1
|
Grass T, Dokuzluoglu Z, Buchner F, Rosignol I, Thomas J, Caldarelli A, Dalinskaya A, Becker J, Rost F, Marass M, Wirth B, Beyer M, Bonaguro L, Rodriguez-Muela N. Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation. Cell Rep Med 2024; 5:101659. [PMID: 39067446 PMCID: PMC11384962 DOI: 10.1016/j.xcrm.2024.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/26/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Whether neurodevelopmental defects underlie postnatal neuronal death in neurodegeneration is an intriguing hypothesis only recently explored. Here, we focus on spinal muscular atrophy (SMA), a neuromuscular disorder caused by reduced survival of motor neuron (SMN) protein levels leading to spinal motor neuron (MN) loss and muscle wasting. Using the first isogenic patient-derived induced pluripotent stem cell (iPSC) model and a spinal cord organoid (SCO) system, we show that SMA SCOs exhibit abnormal morphological development, reduced expression of early neural progenitor markers, and accelerated expression of MN progenitor and MN markers. Longitudinal single-cell RNA sequencing reveals marked defects in neural stem cell specification and fewer MNs, favoring mesodermal progenitors and muscle cells, a bias also seen in early SMA mouse embryos. Surprisingly, SMN2-to-SMN1 conversion does not fully reverse these developmental abnormalities. These suggest that early neurodevelopmental defects may underlie later MN degeneration, indicating that postnatal SMN-increasing interventions might not completely amend SMA pathology in all patients.
Collapse
Affiliation(s)
- Tobias Grass
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany.
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Felix Buchner
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Ines Rosignol
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany; Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Joshua Thomas
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Antonio Caldarelli
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Anna Dalinskaya
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Jutta Becker
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Fabian Rost
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering, TUD, Dresden, Germany
| | - Michele Marass
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Rare Diseases, University Hospital of Cologne, Cologne, Germany
| | - Marc Beyer
- Systems Medicine, DZNE, Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE & University of Bonn and West German Genome Center, Bonn, Germany; Immunogenomics & Neurodegeneration, DZNE, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, DZNE, Bonn, Germany; Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany; Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
2
|
Mackels L, Mariot V, Buscemi L, Servais L, Dumonceaux J. Impact of Disease Severity and Disease-Modifying Therapies on Myostatin Levels in SMA Patients. Int J Mol Sci 2024; 25:8763. [PMID: 39201450 PMCID: PMC11354404 DOI: 10.3390/ijms25168763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Clinical trials with treatments inhibiting myostatin pathways to increase muscle mass are currently ongoing in spinal muscular atrophy. Given evidence of potential myostatin pathway downregulation in Spinal Muscular Atrophy (SMA), restoring sufficient myostatin levels using disease-modifying treatments (DMTs) might arguably be necessary prior to considering myostatin inhibitors as an add-on treatment. This retrospective study assessed pre-treatment myostatin and follistatin levels' correlation with disease severity and explored their alteration by disease-modifying treatment in SMA. We retrospectively collected clinical characteristics, motor scores, and mysotatin and follistatin levels between 2018 and 2020 in 25 Belgian patients with SMA (SMA1 (n = 13), SMA2 (n = 6), SMA 3 (n = 6)) and treated by nusinersen. Data were collected prior to treatment and after 2, 6, 10, 18, and 30 months of treatment. Myostatin levels correlated with patients' age, weight, SMA type, and motor function before treatment initiation. After treatment, we observed correlations between myostatin levels and some motor function scores (i.e., MFM32, HFMSE, 6MWT), but no major effect of nusinersen on myostatin or follistatin levels over time. In conclusion, further research is needed to determine if DMTs can impact myostatin and follistatin levels in SMA, and how this could potentially influence patient selection for ongoing myostatin inhibitor trials.
Collapse
Affiliation(s)
- Laurane Mackels
- Adult Neurology Department, Citadelle Hospital, 1 Boulevard Du 12e De Ligne, 4000 Liege, Belgium
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK;
| | - Virginie Mariot
- NIHR Great Ormond Street Hospital Biomedical Research Centre and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
| | - Laura Buscemi
- Neuromuscular Center, Citadelle Hospital, 1 Boulevard Du 12e De Ligne, 4000 Liege, Belgium;
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK;
- Neuromuscular Center, Division of Paediatrics, University Hospital of Liège, University of Liège, Boulevard Du 12e De Ligne, 4000 Liege, Belgium
| | - Julie Dumonceaux
- NIHR Great Ormond Street Hospital Biomedical Research Centre and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
| |
Collapse
|
3
|
Signoria I, van der Pol WL, Groen EJN. Innovating spinal muscular atrophy models in the therapeutic era. Dis Model Mech 2023; 16:dmm050352. [PMID: 37787662 PMCID: PMC10565113 DOI: 10.1242/dmm.050352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, monogenetic, neuromuscular disease. A thorough understanding of its genetic cause and the availability of robust models has led to the development and approval of three gene-targeting therapies. This is a unique and exciting development for the field of neuromuscular diseases, many of which remain untreatable. The development of therapies for SMA not only opens the door to future therapeutic possibilities for other genetic neuromuscular diseases, but also informs us about the limitations of such treatments. For example, treatment response varies widely and, for many patients, significant disability remains. Currently available SMA models best recapitulate the severe types of SMA, and these models are genetically and phenotypically more homogeneous than patients. Furthermore, treating patients is leading to a shift in phenotypes with increased variability in SMA clinical presentation. Therefore, there is a need to generate model systems that better reflect these developments. Here, we will first discuss current animal models of SMA and their limitations. Next, we will discuss the characteristics required to future-proof models to assist the field in the development of additional, novel therapies for SMA.
Collapse
Affiliation(s)
- Ilaria Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J. N. Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
4
|
Grice SJ, Liu JL. Motor defects in a Drosophila model for spinal muscular atrophy result from SMN depletion during early neurogenesis. PLoS Genet 2022; 18:e1010325. [PMID: 35877682 PMCID: PMC9352204 DOI: 10.1371/journal.pgen.1010325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common autosomal recessive neurodegenerative disease, and is characterised by spinal motor neuron loss, impaired motor function and, often, premature death. Mutations and deletions in the widely expressed survival motor neuron 1 (SMN1) gene cause SMA; however, the mechanisms underlying the selectivity of motor neuron degeneration are not well understood. Although SMA is degenerative in nature, SMN function during embryonic and early postnatal development appears to be essential for motor neuron survival in animal models and humans. Notwithstanding, how developmental defects contribute to the subversion of postnatal and adult motor function remains elusive. Here, in a Drosophila SMA model, we show that neurodevelopmental defects precede gross locomotor dysfunction in larvae. Furthermore, to specifically address the relevance of SMN during neurogenesis and in neurogenic cell types, we show that SMN knockdown using neuroblast-specific and pan-neuronal drivers, but not differentiated neuron or glial cell drivers, impairs adult motor function. Using targeted knockdown, we further restricted SMN manipulation in neuroblasts to a defined time window. Our aim was to express specifically in the neuronal progenitor cell types that have not formed synapses, and thus a time that precedes neuromuscular junction formation and maturation. By restoring SMN levels in these distinct neuronal population, we partially rescue the larval locomotor defects of Smn mutants. Finally, combinatorial SMN knockdown in immature and mature neurons synergistically enhances the locomotor and survival phenotypes. Our in-vivo study is the first to directly rescue the motor defects of an SMA model by expressing Smn in an identifiable population of Drosophila neuroblasts and developing neurons, highlighting that neuronal sensitivity to SMN loss may arise before synapse establishment and nerve cell maturation. Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality and leads to the degeneration of the nerves that control muscle function. Loss-of-function mutations in the widely expressed survival motor neuron 1 (SMN1) gene cause SMA, but how low levels of SMN protein cause the neuronal dysfunction is not known. Although SMA is a disease of nerve degeneration, SMN function during nerve cell development may be important, particularly in severe forms of SMA. Nevertheless, how the defects during development and throughout early life contribute to the disease is not well understood. We have previously demonstrated that SMN protein becomes enriched in neuroblasts, which are the cells that divide to produce neurons. In the present study, motor defects observed in our fly model for SMA could be rescued by restoring SMN in neuroblasts alone. In addition, we show that knocking down SMN in healthy flies within the same cell type causes impaired motor function. The present study shows that the manipulation of SMN in a developmentally important cell type can cause motor defects, indicating that a period of abnormal neurodevelopment may contribute to SMA.
Collapse
Affiliation(s)
- Stuart J. Grice
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (SJG); , (J-LL)
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- School of Life Science and Technology, Shanghai, Tech University, Shanghai, China
- * E-mail: (SJG); , (J-LL)
| |
Collapse
|
5
|
Zhang L, Abendroth F, Vázquez O. A Chemical Biology Perspective to Therapeutic Regulation of RNA Splicing in Spinal Muscular Atrophy (SMA). ACS Chem Biol 2022; 17:1293-1307. [PMID: 35639849 DOI: 10.1021/acschembio.2c00161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manipulation of RNA splicing machinery has emerged as a drug modality. Here, we illustrate the potential of this novel paradigm to correct aberrant splicing events focused on the recent therapeutic advances in spinal muscular atrophy (SMA). SMA is an incurable neuromuscular disorder and at present the primary genetic cause of early infant death. This Review summarizes the exciting journey from the first reported SMA cases to the currently approved splicing-switching treatments, i.e., antisense oligonucleotides and small-molecule modifiers. We emphasize both chemical structures and molecular bases for recognition. We briefly discuss the advantages and disadvantages of these treatments and include the remaining challenges and future directions. Finally, we also predict that these success stories will contribute to further therapies for human diseases by RNA-splicing control.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
6
|
Chilcott EM, Muiruri EW, Hirst TC, Yáñez-Muñoz RJ. Systematic review and meta-analysis determining the benefits of in vivo genetic therapy in spinal muscular atrophy rodent models. Gene Ther 2022; 29:498-512. [PMID: 34611322 PMCID: PMC9482879 DOI: 10.1038/s41434-021-00292-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/31/2023]
Abstract
Spinal muscular atrophy (SMA) is a severe childhood neuromuscular disease for which two genetic therapies, Nusinersen (Spinraza, an antisense oligonucleotide), and AVXS-101 (Zolgensma, an adeno-associated viral vector of serotype 9 AAV9), have recently been approved. We investigated the pre-clinical development of SMA genetic therapies in rodent models and whether this can predict clinical efficacy. We have performed a systematic review of relevant publications and extracted median survival and details of experimental design. A random effects meta-analysis was used to estimate and compare efficacy. We stratified by experimental design (type of genetic therapy, mouse model, route and time of administration) and sought any evidence of publication bias. 51 publications were identified containing 155 individual comparisons, comprising 2573 animals in total. Genetic therapies prolonged survival in SMA mouse models by 3.23-fold (95% CI 2.75-3.79) compared to controls. Study design characteristics accounted for significant heterogeneity between studies and greatly affected observed median survival ratios. Some evidence of publication bias was found. These data are consistent with the extended average lifespan of Spinraza- and Zolgensma-treated children in the clinic. Together, these results support that SMA has been particularly amenable to genetic therapy approaches and highlight SMA as a trailblazer for therapeutic development.
Collapse
Affiliation(s)
- Ellie M. Chilcott
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK ,Present Address: Institute for Women’s Health, UCL, 86-96 Chenies Mews, London, WC1E 6HX UK
| | - Evalyne W. Muiruri
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK
| | - Theodore C. Hirst
- grid.416232.00000 0004 0399 1866Department of Neurosurgery, Royal Victoria Hospital, Belfast, BT12 6BA UK
| | - Rafael J. Yáñez-Muñoz
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK
| |
Collapse
|
7
|
Spicer C, Lu CH, Catapano F, Scoto M, Zaharieva I, Malaspina A, Morgan JE, Greensmith L, Muntoni F, Zhou H. The altered expression of neurofilament in mouse models and patients with spinal muscular atrophy. Ann Clin Transl Neurol 2021; 8:866-876. [PMID: 33683023 PMCID: PMC8045929 DOI: 10.1002/acn3.51336] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives To investigate the levels of neurofilaments (NFs) in transgenic mice and patients with spinal muscular atrophy (SMA), and to evaluate their efficacy as a biomarker in SMA. Methods The levels of NF mRNA transcripts were measured by quantitative real‐time PCR in spinal cord from SMA mice. Blood levels of NF heavy chain (NfH) from mice and patients were measured by an in‐house ELISA method. The response of NFs to therapeutic intervention was analysed in severe SMA mice treated with morpholino antisense oligonucleotides. Results Significant changes in NF transcript and protein in spinal cord and protein levels in blood were detected in SMA mice with severe or mild phenotypes, at different time points. A decrease in blood levels of NfH after antisense oligonucleotide treatment was only transient in the mice, despite the persistent benefit on the disease phenotype. A drastic reduction of over 90% in blood levels of NfF was observed in both control and SMA mice during early postnatal development. In contrast, blood levels of NfH were found to be decreased in older SMA children with chronic disease progression. Interpretation Our results show that blood NfH levels are informative in indicating disease onset and response to antisense oligonucleotides treatment in SMA mice, and indicate their potential as a peripheral marker reflecting the pathological status in central nervous system. In older patients with chronic SMA, however, the lower NfH levels may limit their application as biomarker, highlighting the need to continue to pursue additional biomarkers for this group of patients.
Collapse
Affiliation(s)
- Charlotte Spicer
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ching-Hua Lu
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Trauma and Neuroscience Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Neurology, School of Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Francesco Catapano
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, United Kingdom
| | - Mariacristina Scoto
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, United Kingdom
| | - Irina Zaharieva
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, United Kingdom
| | - Andrea Malaspina
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Trauma and Neuroscience Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jennifer E Morgan
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, United Kingdom
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Haiyan Zhou
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.,Genetics and Genomic Medicine Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, United Kingdom
| |
Collapse
|
8
|
Rietz A, Hodgetts KJ, Lusic H, Quist KM, Osman EY, Lorson CL, Androphy EJ. Short-duration splice promoting compound enables a tunable mouse model of spinal muscular atrophy. Life Sci Alliance 2020; 4:4/1/e202000889. [PMID: 33234679 PMCID: PMC7723287 DOI: 10.26508/lsa.202000889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
We describe drug treatment paradigms that allow investigation of cellular and molecular pathogenesis at different stages of spinal muscular atrophy in a mouse model. Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. SMA results from insufficient survival motor neuron (SMN) protein due to alternative splicing. Antisense oligonucleotides, gene therapy and splicing modifiers recently received FDA approval. Although severe SMA transgenic mouse models have been beneficial for testing therapeutic efficacy, models mimicking milder cases that manifest post-infancy have proven challenging to develop. We established a titratable model of mild and moderate SMA using the splicing compound NVS-SM2. Administration for 30 d prevented development of the SMA phenotype in severe SMA mice, which typically show rapid weakness and succumb by postnatal day 11. Furthermore, administration at day eight resulted in phenotypic recovery. Remarkably, acute dosing limited to the first 3 d of life significantly enhanced survival in two severe SMA mice models, easing the burden on neonates and demonstrating the compound as suitable for evaluation of follow-on therapies without potential drug–drug interactions. This pharmacologically tunable SMA model represents a useful tool to investigate cellular and molecular pathogenesis at different stages of disease.
Collapse
Affiliation(s)
- Anne Rietz
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin J Hodgetts
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Hrvoje Lusic
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Kevin M Quist
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erkan Y Osman
- Department of Veterinary Pathobiology, Bond Life Sciences Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Elliot J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
9
|
Singh RN, Seo J, Singh NN. RNA in spinal muscular atrophy: therapeutic implications of targeting. Expert Opin Ther Targets 2020; 24:731-743. [PMID: 32538213 DOI: 10.1080/14728222.2020.1783241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is caused by low levels of the Survival Motor Neuron (SMN) protein due to deletions of or mutations in the SMN1 gene. Humans carry another nearly identical gene, SMN2, which mostly produces a truncated and less stable protein SMNΔ7 due to predominant skipping of exon 7. Elevation of SMN upon correction of SMN2 exon 7 splicing and gene therapy have been proven to be the effective treatment strategies for SMA. AREAS COVERED This review summarizes existing and potential SMA therapies that are based on RNA targeting.We also discuss the mechanistic basis of RNA-targeting molecules. EXPERT OPINION The discovery of intronic splicing silencer N1 (ISS-N1) was the first major step towards developing the currently approved antisense-oligonucleotide (ASO)-directed therapy (SpinrazaTM) based on the correction of exon 7 splicing of the endogenous SMN2pre-mRNA. Recently, gene therapy (Zolgensma) has become the second approved treatment for SMA. Small compounds (currently in clinical trials) capable of restoring SMN2 exon 7 inclusion further expand the class of the RNA targeting molecules for SMA therapy. Endogenous RNA targets, such as long non-coding RNAs, circular RNAs, microRNAs and ribonucleoproteins, could be potentially exploited for developing additional SMA therapies.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| |
Collapse
|
10
|
Villalón E, Kline RA, Smith CE, Lorson ZC, Osman EY, O'Day S, Murray LM, Lorson CL. AAV9-Stathmin1 gene delivery improves disease phenotype in an intermediate mouse model of spinal muscular atrophy. Hum Mol Genet 2020; 28:3742-3754. [PMID: 31363739 DOI: 10.1093/hmg/ddz188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating infantile genetic disorder caused by the loss of survival motor neuron (SMN) protein that leads to premature death due to loss of motor neurons and muscle atrophy. The approval of an antisense oligonucleotide therapy for SMA was an important milestone in SMA research; however, effective next-generation therapeutics will likely require combinatorial SMN-dependent therapeutics and SMN-independent disease modifiers. A recent cross-disease transcriptomic analysis identified Stathmin-1 (STMN1), a tubulin-depolymerizing protein, as a potential disease modifier across different motor neuron diseases, including SMA. Here, we investigated whether viral-based delivery of STMN1 decreased disease severity in a well-characterized SMA mouse model. Intracerebroventricular delivery of scAAV9-STMN1 in SMA mice at P2 significantly increased survival and weight gain compared to untreated SMA mice without elevating Smn levels. scAAV9-STMN1 improved important hallmarks of disease, including motor function, NMJ pathology and motor neuron cell preservation. Furthermore, scAAV9-STMN1 treatment restored microtubule networks and tubulin expression without affecting tubulin stability. Our results show that scAAV9-STMN1 treatment improves SMA pathology possibly by increasing microtubule turnover leading to restored levels of stable microtubules. Overall, these data demonstrate that STMN1 can significantly reduce the SMA phenotype independent of restoring SMN protein and highlight the importance of developing SMN-independent therapeutics for the treatment of SMA.
Collapse
Affiliation(s)
- E Villalón
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - R A Kline
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - C E Smith
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Z C Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - E Y Osman
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - S O'Day
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - L M Murray
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - C L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Zhou H, Meng J, Malerba A, Catapano F, Sintusek P, Jarmin S, Feng L, Lu-Nguyen N, Sun L, Mariot V, Dumonceaux J, Morgan JE, Gissen P, Dickson G, Muntoni F. Myostatin inhibition in combination with antisense oligonucleotide therapy improves outcomes in spinal muscular atrophy. J Cachexia Sarcopenia Muscle 2020; 11:768-782. [PMID: 32031328 PMCID: PMC7296258 DOI: 10.1002/jcsm.12542] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by genetic defects in the survival motor neuron 1 (SMN1) gene that lead to SMN deficiency. Different SMN-restoring therapies substantially prolong survival and function in transgenic mice of SMA. However, these therapies do not entirely prevent muscle atrophy and restore function completely. To further improve the outcome, we explored the potential of a combinatorial therapy by modulating SMN production and muscle-enhancing approach as a novel therapeutic strategy for SMA. METHODS The experiments were performed in a mouse model of severe SMA. A previously reported 25-mer morpholino antisense oligomer PMO25 was used to restore SMN expression. The adeno-associated virus-mediated expression of myostatin propeptide was used to block the myostatin pathway. Newborn SMA mice were treated with a single subcutaneous injection of 40 μg/g (therapeutic dose) or 10 μg/g (low-dose) PMO25 on its own or together with systemic delivery of a single dose of adeno-associated virus-mediated expression of myostatin propeptide. The multiple effects of myostatin inhibition on survival, skeletal muscle phenotype, motor function, neuromuscular junction maturation, and proprioceptive afferences were evaluated. RESULTS We show that myostatin inhibition acts synergistically with SMN-restoring antisense therapy in SMA mice treated with the higher therapeutic dose PMO25 (40 μg/g), by increasing not only body weight (21% increase in male mice at Day 40), muscle mass (38% increase), and fibre size (35% increase in tibialis anterior muscle in 3 month female SMA mice), but also motor function and physical performance as measured in hanging wire test (two-fold increase in time score) and treadmill exercise test (two-fold increase in running distance). In SMA mice treated with low-dose PMO25 (10 μg/g), the early application of myostatin inhibition prolongs survival (40% increase), improves neuromuscular junction maturation (50% increase) and innervation (30% increase), and increases both the size of sensory neurons in dorsal root ganglia (60% increase) and the preservation of proprioceptive synapses in the spinal cord (30% increase). CONCLUSIONS These data suggest that myostatin inhibition, in addition to the well-known effect on muscle mass, can also positively influence the sensory neural circuits that may enhance motor neurons function. While the availability of the antisense drug Spinraza for SMA and other SMN-enhancing therapies has provided unprecedented improvement in SMA patients, there are still unmet needs in these patients. Our study provides further rationale for considering myostatin inhibitors as a therapeutic intervention in SMA patients, in combination with SMN-restoring drugs.
Collapse
Affiliation(s)
- Haiyan Zhou
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alberto Malerba
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Francesco Catapano
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Palittiya Sintusek
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Paediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Susan Jarmin
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Lucy Feng
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ngoc Lu-Nguyen
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Lianwen Sun
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Virginie Mariot
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Julie Dumonceaux
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - George Dickson
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
12
|
Sheng L, Rigo F, Bennett CF, Krainer AR, Hua Y. Comparison of the efficacy of MOE and PMO modifications of systemic antisense oligonucleotides in a severe SMA mouse model. Nucleic Acids Res 2020; 48:2853-2865. [PMID: 32103257 PMCID: PMC7102994 DOI: 10.1093/nar/gkaa126] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease. Nusinersen, a splice-switching antisense oligonucleotide (ASO), was the first approved drug to treat SMA. Based on prior preclinical studies, both 2′-O-methoxyethyl (MOE) with a phosphorothioate backbone and morpholino with a phosphorodiamidate backbone—with the same or extended target sequence as nusinersen—displayed efficient rescue of SMA mouse models. Here, we compared the therapeutic efficacy of these two modification chemistries in rescue of a severe mouse model using ASO10-29—a 2-nt longer version of nusinersen—via subcutaneous injection. Although both chemistries efficiently corrected SMN2 splicing in various tissues, restored motor function and improved the integrity of neuromuscular junctions, MOE-modified ASO10-29 (MOE10-29) was more efficacious than morpholino-modified ASO10-29 (PMO10-29) at the same molar dose, as seen by longer survival, greater body-weight gain and better preservation of motor neurons. Time-course analysis revealed that MOE10-29 had more persistent effects than PMO10-29. On the other hand, PMO10-29 appears to more readily cross an immature blood-brain barrier following systemic administration, showing more robust initial effects on SMN2 exon 7 inclusion, but less persistence in the central nervous system. We conclude that both modifications can be effective as splice-switching ASOs in the context of SMA and potentially other diseases, and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Lei Sheng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA.,Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
13
|
Deguise MO, De Repentigny Y, Tierney A, Beauvais A, Michaud J, Chehade L, Thabet M, Paul B, Reilly A, Gagnon S, Renaud JM, Kothary R. Motor transmission defects with sex differences in a new mouse model of mild spinal muscular atrophy. EBioMedicine 2020; 55:102750. [PMID: 32339936 PMCID: PMC7184161 DOI: 10.1016/j.ebiom.2020.102750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
Background Mouse models of mild spinal muscular atrophy (SMA) have been extremely challenging to generate. This paucity of model systems has limited our understanding of pathophysiological events in milder forms of the disease and of the effect of SMN depletion during aging. Methods A mild mouse model of SMA, termed Smn2B/−;SMN2+/−, was generated by crossing Smn−/−;SMN2 and Smn2B/2B mice. This new model was characterized using behavioral testing, histology, western blot, muscle-nerve electrophysiology as well as ultrasonography to study classical SMA features and extra-neuronal involvement. Findings Smn2B/−;SMN2+/− mice have normal survival, mild but sustained motor weakness, denervation and neuronal/neuromuscular junction (NMJ) transmission defects, and neurogenic muscle atrophy that are more prominent in male mice. Increased centrally located nuclei, intrinsic contractile and relaxation muscle defects were also identified in both female and male mice, with some male predominance. There was an absence of extra-neuronal pathology. Interpretation The Smn2B/−;SMN2+/− mouse provides a model of mild SMA, displaying some hallmark features including reduced weight, sustained motor weakness, electrophysiological transmission deficit, NMJ defects, and muscle atrophy. Early and prominent increase central nucleation and intrinsic electrophysiological deficits demonstrate the potential role played by muscle in SMA disease. The use of this model will allow for the understanding of the most susceptible pathogenic molecular changes in motor neurons and muscles, investigation of the effects of SMN depletion in aging, sex differences and most importantly will provide guidance for the currently aging SMA patients treated with the recently approved genetic therapies. Funding : This work was supported by Cure SMA/Families of SMA Canada (grant numbers KOT-1819 and KOT-2021); Muscular Dystrophy Association (USA) (grant number 575466); and Canadian Institutes of Health Research (CIHR) (grant number PJT-156379).
Collapse
Affiliation(s)
- Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Alexandra Tierney
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Ariane Beauvais
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Lucia Chehade
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mohamed Thabet
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Brittany Paul
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Aoife Reilly
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
14
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE, Cochrane Neuromuscular Group. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2020; 1:CD006282. [PMID: 32006461 PMCID: PMC6995983 DOI: 10.1002/14651858.cd006282.pub5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a (point) mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. This is an update of a review first published in 2009 and previously updated in 2011. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA types II and III, and to assess if such therapy can be given safely. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. In October 2018, we also searched two trials registries to identify unpublished trials. SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a homozygous deletion or hemizygous deletion in combination with a point mutation in the second allele of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis. The primary outcome measure was change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full-time ventilation and adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1-replacement with viral vectors are out of the scope of this review, but a summary is given in Appendix 1. Drug treatment for SMA type I is the topic of a separate Cochrane Review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS The review authors found 10 randomised, placebo-controlled trials of treatments for SMA types II and III for inclusion in this review, with 717 participants. We added four of the trials at this update. The trials investigated creatine (55 participants), gabapentin (84 participants), hydroxyurea (57 participants), nusinersen (126 participants), olesoxime (165 participants), phenylbutyrate (107 participants), somatotropin (20 participants), thyrotropin-releasing hormone (TRH) (nine participants), valproic acid (33 participants), and combination therapy with valproic acid and acetyl-L-carnitine (ALC) (61 participants). Treatment duration was from three to 24 months. None of the studies investigated the same treatment and none was completely free of bias. All studies had adequate blinding, sequence generation and reporting of primary outcomes. Based on moderate-certainty evidence, intrathecal nusinersen improved motor function (disability) in children with SMA type II, with a 3.7-point improvement in the nusinersen group on the Hammersmith Functional Motor Scale Expanded (HFMSE; range of possible scores 0 to 66), compared to a 1.9-point decline on the HFMSE in the sham procedure group (P < 0.01; n = 126). On all motor function scales used, higher scores indicate better function. Based on moderate-certainty evidence from two studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: creatine (median change 1 higher, 95% confidence interval (CI) -1 to 2; on the Gross Motor Function Measure (GMFM), scale 0 to 264; n = 40); and combination therapy with valproic acid and carnitine (mean difference (MD) 0.64, 95% CI -1.1 to 2.38; on the Modified Hammersmith Functional Motor Scale (MHFMS), scale 0 to 40; n = 61). Based on low-certainty evidence from other single studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: gabapentin (median change 0 in the gabapentin group and -2 in the placebo group on the SMA Functional Rating Scale (SMAFRS), scale 0 to 50; n = 66); hydroxyurea (MD -1.88, 95% CI -3.89 to 0.13 on the GMFM, scale 0 to 264; n = 57), phenylbutyrate (MD -0.13, 95% CI -0.84 to 0.58 on the Hammersmith Functional Motor Scale (HFMS) scale 0 to 40; n = 90) and monotherapy of valproic acid (MD 0.06, 95% CI -1.32 to 1.44 on SMAFRS, scale 0 to 50; n = 31). Very low-certainty evidence suggested that the following interventions had little or no effect on motor function: olesoxime (MD 2, 95% -0.25 to 4.25 on the Motor Function Measure (MFM) D1 + D2, scale 0 to 75; n = 160) and somatotropin (median change at 3 months 0.25 higher, 95% CI -1 to 2.5 on the HFMSE, scale 0 to 66; n = 19). One small TRH trial did not report effects on motor function and the certainty of evidence for other outcomes from this trial were low or very low. Results of nine completed trials investigating 4-aminopyridine, acetyl-L-carnitine, CK-2127107, hydroxyurea, pyridostigmine, riluzole, RO6885247/RG7800, salbutamol and valproic acid were awaited and not available for analysis at the time of writing. Various trials and studies investigating treatment strategies other than nusinersen (e.g. SMN2-augmentation by small molecules), are currently ongoing. AUTHORS' CONCLUSIONS Nusinersen improves motor function in SMA type II, based on moderate-certainty evidence. Creatine, gabapentin, hydroxyurea, phenylbutyrate, valproic acid and the combination of valproic acid and ALC probably have no clinically important effect on motor function in SMA types II or III (or both) based on low-certainty evidence, and olesoxime and somatropin may also have little to no clinically important effect but evidence was of very low-certainty. One trial of TRH did not measure motor function.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
15
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE, Cochrane Neuromuscular Group. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst Rev 2019; 12:CD006281. [PMID: 31825542 PMCID: PMC6905354 DOI: 10.1002/14651858.cd006281.pub5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a point mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. By definition, children with SMA type I are never able to sit without support and usually die or become ventilator dependent before the age of two years. There have until very recently been no drug treatments to influence the course of SMA. We undertook this updated review to evaluate new evidence on emerging treatments for SMA type I. The review was first published in 2009 and previously updated in 2011. OBJECTIVES To assess the efficacy and safety of any drug therapy designed to slow or arrest progression of spinal muscular atrophy (SMA) type I. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. We also searched two trials registries to identify unpublished trials (October 2018). SELECTION CRITERIA We sought all randomised controlled trials (RCTs) or quasi-RCTs that examined the efficacy of drug treatment for SMA type I. Included participants had to fulfil clinical criteria and have a genetically confirmed deletion or mutation of the SMN1 gene (5q11.2-13.2). The primary outcome measure was age at death or full-time ventilation. Secondary outcome measures were acquisition of motor milestones, i.e. head control, rolling, sitting or standing, motor milestone response on disability scores within one year after the onset of treatment, and adverse events and serious adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1 gene replacement with viral vectors are out of the scope of this review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS We identified two RCTs: one trial of intrathecal nusinersen in comparison to a sham (control) procedure in 121 randomised infants with SMA type I, which was newly included at this update, and one small trial comparing riluzole treatment to placebo in 10 children with SMA type I. The RCT of intrathecally-injected nusinersen was stopped early for efficacy (based on a predefined Hammersmith Infant Neurological Examination-Section 2 (HINE-2) response). At the interim analyses after 183 days of treatment, 41% (21/51) of nusinersen-treated infants showed a predefined improvement on HINE-2, compared to 0% (0/27) of participants in the control group. This trial was largely at low risk of bias. Final analyses (ranging from 6 months to 13 months of treatment), showed that fewer participants died or required full-time ventilation (defined as more than 16 hours daily for 21 days or more) in the nusinersen-treated group than the control group (hazard ratio (HR) 0.53, 95% confidence interval (CI) 0.32 to 0.89; N = 121; a 47% lower risk; moderate-certainty evidence). A proportion of infants in the nusinersen group and none of 37 infants in the control group achieved motor milestones: 37/73 nusinersen-treated infants (51%) achieved a motor milestone response on HINE-2 (risk ratio (RR) 38.51, 95% CI 2.43 to 610.14; N = 110; moderate-certainty evidence); 16/73 achieved head control (RR 16.95, 95% CI 1.04 to 274.84; moderate-certainty evidence); 6/73 achieved independent sitting (RR 6.68, 95% CI 0.39 to 115.38; moderate-certainty evidence); 7/73 achieved rolling over (RR 7.70, 95% CI 0.45 to 131.29); and 1/73 achieved standing (RR 1.54, 95% CI 0.06 to 36.92; moderate-certainty evidence). Seventy-one per cent of nusinersen-treated infants versus 3% of infants in the control group were responders on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) measure of motor disability (RR 26.36, 95% CI 3.79 to 183.18; N = 110; moderate-certainty evidence). Adverse events and serious adverse events occurred in the majority of infants but were no more frequent in the nusinersen-treated group than the control group (RR 0.99, 95% CI 0.92 to 1.05 and RR 0.70, 95% CI 0.55 to 0.89, respectively; N = 121; moderate-certainty evidence). In the riluzole trial, three of seven children treated with riluzole were still alive at the ages of 30, 48, and 64 months, whereas all three children in the placebo group died. None of the children in the riluzole or placebo group developed the ability to sit, which was the only milestone reported. There were no adverse effects. The certainty of the evidence for all measured outcomes from this study was very low, because the study was too small to detect or rule out an effect, and had serious limitations, including baseline differences. This trial was stopped prematurely because the pharmaceutical company withdrew funding. Various trials and studies investigating treatment strategies other than nusinersen, such as SMN2 augmentation by small molecules, are ongoing. AUTHORS' CONCLUSIONS Based on the very limited evidence currently available regarding drug treatments for SMA type 1, intrathecal nusinersen probably prolongs ventilation-free and overall survival in infants with SMA type I. It is also probable that a greater proportion of infants treated with nusinersen than with a sham procedure achieve motor milestones and can be classed as responders to treatment on clinical assessments (HINE-2 and CHOP INTEND). The proportion of children experiencing adverse events and serious adverse events on nusinersen is no higher with nusinersen treatment than with a sham procedure, based on evidence of moderate certainty. It is uncertain whether riluzole has any effect in patients with SMA type I, based on the limited available evidence. Future trials could provide more high-certainty, longer-term evidence to confirm this result, or focus on comparing new treatments to nusinersen or evaluate them as an add-on therapy to nusinersen.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
16
|
NCALD Antisense Oligonucleotide Therapy in Addition to Nusinersen further Ameliorates Spinal Muscular Atrophy in Mice. Am J Hum Genet 2019; 105:221-230. [PMID: 31230718 DOI: 10.1016/j.ajhg.2019.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease causing the most frequent genetic childhood lethality. Recently, nusinersen, an antisense oligonucleotide (ASO) that corrects SMN2 splicing and thereby increases full-length SMN protein, has been approved by the FDA and EMA for SMA therapy. However, the administration of nusinersen in severe and/or post-symptomatic SMA-affected individuals is insufficient to counteract the disease. Therefore, additional SMN-independent therapies are needed to support the function of motoneurons and neuromuscular junctions. We recently identified asymptomatic SMN1-deleted individuals who were protected against SMA by reduced expression of neurocalcin delta (NCALD). NCALD reduction is proven to be a protective modifier of SMA across species, including worm, zebrafish, and mice. Here, we identified Ncald-ASO3-out of 450 developed Ncald ASOs-as the most efficient and non-toxic ASO for the CNS, by applying a stepwise screening strategy in cortical neurons and adult and neonatal mice. In a randomized-blinded preclinical study, a single subcutaneous low-dose SMN-ASO and a single intracerebroventricular Ncald-ASO3 or control-ASO injection were presymptomatically administered in a severe SMA mouse model. NCALD reduction of >70% persisted for about 1 month. While low-dose SMN-ASO rescues multiorgan impairment, additional NCALD reduction significantly ameliorated SMA pathology including electrophysiological and histological properties of neuromuscular junctions and muscle at P21 and motoric deficits at 3 months. The present study shows the additional benefit of a combinatorial SMN-dependent and SMN-independent ASO-based therapy for SMA. This work illustrates how a modifying gene, identified in some asymptomatic individuals, helps to develop a therapy for all SMA-affected individuals.
Collapse
|
17
|
Shorrock HK, Gillingwater TH, Groen EJN. Overview of Current Drugs and Molecules in Development for Spinal Muscular Atrophy Therapy. Drugs 2019; 78:293-305. [PMID: 29380287 PMCID: PMC5829132 DOI: 10.1007/s40265-018-0868-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily characterized by a loss of spinal motor neurons, leading to progressive paralysis and premature death in the most severe cases. SMA is caused by homozygous deletion of the survival motor neuron 1 (SMN1) gene, leading to low levels of SMN protein. However, a second SMN gene (SMN2) exists, which can be therapeutically targeted to increase SMN levels. This has recently led to the first disease-modifying therapy for SMA gaining formal approval from the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). Spinraza (nusinersen) is a modified antisense oligonucleotide that targets the splicing of SMN2, leading to increased SMN protein levels, capable of improving clinical phenotypes in many patients. In addition to Spinraza, several other therapeutic approaches are currently in various stages of clinical development. These include SMN-dependent small molecule and gene therapy approaches along with SMN-independent strategies, such as general neuroprotective factors and muscle strength-enhancing compounds. For each therapy, we provide detailed information on clinical trial design and pharmacological/safety data where available. Previous clinical studies are also discussed to provide context on SMA clinical trial development and the insights these provided for the design of current studies.
Collapse
Affiliation(s)
- Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK
| | - Ewout J N Groen
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
18
|
Abstract
The application of antisense oligonucleotides (AONs) to modify pre-messenger RNA splicing has great potential for treating genetic diseases. The strategies used to redirect splicing for therapeutic purpose involve the use of AONs complementary to splice motifs, enhancer or silencer sequences. AONs to block intronic splicing silencer motifs can efficiently augment exon 7 inclusion in survival motor neuron 2 (SMN2) gene and have demonstrated robust therapeutic effects in both preclinical studies and clinical trials in spinal muscular atrophy (SMA), which has led to a recently approved drug. AONs with phosphorodiamidate morpholino oligomer (PMO) backbone have shown target engagement with restoration of the defective protein in Duchenne muscular dystrophy (DMD) and their safety profile lead to a recent conditional approval for one DMD PMO drug. PMO AONs are also effective in correcting SMN2 exon 7 splicing and rescuing SMA transgenic mice. Here we provide the details of methods that our lab has used to evaluate PMO-mediated SMN2 exon 7 inclusion in the in vivo studies conducted in SMA transgenic mice. The methods comprise mouse experiment procedures, assessment of PMOs on exon 7 inclusion at RNA levels by reverse transcription (RT-) PCR and quantitative real-time PCR. In addition, we present methodology for protein quantification using western blot in mouse tissues, on neuropathology assessment of skeletal muscle (muscle pathology and neuromuscular junction staining) as well as behaviour test in the SMA mice (righting reflex).
Collapse
Affiliation(s)
- Haiyan Zhou
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Session, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Session, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.
| |
Collapse
|
19
|
Son HW, Yokota T. Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy. Methods Mol Biol 2019; 1828:57-68. [PMID: 30171534 DOI: 10.1007/978-1-4939-8651-4_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by a mutation in SMN1 that stops production of SMN (survival of motor neuron) protein. Insufficient levels of SMN results in the loss of motor neurons, which causes muscle weakness, respiratory distress, and paralysis. A nearly identical gene (SMN2) contains a C-to-T transition which excludes exon 7 from 90% of the mature mRNA transcripts, leading to unstable proteins which are targeted for degradation. Although SMN2 cannot fully compensate for a loss of SMN1 due to only 10% functional mRNA produced, the discovery of the intronic splicing silencer (ISS-N1) opened a doorway for therapy. By blocking its function with antisense oligonucleotides manipulated for high specificity and efficiency, exon 7 can be included to produce full-length mRNA, which then compensates for the loss of SMN1. Nusinersen (Spinraza), the first FDA-approved antisense oligonucleotide drug targeting SMA, was designed based on this concept and clinical studies have demonstrated a dramatic improvement in patients. Novel chemistries including phosphorodiamidate morpholino oligomers (PMOs) and locked nucleic acids (LNAs), as well as peptide conjugates such as Pip that facilitate accurate targeting to the central nervous system, are explored to increase the efficiency of exon 7 inclusion in the appropriate tissues to ameliorate the SMA phenotype. Due to the rapid advancement of treatments for SMA following the discovery of ISS-N1, the future of SMA treatment is highly promising.
Collapse
Affiliation(s)
- Hae-Won Son
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Lipnick SL, Agniel DM, Aggarwal R, Makhortova NR, Finlayson SG, Brocato A, Palmer N, Darras BT, Kohane I, Rubin LL. Systemic nature of spinal muscular atrophy revealed by studying insurance claims. PLoS One 2019; 14:e0213680. [PMID: 30870495 PMCID: PMC6417721 DOI: 10.1371/journal.pone.0213680] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Objective We investigated the presence of non-neuromuscular phenotypes in patients affected by Spinal Muscular Atrophy (SMA), a disorder caused by a mutation in the Survival of Motor Neuron (SMN) gene, and whether these phenotypes may be clinically detectable prior to clinical signs of neuromuscular degeneration and therefore independent of muscle weakness. Methods We utilized a de-identified database of insurance claims to explore the health of 1,038 SMA patients compared to controls. Two analyses were performed: (1) claims from the entire insurance coverage window; and (2) for SMA patients, claims prior to diagnosis of any neuromuscular disease or evidence of major neuromuscular degeneration to increase the chance that phenotypes could be attributed directly to reduced SMN levels. Logistic regression was used to determine whether phenotypes were diagnosed at significantly different rates between SMA patients and controls and to obtain covariate-adjusted odds ratios. Results Results from the entire coverage window revealed a broad spectrum of phenotypes that are differentially diagnosed in SMA subjects compared to controls. Moreover, data from SMA patients prior to their first clinical signs of neuromuscular degeneration revealed numerous non-neuromuscular phenotypes including defects within the cardiovascular, gastrointestinal, metabolic, reproductive, and skeletal systems. Furthermore, our data provide evidence of a potential ordering of disease progression beginning with these non-neuromuscular phenotypes. Conclusions Our data point to a direct relationship between early, detectable non-neuromuscular symptoms and SMN deficiency. Our findings are particularly important for evaluating the efficacy of SMN-increasing therapies for SMA, comparing the effectiveness of local versus systemically delivered therapeutics, and determining the optimal therapeutic treatment window prior to irreversible neuromuscular damage.
Collapse
Affiliation(s)
- Scott L. Lipnick
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Assessment Technology & Continuous Health (CATCH), Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Denis M. Agniel
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rahul Aggarwal
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Assessment Technology & Continuous Health (CATCH), Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nina R. Makhortova
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Samuel G. Finlayson
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexandra Brocato
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Nathan Palmer
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Basil T. Darras
- Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Isaac Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Wurster CD, Winter B, Wollinsky K, Ludolph AC, Uzelac Z, Witzel S, Schocke M, Schneider R, Kocak T. Intrathecal administration of nusinersen in adolescent and adult SMA type 2 and 3 patients. J Neurol 2018; 266:183-194. [PMID: 30460449 DOI: 10.1007/s00415-018-9124-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 03/25/2023]
Abstract
Spinal muscular atrophy is a genetic motor neuron disease that leads to progressive muscular atrophy and muscle weakness. In December 2016, the Food and Drug Administration, and in June 2017, the European Medicines Agency approved the antisense oligonucleotide nusinersen for treatment of spinal muscular atrophy. Nusinersen has to be repeatedly administered intrathecally. Due to the clinical features of SMA, the application of the ASO by lumbar puncture can be challenging in symptomatic patients considering the frequently observed scoliosis, previous spine fusion surgeries, joint contractures, and respiratory insufficiency. To evaluate safety and feasibility of the intrathecal treatment in adolescent and adult SMA type 2 and 3 patients, we analyzed 93 lumbar punctures, monitored number of lumbar puncture attempts, duration of the procedure, injection site, and needle length. Oxygen saturation during the intervention, medication for sedation and local anesthesia, adverse events related to lumbar punctures, and macroscopic analysis of CSF were recorded. Moreover, we analyzed the use of CT-scans for performing lumbar punctures and its associated radiation exposure. Performing lumbar puncture for the intrathecal administration of nusinersen in adolescent and adult patients with later-onset SMA is feasible and safe, even in patients with complex spinal anatomies and respiratory insufficiency. To guarantee the quality of the procedure, we recommend establishing an experienced interdisciplinary team consisting of neurologists and/or neuropediatricians, anesthesiologists, orthopedic surgeons, and/or neuroradiologists.
Collapse
Affiliation(s)
- Claudia D Wurster
- Department of Neurology, RKU-University and Rehabilitation Clinics, Ulm University, Ulm, Germany.
| | | | - Kurt Wollinsky
- Department of Anesthesiology, RKU-University and Rehabilitation Clinics, Ulm University, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, RKU-University and Rehabilitation Clinics, Ulm University, Ulm, Germany
| | - Zeljko Uzelac
- Department of Neurology, RKU-University and Rehabilitation Clinics, Ulm University, Ulm, Germany
| | - Simon Witzel
- Department of Neurology, RKU-University and Rehabilitation Clinics, Ulm University, Ulm, Germany
| | - Michael Schocke
- Department of Neuroradiology, RKU-University and Rehabilitation Clinics, Ulm University, Ulm, Germany
| | - Ralf Schneider
- Department of Neuroradiology, RKU-University and Rehabilitation Clinics, Ulm University, Ulm, Germany
| | - Tugrul Kocak
- Department of Orthopedic Surgery, RKU-University and Rehabilitation Clinics, Ulm University, Ulm, Germany
| |
Collapse
|
22
|
Affiliation(s)
- Ewout J N Groen
- a Centre for Discovery Brain Sciences and Euan MacDonald Centre for Motor Neurone Disease Research , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
23
|
Scoto M, Finkel R, Mercuri E, Muntoni F. Genetic therapies for inherited neuromuscular disorders. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:600-609. [PMID: 30119719 DOI: 10.1016/s2352-4642(18)30140-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
Abstract
Inherited neuromuscular disorders encompass a broad group of genetic conditions, and the discovery of these underlying genes has expanded greatly in the past three decades. The discovery of such genes has enabled more precise diagnosis of these disorders and the development of specific therapeutic approaches that target the genetic basis and pathophysiological pathways. Such translational research has led to the approval of two genetic therapies by the US Food and Drug Administration: eteplirsen for Duchenne muscular dystrophy and nusinersen for spinal muscular atrophy, which are both antisense oligonucleotides that modify pre-mRNA splicing. In this Review we aim to discuss new genetic therapies and ongoing clinical trials for Duchenne muscular dystrophy, spinal muscular atrophy, and other less common childhood neuromuscular disorders.
Collapse
Affiliation(s)
- Mariacristina Scoto
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Richard Finkel
- Division of Pediatric Neurology, Nemours Children's Hospital, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Eugenio Mercuri
- Pediatric Neurology and Centro Nemo, IRCSS Fondazione Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
24
|
Aguti S, Malerba A, Zhou H. The progress of AAV-mediated gene therapy in neuromuscular disorders. Expert Opin Biol Ther 2018; 18:681-693. [DOI: 10.1080/14712598.2018.1479739] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Aguti
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Haiyan Zhou
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
25
|
Wurster CD, Ludolph AC. Antisense oligonucleotides in neurological disorders. Ther Adv Neurol Disord 2018; 11:1756286418776932. [PMID: 29854003 PMCID: PMC5971383 DOI: 10.1177/1756286418776932] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022] Open
Abstract
The introduction of genetics revolutionized the field of neurodegenerative and neuromuscular diseases and has provided considerable insight into the underlying pathomechanisms. Nevertheless, effective treatment options have been limited. This changed recently when antisense oligonucleotides (ASOs) could be translated from in vitro and experimental animal studies into clinical practice. In 2016, two ASOs were approved by the United States US Food and Drug Administration (FDA) and demonstrated remarkable efficacy in Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). ASOs are synthetic single-stranded strings of nucleic acids. They selectively bind to specific premessenger ribonucleic acid (pre-mRNA)/mRNA sequences and alter protein synthesis by several mechanisms of action. Thus, apart from gene replacement, ASOs may therefore provide the most direct therapeutic strategy for influencing gene expression. In this review, we shall discuss basic mechanisms of ASO action, the role of chemical modifications needed to improve the pharmacodynamic and pharmacokinetic properties of ASOs, and we shall then focus on several ASOs developed for the treatment of neurodegenerative and neuromuscular disorders, including SMA, DMD, myotonic dystrophies, Huntington's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Claudia D. Wurster
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm, 89081, Germany
| | | |
Collapse
|
26
|
Bowerman M, Becker CG, Yáñez-Muñoz RJ, Ning K, Wood MJA, Gillingwater TH, Talbot K. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis Model Mech 2018; 10:943-954. [PMID: 28768735 PMCID: PMC5560066 DOI: 10.1242/dmm.030148] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of motor neurons and muscle atrophy, generally presenting in childhood. SMA is caused by low levels of the survival motor neuron protein (SMN) due to inactivating mutations in the encoding gene SMN1. A second duplicated gene, SMN2, produces very little but sufficient functional protein for survival. Therapeutic strategies to increase SMN are in clinical trials, and the first SMN2-directed antisense oligonucleotide (ASO) therapy has recently been licensed. However, several factors suggest that complementary strategies may be needed for the long-term maintenance of neuromuscular and other functions in SMA patients. Pre-clinical SMA models demonstrate that the requirement for SMN protein is highest when the structural connections of the neuromuscular system are being established, from late fetal life throughout infancy. Augmenting SMN may not address the slow neurodegenerative process underlying progressive functional decline beyond childhood in less severe types of SMA. Furthermore, individuals receiving SMN-based treatments may be vulnerable to delayed symptoms if rescue of the neuromuscular system is incomplete. Finally, a large number of older patients living with SMA do not fulfill the present criteria for inclusion in gene therapy and ASO clinical trials, and may not benefit from SMN-inducing treatments. Therefore, a comprehensive whole-lifespan approach to SMA therapy is required that includes both SMN-dependent and SMN-independent strategies that treat the CNS and periphery. Here, we review the range of non-SMN pathways implicated in SMA pathophysiology and discuss how various model systems can serve as valuable tools for SMA drug discovery. Summary: Translational research for spinal muscular atrophy (SMA) should address the development of non-CNS and survival motor neuron (SMN)-independent therapeutic approaches to complement and enhance the benefits of CNS-directed and SMN-dependent therapies.
Collapse
Affiliation(s)
- Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Catherina G Becker
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Spinal muscular atrophy (SMA) is an inherited childhood neurodegenerative disorder caused by ubiquitous deficiency of the survival motor neuron (SMN) protein - the hallmarks of which are the selective loss of motor neurons and skeletal muscle atrophy. Here, we highlight recent progress in the understanding of SMA pathology and in the development of therapeutic approaches for its treatment. RECENT FINDINGS Phenotypic characterization of mouse models of the disease, combined with analysis of SMN restoration or depletion in a spatially and temporally controlled manner, has yielded key insights into the normal requirement of SMN and SMA pathophysiology. Increasing evidence indicates a higher demand for SMN during neuromuscular development and extends the pathogenic effects of SMN deficiency beyond motor neurons to include additional cells both within and outside the nervous system. These findings have been paralleled by preclinical development of powerful approaches for increasing SMN expression through gene therapy or splicing modulation that are now in human trials. SUMMARY Along with the availability of SMN-upregulating drugs, identification of the specific cell types in which SMN deficiency induces the disease and delineation of the window of opportunity for effective treatment are key advances in the ongoing path to SMA therapy.
Collapse
|
28
|
Govoni A, Gagliardi D, Comi GP, Corti S. Time Is Motor Neuron: Therapeutic Window and Its Correlation with Pathogenetic Mechanisms in Spinal Muscular Atrophy. Mol Neurobiol 2018; 55:6307-6318. [DOI: 10.1007/s12035-017-0831-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
29
|
Goyal N, Narayanaswami P. Making sense of antisense oligonucleotides: A narrative review. Muscle Nerve 2017; 57:356-370. [PMID: 29105153 DOI: 10.1002/mus.26001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022]
Abstract
Synthetic nucleic acid sequences that bind to ribonucleic acid (RNA) through Watson-Crick base pairing are known as antisense oligonucleotides (ASOs) because they are complementary to "sense strand" nucleic acids. ASOs bind to selected sequences of RNA and regulate the expression of genes by several mechanisms depending on their chemical properties and targets. They can be used to restore deficient protein expression, reduce the expression of a toxic protein, modify functional effects of proteins, or reduce toxicity of mutant proteins. Two ASOs were approved by the U.S. Food and Drug Administration in 2016: eteplirsen for Duchenne muscular dystrophy and nusinersen for spinal muscular atrophy. Clinical trials in amyotrophic lateral sclerosis and familial amyloid polyneuropathy are ongoing. We review the chemistry, pharmacology, and mechanisms of action of ASOs, preclinical data, and clinical trials in neuromuscular diseases and discuss some ethical, regulatory, and policy considerations in the clinical development and use of ASOs. Muscle Nerve 57: 356-370, 2018.
Collapse
Affiliation(s)
- Neelam Goyal
- Neurology/Neuromuscular Disease, Stanford University Hospital, 213 Quarry Road MC 5979, Palo Alto, Ca 94303
| | - Pushpa Narayanaswami
- Neurology/Neuromuscular Disease, Neurology TCC-8, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts, 02215
| |
Collapse
|
30
|
Tosolini AP, Sleigh JN. Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:405. [PMID: 29270111 PMCID: PMC5725447 DOI: 10.3389/fnmol.2017.00405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are severe nervous system diseases characterized by the degeneration of lower motor neurons. They share a number of additional pathological, cellular, and genetic parallels suggesting that mechanistic and clinical insights into one disorder may have value for the other. While there are currently no clinical ALS gene therapies, the splice-switching antisense oligonucleotide, nusinersen, was recently approved for SMA. This milestone was achieved through extensive pre-clinical research and patient trials, which together have spawned fundamental insights into motor neuron gene therapy. We have thus tried to distil key information garnered from SMA research, in the hope that it may stimulate a more directed approach to ALS gene therapy. Not only must the type of therapeutic (e.g., antisense oligonucleotide vs. viral vector) be sensibly selected, but considerable thought must be applied to the where, which, what, and when in order to enhance treatment benefit: to where (cell types and tissues) must the drug be delivered and how can this be best achieved? Which perturbed pathways must be corrected and can they be concurrently targeted? What dosing regime and concentration should be used? When should medication be administered? These questions are intuitive, but central to identifying and optimizing a successful gene therapy. Providing definitive solutions to these quandaries will be difficult, but clear thinking about therapeutic testing is necessary if we are to have the best chance of developing viable ALS gene therapies and improving upon early generation SMA treatments.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
31
|
Meijboom KE, Wood MJA, McClorey G. Splice-Switching Therapy for Spinal Muscular Atrophy. Genes (Basel) 2017; 8:genes8060161. [PMID: 28604635 PMCID: PMC5485525 DOI: 10.3390/genes8060161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 01/17/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic disorder with severity ranging from premature death in infants to restricted motor function in adult life. Despite the genetic cause of this disease being known for over twenty years, only recently has a therapy been approved to treat the most severe form of this disease. Here we discuss the genetic basis of SMA and the subsequent studies that led to the utilization of splice switching oligonucleotides to enhance production of SMN protein, which is absent in patients, through a mechanism of exon inclusion into the mature mRNA. Whilst approval of oligonucleotide-based therapies for SMA should be celebrated, we also discuss some of the limitations of this approach and alternate genetic strategies that are currently underway in clinical trials.
Collapse
Affiliation(s)
- Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| |
Collapse
|
32
|
Singh NN, Howell MD, Androphy EJ, Singh RN. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther 2017; 24:520-526. [PMID: 28485722 DOI: 10.1038/gt.2017.34] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Spinal muscular atrophy (SMA), a prominent genetic disease of infant mortality, is caused by low levels of survival motor neuron (SMN) protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1 present in humans, cannot compensate for the loss of SMN1 because of predominant skipping of exon 7 during pre-mRNA splicing. With the recent US Food and Drug Administration approval of nusinersen (Spinraza), the potential for correction of SMN2 exon 7 splicing as an SMA therapy has been affirmed. Nusinersen is an antisense oligonucleotide that targets intronic splicing silencer N1 (ISS-N1) discovered in 2004 at the University of Massachusetts Medical School. ISS-N1 has emerged as the model target for testing the therapeutic efficacy of antisense oligonucleotides using different chemistries as well as different mouse models of SMA. Here, we provide a historical account of events that led to the discovery of ISS-N1 and describe the impact of independent validations that raised the profile of ISS-N1 as one of the most potent antisense targets for the treatment of a genetic disease. Recent approval of nusinersen provides a much-needed boost for antisense technology that is just beginning to realize its potential. Beyond treating SMA, the ISS-N1 target offers myriad potentials for perfecting various aspects of the nucleic-acid-based technology for the amelioration of the countless number of pathological conditions.
Collapse
Affiliation(s)
- N N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - M D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - E J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
33
|
Sardone V, Zhou H, Muntoni F, Ferlini A, Falzarano MS. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease. Molecules 2017; 22:molecules22040563. [PMID: 28379182 PMCID: PMC6154734 DOI: 10.3390/molecules22040563] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
Neuromuscular disorders such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy are neurodegenerative genetic diseases characterized primarily by muscle weakness and wasting. Until recently there were no effective therapies for these conditions, but antisense oligonucleotides, a new class of synthetic single stranded molecules of nucleic acids, have demonstrated promising experimental results and are at different stages of regulatory approval. The antisense oligonucleotides can modulate the protein expression via targeting hnRNAs or mRNAs and inducing interference with splicing, mRNA degradation, or arrest of translation, finally, resulting in rescue or reduction of the target protein expression. Different classes of antisense oligonucleotides are being tested in several clinical trials, and limitations of their clinical efficacy and toxicity have been reported for some of these compounds, while more encouraging results have supported the development of others. New generation antisense oligonucleotides are also being tested in preclinical models together with specific delivery systems that could allow some of the limitations of current antisense oligonucleotides to be overcome, to improve the cell penetration, to achieve more robust target engagement, and hopefully also be associated with acceptable toxicity. This review article describes the chemical properties and molecular mechanisms of action of the antisense oligonucleotides and the therapeutic implications these compounds have in neuromuscular diseases. Current strategies and carrier systems available for the oligonucleotides delivery will be also described to provide an overview on the past, present and future of these appealing molecules.
Collapse
Affiliation(s)
- Valentina Sardone
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK.
| | - Alessandra Ferlini
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
- UOL Medical Genetics, University of Ferrara, Ferrara 44121, Italy.
| | | |
Collapse
|
34
|
Xu J, Lu Z, Narayan A, Le Rouzic VP, Xu M, Hunkele A, Brown TG, Hoefer WF, Rossi GC, Rice RC, Martínez-Rivera A, Rajadhyaksha AM, Cartegni L, Bassoni DL, Pasternak GW, Pan YX. Alternatively spliced mu opioid receptor C termini impact the diverse actions of morphine. J Clin Invest 2017; 127:1561-1573. [PMID: 28319053 DOI: 10.1172/jci88760] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Extensive 3' alternative splicing of the mu opioid receptor gene OPRM1 creates multiple C-terminal splice variants. However, their behavioral relevance remains unknown. The present study generated 3 mutant mouse models with truncated C termini in 2 different mouse strains, C57BL/6J (B6) and 129/SvEv (129). One mouse truncated all C termini downstream of Oprm1 exon 3 (mE3M mice), while the other two selectively truncated C-terminal tails encoded by either exon 4 (mE4M mice) or exon 7 (mE7M mice). Studies of these mice revealed divergent roles for the C termini in morphine-induced behaviors, highlighting the importance of C-terminal variants in complex morphine actions. In mE7M-B6 mice, the exon 7-associated truncation diminished morphine tolerance and reward without altering physical dependence, whereas the exon 4-associated truncation in mE4M-B6 mice facilitated morphine tolerance and reduced morphine dependence without affecting morphine reward. mE7M-B6 mutant mice lost morphine-induced receptor desensitization in the brain stem and hypothalamus, consistent with exon 7 involvement in morphine tolerance. In cell-based studies, exon 7-associated variants shifted the bias of several mu opioids toward β-arrestin 2 over G protein activation compared with the exon 4-associated variant, suggesting an interaction of exon 7-associated C-terminal tails with β-arrestin 2 in morphine-induced desensitization and tolerance. Together, the differential effects of C-terminal truncation illustrate the pharmacological importance of OPRM1 3' alternative splicing.
Collapse
|
35
|
Shabanpoor F, Hammond SM, Abendroth F, Hazell G, Wood MJA, Gait MJ. Identification of a Peptide for Systemic Brain Delivery of a Morpholino Oligonucleotide in Mouse Models of Spinal Muscular Atrophy. Nucleic Acid Ther 2017; 27:130-143. [PMID: 28118087 PMCID: PMC5467147 DOI: 10.1089/nat.2016.0652] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Splice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood–brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion. We identified a branched derivative of the well-known ApoE (141–150) peptide, which as a PMO conjugate was capable of exon inclusion in the CNS following systemic administration, leading to an increase in the level of full-length SMN2 transcript. Treatment of newborn SMA mice with this peptide-PMO (P-PMO) conjugate resulted in a significant increase in the average lifespan and gains in weight, muscle strength, and righting reflexes. Systemic treatment of adult SMA mice with this newly identified P-PMO also resulted in small but significant increases in the levels of SMN2 pre-messenger RNA (mRNA) exon inclusion in the CNS and peripheral tissues. This work provides proof of principle for the ability to select new peptide paradigms to enhance CNS delivery and activity of a PMO SSO through use of a peptide-based delivery platform for the treatment of SMA potentially extending to other neuromuscular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fazel Shabanpoor
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Suzan M Hammond
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Frank Abendroth
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Gareth Hazell
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Matthew J A Wood
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Michael J Gait
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| |
Collapse
|
36
|
Nizzardo M, Rizzuti M. Intracerebroventricular Delivery in Mice for Motor Neuron Diseases. Methods Mol Biol 2017; 1565:229-239. [PMID: 28364247 DOI: 10.1007/978-1-4939-6817-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of antisense oligonucleotides to target specific mRNA sequences represents a promising therapeutic strategy for neurological disorders. Recent advances in antisense technology enclose the development of phosphorodiamidate morpholino oligomers (MO), which is one of the best candidates for molecular therapies due to MO's excellent pharmacological profile.Nevertheless, the route of administration of antisense compounds represents a critical issue in the neurological field. Particularly, as regards motor neuron diseases, intracerebroventricular (ICV) injection is undoubtedly the most efficient procedure to directly deliver therapeutic molecules in the central nervous system (CNS). Indeed, we recently demonstrated the outstanding efficacy of the MO antisense approach by its direct administration to CNS of the transgenic mouse models of Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS).Here, we describe methods to perform the ICV delivery of MO in neonatal SMA mice and in adult ALS mice.
Collapse
Affiliation(s)
- M Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy.
| | - M Rizzuti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
| |
Collapse
|
37
|
Ottesen EW. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy. Transl Neurosci 2017; 8:1-6. [PMID: 28400976 PMCID: PMC5382937 DOI: 10.1515/tnsci-2017-0001] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA. Upon procuring exclusive license from the University of Massachussets Medical School in 2010, Ionis Pharmaceuticals (formerly ISIS Pharamaceuticals) began clinical development of Spinraza™ (synonyms: Nusinersen, IONIS-SMNRX, ISIS-SMNRX), an antisense drug based on ISS-N1 target. Spinraza™ showed very promising results at all steps of the clinical development and was approved by US Food and Drug Administration (FDA) on December 23, 2016. Spinraza™ is the first FDA-approved treatment for SMA and the first antisense drug to restore expression of a fully functional protein via splicing correction. The success of Spinraza™ underscores the potential of intronic sequences as promising therapeutic targets and sets the stage for further improvement of antisense drugs based on advanced oligonucleotide chemistries and delivery protocols.
Collapse
Affiliation(s)
- Eric W. Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| |
Collapse
|
38
|
Szunyogova E, Zhou H, Maxwell GK, Powis RA, Francesco M, Gillingwater TH, Parson SH. Survival Motor Neuron (SMN) protein is required for normal mouse liver development. Sci Rep 2016; 6:34635. [PMID: 27698380 PMCID: PMC5048144 DOI: 10.1038/srep34635] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Decreased levels of, cell-ubiquitous, SMN protein is associated with a range of systemic pathologies reported in severe patients. Despite high levels of SMN protein in normal liver, there is no comprehensive study of liver pathology in SMA. We describe failed liver development in response to reduced SMN levels, in a mouse model of severe SMA. The SMA liver is dark red, small and has: iron deposition; immature sinusoids congested with blood; persistent erythropoietic elements and increased immature red blood cells; increased and persistent megakaryocytes which release high levels of platelets found as clot-like accumulations in the heart. Myelopoiesis in contrast, was unaffected. Further analysis revealed significant molecular changes in SMA liver, consistent with the morphological findings. Antisense treatment from birth with PMO25, increased lifespan and ameliorated all morphological defects in liver by postnatal day 21. Defects in the liver are evident at birth, prior to motor system pathology, and impair essential liver function in SMA. Liver is a key recipient of SMA therapies, and systemically delivered antisense treatment, completely rescued liver pathology. Liver therefore, represents an important therapeutic target in SMA.
Collapse
Affiliation(s)
- Eva Szunyogova
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Gillian K. Maxwell
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Rachael A. Powis
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Muntoni Francesco
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Thomas H. Gillingwater
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon H. Parson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A 2016; 113:10962-7. [PMID: 27621445 DOI: 10.1073/pnas.1605731113] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA.
Collapse
|
40
|
Hosseinibarkooie S, Peters M, Torres-Benito L, Rastetter R, Hupperich K, Hoffmann A, Mendoza-Ferreira N, Kaczmarek A, Janzen E, Milbradt J, Lamkemeyer T, Rigo F, Bennett C, Guschlbauer C, Büschges A, Hammerschmidt M, Riessland M, Kye M, Clemen C, Wirth B. The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype. Am J Hum Genet 2016; 99:647-665. [PMID: 27499521 DOI: 10.1016/j.ajhg.2016.07.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022] Open
Abstract
Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only ∼10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and -bundling protein, fully protects against SMA in SMN1-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression-a situation resembling the human condition in asymptomatic SMN1-deleted individuals-rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA.
Collapse
|
41
|
Catapano F, Zaharieva I, Scoto M, Marrosu E, Morgan J, Muntoni F, Zhou H. Altered Levels of MicroRNA-9, -206, and -132 in Spinal Muscular Atrophy and Their Response to Antisense Oligonucleotide Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e331. [PMID: 27377135 PMCID: PMC5014531 DOI: 10.1038/mtna.2016.47] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/25/2016] [Indexed: 12/12/2022]
Abstract
The identification of noninvasive biomarkers to monitor the disease progression in spinal muscular atrophy (SMA) is becoming increasingly important. MicroRNAs (miRNAs) regulate gene expression and are implicated in the pathogenesis of neuromuscular diseases, including motor neuron degeneration. In this study, we selectively characterized the expression of miR-9, miR-206, and miR-132 in spinal cord, skeletal muscle, and serum from SMA transgenic mice, and in serum from SMA patients. A systematic analysis of miRNA expression was conducted in SMA mice with different disease severities (severe type I-like and mild type III-like) at different disease stages (pre-, mid-, and late-symptomatic stages), and in morpholino antisense oligonucleotide-treated mice. There was differential expression of all three miRNAs in spinal cord, skeletal muscle and serum samples in SMA mice. Serum miRNAs were altered prior to the changes in spinal cord and skeletal muscle at the presymptomatic stage. The altered miR-132 levels in spinal cord, muscle, and serum transiently reversed to normal level after a single-dose morpholino antisense oligomer PMO25 treatment in SMA mice. We also confirmed a significant alteration of miR-9 and miR-132 level in serum samples from SMA patients. Our study indicates the potential of developing miRNAs as noninvasive biomarkers in SMA.
Collapse
Affiliation(s)
- Francesco Catapano
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Irina Zaharieva
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Mariacristina Scoto
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Elena Marrosu
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| |
Collapse
|
42
|
Sintusek P, Catapano F, Angkathunkayul N, Marrosu E, Parson SH, Morgan JE, Muntoni F, Zhou H. Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment. PLoS One 2016; 11:e0155032. [PMID: 27163330 PMCID: PMC4862622 DOI: 10.1371/journal.pone.0155032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/22/2016] [Indexed: 12/28/2022] Open
Abstract
Gastrointestinal (GI) defects, including gastroesophageal reflux, constipation and delayed gastric emptying, are common in patients with spinal muscular atrophy (SMA). Similar GI dysmotility has been identified in mouse models with survival of motor neuron (SMN) protein deficiency. We previously described vascular defects in skeletal muscle and spinal cord of SMA mice and we hypothesized that similar defects could be involved in the GI pathology observed in these mice. We therefore investigated the gross anatomical structure, enteric vasculature and neurons in the small intestine in a severe mouse model of SMA. We also assessed the therapeutic response of GI histopathology to systemic administration of morpholino antisense oligonucleotide (AON) designed to increase SMN protein expression. Significant anatomical and histopathological abnormalities, with striking reduction of vascular density, overabundance of enteric neurons and increased macrophage infiltration, were detected in the small intestine in SMA mice. After systemic AON treatment in neonatal mice, all the abnormalities observed were significantly restored to near-normal levels. We conclude that the observed GI histopathological phenotypes and functional defects observed in these SMA mice are strongly linked to SMN deficiency which can be rescued by systemic administration of AON. This study on the histopathological changes in the gastrointestinal system in severe SMA mice provides further indication of the complex role that SMN plays in multiple tissues and suggests that at least in SMA mice restoration of SMN production in peripheral tissues is essential for optimal outcome.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Disease Models, Animal
- Gene Expression
- Genetic Therapy/methods
- Heterozygote
- Homozygote
- Humans
- Injections, Subcutaneous
- Intestine, Small/blood supply
- Intestine, Small/drug effects
- Intestine, Small/innervation
- Intestine, Small/pathology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Transgenic
- Morpholinos/administration & dosage
- Motor Neurons/drug effects
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/therapy
- Oligonucleotides, Antisense/administration & dosage
- Phenotype
- Spinal Cord/blood supply
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Survival of Motor Neuron 1 Protein/agonists
- Survival of Motor Neuron 1 Protein/genetics
- Survival of Motor Neuron 1 Protein/metabolism
Collapse
Affiliation(s)
- Palittiya Sintusek
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Francesco Catapano
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Napat Angkathunkayul
- Department of Pathology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Elena Marrosu
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Simon H. Parson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Euan MacDonald Center for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E. Morgan
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- * E-mail: (HZ); (FM)
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- * E-mail: (HZ); (FM)
| |
Collapse
|
43
|
Somers E, Lees RD, Hoban K, Sleigh JN, Zhou H, Muntoni F, Talbot K, Gillingwater TH, Parson SH. Vascular Defects and Spinal Cord Hypoxia in Spinal Muscular Atrophy. Ann Neurol 2016; 79:217-30. [PMID: 26506088 DOI: 10.1002/ana.24549] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 09/11/2015] [Accepted: 10/18/2015] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Spinal muscular atrophy (SMA) is a major inherited cause of infant death worldwide. It results from mutations in a single, ubiquitously expressed gene (SMN1), with loss of lower motor neurons being the primary pathological signature. Systemic defects have also been reported in SMA patients and animal models. We investigated whether defects associated with the vasculature contribute to motor neuron pathology in SMA. METHODS Development and integrity of the capillary bed was examined in skeletal muscle and spinal cord of SMA mice, and muscle biopsies from SMA patients and controls, using quantitative morphometric approaches on immunohistochemically labeled tissue. Pimonidazole hydrochloride-based assays were used to identify functional hypoxia. RESULTS The capillary bed in muscle and spinal cord was normal in presymptomatic SMA mice (postnatal day 1), but failed to match subsequent postnatal development in control littermates. At mid- and late-symptomatic time points, the extent of the vascular architecture observed in two distinct mouse models of SMA was ∼50% of that observed in control animals. Skeletal muscle biopsies from human patients confirmed the presence of developmentally similar, significant vascular depletion in severe SMA. Hypovascularity in SMA mouse spinal cord was accompanied by significant functional hypoxia and defects in the blood-spinal cord barrier. INTERPRETATION Our results indicate that vascular defects are a major feature of severe forms of SMA, present in both mouse models and patients, resulting in functional hypoxia of motor neurons. Thus, abnormal vascular development and resulting hypoxia may contribute to the pathogenesis of SMA.
Collapse
Affiliation(s)
- Eilidh Somers
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert D Lees
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Hoban
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - James N Sleigh
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Haiyan Zhou
- Dubowitz Neuromuscular Center, Institute of Child Health, University College London, London, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Center, Institute of Child Health, University College London, London, United Kingdom
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Thomas H Gillingwater
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon H Parson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
44
|
Feng Z, Ling KKY, Zhao X, Zhou C, Karp G, Welch EM, Naryshkin N, Ratni H, Chen KS, Metzger F, Paushkin S, Weetall M, Ko CP. Pharmacologically induced mouse model of adult spinal muscular atrophy to evaluate effectiveness of therapeutics after disease onset. Hum Mol Genet 2016; 25:964-75. [PMID: 26758873 DOI: 10.1093/hmg/ddv629] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic disease characterized by atrophy of muscle and loss of spinal motor neurons. SMA is caused by deletion or mutation of the survival motor neuron 1 (SMN1) gene, and the nearly identical SMN2 gene fails to generate adequate levels of functional SMN protein due to a splicing defect. Currently, several therapeutics targeted to increase SMN protein are in clinical trials. An outstanding issue in the field is whether initiating treatment in symptomatic older patients would confer a therapeutic benefit, an important consideration as the majority of patients with milder forms of SMA are diagnosed at an older age. An SMA mouse model that recapitulates the disease phenotype observed in adolescent and adult SMA patients is needed to address this important question. We demonstrate here that Δ7 mice, a model of severe SMA, treated with a suboptimal dose of an SMN2 splicing modifier show increased SMN protein, survive into adulthood and display SMA disease-relevant pathologies. Increasing the dose of the splicing modifier after the disease symptoms are apparent further mitigates SMA histopathological features in suboptimally dosed adult Δ7 mice. In addition, inhibiting myostatin using intramuscular injection of AAV1-follistatin ameliorates muscle atrophy in suboptimally dosed Δ7 mice. Taken together, we have developed a new murine model of symptomatic SMA in adolescents and adult mice that is induced pharmacologically from a more severe model and demonstrated efficacy of both SMN2 splicing modifiers and a myostatin inhibitor in mice at later disease stages.
Collapse
Affiliation(s)
- Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA
| | - Karen K Y Ling
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA
| | - Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Chunyi Zhou
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA
| | - Gary Karp
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Ellen M Welch
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | - Hasane Ratni
- F. Hoffmann-La Roche Ltd, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland and
| | - Karen S Chen
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Friedrich Metzger
- F. Hoffmann-La Roche Ltd, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland and
| | - Sergey Paushkin
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA,
| |
Collapse
|