1
|
Hashmi AN, Ahmed Dharejo R, Zubair UB, Khan N, Kashif I, Ajmal M, Taj R, Qamar R, Azam M. Association of dopamine β-hydroxylase polymorphism rs1611115 and serum levels with psychiatric disorders in Pakistani population. Int J Neurosci 2024; 134:551-559. [PMID: 36120985 DOI: 10.1080/00207454.2022.2126774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
AIM Dopamine β-hydroxylase (DBH) is a copper-containing enzyme that has an important role in maintaining the cellular homeostasis between the two neurotransmitters, dopamine (DA) and nor-adrenaline (NA). DBH functional polymorphisms are associated with multiple neuro-psychiatric conditions and are found to alter the DBH protein levels in serum affecting DBH enzymatic activity. The current study was conducted to determine the genetic and serum levels association of DBH rs1611115 functional polymorphism with major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SHZ) in the Pakistani population. METHODS In total n = 1097 subjects including MDD (n = 427), BD (n = 204), SHZ (n = 134) and healthy controls (n = 332), were screened for the functional polymorphism by polymerase chain reaction-restriction fragment length polymorphism. Univariate logistic regression analysis was applied and the results were adjusted for age and sex. The DBH levels in serum were determined through enzyme-linked immunosorbent assay (ELISA) and the Mann Whitney U test was applied. RESULTS The minor allele (-1021 C > T) was found to be significantly associated with a higher risk of developing BD and SHZ in both univariable and multivariable analyses. The overall total serum concentration of DBH was comparatively raised in MDD, however, in cross-comparison DBH serum levels were found markedly higher in CC homozygotes compared to TT homozygotes within the BD group. CONCLUSION The present study suggested a significant association of DBH rs1611115 with BD and SHZ and also the effect of rs1611115 on DBH serum levels in MDD and BD for the first time in the Pakistani population.
Collapse
Affiliation(s)
- Aisha Nasir Hashmi
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Raees Ahmed Dharejo
- Department of Psychiatry, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
- WAPDA Administrative Staff College, Islamabad, Pakistan
| | - Usama Bin Zubair
- Department of Psychiatry, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Netasha Khan
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Iqra Kashif
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Ajmal
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rizwan Taj
- Department of Psychiatry, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Raheel Qamar
- Pakistan Academy of Sciences, Islamabad, Pakistan
- Science and Technology Sector, ICESCO, Rabat, Morocco
| | - Maleeha Azam
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
2
|
Skolariki K, Vrahatis AG, Krokidis MG, Exarchos TP, Vlamos P. Assessing and Modelling of Post-Traumatic Stress Disorder Using Molecular and Functional Biomarkers. BIOLOGY 2023; 12:1050. [PMID: 37626936 PMCID: PMC10451531 DOI: 10.3390/biology12081050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex psychological disorder that develops following exposure to traumatic events. PTSD is influenced by catalytic factors such as dysregulated hypothalamic-pituitary-adrenal (HPA) axis, neurotransmitter imbalances, and oxidative stress. Genetic variations may act as important catalysts, impacting neurochemical signaling, synaptic plasticity, and stress response systems. Understanding the intricate gene networks and their interactions is vital for comprehending the underlying mechanisms of PTSD. Focusing on the catalytic factors of PTSD is essential because they provide valuable insights into the underlying mechanisms of the disorder. By understanding these factors and their interplay, researchers may uncover potential targets for interventions and therapies, leading to more effective and personalized treatments for individuals with PTSD. The aforementioned gene networks, composed of specific genes associated with the disorder, provide a comprehensive view of the molecular pathways and regulatory mechanisms involved in PTSD. Through this study valuable insights into the disorder's underlying mechanisms and opening avenues for effective treatments, personalized interventions, and the development of biomarkers for early detection and monitoring are provided.
Collapse
Affiliation(s)
| | | | - Marios G. Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (K.S.); (A.G.V.); (T.P.E.); (P.V.)
| | | | | |
Collapse
|
3
|
Sadhu N, He Y, Yao Y, Wilkie DJ, Molokie RE, Wang ZJ. Candidate gene association study suggests potential role of dopamine beta-hydroxylase in pain heterogeneity in sickle cell disease. Front Genet 2023; 14:1193603. [PMID: 37384335 PMCID: PMC10296203 DOI: 10.3389/fgene.2023.1193603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction: Pain is a lifelong companion of individuals with sickle cell disease (SCD) and has a severe impact on their quality of life. Both acute crisis pain and chronic non-crisis pain exhibit high variability between individuals, making it difficult to effectively manage sickle cell-related pain. We investigated the role of dopamine beta-hydroxylase (DBH) gene polymorphisms on pain variability in SCD. DBH is a key enzyme in the catecholamine biosynthesis pathway that catalyzes the conversion of dopamine to norepinephrine, both of which are known mediators of pain and pain-related behaviors. Methods: Acute crisis pain-related utilization and non-crisis chronic pain scores of 131 African Americans with SCD were obtained. Results and discussion: Association analyses revealed that the T allele of upstream variant rs1611115 and downstream variant rs129882 correlated with higher severity of chronic pain in an additive model. On the other hand, the A allele of missense variant rs5324 associated with lower risk of both acute crisis pain and chronic pain. Similarly, the C allele of intronic variant rs2797849 was associated with lower incidence of acute crisis pain in the additive model. In addition, tissue-specific eQTL revealed that the T allele of rs1611115 correlated with decreased expression of DBH in the frontal cortex and anterior cingulate cortex (GTEx), and decreased expression of DBH-AS1 in blood (eQTLGen). Bioinformatic approaches predicted that rs1611115 may be altering a transcription factor binding site, thereby, contributing to its potential effect. Taken together, findings from this study suggest that potential functional polymorphisms of DBH may modulate pain perception in SCD.
Collapse
Affiliation(s)
- Nilanjana Sadhu
- Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, IL, United States
| | - Ying He
- Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, IL, United States
- Comprehensive Sickle Cell Center, University of Illinois Chicago, Chicago, IL, United States
| | - Yingwei Yao
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL, United States
| | - Diana J. Wilkie
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL, United States
| | - Robert E. Molokie
- Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, IL, United States
- Comprehensive Sickle Cell Center, University of Illinois Chicago, Chicago, IL, United States
- Jesse Brown Veteran’s Administration Medical Center, Chicago, IL, United States
- Division of Hematology/Oncology, University of Illinois Chicago College of Medicine, Chicago, IL, United States
| | - Zaijie Jim Wang
- Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, IL, United States
- Comprehensive Sickle Cell Center, University of Illinois Chicago, Chicago, IL, United States
- Department of Neurology and Rehabilitation, University of Illinois Chicago College of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois Chicago College of Engineering, Chicago, IL, United States
| |
Collapse
|
4
|
Al Jowf GI, Ahmed ZT, Reijnders RA, de Nijs L, Eijssen LMT. To Predict, Prevent, and Manage Post-Traumatic Stress Disorder (PTSD): A Review of Pathophysiology, Treatment, and Biomarkers. Int J Mol Sci 2023; 24:ijms24065238. [PMID: 36982313 PMCID: PMC10049301 DOI: 10.3390/ijms24065238] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) can become a chronic and severely disabling condition resulting in a reduced quality of life and increased economic burden. The disorder is directly related to exposure to a traumatic event, e.g., a real or threatened injury, death, or sexual assault. Extensive research has been done on the neurobiological alterations underlying the disorder and its related phenotypes, revealing brain circuit disruption, neurotransmitter dysregulation, and hypothalamic–pituitary–adrenal (HPA) axis dysfunction. Psychotherapy remains the first-line treatment option for PTSD given its good efficacy, although pharmacotherapy can also be used as a stand-alone or in combination with psychotherapy. In order to reduce the prevalence and burden of the disorder, multilevel models of prevention have been developed to detect the disorder as early as possible and to reduce morbidity in those with established diseases. Despite the clinical grounds of diagnosis, attention is increasing to the discovery of reliable biomarkers that can predict susceptibility, aid diagnosis, or monitor treatment. Several potential biomarkers have been linked with pathophysiological changes related to PTSD, encouraging further research to identify actionable targets. This review highlights the current literature regarding the pathophysiology, disease development models, treatment modalities, and preventive models from a public health perspective, and discusses the current state of biomarker research.
Collapse
Affiliation(s)
- Ghazi I. Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| | - Ziyad T. Ahmed
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| | - Rick A. Reijnders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Lars M. T. Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Bioinformatics—BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| |
Collapse
|
5
|
Nakayama T, Yamamoto J, Ozeki T, Tsuruta Y, Yokoi M, Aoi T, Mori Y, Hori M, Tsujita M, Shirasawa Y, Kondo C, Yasuda K, Murata M, Kinoshita Y, Suzuki S, Fukuda M, Yamazaki C, Ikehara N, Sugiura M, Goto T, Hashimoto H, Yajima K, Maruyama S, Morozumi K, Seo Y. Non-A Blood Type Is a Risk Factor for Poor Cardio-Cerebrovascular Outcomes in Patients Undergoing Dialysis. Biomedicines 2023; 11:biomedicines11020592. [PMID: 36831128 PMCID: PMC9953354 DOI: 10.3390/biomedicines11020592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The clinical impact of ABO blood type on cardio-cerebrovascular outcomes in patients undergoing dialysis has not been clarified. A total of 365 hemodialysis patients participated in the current study. The primary endpoint was defined as a composite including cardio-cerebrovascular events and cardio-cerebrovascular death. The primary endpoint was observed in 73 patients during a median follow-up period of 1182 days, including 16/149 (11%) with blood type A, 22/81 (27%) with blood type B, 26/99 (26%) with blood type O, and 9/36 (25%) with blood type AB. At baseline, no difference was found in the echocardiographic parameters. Multivariable Cox regression analyses revealed that blood type (type A vs. non-A type; hazard ratio (HR): 0.46, 95% confidence interval (95% CI): 0.26-0.81, p = 0.007), age (per 10-year increase; HR: 1.47, 95% CI: 1.18-1.84), antiplatelet or anticoagulation therapy (HR: 1.91, 95% CI: 1.07-3.41), LVEF (per 10% increase; HR: 0.78, 95% CI: 0.63-0.96), and LV mass index (per 10 g/m2 increase; HR: 1.07, 95% CI: 1.01-1.13) were the independent determinants of the primary endpoint. Kaplan-Meier curves also showed a higher incidence of the primary endpoint in the non-A type than type A (Log-rank p = 0.001). Dialysis patients with blood type A developed cardio-cerebrovascular events more frequently than non-A type patients.
Collapse
Affiliation(s)
- Takafumi Nakayama
- Department of Cardiology, Masuko Memorial Hospital, 35–28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
- Department of Cardiology, West Medical Center, Nagoya City University, 1-1-1, Hirate-cho, Kita-ku, Nagoya 462-0057, Aichi, Japan
- Department of Cardiology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi-1, Mizuho-cho, Mizuho-ku, Nagoya 467-0001, Aichi, Japan
- Correspondence: ; Tel.: +81-52-451-1465; Fax: +81-52-451-1360
| | - Junki Yamamoto
- Department of Cardiology, Masuko Memorial Hospital, 35–28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
- Department of Cardiology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi-1, Mizuho-cho, Mizuho-ku, Nagoya 467-0001, Aichi, Japan
| | - Toshikazu Ozeki
- Division of Nephrology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-cho, Shouwa-ku, Nagoya 466-8550, Aichi, Japan
| | - Yoshiro Tsuruta
- Department of Cardiology, Masuko Memorial Hospital, 35–28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
- Department of Cardiology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi-1, Mizuho-cho, Mizuho-ku, Nagoya 467-0001, Aichi, Japan
| | - Masashi Yokoi
- Department of Cardiology, Masuko Memorial Hospital, 35–28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
- Department of Cardiology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi-1, Mizuho-cho, Mizuho-ku, Nagoya 467-0001, Aichi, Japan
| | - Tomonori Aoi
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Yoshiko Mori
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Mayuko Hori
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Makoto Tsujita
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Yuichi Shirasawa
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Chika Kondo
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Kaoru Yasuda
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Minako Murata
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Yuko Kinoshita
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Shigeru Suzuki
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Michio Fukuda
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Chikao Yamazaki
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Noriyuki Ikehara
- Department of Cardiology, West Medical Center, Nagoya City University, 1-1-1, Hirate-cho, Kita-ku, Nagoya 462-0057, Aichi, Japan
| | - Makoto Sugiura
- Department of Cardiology, West Medical Center, Nagoya City University, 1-1-1, Hirate-cho, Kita-ku, Nagoya 462-0057, Aichi, Japan
| | - Toshihiko Goto
- Department of Cardiology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi-1, Mizuho-cho, Mizuho-ku, Nagoya 467-0001, Aichi, Japan
| | - Hiroya Hashimoto
- Clinical Research Management Center, Nagoya City University Hospital, Kawasumi-1, Mizuho-cho, Mizuho-ku, Nagoya 467-0001, Aichi, Japan
| | - Kazuhiro Yajima
- Department of Cardiology, West Medical Center, Nagoya City University, 1-1-1, Hirate-cho, Kita-ku, Nagoya 462-0057, Aichi, Japan
| | - Shoichi Maruyama
- Division of Nephrology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-cho, Shouwa-ku, Nagoya 466-8550, Aichi, Japan
| | - Kunio Morozumi
- Department of Nephrology, Masuko Memorial Hospital, 35-28, Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Aichi, Japan
| | - Yoshihiro Seo
- Department of Cardiology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi-1, Mizuho-cho, Mizuho-ku, Nagoya 467-0001, Aichi, Japan
| |
Collapse
|
6
|
Dobewall H, Saarinen A, Lyytikäinen LP, Keltikangas-Järvinen L, Lehtimäki T, Hintsanen M. Functional Polymorphisms in Oxytocin and Dopamine Pathway Genes and the Development of Dispositional Compassion Over Time: The Young Finns Study. Front Psychol 2021; 12:576346. [PMID: 33897514 PMCID: PMC8060576 DOI: 10.3389/fpsyg.2021.576346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Background: We define compassion as an enduring disposition that centers upon empathetic concern for another person's suffering and the motivation to act to alleviate it. The contribution of specific candidate genes to the development of dispositional compassion for others is currently unknown. We examine candidate genes in the oxytocin and dopamine signaling pathways. Methods: In a 32-year follow-up of the Young Finns Study (N = 2,130, 44.0% men), we examined with multiple indicators latent growth curve modeling the molecular genetic underpinnings of dispositional compassion for others across the life span. We selected five single nucleotide polymorphisms (SNPs) whose functions are known in humans: rs2268498 (OXTR), rs3796863 (CD38) (related to lower oxytocin levels), rs1800497 (ANKK1/DRD2), rs4680 (COMT), and rs1611115 (DBH) (related to higher dopamine levels). Compassion was measured with Cloninger's Temperament and Character Inventory on three repeated observations spanning 15 years (1997–2012). Differences between gender were tested. Results: We did not find an effect of the five SNPs in oxytocin and dopamine pathway genes on the initial levels of dispositional compassion for others. Individuals who carry one or two copies of the T-allele of DBH rs1611115, however, tend to increase faster in compassion over time than those homozygotes for the C-allele, b = 0.063 (SE = 0.027; p = 0.018). This effect was largely driven by male participants, 0.206 (SE = 0.046; p < 0.001), and was not significant in female participants when analyzed separately. Conclusions: Men who are known to have, on average, lower compassion than women seem to reduce this difference over time if they carry the T-allele of DBH rs1611115. The direction of the association indicates that dopamine signaling activity rather than overall dopamine levels might drive the development of compassion.
Collapse
Affiliation(s)
- Henrik Dobewall
- Research Unit of Psychology, University of Oulu, Oulu, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aino Saarinen
- Research Unit of Psychology, University of Oulu, Oulu, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leo-Pekka Lyytikäinen
- Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Terho Lehtimäki
- Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mirka Hintsanen
- Research Unit of Psychology, University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Punchaichira TJ, Mukhopadhyay A, Kukshal P, Bhatia T, Deshpande SN, Thelma BK. Association of regulatory variants of dopamine β-hydroxylase with cognition and tardive dyskinesia in schizophrenia subjects. J Psychopharmacol 2020; 34:358-369. [PMID: 31913053 PMCID: PMC7150076 DOI: 10.1177/0269881119895539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dopamine-β-hydroxylase (DBH, EC 1.14.17.1), which converts dopamine to norepinephrine, is a candidate gene in neuropsychiatric diseases. AIM To assess the effect of regulatory variants in DBH on schizophrenia and its endophenotypes -cognition and tardive dyskinesia. METHODS We tested association of functional variants 19bp Ins/Del, rs1989787 and rs1611115 in DBH with i) schizophrenia (1236 cases, 1136 controls), ii) tardive dyskinesia (83 positive, 162 negative) and iii) performance functions of cognition (357 cases, 306 controls) estimated by the Penn Computerized Neurocognitive Battery. RESULTS A modest haplotypic (Ins-C; 19bp Ins/Del - rs1989787 C>T; p=0.04) association was observed with schizophrenia. We observed ~39% reduction in activity of 19bp Del allele on luciferase assay. Analysis of covariance revealed interactions of tardive dyskinesia status and: i) 19bp Ins/Del (genotypic, p=0.04) and ii) rs1989787 and rs1611115 (combined genotypic, p=0.004) on Abnormal Involuntary Movement Scale total score. Association of rs1611115 with positive and negative syndrome scale (PANSS) total score (p=0.05) and allelic/genotypic association with lower positive (p=0.03/0.04), general psychopathology (p=0.01/0.01) PANSS scales in tardive dyskinesia-positive; and allelic/genotypic (p=0.02/0.05) with higher score of depressive factors in tardive dyskinesia-negative subgroups were observed. Analysis of covariance with continuous variable of cognition showed interaction of health status with: i) rs1989787 on accuracy and efficiency (p=0.03) of abstraction and mental flexibility; ii) rs1611115 on accuracy of working memory and emotion (p=0.05); iii) 19bp Ins/Del on processing speed of emotion (p=0.03). Allelic/genotypic association of rs1989787 with spatial ability (p=0.02-0.05) among healthy controls; association of rs1611115 with Global Assessment Scale scores in the past month (p=0.05) among schizophrenia subjects of cognition cohort was also observed. CONCLUSIONS With modest genotype-phenotype correlations available for DBH variants, personalized treatment regimens based on DBH activity for ameliorating tardive dyskinesia and cognitive symptoms may be plausible.
Collapse
Affiliation(s)
| | | | - Prachi Kukshal
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Triptish Bhatia
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research–Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Smita N Deshpande
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research–Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - BK Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
8
|
Gonzalez‐Lopez E, Vrana KE. Dopamine beta‐hydroxylase and its genetic variants in human health and disease. J Neurochem 2019; 152:157-181. [DOI: 10.1111/jnc.14893] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | - Kent E. Vrana
- Department of Pharmacology Penn State College of Medicine Hershey PA USA
| |
Collapse
|
9
|
Tunbridge EM, Narajos M, Harrison CH, Beresford C, Cipriani A, Harrison PJ. Which Dopamine Polymorphisms Are Functional? Systematic Review and Meta-analysis of COMT, DAT, DBH, DDC, DRD1-5, MAOA, MAOB, TH, VMAT1, and VMAT2. Biol Psychiatry 2019; 86:608-620. [PMID: 31303260 DOI: 10.1016/j.biopsych.2019.05.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/11/2019] [Accepted: 05/01/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Many polymorphisms in dopamine genes are reported to affect cognitive, imaging, or clinical phenotypes. It is often inferred or assumed that such associations are causal, mediated by a direct effect of the polymorphism on the gene product itself. However, the supporting evidence is not always clear. METHODS We conducted systematic reviews and meta-analyses to assess the empirical evidence for functional polymorphisms in genes encoding dopaminergic enzymes (COMT, DBH, DDC, MAOA, MAOB, and TH), dopamine receptors (DRD1, DRD2, DRD3, DRD4, and DRD5), the dopamine transporter (DAT), and vesicular transporters (VMAT1 and VMAT2). We defined functionality as an effect of the polymorphism on the expression, abundance, activity, or affinity of the gene product. RESULTS We screened 22,728 articles and identified 255 eligible studies. We found robust and medium to large effects for polymorphisms in 4 genes. For catechol-O-methyltransferase (COMT), the Val158Met polymorphism (rs4680) markedly affected enzyme activity, protein abundance, and protein stability. Dopamine β-hydroxylase (DBH) activity was associated with rs1611115, rs2519152, and the DBH-STR polymorphism. Monoamine oxidase A (MAOA) activity was associated with a 5' VNTR polymorphism. Dopamine D2 receptor (DRD2) binding was influenced by the Taq1A (rs1800497) polymorphism, and rs1076560 affected DRD2 splicing. CONCLUSIONS Some widely studied dopaminergic polymorphisms clearly and substantially affect the abundance or activity of the encoded gene product. However, for other polymorphisms, evidence of such an association is negative, inconclusive, or lacking. These findings are relevant when selecting polymorphisms as "markers" of dopamine function, and for interpreting the biological plausibility of associations between these polymorphisms and aspects of brain function or dysfunction.
Collapse
Affiliation(s)
- Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Marco Narajos
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | | | - Charles Beresford
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrea Cipriani
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom.
| |
Collapse
|
10
|
Ghosh A, Sadhukhan T, Giri S, Biswas A, Das SK, Ray K, Ray J. Dopamine β Hydroxylase (DBH) is a potential modifier gene associated with Parkinson's disease in Eastern India. Neurosci Lett 2019; 706:75-80. [PMID: 31082450 DOI: 10.1016/j.neulet.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is the debilitating movement disorder, distinguished by dopaminergic and norepinephrinergic neurodegeneration. Apart from candidate gene mutations, several modifier loci have been reported to be associated with the disease manifestation. The Dopamine β-Hydroxylase (DBH) maintains cellular dopamine content and regulates dopamine turn over in neurons. Genetic polymorphisms of DBH are associated with PD and are found to alter plasma DBH activity in patients compared to healthy controls. Therefore, DBH activity in plasma could be a potential and easily detectable biomarkers for alteration of dopaminergic neuronal function in PD. METHODS Plasma DBH activity has been assessed among PD cases and age-matched controls to identify correlation with PD. To elucidate the role of DBH polymorphisms in Eastern Indian PD patients, three SNPs (rs1611115, rs1108580 and rs129882) were selected and screened by PCR-RFLP and DNA sequencing analysis. RESULTS The T-allele of rs129882 was more prevalent among patients than controls posing risk (p-value = 0.02, OR = 1.404, 95% CI = 1.047-1.883) towards PD. The dual-Luciferase assay in SHSY5Y cell line revealed that the T-allele of rs129882 increases Luciferase signal (p = 0.0269). However, the rs1611115 and rs1108580 did not show association with PD; plasma DBH activity was not significantly different between patients and controls (p-value > 0.05). Haplotypes constructed with three SNPs showed that the CAT haplotype to pose risk, TAC haplotype to provide protection against early disease onset and CGT being protective against non-motor symptoms. CONCLUSION These data suggest that DBH might influence the susceptibility of PD.
Collapse
Affiliation(s)
- Arunibha Ghosh
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Tamal Sadhukhan
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Subhajit Giri
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Arindam Biswas
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | | | - Kunal Ray
- ATGC Diagnostics Pvt. Ltd., Kolkata, India
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| |
Collapse
|
11
|
Zhang X, Nielsen DA, Domingo CB, Shorter DI, Nielsen EM, Kosten TR. Pharmacogenetics of Dopamine β-Hydroxylase in cocaine dependence therapy with doxazosin. Addict Biol 2019; 24:531-538. [PMID: 29498170 DOI: 10.1111/adb.12611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/17/2017] [Accepted: 01/20/2018] [Indexed: 02/02/2023]
Abstract
The α1 -adrenergic antagonist, doxazosin, has improved cocaine use disorder (CUD) presumably by blocking norepinephrine (NE) stimulation and reward from cocaine-induced NE increases. If the NE levels for release were lower, then doxazosin might more readily block this NE stimulation and be more effective. The NE available for release can be lower through a genetic polymorphism in dopamine β-hydroxylase (DBH) (C-1021T, rs1611115), which reduces DβH's conversion of dopamine to NE. We hypothesize that doxazosin would be more effective in CUD patients who have these genetically lower DβH levels. This 12-week, double-blind, randomized, placebo-controlled trial included 76 CUD patients: 49 with higher DβH levels from the DBH CC genotype and 27 with lower DβH levels from T-allele carriers (CT or TT). Patients were randomized to doxazosin (8 mg/day, N = 47) or placebo (N = 29) and followed with thrice weekly urine toxicology and once weekly cognitive behavioral psychotherapy. Cocaine use was reduced at a higher rate among patients in the doxazosin than in the placebo arm. We found significantly lower cocaine use rates among patients carrying the T-allele (CT/TT) than the CC genotype. The percentage of cocaine positive urines was reduced by 41 percent from baseline in the CT/TT group with low DβH and NE levels, as compared with no net reduction in the CC genotype group with normal DβH and NE levels. The DBH polymorphism appears play an important role in CUD patients' response to doxazosin treatment, supporting a pharmacogenetic association and potential application for personalized medicine.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Michael E. DeBakey Veterans Affairs Medical Center Houston TX USA
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of Medicine Houston TX USA
| | - David A. Nielsen
- Michael E. DeBakey Veterans Affairs Medical Center Houston TX USA
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of Medicine Houston TX USA
| | - Coreen B. Domingo
- Michael E. DeBakey Veterans Affairs Medical Center Houston TX USA
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of Medicine Houston TX USA
| | - Daryl I. Shorter
- Michael E. DeBakey Veterans Affairs Medical Center Houston TX USA
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of Medicine Houston TX USA
| | - Ellen M. Nielsen
- Michael E. DeBakey Veterans Affairs Medical Center Houston TX USA
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of Medicine Houston TX USA
| | - Thomas R. Kosten
- Michael E. DeBakey Veterans Affairs Medical Center Houston TX USA
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of Medicine Houston TX USA
| |
Collapse
|
12
|
Gonzalez-Lopez E, Kawasawa-Imamura Y, Zhang L, Huang X, Koltun WA, Coates MD, Vrana KE. A single nucleotide polymorphism in dopamine beta hydroxylase (rs6271(C>T)) is over-represented in inflammatory bowel disease patients and reduces circulating enzyme. PLoS One 2019; 14:e0210175. [PMID: 30817802 PMCID: PMC6394932 DOI: 10.1371/journal.pone.0210175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are associated with altered neuronal regulation of the gastrointestinal (GI) tract and release of norepinephrine (NE). As sympathetic innervation of the GI tract modulates motility, blood flow, and immune function, changes in NE signaling may alter the risk of developing IBD. Dopamine beta-hydroxylase (DβH), the enzyme responsible for NE production, has been suggested to play a critical role in IBD, however the exact mechanism is unknown. We hypothesized that genetic variants of DβH could increase the risk of IBD. We performed genetic analysis on 45 IBD patients and 74 controls. IBD patients were screened by targeted exome sequencing and compared with NeuroX DβH single nucleotide polymorphism (SNP) genotyping data of the controls. Serum DβH protein levels for 15 IBD patients and 13 controls were evaluated using immunoblots and competitive ELISA. Seven SNPs were observed from DβH targeted exome sequencing in the 45 IBD patients. A single non-synonymous SNP, rs6271 (Arg549Cys), had a significant association with IBD patients; the odds ratio was a 5.6 times higher SNP frequency in IBD patients compared to controls (p = 0.002). We also examined the function and availability of the protein in both the IBD and control patients' sera bearing DβH Arg549Cys. Both control and IBD subjects bearing the heterozygote allele had statistically lower DβH protein levels while the intrinsic enzyme activity was higher. This is the first report of a noradrenergic genetic polymorphism (rs6271; Arg549Cys) associated with IBD. This polymorphism is associated with significantly lower levels of circulating DβH.
Collapse
Affiliation(s)
- Eugene Gonzalez-Lopez
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Yuka Kawasawa-Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- Genome Sciences Core Facility, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lijun Zhang
- Genome Sciences Core Facility, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Xuemei Huang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Neurology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- Departments of Neurology, Neurosurgery and Radiology, Milton S. Hershey Medical Center, and Kinesiology, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Walter A. Koltun
- Department of Surgery, Division of Colon and Rectal Surgery, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Matthew D. Coates
- Department of Medicine, Division of Gastroenterology & Hepatology, Pennsylvania State University Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
13
|
Almli LM, Lori A, Meyers JL, Shin J, Fani N, Maihofer AX, Nievergelt CM, Smith AK, Mercer KB, Kerley K, Leveille JM, Feng H, Abu‐Amara D, Flory JD, Yehuda R, Marmar CR, Baker DG, Bradley B, Koenen KC, Conneely KN, Ressler KJ. Problematic alcohol use associates with sodium channel and clathrin linker 1 (SCLT1) in trauma-exposed populations. Addict Biol 2018; 23:1145-1159. [PMID: 29082582 DOI: 10.1111/adb.12569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 08/05/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
Excessive alcohol use is extremely prevalent in the United States, particularly among trauma-exposed individuals. While several studies have examined genetic influences on alcohol use and related problems, this has not been studied in the context of trauma-exposed populations. We report results from a genome-wide association study of alcohol consumption and associated problems as measured by the alcohol use disorders identification test (AUDIT) in a trauma-exposed cohort. Results indicate a genome-wide significant association between total AUDIT score and rs1433375 [N = 1036, P = 2.61 × 10-8 (dominant model), P = 7.76 × 10-8 (additive model)], an intergenic single-nucleotide polymorphism located 323 kb upstream of the sodium channel and clathrin linker 1 (SCLT1) at 4q28. rs1433375 was also significant in a meta-analysis of two similar, but independent, cohorts (N = 1394, P = 0.0004), the Marine Resiliency Study and Systems Biology PTSD Biomarkers Consortium. Functional analysis indicated that rs1433375 was associated with SCLT1 gene expression and cortical-cerebellar functional connectivity measured via resting state functional magnetic resonance imaging. Together, findings suggest a role for sodium channel regulation and cerebellar functioning in alcohol use behavior. Identifying mechanisms underlying risk for problematic alcohol use in trauma-exposed populations is critical for future treatment and prevention efforts.
Collapse
Affiliation(s)
- Lynn M. Almli
- Department of Psychiatry and Behavioral Sciences Emory University Atlanta GA USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences Emory University Atlanta GA USA
| | - Jacquelyn L. Meyers
- Department of Psychiatry State University of New York Downstate Medical Center Brooklyn NY USA
| | - Jaemin Shin
- Center for Advanced Brain Imaging Georgia State University/Georgia Institute of Technology Atlanta GA USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences Emory University Atlanta GA USA
| | - Adam X. Maihofer
- Department of Psychiatry University of California San Diego San Diego CA USA
- Veterans Affairs Center of Excellence for Stress and Mental Health San Diego USA
| | - Caroline M. Nievergelt
- Department of Psychiatry University of California San Diego San Diego CA USA
- Veterans Affairs Center of Excellence for Stress and Mental Health San Diego USA
| | - Alicia K. Smith
- Department of Psychiatry and Behavioral Sciences Emory University Atlanta GA USA
- Department of Gynecology and Obstetrics Emory University Atlanta GA USA
| | | | - Kimberly Kerley
- Department of Psychiatry and Behavioral Sciences Emory University Atlanta GA USA
| | - Jennifer M. Leveille
- Department of Psychiatry and Behavioral Sciences Emory University Atlanta GA USA
| | - Hao Feng
- Department of Human Genetics Emory University Atlanta GA USA
| | - Duna Abu‐Amara
- Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury Department of Psychiatry, New York University New York NY USA
| | - Janine D. Flory
- Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury Department of Psychiatry, New York University New York NY USA
- Department of Psychiatry MSSM/James J. Peters Veterans Administration Medical Center New York NY USA
| | - Rachel Yehuda
- Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury Department of Psychiatry, New York University New York NY USA
- Department of Psychiatry MSSM/James J. Peters Veterans Administration Medical Center New York NY USA
| | - Charles R. Marmar
- Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury Department of Psychiatry, New York University New York NY USA
| | - Dewleen G. Baker
- Department of Psychiatry University of California San Diego San Diego CA USA
- Veterans Affairs Center of Excellence for Stress and Mental Health San Diego USA
- Psychiatry Services VA San Diego Healthcare System San Diego CA USA
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences Emory University Atlanta GA USA
- Mental Health Service Line Department of Veterans Affairs Medical Center Atlanta GA USA
| | - Karestan C. Koenen
- Department of Epidemiology Harvard TH Chan School of Public Health Boston MA USA
| | | | - Kerry J. Ressler
- Department of Psychiatry and Behavioral Sciences Emory University Atlanta GA USA
- McLean Hospital Harvard Medical School Belmont MA USA
| |
Collapse
|
14
|
Nievergelt CM, Ashley-Koch AE, Dalvie S, Hauser MA, Morey RA, Smith AK, Uddin M. Genomic Approaches to Posttraumatic Stress Disorder: The Psychiatric Genomic Consortium Initiative. Biol Psychiatry 2018; 83:831-839. [PMID: 29555185 PMCID: PMC5915904 DOI: 10.1016/j.biopsych.2018.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/18/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
Posttraumatic stress disorder (PTSD) after exposure to a traumatic event is a highly prevalent psychiatric disorder. Heritability estimates from twin studies as well as from recent molecular data (single nucleotide polymorphism-based heritability) indicate moderate to high heritability, yet robust genetic variants for PTSD have not yet been identified and the genetic architecture of this polygenic disorder remains largely unknown. To date, fewer than 10 large-scale genome-wide association studies of PTSD have been published, with findings that highlight the unique challenges for PTSD genomics, including a complex diagnostic entity with contingency of PTSD diagnosis on trauma exposure and the large genetic diversity of the study populations. The Psychiatric Genomics Consortium PTSD group has brought together more than 200 scientists with the goal to increase sample size for genome-wide association studies and other genomic analyses to sufficient numbers where robust discoveries of molecular signatures can be achieved. The sample currently includes more than 32,000 PTSD cases and 100,000 trauma-exposed control subjects, and collection is ongoing. The first results found a significant shared genetic risk of PTSD with other psychiatric disorders and sex-biased heritability estimates with higher heritability in female individuals compared with male individuals. This review describes the scope and current focus of the Psychiatric Genomics Consortium PTSD group and its expansion from the initial genome-wide association study group to nine working groups, including epigenetics, gene expression, imaging, and integrative systems biology. We further briefly outline recent findings and future directions of "omics"-based studies of PTSD, with the ultimate goal of elucidating the molecular architecture of this complex disorder to improve prevention and intervention strategies.
Collapse
Affiliation(s)
- Caroline M. Nievergelt
- University of California San Diego, Department of Psychiatry and Department of Family Medicine and Public Health,Veterans Affairs San Diego Healthcare System and Veterans Affairs Center of Excellence for Stress and Mental Health
| | | | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa, 7925
| | - Michael A. Hauser
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Rajendra A. Morey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham NC 27710, Durham VA Medical Center, Durham, NC 27705
| | - Alicia K. Smith
- Emory University, Department of Gynecology and Obstetrics,Emory University, Department of Psychiatry & Behavioral Sciences
| | - Monica Uddin
- University of Illinois Urbana-Champaign, Carl R. Woese Institute for Genomic Biology,University of Illinois Urbana-Champaign, Department of Psychology
| |
Collapse
|
15
|
Punchaichira TJ, Dey SK, Mukhopadhyay A, Kundu S, Thelma BK. Characterization of SNPs in the dopamine-β-hydroxylase gene providing new insights into its structure-function relationship. Neurogenetics 2017; 18:155-168. [PMID: 28707163 DOI: 10.1007/s10048-017-0519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/24/2022]
Abstract
Dopamine-β-hydroxylase (DBH, EC 1.14.17.1), an oxido-reductase that catalyses the conversion of dopamine to norepinephrine, is largely expressed in sympathetic neurons and adrenal medulla. Several regulatory and structural variants in DBH associated with various neuropsychiatric, cardiovascular diseases and a few that may determine enzyme activity have also been identified. Due to paucity of studies on functional characterization of DBH variants, its structure-function relationship is poorly understood. The purpose of the study was to characterize five non-synonymous (ns) variants that were prioritized either based on previous association studies or Sorting Tolerant From Intolerant (SIFT) algorithm. The DBH ORF with wild type (WT) and site-directed mutagenized variants were transfected into HEK293 cells to generate transient and stable lines expressing these variant enzymes. Activity was determined by UPLC-PDA and corresponding quantity by MRMHR on a TripleTOF 5600 MS respectively of spent media from stable cell lines. Homospecific activity computed for the WT and variant proteins showed a marginal decrease in A318S, W544S and R549C variants. In transient cell lines, differential secretion was observed in the case of L317P, W544S and R549C. Secretory defect in L317P was confirmed by localization in ER. R549C exhibited both decreased homospecific activity and differential secretion. Of note, all the variants were seen to be destabilizing based on in silico folding analysis and molecular dynamics (MD) simulation, lending support to our experimental observations. These novel genotype-phenotype correlations in this gene of considerable pharmacological relevance have implications for dopamine-related disorders.
Collapse
Affiliation(s)
| | - Sanjay Kumar Dey
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Anirban Mukhopadhyay
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
16
|
Koenen KC, Sumner JA, Gilsanz P, Glymour MM, Ratanatharathorn A, Rimm EB, Roberts AL, Winning A, Kubzansky LD. Post-traumatic stress disorder and cardiometabolic disease: improving causal inference to inform practice. Psychol Med 2017; 47:209-225. [PMID: 27697083 PMCID: PMC5214599 DOI: 10.1017/s0033291716002294] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Post-traumatic stress disorder (PTSD) has been declared 'a life sentence' based on evidence that the disorder leads to a host of physical health problems. Some of the strongest empirical research - in terms of methodology and findings - has shown that PTSD predicts higher risk of cardiometabolic diseases, specifically cardiovascular disease (CVD) and type 2 diabetes (T2D). Despite mounting evidence, PTSD is not currently acknowledged as a risk factor by cardiovascular or endocrinological medicine. This view is unlikely to change absent compelling evidence that PTSD causally contributes to cardiometabolic disease. This review suggests that with developments in methods for epidemiological research and the rapidly expanding knowledge of the behavioral and biological effects of PTSD the field is poised to provide more definitive answers to questions of causality. First, we discuss methods to improve causal inference using the observational data most often used in studies of PTSD and health, with particular reference to issues of temporality and confounding. Second, we consider recent work linking PTSD with specific behaviors and biological processes, and evaluate whether these may plausibly serve as mechanisms by which PTSD leads to cardiometabolic disease. Third, we evaluate how looking more comprehensively into the PTSD phenotype provides insight into whether specific aspects of PTSD phenomenology are particularly relevant to cardiometabolic disease. Finally, we discuss new areas of research that are feasible and could enhance understanding of the PTSD-cardiometabolic relationship, such as testing whether treatment of PTSD can halt or even reverse the cardiometabolic risk factors causally related to CVD and T2D.
Collapse
Affiliation(s)
- K C Koenen
- Department of Epidemiology,Harvard T.H. Chan School of Public Health,Boston, MA,USA
| | - J A Sumner
- Department of Epidemiology,Harvard T.H. Chan School of Public Health,Boston, MA,USA
| | - P Gilsanz
- Department of Social and Behavioral Sciences,Harvard T.H. Chan School of Public Health,Boston, MA,USA
| | - M M Glymour
- Department of Social and Behavioral Sciences,Harvard T.H. Chan School of Public Health,Boston, MA,USA
| | - A Ratanatharathorn
- Department of Epidemiology,Harvard T.H. Chan School of Public Health,Boston, MA,USA
| | - E B Rimm
- Channing Division of Network Medicine,Brigham and Women's Hospital,Harvard Medical School and Departments of Epidemiology and Nutrition,Harvard T.H. Chan School of Public Health,Boston, MA,USA
| | - A L Roberts
- Department of Social and Behavioral Sciences,Harvard T.H. Chan School of Public Health,Boston, MA,USA
| | - A Winning
- Department of Social and Behavioral Sciences,Harvard T.H. Chan School of Public Health,Boston, MA,USA
| | - L D Kubzansky
- Department of Social and Behavioral Sciences,Harvard T.H. Chan School of Public Health,Boston, MA,USA
| |
Collapse
|
17
|
Pirmoradian M, Aarsland D, Zubarev RA. Isoelectric point region pI≈7.4 as a treasure island of abnormal proteoforms in blood. Discoveries (Craiova) 2016; 4:e67. [PMID: 32309586 PMCID: PMC7159840 DOI: 10.15190/d.2016.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Theoretical distribution of isoelectric points (pI values) of human blood proteins exhibits multi-modality with a deep minimum in the range between pI 7.30 and 7.50. Considering that the pH of human blood is 7.4±0.1, normal forms of human proteins tend to eschew this specific pI region, thus avoiding charge neutrality that can result in enhanced precipitation. However, abnormal protein isoforms (proteoforms), which are the hallmarks and potential biomarkers of certain diseases, are likely to be found everywhere in the pI distribution, including this “forbidden” region. Therefore, we hypothesized that damaging proteoforms characteristic for neurodegenerative diseases are best detected around pI≈7.4. Blood serum samples from 14 Alzheimer's disease patients were isolated by capillary isoelectric focusing and analyzed by liquid chromatography hyphenated with tandem mass spectrometry. Consistent with the pI≈7.4 hypothesis, the 8 patients with fast memory decline had a significantly (p<0.003) higher concentration of proteoforms in the pI=7.4±0.1 region than the 6 patients with a slow memory decline. Moreover, protein compositions differed more from each other than for any other investigated pI region, providing absolute separation of the fast and slow decliner samples. The discovery of the “treasure island” of abnormal proteoforms in form of the pI≈7.4 region promises to boost biomarker development for a range of diseases.
Collapse
Affiliation(s)
- Mohammad Pirmoradian
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Biomotif AB, Stockholm, Sweden
| | - Dag Aarsland
- Alzheimer's Disease Research Centre, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Tong J, McKinley LA, Cummins TDR, Johnson B, Matthews N, Vance A, Heussler H, Gill M, Kent L, Bellgrove MA, Hawi Z. Identification and functional characterisation of a novel dopamine beta hydroxylase gene variant associated with attention deficit hyperactivity disorder. World J Biol Psychiatry 2016; 16:610-8. [PMID: 25975715 DOI: 10.3109/15622975.2015.1036771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Dysregulation in neurotransmitter signalling has been implicated in the aetiology of attention deficit hyperactivity disorder (ADHD). Polymorphisms of the gene encoding dopamine beta hydroxylase (DBH) have been reported to be associated with ADHD; however, small sample sizes have led to inconsistency. METHODS We conducted transmission disequilibrium test analysis in 794 nuclear families to examine the relationship between DBH and ADHD. The effects of the ADHD-associated polymorphisms on gene expression were assessed by luciferase reporter assays in a human neuroblastoma cell line, SH-SY5Y. RESULTS A SNP within the 3' untranslated region of DBH rs129882 showed a significant association with ADHD (χ(2) = 9.71, p = 0.0018, OR = 1.37). This association remained significant after Bonferroni correction for multiple testing (p = 0.02). Further, allelic variation in rs129882 significantly impacted luciferase expression. Specifically, the C allele of the ADHD-associated rs129882 SNP produced a 2-fold decrease (p < 0.001) in luciferase activity. CONCLUSIONS These data demonstrate for the first time that a DBH gene variant, rs129882, which confers risk to ADHD is also associated with reduced in vitro gene expression. Reduced DBH expression would be consistent with decreased conversion of dopamine to noradrenaline and thus with a relative hypo-noradrenergic state in ADHD.
Collapse
Affiliation(s)
- Janette Tong
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Leigh-Anne McKinley
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Tarrant D R Cummins
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Beth Johnson
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Natasha Matthews
- b Queensland Brain Institute, University of Queensland , Brisbane , Australia
| | - Alasdair Vance
- c Academic Child Psychiatry Unit, Department of Paediatrics , University of Melbourne, Royal Children's Hospital, Murdoch Children's Research Institute , Parkville, Vic , Australia
| | - Helen Heussler
- d Department of Respiratory and Sleep Medicine , Mater Children's Hospital, Mater Health Services , South Brisbane , Australia
| | - Michael Gill
- e Department of Psychiatry , Trinity College , Dublin , Ireland
| | - Lindsey Kent
- f School of Medicine, University of St Andrews, St Andrews , Scotland , UK
| | - Mark A Bellgrove
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| | - Ziarih Hawi
- a School of Psychological Sciences, Monash University , Melbourne , Australia
| |
Collapse
|
19
|
Vermetten E, Baker DG, Jetly R, McFarlane AC. Concerns Over Divergent Approaches in the Diagnostics of Posttraumatic Stress Disorder. Psychiatr Ann 2016. [DOI: 10.3928/00485713-20160728-02] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Deep sequencing identifies novel regulatory variants in the distal promoter region of the dopamine-β-hydroxylase gene. Pharmacogenet Genomics 2016; 26:311-23. [DOI: 10.1097/fpc.0000000000000214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Cubells JF, Schroeder JP, Barrie ES, Manvich DF, Sadee W, Berg T, Mercer K, Stowe TA, Liles LC, Squires KE, Mezher A, Curtin P, Perdomo DL, Szot P, Weinshenker D. Human Bacterial Artificial Chromosome (BAC) Transgenesis Fully Rescues Noradrenergic Function in Dopamine β-Hydroxylase Knockout Mice. PLoS One 2016; 11:e0154864. [PMID: 27148966 PMCID: PMC4857931 DOI: 10.1371/journal.pone.0154864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022] Open
Abstract
Dopamine β-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE) in noradrenergic/adrenergic cells. DBH deficiency prevents NE production and causes sympathetic failure, hypotension and ptosis in humans and mice; DBH knockout (Dbh -/-) mice reveal other NE deficiency phenotypes including embryonic lethality, delayed growth, and behavioral defects. Furthermore, a single nucleotide polymorphism (SNP) in the human DBH gene promoter (-970C>T; rs1611115) is associated with variation in serum DBH activity and with several neurological- and neuropsychiatric-related disorders, although its impact on DBH expression is controversial. Phenotypes associated with DBH deficiency are typically treated with L-3,4-dihydroxyphenylserine (DOPS), which can be converted to NE by aromatic acid decarboxylase (AADC) in the absence of DBH. In this study, we generated transgenic mice carrying a human bacterial artificial chromosome (BAC) encompassing the DBH coding locus as well as ~45 kb of upstream and ~107 kb of downstream sequence to address two issues. First, we characterized the neuroanatomical, neurochemical, physiological, and behavioral transgenic rescue of DBH deficiency by crossing the BAC onto a Dbh -/- background. Second, we compared human DBH mRNA abundance between transgenic lines carrying either a "C" or a "T" at position -970. The BAC transgene drove human DBH mRNA expression in a pattern indistinguishable from the endogenous gene, restored normal catecholamine levels to the peripheral organs and brain of Dbh -/- mice, and fully rescued embryonic lethality, delayed growth, ptosis, reduced exploratory activity, and seizure susceptibility. In some cases, transgenic rescue was superior to DOPS. However, allelic variation at the rs1611115 SNP had no impact on mRNA levels in any tissue. These results indicate that the human BAC contains all of the genetic information required for tissue-specific, functional expression of DBH and can rescue all measured Dbh deficiency phenotypes, but did not reveal an impact of the rs11115 variant on DBH expression in mice.
Collapse
Affiliation(s)
- Joseph F. Cubells
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Autism Center, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jason P. Schroeder
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Elizabeth S. Barrie
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel F. Manvich
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Wolfgang Sadee
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Tiina Berg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kristina Mercer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - Taylor A. Stowe
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - L. Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Katherine E. Squires
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Andrew Mezher
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Patrick Curtin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Dannie L. Perdomo
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - Patricia Szot
- MIRECC, VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
22
|
The cortical surface area of the insula mediates the effect of DBH rs7040170 on novelty seeking. Neuroimage 2015; 117:184-90. [DOI: 10.1016/j.neuroimage.2015.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/28/2015] [Accepted: 05/14/2015] [Indexed: 01/02/2023] Open
|
23
|
Barrie ES, Weinshenker D, Verma A, Pendergrass SA, Lange LA, Ritchie MD, Wilson JG, Kuivaniemi H, Tromp G, Carey DJ, Gerhard GS, Brilliant MH, Hebbring SJ, Cubells JF, Pinsonneault JK, Norman GJ, Sadee W. Regulatory polymorphisms in human DBH affect peripheral gene expression and sympathetic activity. Circ Res 2014; 115:1017-1025. [PMID: 25326128 PMCID: PMC4258174 DOI: 10.1161/circresaha.116.304398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/16/2014] [Indexed: 01/20/2023]
Abstract
RATIONALE Dopamine β-hydroxylase (DBH) catalyzes the conversion of dopamine to norepinephrine in the central nervous system and peripherally. DBH variants are associated with large changes in circulating DBH and implicated in multiple disorders; yet causal relationships and tissue-specific effects remain unresolved. OBJECTIVE To characterize regulatory variants in DBH, effect on mRNA expression, and role in modulating sympathetic tone and disease risk. METHODS AND RESULTS Analysis of DBH mRNA in human tissues confirmed high expression in the locus coeruleus and adrenal gland, but also in sympathetically innervated organs (liver>lung>heart). Allele-specific mRNA assays revealed pronounced allelic expression differences in the liver (2- to 11-fold) attributable to promoter rs1611115 and exon 2 rs1108580, but only small differences in locus coeruleus and adrenals. These alleles were also associated with significantly reduced mRNA expression in liver and lung. Although DBH protein is expressed in other sympathetically innervated organs, mRNA levels were too low for analysis. In mice, hepatic Dbh mRNA levels correlated with cardiovascular risk phenotypes. The minor alleles of rs1611115 and rs1108580 were associated with sympathetic phenotypes, including angina pectoris. Testing combined effects of these variants suggested protection against myocardial infarction in 3 separate clinical cohorts. CONCLUSIONS We demonstrate profound effects of DBH variants on expression in 2 sympathetically innervated organs, liver and lung, but not in adrenals and brain. Preliminary results demonstrate an association of these variants with clinical phenotypes responsive to peripheral sympathetic tone. We hypothesize that in addition to endocrine effects via circulating DBH and norepinephrine, the variants act in sympathetically innervated target organs.
Collapse
Affiliation(s)
- Elizabeth S Barrie
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - David Weinshenker
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Anurag Verma
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Sarah A Pendergrass
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Leslie A Lange
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Marylyn D Ritchie
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - James G Wilson
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Helena Kuivaniemi
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Gerard Tromp
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - David J Carey
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Glenn S Gerhard
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Murray H Brilliant
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Scott J Hebbring
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Joseph F Cubells
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Julia K Pinsonneault
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Greg J Norman
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.)
| | - Wolfgang Sadee
- From the Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus (E.S.B., J.K.P., W.S.); Department of Human Genetics, Emory University School of Medicine, Atlanta, GA (D.W., J.F.C.); Center for Systems Genomics, Pennsylvania State University, University Park (A.V., S.A.P., M.D.R.); Department of Genetics, University of North Carolina School of Medicine, Chapel Hill (L.A.L.); Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.G.W.); The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.K., G.T., D.J.C.); Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey (G.S.G.); Center for Human Genetics, Marshfield Clinic Research Foundation, WI (M.H.B., S.J.H.); and Department of Psychology, The University of Chicago, IL (G.J.N.).
| |
Collapse
|