetic toolkit for enamel production was inactivated in the common ancestor of living baleen whales. However, molecular studies to date have not provided direct evidence for the complete loss of teeth, including their dentin component, on the stem mysticete branch. Given these results, several questions remain unanswered: (1) Were teeth lost in a single step or did enamel loss precede dentin loss? (2) Was enamel lost early or late on the stem mysticete branch? (3) If enamel and dentin/tooth loss were decoupled in the ancestry of baleen whales, did dentin loss occur on the stem mysticete branch or independently in different crown mysticete lineages? To address these outstanding questions, we compiled and analyzed complete protein-coding sequences for nine tooth-related genes from cetaceans with available genome data. Seven of these genes are associated with enamel formation (ACP4, AMBN, AMELX, AMTN, ENAM, KLK4, MMP20) whereas two other genes are either dentin-specific (DSPP) or tooth-specific (ODAPH) but not enamel-specific. Molecular evolutionary analyses indicate that all seven enamel-specific genes have inactivating mutations that are scattered across branches of the mysticete tree. Three of the enamel genes (ACP4, KLK4, MMP20) have inactivating mutations that are shared by all mysticetes. The two genes that are dentin-specific (DSPP) or tooth-specific (ODAPH) do not have any inactivating mutations that are shared by all mysticetes, but there are shared mutations in Balaenidae as well as in Plicogulae (Neobalaenidae + Balaenopteroidea). These shared mutations suggest that teeth were lost at most two times. Shared inactivating mutations and dN/dS analyses, in combination with cetacean divergence times, were used to estimate inactivation times of genes and by proxy enamel and tooth phenotypes at ancestral nodes. The results of these analyses are most compatible with a two-step model for the loss of teeth in the ancestry of living baleen whales: enamel was lost very early on the stem Mysticeti branch followed by the independent loss of dentin (and teeth) in the common ancestors of Balaenidae and Plicogulae, respectively. These results imply that some stem mysticetes, and even early crown mysticetes, may have had vestigial teeth comprised of dentin with no enamel. Our results also demonstrate that all odontocete species (in our study) with absent or degenerative enamel have inactivating mutations in one or more of their enamel genes.
Collapse
Affiliation(s)
- Jason G Randall
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, CA 92521, USA.
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| | - Mark S Springer
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
19
|
Kim Y, Lee Y, Kasimoglu Y, Seymen F, Simmer J, Hu JC, Cho ES, Kim JW. Recessive Mutations in ACP4 Cause Amelogenesis Imperfecta. J Dent Res 2022; 101:37-45. [PMID: 34036831 PMCID: PMC8721729 DOI: 10.1177/00220345211015119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Amelogenesis imperfecta (AI) is an innate disorder that affects the formation and mineralization of the tooth enamel. When diagnosed with AI, one's teeth can be hypoplastic (thin enamel), hypomature (normal enamel thickness but discolored and softer than normal enamel), hypocalcified (normal enamel thickness but extremely weak), or mixed conditions of the above. Numerous studies have revealed the genes that are involved in causing AI. Recently, ACP4 (acid phosphatase 4) was newly found as a gene causing hypoplastic AI, and it was suggested that mutant forms of ACP4 might affect access to the catalytic core or the ability to form a homodimer. In this study, a Korean and a Turkish family with hypoplastic AI were recruited, and their exome sequences were analyzed. Biallelic mutations were revealed in ACP4: paternal (NM_033068: c.419C>T, p.(Pro140Leu)) and maternal (c.262C>A, p.(Arg88Ser)) mutations in family 1 and a paternal (c.713C>T, p.(Ser238Leu)) mutation and de novo (c.350A>G, p.(Gln117Arg)) mutation in the maternal allele in family 2. Mutations were analyzed by cloning, mutagenesis, immunofluorescence, immunoprecipitation, and acid phosphatase activity test. Comparison between the wild-type and mutant ACP4s showed a decreased amount of protein expression from the mutant forms, a decreased ability to form a homodimer, and a decreased acid phosphatase activity level. We believe that these findings will not only expand the mutational spectrum of ACP4 but also increase our understanding of the mechanism of ACP4 function during normal and pathologic amelogenesis.
Collapse
Affiliation(s)
- Y.J. Kim
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Y. Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Y. Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - F. Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - J.P. Simmer
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J.C.-C. Hu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - E.-S. Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - J.-W. Kim
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea,Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea,J.W. Kim, Department of Molecular Genetics, Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
20
|
Inoue A, Kiyoshima T, Yoshizaki K, Nakatomi C, Nakatomi M, Ohshima H, Shin M, Gao J, Tsuru K, Okabe K, Nakamura I, Honda H, Matsuda M, Takahashi I, Jimi E. Deletion of epithelial cell-specific p130Cas impairs the maturation stage of amelogenesis. Bone 2022; 154:116210. [PMID: 34592494 DOI: 10.1016/j.bone.2021.116210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/02/2022]
Abstract
Amelogenesis consists of secretory, transition, maturation, and post-maturation stages, and the morphological changes of ameloblasts at each stage are closely related to their function. p130 Crk-associated substrate (Cas) is a scaffold protein that modulates essential cellular processes, including cell adhesion, cytoskeletal changes, and polarization. The expression of p130Cas was observed from the secretory stage to the maturation stage in ameloblasts. Epithelial cell-specific p130Cas-deficient (p130CasΔepi-) mice exhibited enamel hypomineralization with chalk-like white mandibular incisors in young mice and attrition in aged mouse molars. A micro-computed tomography analysis and Vickers micro-hardness testing showed thinner enamel, lower enamel mineral density and hardness in p130CasΔepi- mice in comparison to p130Casflox/flox mice. Scanning electron microscopy, and an energy dispersive X-ray spectroscopy analysis indicated the disturbance of the enamel rod structure and lower Ca and P contents in p130CasΔepi- mice, respectively. The disorganized arrangement of ameloblasts, especially in the maturation stage, was observed in p130CasΔepi- mice. Furthermore, expression levels of enamel matrix proteins, such as amelogenin and ameloblastin in the secretory stage, and functional markers, such as alkaline phosphatase and iron accumulation, and Na+/Ca2++K+-exchanger in the maturation stage were reduced in p130CasΔepi- mice. These findings suggest that p130Cas plays important roles in amelogenesis (197 words).
Collapse
Affiliation(s)
- Akane Inoue
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masashi Shin
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan; Oral Medicine Center, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kanji Tsuru
- Section of Bioengineering, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Koji Okabe
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa 259-0396, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
21
|
Visakan G, Su J, Moradian-Oldak J. Ameloblastin promotes polarization of ameloblast cell lines in a 3-D cell culture system. Matrix Biol 2022; 105:72-86. [PMID: 34813898 PMCID: PMC8955733 DOI: 10.1016/j.matbio.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Studies on animal models with mutations in ameloblastin gene have suggested that the extracellular matrix protein ameloblastin (AMBN) plays important roles in controlling cell-matrix adhesion and ameloblast polarization during amelogenesis. In order to examine the function of AMBN in cell polarization and morphology, we developed an in vitro 3D cell culture model to examine the effect of AMBN and amelogenin (AMEL) addition on ameloblast cell lines. We further used high resolution confocal microscopy to detect expression of polarization markers in response to AMBN addition. Addition of AMBN to the 3D culture matrix resulted in the clustering and elongation (higher aspect ratio) of ALC in a dose dependent manner. The molar concentration of AMEL required to exact this response from ALC was 2.75- times greater than that of AMBN. This polarization effect of ameloblastin was attributable directly to an evolutionary conserved domain within its exon 5-encoded region. The lack of exon 6-encoded region also influenced AMBN-cell interactions but to a lesser extent. The clusters formed with AMBN were polarized with expression of E-cadherin, Par3 and Cldn1 assembly at the nascent cell-cell junctions. The elongation effect was specific to epithelial cells of ameloblastic lineage ALC and LS8 cells. Our data suggest that AMBN may play critical signaling roles in the initiation of cell polarity by acting as a communicator between cell-cell and cell-matrix interactions. Our investigation has important implications for understanding the function of ameloblastin in enamel-cell matrix adhesion and the outcomes may contribute to efforts to develop strategies for enamel tissue regeneration.
Collapse
|
22
|
Seymen F, Zhang H, Kasimoglu Y, Koruyucu M, Simmer JP, Hu JCC, Kim JW. Novel Mutations in GPR68 and SLC24A4 Cause Hypomaturation Amelogenesis Imperfecta. J Pers Med 2021; 12:jpm12010013. [PMID: 35055328 PMCID: PMC8781920 DOI: 10.3390/jpm12010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a rare genetic condition affecting the quantity and/or quality of tooth enamel. Hypomaturation AI is characterized by brownish-yellow discoloration with increased opacity and poorly mineralized enamel prone to fracture and attrition. We recruited three families affected by hypomaturation AI and performed whole exome sequencing with selected individuals in each family. Bioinformatic analysis and Sanger sequencing identified and confirmed mutations and segregation in the families. Family 1 had a novel homozygous frameshift mutation in GPR68 gene (NM_003485.3:c.78_83delinsC, p.(Val27Cysfs*146)). Family 2 had a novel homozygous nonsense mutation in SLC24A4 gene (NM_153646.4:c.613C>T, NP_705932.2:p.(Arg205*)). Family 3 also had a homozygous missense mutation in SLC24A4 gene which was reported previously (c.437C>T, p.(Ala146Val)). This report not only expands the mutational spectrum of the AI-causing genes but also improves our understanding of normal and pathologic amelogenesis.
Collapse
Affiliation(s)
- Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey; (F.S.); (Y.K.); (M.K.)
| | - Hong Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey; (F.S.); (Y.K.); (M.K.)
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey; (F.S.); (Y.K.); (M.K.)
| | - James P. Simmer
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jung-Wook Kim
- Department of Pediatric Dentistry, School of Dentistry & DRI, Seoul National University, Seoul 03080, Korea
- Department of Molecular Genetics, School of Dentistry & DRI, Seoul National University, Seoul 03080, Korea
- Correspondence:
| |
Collapse
|
23
|
Govitvattana N, Kaku M, Ohyama Y, Jaha H, Lin IP, Mochida H, Pavasant P, Mochida Y. Molecular Cloning of Mouse Homologue of Enamel Protein C4orf26 and Its Phosphorylation by FAM20C. Calcif Tissue Int 2021; 109:445-454. [PMID: 33884476 PMCID: PMC8429244 DOI: 10.1007/s00223-021-00847-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
It is widely accepted that cellular processes are controlled by protein phosphorylation and has become increasingly clear that protein degradation, localization and conformation as well as protein-protein interaction are the examples of subsequent cellular events modulated by protein phosphorylation. Enamel matrix proteins belong to members of the secretory calcium binding phosphoprotein (SCPP) family clustered on chromosome 4q21, and most of the SCPP phosphoproteins have at least one S-X-E motifs (S; serine, X; any amino acid, E; glutamic acid). It has been reported that mutations in C4orf26 gene, located on chromosome 4q21, are associated with autosomal recessive type of Amelogenesis Imperfecta (AI), a hereditary condition that affects enamel formation/mineralization. The enamel phenotype observed in patients with C4orf26 mutations is hypomineralized and partially hypoplastic, indicating that C4orf26 protein may function at both secretory and maturation stages of amelogenesis. The previous in vitro study showed that the synthetic phosphorylated peptide based on C4orf26 protein sequence accelerates hydroxyapatite nucleation. Here we show the molecular cloning of Gm1045, mouse homologue of C4orf26, which has 2 splicing isoforms. Immunohistochemical analysis demonstrated that the immunolocalization of Gm1045 is mainly observed in enamel matrix in vivo. Our report is the first to show that FAM20C, the Golgi casein kinase, phosphorylates C4orf26 and Gm1045 in cell cultures. The extracellular localization of C4orf26/Gm1045 was regulated by FAM20C kinase activity. Thus, our data point out the biological importance of enamel matrix-kinase control of SCPP phosphoproteins and may have a broad impact on the regulation of amelogenesis and AI.
Collapse
Affiliation(s)
- Nattanan Govitvattana
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA
| | - Haytham Jaha
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA
| | - I-Ping Lin
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan
| | - Hanna Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA.
| |
Collapse
|
24
|
Wang J, Liu Z, Ren B, Wang Q, Wu J, Yang N, Sui X, Li L, Li M, Zhang X, Li X, Wang B. Biomimetic mineralisation systems for in situ enamel restoration inspired by amelogenesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:115. [PMID: 34455518 PMCID: PMC8403113 DOI: 10.1007/s10856-021-06583-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/05/2021] [Indexed: 05/28/2023]
Abstract
Caries and dental erosion are common oral diseases. Traditional treatments involve the mechanical removal of decay and filling but these methods are not suitable for cases involving large-scale enamel erosion, such as hypoplasia. To develop a noninvasive treatment, promoting remineralisation in the early stage of caries is of considerable clinical significance. Therefore, biomimetic mineralisation is an ideal approach for restoring enamel. Biomimetic mineralisation forms a new mineral layer that is tightly attached to the surface of the enamel. This review details the state-of-art achievements on the application of amelogenin and non-amelogenin, amorphous calcium phosphate, ions flow and other techniques in the biomimetic mineralisation of enamel. The ultimate goal of this review was to shed light on the requirements for enamel biomineralisation. Hence, herein, we summarise two strategies of biological minimisation systems for in situ enamel restoration inspired by amelogenesis that have been developed in recent years and compare their advantages and disadvantages.
Collapse
Affiliation(s)
- Jue Wang
- Department of Obsterics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Bingyu Ren
- Department of Thyroid surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qian Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jia Wu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Nan Yang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xin Sui
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Lingfeng Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Meihui Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xiao Zhang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xinyue Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Bowei Wang
- Department of Obsterics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
25
|
Translational Attenuation by an Intron Retention in the 5' UTR of ENAM Causes Amelogenesis Imperfecta. Biomedicines 2021; 9:biomedicines9050456. [PMID: 33922212 PMCID: PMC8145330 DOI: 10.3390/biomedicines9050456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a collection of rare genetic conditions affecting tooth enamel. The affected enamel can be of insufficient quantity and/or altered quality, impacting structural content, surface integrity and coloration. Heterozygous mutations in ENAM result in hypoplastic AI without other syndromic phenotypes, with variable expressivity and reduced penetrance, unlike other AI-associated genes. In this study, we recruited a Caucasian family with hypoplastic AI. Mutational analysis (using whole exome sequencing) revealed a splicing donor site mutation (NM_031889.3: c. -61 + 1G > A). Mutational effects caused by this variant were investigated with a minigene splicing assay and in vitro expression analysis. The mutation resulted in a retention of intron 1 and exon 2 (a normally skipped exon), and this elongated 5' UTR sequence attenuated the translation from the mutant mRNA. Structure and translation predictions raised the possibility that the long complex structures-especially a hairpin structure located right before the translation initiation codon of the mutant mRNA-caused reduced protein expression. However, there could be additional contributing factors, including additional uORFs. For the first time, we determined that a mutation altered the ENAM 5' UTR, but maintained the normal coding amino acid sequence, causing hypoplastic AI.
Collapse
|
26
|
Yu S, Zhang C, Zhu C, Quan J, Liu D, Wang X, Zheng S. A novel ENAM mutation causes hypoplastic amelogenesis imperfecta. Oral Dis 2021; 28:1610-1619. [PMID: 33864320 DOI: 10.1111/odi.13877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To identify the genetic cause of one Chinese family with hypoplastic amelogenesis imperfecta (AI) and explore the relationship between genotype and its phenotype. MATERIAL AND METHODS One Chinese family with generalized hypoplastic AI was recruited. One deciduous tooth from the proband was subjected to scanning electron microscopy. Whole-exome sequencing was performed and identified mutation was confirmed by Sanger sequencing. Bioinformatics studies were further conducted to analyze potential deleterious effects of the mutation. RESULTS The proband presented a typical hypoplastic AI phenotype whose teeth in deciduous and permanent dentitions showed thin, yellow, and hard enamel surface. The affected enamel in deciduous tooth showed irregular, broken, and collapsing enamel rods with borders of the enamel prisms undulated and structural shapes of prisms irregular. A novel homozygous nonsense mutation in the last exon of the enamelin (ENAM) gene (NM_031889.3; c.2078C>G) was identified in the proband, which was predicted to produce a highly truncated protein (NP_114095.2; p.(Ser693*)). This mutation was also identified in the proband's parents in heterozygous form. Surprisingly, the clinical phenotype of the heterozygous parents varied from a lack of penetrance to mild enamel defects. Additional bioinformatics studies demonstrated that the detected mutation could change the 3D structure of the ENAM protein and severely damaged the function of ENAM. CONCLUSION The novel homozygous ENAM mutation resulted in hypoplastic AI in the present study. Our results provide new genetic evidence that mutations involved in ENAM contribute to hypoplastic AI.
Collapse
Affiliation(s)
- Shunlan Yu
- Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chenying Zhang
- Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ce Zhu
- Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Junkang Quan
- Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dandan Liu
- Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaozhe Wang
- Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuguo Zheng
- Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
27
|
Kim YJ, Lee Y, Zhang H, Song JS, Hu JCC, Simmer JP, Kim JW. A Novel De Novo SP6 Mutation Causes Severe Hypoplastic Amelogenesis Imperfecta. Genes (Basel) 2021; 12:346. [PMID: 33652941 PMCID: PMC7996877 DOI: 10.3390/genes12030346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of rare genetic disorders affecting tooth enamel formation. Here we report an identification of a novel de novo missense mutation [c.817_818delinsAT, p.(Ala273Met)] in the SP6 gene, causing non-syndromic autosomal dominant AI. This is the second paper on amelogenesis imperfecta caused by SP6 mutation. Interestingly the identified mutation in this study is a 2-bp variant at the same nucleotide positions as the first report, but with AT instead of AA insertion. Clinical phenotype was much more severe compared to the previous report, and western blot showed an extremely decreased level of mutant protein compared to the wild-type, even though the mRNA level was similar.
Collapse
Affiliation(s)
- Youn Jung Kim
- Department of Molecular Genetics & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Yejin Lee
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea; (Y.L.); (J.-S.S.)
| | - Hong Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48108, USA; (H.Z.); (J.C.-C.H.); (J.P.S.)
| | - Ji-Soo Song
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea; (Y.L.); (J.-S.S.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48108, USA; (H.Z.); (J.C.-C.H.); (J.P.S.)
| | - James P. Simmer
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48108, USA; (H.Z.); (J.C.-C.H.); (J.P.S.)
| | - Jung-Wook Kim
- Department of Molecular Genetics & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea;
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea; (Y.L.); (J.-S.S.)
| |
Collapse
|
28
|
Bapat RA, Su J, Moradian-Oldak J. Co-Immunoprecipitation Reveals Interactions Between Amelogenin and Ameloblastin via Their Self-Assembly Domains. Front Physiol 2020; 11:622086. [PMID: 33424645 PMCID: PMC7786100 DOI: 10.3389/fphys.2020.622086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/04/2020] [Indexed: 01/28/2023] Open
Abstract
Macromolecular assembly of extracellular enamel matrix proteins (EMPs) is intimately associated with the nucleation, growth, and maturation of highly organized hydroxyapatite crystals giving rise to healthy dental enamel. Although the colocalization of two of the most abundant EMPs amelogenin (Amel) and ameloblastin (Ambn) in molar enamel has been established, the evidence toward their interaction is scarce. We used co-immunoprecipitation (co-IP) to show evidence of direct molecular interactions between recombinant and native Amel and Ambn. Ambn fragments containing Y/F-x-x-Y/L/F-x-Y/F self-assembly motif were isolated from the co-IP column and characterized by mass spectroscopy. We used recombinant Ambn (rAmbn) mutants with deletion of exons 5 and 6 as well as Ambn derived synthetic peptides to demonstrate that Ambn binds to Amel via its previously identified Y/F-x-x-Y/L/F-x-Y/F self-assembly motif at the N-terminus of its exon 5 encoded region. Using an N-terminal specific anti-Ambn antibody, we showed that Ambn N-terminal fragments colocalized with Amel from secretory to maturation stages of enamel formation in a single section of developing mouse incisor, and closely followed mineral patterns in enamel rod interrod architecture. We conclude that Ambn self-assembly motif is involved in its interaction with Amel in solution and that colocalization between the two proteins persists from secretory to maturation stages of amelogenesis. Our in vitro and in situ data support the notion that Amel and Ambn may form heteromolecular assemblies that may perform important physiological roles during enamel formation.
Collapse
Affiliation(s)
| | | | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
29
|
Liu J, Saiyin W, Xie X, Mao L, Li L. Ablation of Fam20c causes amelogenesis imperfecta via inhibiting Smad dependent BMP signaling pathway. Biol Direct 2020; 15:16. [PMID: 33028367 PMCID: PMC7539414 DOI: 10.1186/s13062-020-00270-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amelogenesis imperfecta (AI) is a type of hereditary diseases that manifest defects in the formation or mineralization of enamel. Recently, it is reported that inactivation of FAM20C, a well-known Golgi casein kinase, caused AI. However, the mechanism of it is still unknown. The aim of this study was to explore the molecular mechanism of AI, which caused by ablation of FAM20C. RESULTS In the Sox2-Cre;Fam20Cfl/fl (cKO) mouse, we found abnormal differentiation of ameloblasts, improper formation and mineralization of enamel, and downregulation of both mRNA and protein level of enamel matrix proteins, including amelogenin (AMEL), ameloblastin (AMBN) and enamelin (ENAM). The levels of BMP2, BMP4 and BMP7, the ligands of BMP signaling pathway, and phosphorylation of Smad1/5/8, the key regulators of BMP signaling pathway, were all decreased in the enamel matrix and the ameloblast of the cKO mice, respectively. The expression of cyclin-dependent kinase inhibitor (P21), muscle segment homeobox genes 2 (Msx2), which are the target genes of the BMP signaling pathway, and laminin 3, the downstream factor of Msx2, were all significantly decreased in the ameloblasts of the cKO mice compared to the control mice. CONCLUSION the results of our study suggest that ablation of FAM20C leads to AI through inhibiting the Smad dependent BMP signaling pathway in the process of amelogenesis.
Collapse
Affiliation(s)
- Jing Liu
- Department of Stomatology, the 1st Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, Harbin, 150001, Heilongjiang, China
| | - Wuliji Saiyin
- Department of Stomatology, the 1st Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, Harbin, 150001, Heilongjiang, China
| | - Xiaohua Xie
- Institute of Hard Tissue Development and Regeneration, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Limin Mao
- Department of Stomatology, the 1st Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, Harbin, 150001, Heilongjiang, China.
| | - Lili Li
- Department of Stomatology, the 1st Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, Harbin, 150001, Heilongjiang, China. .,Longjiang scholar laboratory, the 1st Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
30
|
Genes in the pathway of tooth mineral tissues and dental caries risk: a systematic review and meta-analysis. Clin Oral Investig 2020; 24:3723-3738. [PMID: 32945961 DOI: 10.1007/s00784-019-03146-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To perform a systematic review of the literature, investigating the influence of tooth mineral tissues genes on dental caries. MATERIALS AND METHODS Five databases were searched. Only human studies with cross-sectional, longitudinal, and case-control design were included. Meta-analysis was performed for each polymorphism, providing allele and genotype estimates. A meta-analysis was performed, pooling several polymorphisms for each gene. A Funnel Plot and Egger's test were also performed. RESULTS A total of 1124 records were found. Of these, 25 papers were included in the systematic review and 18 in the meta-analysis. Most of the studies (52%) were of medium quality. With regard to the allele analysis, the T allele of rs134136 (TFIP11) (OR 1.51; 95%CI 1.02-2.22) showed an association with high experience of caries and the summarization of polymorphisms investigated in the TFIP11 gene, after exclusion of SNP linkage disequilibrium, showed an association with caries experience (OR 1.64; 95%CI 1.08-2.50). An analysis of the homozygous genotype did not show any significant association. The pooled SNPs of AMBN showed associations with caries (OR 0.45; 95%CI 0.29-0.72). The pooled polymorphisms of AMELX were associated with caries experience (OR 1.78; 95%CI 1.23-2.56). In the analysis of the homozygous genotype, no SNP showed a significant association. Egger's test showed no significant publication bias for all models (p > 0.05). CONCLUSION The present findings showed that the genes TFIP11, AMBN, and AMELX play an important role in dental caries. CLINICAL RELEVANCE Several single nucleotide polymorphisms related to the genes in the formation of tooth mineral are linked to the occurrence of dental caries, and these genes have proved to be important for an explanation of differences in the risk of dental caries.
Collapse
|
31
|
Su J, Bapat R, Visakan G, Moradian-Oldak J. An Evolutionarily Conserved Helix Mediates Ameloblastin-Cell Interaction. J Dent Res 2020; 99:1072-1081. [PMID: 32401578 PMCID: PMC7375739 DOI: 10.1177/0022034520918521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ameloblastin (Ambn) has the potential to regulate cell-matrix adhesion through familiar cell-binding domains, but the proposed sequence motifs are not highly conserved across species. Here, we report that Ambn binds to ameloblast-like cell membranes through a highly evolutionary conserved amphipathic helix-forming (AH) motif encoded by exon 5. We applied high-resolution confocal microscopy to show colocalization of Ambn with ameloblast membrane surfaces in developing mouse incisors. Using a series of Ambn-derived peptides and Ambn variants, we showed that Ambn binds to cell membranes through a motif within the sequence encoded by exon 5. Using peptides derived from the N- or C-termini of this sequence, as well as Ambn variants that lacked or had a disrupted AH motif, we demonstrated that the AH motif located at the N-terminus of the sequence is involved in cell-Ambn adhesion. Sequence analysis revealed that this highly conserved AH motif is absent from other enamel matrix proteins, including amelogenin, enamelin, and amelotin. Collectively, these data suggest that Ambn binds to the cell surface membrane via a helix-forming motif and provide insight into the molecular mechanism and function of Ambn in enamel cell-matrix interaction.
Collapse
Affiliation(s)
- J. Su
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - R.A. Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - G. Visakan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - J. Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Khan SA, Khan MA, Muhammad N, Bashir H, Khan N, Muhammad N, Yilmaz R, Khan S, Wasif N. A novel nonsense variant in SLC24A4 causing a rare form of amelogenesis imperfecta in a Pakistani family. BMC MEDICAL GENETICS 2020; 21:97. [PMID: 32380970 PMCID: PMC7206816 DOI: 10.1186/s12881-020-01038-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Background Amelogenesis imperfecta (AI) is a highly heterogeneous group of hereditary developmental abnormalities which mainly affects the dental enamel during tooth development in terms of its thickness, structure, and composition. It appears both in syndromic as well as non-syndromic forms. In the affected individuals, the enamel is usually thin, soft, rough, brittle, pitted, chipped, and abraded, having reduced functional ability and aesthetics. It leads to severe complications in the patient, like early tooth loss, severe discomfort, pain, dental caries, chewing difficulties, and discoloration of teeth from yellow to yellowish-brown or creamy type. The study aimed to identify the disease-causing variant in a consanguineous family. Methods We recruited a consanguineous Pashtun family of Pakistani origin. Exome sequencing analysis was followed by Sanger sequencing to identify the pathogenic variant in this family. Results Clinical analysis revealed hypomaturation AI having generalized yellow-brown or creamy type of discoloration in affected members. We identified a novel nonsense sequence variant c.1192C > T (p.Gln398*) in exon-12 of SLC24A4 by using exome sequencing. Later, its co-segregation within the family was confirmed by Sanger sequencing. The human gene mutation database (HGMD, 2019) has a record of five pathogenic variants in SLC24A4, causing AI phenotype. Conclusion This nonsense sequence variant c.1192C > T (p.Gln398*) is the sixth disease-causing variant in SLC24A4, which extends its mutation spectrum and confirms the role of this gene in the morphogenesis of human tooth enamel. The identified variant highlights the critical role of SLC24A4 in causing a rare AI type in humans.
Collapse
Affiliation(s)
- Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Muhammad Adnan Khan
- Dental Material, Institute of Basic Medical Sciences, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Nazif Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Hina Bashir
- Department of Biochemistry, Sharif Medical and Dental College, Lahore, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Rüstem Yilmaz
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan.
| | - Naveed Wasif
- Institute of Molecular Biology and Biotechnology (IMBB), Center for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan. .,Department of Human Genetics, University of Ulm, Ulm, Germany. .,Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
33
|
Nikolopoulos G, Smith CEL, Brookes SJ, El-Asrag ME, Brown CJ, Patel A, Murillo G, O'Connell MJ, Inglehearn CF, Mighell AJ. New missense variants in RELT causing hypomineralised amelogenesis imperfecta. Clin Genet 2020; 97:688-695. [PMID: 32052416 PMCID: PMC7216828 DOI: 10.1111/cge.13721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic diseases characterised by dental enamel malformation. Pathogenic variants in at least 33 genes cause syndromic or non-syndromic AI. Recently variants in RELT, encoding an orphan receptor in the tumour necrosis factor (TNF) superfamily, were found to cause recessive AI, as part of a syndrome encompassing small stature and severe childhood infections. Here we describe four additional families with autosomal recessive hypomineralised AI due to previously unreported homozygous mutations in RELT. Three families carried a homozygous missense variant in the fourth exon (c.164C>T, p.(T55I)) and a fourth family carried a homozygous missense variant in the 11th exon (c.1264C>T, p.(R422W)). We found no evidence of additional syndromic symptoms in affected individuals. Analyses of tooth microstructure with computerised tomography and scanning electron microscopy suggest a role for RELT in ameloblasts' coordination and interaction with the enamel matrix. Microsatellite genotyping in families segregating the T55I variant reveals a shared founder haplotype. These findings extend the RELT pathogenic variant spectrum, reveal a founder mutation in the UK Pakistani population and provide detailed analysis of human teeth affected by this hypomineralised phenotype, but do not support a possible syndromic presentation in all those with RELT-variant associated AI.
Collapse
Affiliation(s)
- Georgios Nikolopoulos
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK.,Department of Oral Biology, School of Dentistry, St James's University Hospital, The University of Leeds, Leeds, UK
| | - Claire E L Smith
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK
| | - Steven J Brookes
- Department of Oral Biology, School of Dentistry, St James's University Hospital, The University of Leeds, Leeds, UK
| | - Mohammed E El-Asrag
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK.,Division of Cardiovascular Sciences, School of Medicine, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.,Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Catriona J Brown
- Birmingham Dental Hospital, Mill Pool Way, Edgbaston, Birmingham, UK
| | - Anesha Patel
- Birmingham Dental Hospital, Mill Pool Way, Edgbaston, Birmingham, UK
| | - Gina Murillo
- School of Dentistry, Ciudad Universitaria Rodrigo Facio, Montes De Oca, Universidad de Costa Rica, San Jose, Costa Rica
| | - Mary J O'Connell
- School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, UK.,School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
| | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK
| | - Alan J Mighell
- Department of Oral Biology, School of Dentistry, St James's University Hospital, The University of Leeds, Leeds, UK
| |
Collapse
|
34
|
Abstract
The tooth provides an excellent system for deciphering the molecular mechanisms of organogenesis, and has thus been of longstanding interest to developmental and stem cell biologists studying embryonic morphogenesis and adult tissue renewal. In recent years, analyses of molecular signaling networks, together with new insights into cellular heterogeneity, have greatly improved our knowledge of the dynamic epithelial-mesenchymal interactions that take place during tooth development and homeostasis. Here, we review recent progress in the field of mammalian tooth morphogenesis and also discuss the mechanisms regulating stem cell-based dental tissue homeostasis, regeneration and repair. These exciting findings help to lay a foundation that will ultimately enable the application of fundamental research discoveries toward therapies to improve oral health.
Collapse
Affiliation(s)
- Tingsheng Yu
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
35
|
Liang T, Hu Y, Smith CE, Richardson AS, Zhang H, Yang J, Lin B, Wang S, Kim J, Chun Y, Simmer JP, Hu JC. AMBN mutations causing hypoplastic amelogenesis imperfecta and Ambn knockout-NLS-lacZ knockin mice exhibiting failed amelogenesis and Ambn tissue-specificity. Mol Genet Genomic Med 2019; 7:e929. [PMID: 31402633 PMCID: PMC6732285 DOI: 10.1002/mgg3.929] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ameloblastin (AMBN) is a secreted matrix protein that is critical for the formation of dental enamel and is enamel-specific with respect to its essential functions. Biallelic AMBN defects cause non-syndromic autosomal recessive amelogenesis imperfecta. Homozygous Ambn mutant mice expressing an internally truncated AMBN protein deposit only a soft mineral crust on the surface of dentin. METHODS We characterized a family with hypoplastic amelogenesis imperfecta caused by AMBN compound heterozygous mutations (c.1061T>C; p.Leu354Pro/ c.1340C>T; p.Pro447Leu). We generated and characterized Ambn knockout/NLS-lacZ (AmbnlacZ/lacZ ) knockin mice. RESULTS No AMBN protein was detected using immunohistochemistry in null mice. ß-galactosidase activity was specific for ameloblasts in incisors and molars, and islands of cells along developing molar roots. AmbnlacZ/lacZ 7-week incisors and unerupted (D14) first molars showed extreme enamel surface roughness. No abnormalities were observed in dentin mineralization or in nondental tissues. Ameloblasts in the AmbnlacZ/lacZ mice were unable to initiate appositional growth and started to degenerate and deposit ectopic mineral. No layer of initial enamel ribbons formed in the AmbnlacZ/lacZ mice, but pockets of amelogenin accumulated on the dentin surface along the ameloblast distal membrane and within the enamel organ epithelia (EOE). NLS-lacZ signal was positive in the epididymis and nasal epithelium, but negative in ovary, oviduct, uterus, prostate, seminal vesicles, testis, submandibular salivary gland, kidney, liver, bladder, and bone, even after 15 hr of incubation with X-gal. CONCLUSIONS Ameloblastin is critical for the initiation of enamel ribbon formation, and its absence results in pathological mineralization within the enamel organ epithelia.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Yuanyuan Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Charles E. Smith
- Department of Anatomy and Cell Biology, Faculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Amelia S Richardson
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Hong Zhang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
- Department of Pediatric Dentistry, School and Hospital of StomatologyPeking UniversityBeijingChina
| | - Brent Lin
- Department of Orofacial SciencesUCSF School of DentistrySan FranciscoCalifornia
| | - Shih‐Kai Wang
- Department of DentistryNational Taiwan University School of DentistryTaipei CityTaiwan R.O.C
| | - Jung‐Wook Kim
- Department of Molecular Genetics and Department of Pediatric Dentistry & Dental Research Institute, School of DentistrySeoul National UniversitySeoulKorea
| | - Yong‐Hee Chun
- Department of Periodontics and Department of Cell Systems & Anatomy, School of DentistryUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - James P. Simmer
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Jan C.‐C. Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| |
Collapse
|
36
|
Lin CY, Kuo PJ, Chin YT, Weng IT, Lee HW, Huang HM, Lin HY, Hsiung CN, Chan YH, Lee SY. Dental Pulp Stem Cell Transplantation with 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside Accelerates Alveolar Bone Regeneration in Rats. J Endod 2019; 45:435-441. [DOI: 10.1016/j.joen.2018.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/06/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
|
37
|
Kim J, Zhang H, Seymen F, Koruyucu M, Hu Y, Kang J, Kim YJ, Ikeda A, Kasimoglu Y, Bayram M, Zhang C, Kawasaki K, Bartlett JD, Saunders TL, Simmer JP, Hu JC. Mutations in RELT cause autosomal recessive amelogenesis imperfecta. Clin Genet 2019; 95:375-383. [PMID: 30506946 PMCID: PMC6392136 DOI: 10.1111/cge.13487] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
Amelogenesis imperfecta (AI) is a collection of isolated (non-syndromic) inherited diseases affecting dental enamel formation or a clinical phenotype in syndromic conditions. We characterized three consanguineous AI families with generalized irregular hypoplastic enamel with rapid attrition that perfectly segregated with homozygous defects in a novel gene: RELT that is a member of the tumor necrosis factor receptor superfamily (TNFRSF). RNAscope in situ hybridization of wild-type mouse molars and incisors showed specific Relt mRNA expression by secretory stage ameloblasts and by odontoblasts. Relt-/- mice generated by CRISPR/Cas9 exhibited incisor and molar enamel malformations. Relt-/- enamel had a rough surface and underwent rapid attrition. Normally unmineralized spaces in the deep enamel near the dentino-enamel junction (DEJ) were as highly mineralized as the adjacent enamel, which likely altered the mechanical properties of the DEJ. Phylogenetic analyses showed the existence of selective pressure on RELT gene outside of tooth development, indicating that the human condition may be syndromic, which possibly explains the history of small stature and severe childhood infections in two of the probands. Knowing a TNFRSF member is critical during the secretory stage of enamel formation advances our understanding of amelogenesis and improves our ability to diagnose human conditions featuring enamel malformations.
Collapse
Affiliation(s)
- Jung‐Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of DentistrySeoul National UniversitySeoulRepublic of Korea
- Department of Molecular Genetics & the Dental Research Institute, School of DentistrySeoul National UniversitySeoulRepublic of Korea
| | - Hong Zhang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Figen Seymen
- Department of Pedodontics, Faculty of DentistryIstanbul UniversityIstanbulTurkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of DentistryIstanbul UniversityIstanbulTurkey
| | - Yuanyuan Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Jenny Kang
- Department of Pediatric Dentistry & Dental Research Institute, School of DentistrySeoul National UniversitySeoulRepublic of Korea
| | - Youn J. Kim
- Department of Molecular Genetics & the Dental Research Institute, School of DentistrySeoul National UniversitySeoulRepublic of Korea
| | - Atsushi Ikeda
- Division of BiosciencesThe Ohio State University, College of DentistryColumbusOhio
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of DentistryIstanbul UniversityIstanbulTurkey
| | - Merve Bayram
- Department of Pedodontics, Faculty of DentistryIstanbul Medipol UniversityIstanbulTurkey
| | - Chuhua Zhang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Kazuhiko Kawasaki
- Department of AnthropologyPenn State UniversityUniversity ParkPennsylvania
| | - John D. Bartlett
- Division of BiosciencesThe Ohio State University, College of DentistryColumbusOhio
| | - Thomas L. Saunders
- Department of Internal Medicine, Division of Molecular, Medicine and GeneticsUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - James P. Simmer
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Jan C‐C. Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| |
Collapse
|
38
|
Kim YJ, Seymen F, Kang J, Koruyucu M, Tuloglu N, Bayrak S, Tuna EB, Lee ZH, Shin TJ, Hyun HK, Kim YJ, Lee SH, Hu J, Simmer J, Kim JW. Candidate gene sequencing reveals mutations causing hypoplastic amelogenesis imperfecta. Clin Oral Investig 2019; 23:1481-1487. [PMID: 30120606 PMCID: PMC6378126 DOI: 10.1007/s00784-018-2577-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/14/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Amelogenesis imperfecta (AI) is a rare hereditary disorder affecting the quality and quantity of the tooth enamel. The purpose of this study was to identify the genetic etiology of hypoplastic AI families based on the candidate gene approach. MATERIALS AND METHODS We recruited three Turkish families with hypoplastic AI and performed a candidate gene screening based on the characteristic clinical feature to find the pathogenic genetic etiology. RESULTS The candidate gene sequencing of the LAMB3 gene for family 1 revealed a heterozygous nonsense mutation in the last exon [c.3431C > A, p.(Ser1144*)]. FAM20A gene sequencing for families 2 and 3 identified a homozygous deletion [c.34_35delCT, p.(Leu12Alafs*67)] and a homozygous deletion-insertion (c.1109 + 3_1109 + 7delinsTGGTC) mutation, respectively. CONCLUSION The candidate gene approach can be successfully used to identify the genetic etiology of the AI in some cases with characteristic clinical features. CLINICAL RELEVANCE Identification of the genetic etiology of the AI will help both the family members and dentist understand the nature of the disorder. Characteristic clinical feature can suggest possible genetic causes.
Collapse
Affiliation(s)
- Youn Jung Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Jenny Kang
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Nuray Tuloglu
- Department of Pedodontics, Faculty of Dentistry, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sule Bayrak
- Department of Pedodontics, Faculty of Dentistry, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Elif Bahar Tuna
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Zang Hee Lee
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Teo Jeon Shin
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea
| | - Hong-Keun Hyun
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea
| | - Young-Jae Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea
| | - Sang-Hoon Lee
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea
| | - Jan Hu
- Department of Biologic and Materials Sciences, University of Michigan Dental Research Lab, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - James Simmer
- Department of Biologic and Materials Sciences, University of Michigan Dental Research Lab, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Jung-Wook Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea.
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Seoul, Chongno-gu, 110-768, South Korea.
| |
Collapse
|
39
|
Su J, Kegulian NC, Arun Bapat R, Moradian-Oldak J. Ameloblastin Binds to Phospholipid Bilayers via a Helix-Forming Motif within the Sequence Encoded by Exon 5. ACS OMEGA 2019; 4:4405-4416. [PMID: 30873509 PMCID: PMC6410667 DOI: 10.1021/acsomega.8b03582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Ameloblastin (Ambn), the most abundant non-amelogenin enamel protein, is intrinsically disordered and has the potential to interact with other enamel proteins and with cell membranes. Here, through multiple biophysical methods, we investigated the interactions between Ambn and large unilamellar vesicles (LUVs), whose lipid compositions mimicked cell membranes involved in epithelial cell-extracellular matrix adhesion. Using a series of Ambn Trp/Phe variants and Ambn mutants, we further showed that Ambn binds to LUVs through a highly conserved motif within the sequence encoded by exon 5. Synthetic peptides derived from different regions of Ambn confirmed that the sequence encoded by exon 5 is involved in LUV binding. Sequence analysis of Ambn across different species showed that the N-terminus of this sequence contains a highly conserved motif with a propensity to form an amphipathic helix. Mutations in the helix-forming sequence resulted in a loss of peptide binding to LUVs. Our in vitro data suggest that Ambn binds the lipid membrane directly through a conserved helical motif and have implications for biological events such as Ambn-cell interactions, Ambn signaling, and Ambn secretion via secretory vesicles.
Collapse
|
40
|
Daneshmandpour Y, Darvish H, Pashazadeh F, Emamalizadeh B. Features, genetics and their correlation in Jalili syndrome: a systematic review. J Med Genet 2019; 56:358-369. [DOI: 10.1136/jmedgenet-2018-105716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 11/03/2022]
Abstract
Jalili syndrome is a rare genetic disorder first identified by Jalili in Gaza. Amelogenesis imperfecta and cone-rode dystrophy are simultaneously seen in Jalili syndrome patients as the main and primary manifestations. Molecular analysis has revealed that theCNNM4gene is responsible for this rare syndrome. Jalili syndrome has been observed in many countries around the world, especially in the Middle East and North Africa. In the current scoping systematic review we searched electronic databases to find studies related to Jalili syndrome. In this review we summarise the reported clinical symptoms,CNNM4gene and protein structure,CNNM4mutations, attempts to reach a genotype-phenotype correlation, the functional role ofCNNM4mutations, and epidemiological aspects of Jalili syndrome. In addition, we have analysed the reported mutations in mutation effect prediction databases in order to gain a better understanding of the mutation’s outcomes.
Collapse
|
41
|
Abstract
Ameloblastin is the second most abundant enamel matrix protein, and is thought to be essential for ameloblast cell polarization, cell adhesion, and enamel mineralization. However, studies of ameloblastin's function and its molecular mechanism have been limited due to difficulty in obtaining recombinant ameloblastin in vitro. Here, we present a protocol for successful ameloblastin expression and purification in E. coli.
Collapse
|
42
|
Stakkestad Ø, Heyward C, Lyngstadaas SP, Medin T, Vondrasek J, Lian AM, Pezeshki G, Reseland JE. An ameloblastin C-terminus variant is present in human adipose tissue. Heliyon 2018; 4:e01075. [PMID: 30603708 PMCID: PMC6307104 DOI: 10.1016/j.heliyon.2018.e01075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/02/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022] Open
Abstract
Objective Transcriptional regulatory elements in the ameloblastin (AMBN) promoter indicate that adipogenesis may influence its expression. The objective here was to investigate if AMBN is expressed in adipose tissue, and have a role during differentiation of adipocytes. Design AMBN expression was examined in adipose tissue and adipocytes by real-time PCR and ELISA. Distribution of ameloblastin was investigated by immunofluorescence in sections of human subcutaneous adipose tissue. The effect of recombinant proteins resembling AMBN and its processed products on proliferation of primary human pre-adipocytes and murine 3T3-L1 cell lines was measured by [3H]-thymidine incorporation. The effect on adipocyte differentiation was evaluated by the expression profile of the adipogenic markers PPARγ and leptin, and the content of lipids droplets (Oil-Red-O staining). Results AMBN was found to be expressed in human adipose tissue, human primary adipocytes, and in 3T3-L1 cells. The C-terminus of the AMBN protein and a 45 bp shorter splice variant was identified in human subcutaneous adipose tissue. The expression of AMBN was found to increase four-fold during differentiation of 3T3-L1 cells. Administration of recombinant AMBN reduced the proliferation, and enhanced the expression of PPARγ and leptin in 3T3-L1 and human pre-adipocytes, respectively. Conclusions The AMBN C-terminus variant was identified in adipocytes. This variant may be encoded from a short splice variant. Increased expression of AMBN during adipogenesis and its effect on adipogenic factors suggests that AMBN also has a role in adipocyte development.
Collapse
Affiliation(s)
- Øystein Stakkestad
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Catherine Heyward
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | | | - Tirill Medin
- Department of Nursing and Health Promotion, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Norway
| | - Jiri Vondrasek
- Department of Bioinformatics, Institute of Organic Chemistry and Biology, Czech Academy of Sciences, Prague, Czech Republic
| | - Aina-Mari Lian
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Gita Pezeshki
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| |
Collapse
|
43
|
Lu T, Li M, Xu X, Xiong J, Huang C, Zhang X, Hu A, Peng L, Cai D, Zhang L, Wu B, Xiong F. Whole exome sequencing identifies an AMBN missense mutation causing severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int J Oral Sci 2018; 10:26. [PMID: 30174330 PMCID: PMC6119682 DOI: 10.1038/s41368-018-0027-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Tooth development is a complex process that involves precise and time-dependent orchestration of multiple genetic, molecular, and cellular interactions. Ameloblastin (AMBN, also named “amelin” or “sheathlin”) is the second most abundant enamel matrix protein known to have a key role in amelogenesis. Amelogenesis imperfecta (AI [MIM: 104500]) refers to a genetically and phenotypically heterogeneous group of conditions characterized by inherited developmental enamel defects. The hereditary dentin disorders comprise a variety of autosomal-dominant genetic symptoms characterized by abnormal dentin structure affecting either the primary or both the primary and secondary teeth. The vital role of Ambn in amelogenesis has been confirmed experimentally using mouse models. Only two cases have been reported of mutations of AMBN associated with non-syndromic human AI. However, no AMBN missense mutations have been reported to be associated with both human AI and dentin disorders. We recruited one kindred with autosomal-dominant amelogenesis imperfecta (ADAI) and dentinogenesis imperfecta/dysplasia characterized by generalized severe enamel and dentin defects. Whole exome sequencing of the proband identified a novel heterozygous C-T point mutation at nucleotide position 1069 of the AMBN gene, causing a Pro to Ser mutation at the conserved amino acid position 357 of the protein. Exfoliated third molar teeth from the affected family members were found to have enamel and dentin of lower mineral density than control teeth, with thinner and easily fractured enamel, short and thick roots, and pulp obliteration. This study demonstrates, for the first time, that an AMBN missense mutation causes non-syndromic human AI and dentin disorders. A mutation on a gene involved in healthy tooth development may cause both enamel and dentin disorders. The ameloblastin enamel protein, and its associated gene, AMBN, play vital roles in enamel formation and tooth remodelling. Mutations on AMBN can cause amelogenesis imperfecta (AI), a genetic and hereditory condition resulting in enamel defects and severe tooth decay. Now, Fu Xiong and Bu-Ling Wu at Southern Medical University in Guangzhou, China, and co-workers have identified an AMBN mutation found in both enamel and dentin defect disorders. The researchers analyzed extracted teeth from a Chinese patient with both AI and a severe dentin disorder, along with teeth from affected and non-affected members of the same family, and compared the results with a control group. They identified a rare mutation on AMBN common to all affected individuals.
Collapse
Affiliation(s)
- Ting Lu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.,Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiyi Li
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Biological Chip, Guangzhou, Guangdong, China
| | - Jun Xiong
- Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Huang
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuelian Zhang
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Aiqin Hu
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Peng
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Decheng Cai
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Key Laboratory of Biological Chip, Guangzhou, Guangdong, China.
| |
Collapse
|
44
|
Koruyucu M, Kang J, Kim Y, Seymen F, Kasimoglu Y, Lee Z, Shin T, Hyun H, Kim Y, Lee S, Hu J, Simmer J, Kim J. Hypoplastic AI with Highly Variable Expressivity Caused by ENAM Mutations. J Dent Res 2018; 97:1064-1069. [PMID: 29554435 PMCID: PMC6055254 DOI: 10.1177/0022034518763152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tooth enamel, the hardest tissue in the human body, is formed after a complex series of interactions between dental epithelial tissue and the underlying ectomesenchyme. Nonsyndromic amelogenesis imperfecta (AI) is a rare genetic disorder affecting tooth enamel without other nonoral symptoms. In this study, we identified 2 novel ENAM mutations in 2 families with hypoplastic AI by whole exome sequencing. Family 1 had a heterozygous splicing donor site mutation in intron 4, NM_031889; c.123+2T>G. Affected individuals had hypoplastic enamel with or without the characteristic horizontal hypoplastic grooves in some teeth. Family 2 had a nonsense mutation in the last exon, c.1842C>G, p.(Tyr614*), that was predicted to truncate the protein by 500 amino acids. Participating individuals had at least 1 mutant allele, while the proband had a homozygous mutation. Most interestingly, the clinical phenotype of the individuals harboring the heterozygous mutation varied from a lack of penetrance to a mild hypoplastic enamel defect. We believe that these findings will broaden our understanding of the clinical phenotype of AI caused by ENAM mutations.
Collapse
Affiliation(s)
- M. Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - J. Kang
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Y.J. Kim
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - F. Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Y. Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Z.H. Lee
- Department of Cell and Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - T.J. Shin
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - H.K. Hyun
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Y.J. Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - S.H. Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - J.C.C. Hu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J.P. Simmer
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J.W. Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Yang M, Huang W, Yang F, Zhang T, Wang C, Song Y. Fam83h mutation inhibits the mineralization in ameloblasts by activating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2018; 501:206-211. [DOI: 10.1016/j.bbrc.2018.04.216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/27/2023]
|
46
|
Shin M, Chavez MB, Ikeda A, Foster BL, Bartlett JD. MMP20 Overexpression Disrupts Molar Ameloblast Polarity and Migration. J Dent Res 2018; 97:820-827. [PMID: 29481294 DOI: 10.1177/0022034518758657] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20+/+Tg+) were assessed by multiscale analyses, combining several approaches from high-resolution micro-computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20+/+Tg+ mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted β-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the β-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20+/+Tg+ molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20+/+Tg+ mouse molar enamel organs had increased levels of inactive p-cofilin, a protein that regulates cell polarity. These data demonstrate that increased MMP20 activity in molars causes premature degradation of ameloblastin and inactivation of cofilin, which may contribute to pathological Wnt-mediated cell migration away from the enamel layer.
Collapse
Affiliation(s)
- M Shin
- 1 Fukuoka Dental College, Sawara-ku, Fukuoka, Japan
| | - M B Chavez
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A Ikeda
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - B L Foster
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - J D Bartlett
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
47
|
Koruyucu M, Seymen F, Gencay G, Gencay K, Tuna E, Shin T, Hyun HK, Kim YJ, Kim JW. Nephrocalcinosis in Amelogenesis Imperfecta Caused by the FAM20A Mutation. Nephron Clin Pract 2018; 139:189-196. [DOI: 10.1159/000486607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/27/2017] [Indexed: 01/03/2023] Open
|
48
|
Emerling CA, Widjaja AD, Nguyen NN, Springer MS. Their loss is our gain: regressive evolution in vertebrates provides genomic models for uncovering human disease loci. J Med Genet 2017; 54:787-794. [PMID: 28814606 DOI: 10.1136/jmedgenet-2017-104837] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
Throughout Earth's history, evolution's numerous natural 'experiments' have resulted in a diverse range of phenotypes. Though de novo phenotypes receive widespread attention, degeneration of traits inherited from an ancestor is a very common, yet frequently neglected, evolutionary path. The latter phenomenon, known as regressive evolution, often results in vertebrates with phenotypes that mimic inherited disease states in humans. Regressive evolution of anatomical and/or physiological traits is typically accompanied by inactivating mutations underlying these traits, which frequently occur at loci identical to those implicated in human diseases. Here we discuss the potential utility of examining the genomes of vertebrates that have experienced regressive evolution to inform human medical genetics. This approach is low cost and high throughput, giving it the potential to rapidly improve knowledge of disease genetics. We discuss two well-described examples, rod monochromacy (congenital achromatopsia) and amelogenesis imperfecta, to demonstrate the utility of this approach, and then suggest methods to equip non-experts with the ability to corroborate candidate genes and uncover new disease loci.
Collapse
Affiliation(s)
- Christopher A Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Biology, University of California, Riverside, California, USA
| | - Andrew D Widjaja
- Department of Biochemistry, University of California, Riverside, California, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Nancy N Nguyen
- Department of Bioengineering, University of California, Riverside, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Mark S Springer
- Department of Biology, University of California, Riverside, California, USA
| |
Collapse
|
49
|
Abstract
The Encouraging Novel Amelogenesis Models and Ex vivo cell Lines (ENAMEL) Development workshop was held on 23 June 2017 at the Bethesda headquarters of the National Institute of Dental and Craniofacial Research (NIDCR). Discussion topics included model organisms, stem cells/cell lines, and tissues/3D cell culture/organoids. Scientists from a number of disciplines, representing institutions from across the United States, gathered to discuss advances in our understanding of enamel, as well as future directions for the field.
Collapse
|
50
|
Neanderthal and Denisova tooth protein variants in present-day humans. PLoS One 2017; 12:e0183802. [PMID: 28902892 PMCID: PMC5597096 DOI: 10.1371/journal.pone.0183802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/13/2017] [Indexed: 12/15/2022] Open
Abstract
Environment parameters, diet and genetic factors interact to shape tooth morphostructure. In the human lineage, archaic and modern hominins show differences in dental traits, including enamel thickness, but variability also exists among living populations. Several polymorphisms, in particular in the non-collagenous extracellular matrix proteins of the tooth hard tissues, like enamelin, are involved in dental structure variation and defects and may be associated with dental disorders or susceptibility to caries. To gain insights into the relationships between tooth protein polymorphisms and dental structural morphology and defects, we searched for non-synonymous polymorphisms in tooth proteins from Neanderthal and Denisova hominins. The objective was to identify archaic-specific missense variants that may explain the dental morphostructural variability between extinct and modern humans, and to explore their putative impact on present-day dental phenotypes. Thirteen non-collagenous extracellular matrix proteins specific to hard dental tissues have been selected, searched in the publicly available sequence databases of Neanderthal and Denisova individuals and compared with modern human genome data. A total of 16 non-synonymous polymorphisms were identified in 6 proteins (ameloblastin, amelotin, cementum protein 1, dentin matrix acidic phosphoprotein 1, enamelin and matrix Gla protein). Most of them are encoded by dentin and enamel genes located on chromosome 4, previously reported to show signs of archaic introgression within Africa. Among the variants shared with modern humans, two are ancestral (common with apes) and one is the derived enamelin major variant, T648I (rs7671281), associated with a thinner enamel and specific to the Homo lineage. All the others are specific to Neanderthals and Denisova, and are found at a very low frequency in modern Africans or East and South Asians, suggesting that they may be related to particular dental traits or disease susceptibility in these populations. This modern regional distribution of archaic dental polymorphisms may reflect persistence of archaic variants in some populations and may contribute in part to the geographic dental variations described in modern humans.
Collapse
|