1
|
Andrade-Brito DE, Núñez-Ríos DL, Martínez-Magaña JJ, Nagamatsu ST, Rompala G, Zillich L, Witt SH, Clark SL, Lattig MC, Montalvo-Ortiz JL. Neuronal-specific methylome and hydroxymethylome analysis reveal significant loci associated with alcohol use disorder. Front Genet 2024; 15:1345410. [PMID: 38633406 PMCID: PMC11021708 DOI: 10.3389/fgene.2024.1345410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5 mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5 hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5 mC and 5 hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Methods: Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5 mC and 5 hmC at the genome-wide level. Differential 5 mC and 5 hmC were evaluated using the methylKit R package and significance was set at false discovery rate < 0.05 and differential methylation > 2. Functional enrichment analyses were performed, and gene-level convergence was evaluated in an independent dataset that assessed 5 mC and 5 hmC of AUD in bulk cortical tissue. Results: We identified 417 5 mC and 363 5hmC significant differential CpG sites associated with AUD, with 59% in gene promoters. Some of the identified genes have been previously implicated in alcohol consumption, including SYK, DNMT3A for 5 mC, GAD1, DLX1, DLX2, for 5 hmC and GATA4 in both. Convergence with a previous AUD 5 mC and 5 hmC study was observed for 28 genes. We also identified 5 and 35 differential regions for 5 mC and 5 hmC, respectively. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5 mC genes. Discussion: This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD, identifying both previously reported and potentially novel gene associations with AUD. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.
Collapse
Affiliation(s)
- Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Diana L. Núñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, United States
| | - Maria C. Lattig
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| |
Collapse
|
2
|
Khoodoruth MAS, Chut-kai Khoodoruth WN, Al Alwani R. Exploring the epigenetic landscape: The role of 5-hydroxymethylcytosine in neurodevelopmental disorders. CAMBRIDGE PRISMS. PRECISION MEDICINE 2024; 2:e5. [PMID: 38699519 PMCID: PMC11062787 DOI: 10.1017/pcm.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/18/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024]
Abstract
Recent advances in genetic and epigenetic research have underscored the significance of 5-hydroxymethylcytosine (5hmC) in neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD) and intellectual disability (ID), revealing its potential as both a biomarker for early detection and a target for novel therapeutic strategies. This review article provides a comprehensive analysis of the role of 5hmC in NDDs by examining both animal models and human studies. By examining mouse models, studies have demonstrated that prenatal environmental challenges, such as maternal infection and food allergies, lead to significant epigenetic alterations in 5hmC levels, which were associated with NDDs in offspring, impacting social behavior, cognitive abilities and increasing ASD-like symptoms. In human studies, researchers have linked alterations in 5hmC levels NDDs through studies in individuals with ASD, fragile X syndrome, TET3 deficiency and ID, specifically identifying significant epigenetic modifications in genes such as GAD1, RELN, FMR1 and EN-2, suggesting that dysregulation of 5hmC played a critical role in the pathogenesis of these disorders and highlighted the potential for targeted therapeutic interventions. Moreover, we explore the implications of these findings for the development of epigenetic therapies aimed at modulating 5hmC levels. The review concludes with a discussion on future directions for research in this field, such as machine learning, emphasizing the need for further studies to elucidate the complex mechanisms underlying NDDs and to translate these findings into clinical practice. This paper not only advances our understanding of the epigenetic landscape of NDDs but also opens up new avenues for diagnosis and treatment, offering hope for individuals affected by these conditions.
Collapse
Affiliation(s)
- Mohamed Adil Shah Khoodoruth
- Department of Child and Adolescent Psychiatry, Hamad Medical Corporation, Doha, Qatar
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Rafaa Al Alwani
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
3
|
Bahabry R, Hauser RM, Sánchez RG, Jago SS, Ianov L, Stuckey RJ, Parrish RR, Hoef LV, Lubin FD. Alterations in DNA 5-hydroxymethylation Patterns in the Hippocampus of an Experimental Model of Refractory Epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560698. [PMID: 37873276 PMCID: PMC10592907 DOI: 10.1101/2023.10.03.560698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal , SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65 , TLR4 , and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.
Collapse
|
4
|
Kumar A, Kos MZ, Roybal D, Carless MA. A pilot investigation of differential hydroxymethylation levels in patient-derived neural stem cells implicates altered cortical development in bipolar disorder. Front Psychiatry 2023; 14:1077415. [PMID: 37139321 PMCID: PMC10150707 DOI: 10.3389/fpsyt.2023.1077415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Bipolar disorder (BD) is a chronic mental illness characterized by recurrent episodes of mania and depression and associated with social and cognitive disturbances. Environmental factors, such as maternal smoking and childhood trauma, are believed to modulate risk genotypes and contribute to the pathogenesis of BD, suggesting a key role in epigenetic regulation during neurodevelopment. 5-hydroxymethylcytosine (5hmC) is an epigenetic variant of particular interest, as it is highly expressed in the brain and is implicated in neurodevelopment, and psychiatric and neurological disorders. Methods Induced pluripotent stem cells (iPSCs) were generated from the white blood cells of two adolescent patients with bipolar disorder and their same-sex age-matched unaffected siblings (n = 4). Further, iPSCs were differentiated into neuronal stem cells (NSCs) and characterized for purity using immuno-fluorescence. We used reduced representation hydroxymethylation profiling (RRHP) to perform genome-wide 5hmC profiling of iPSCs and NSCs, to model 5hmC changes during neuronal differentiation and assess their impact on BD risk. Functional annotation and enrichment testing of genes harboring differentiated 5hmC loci were performed with the online tool DAVID. Results Approximately 2 million sites were mapped and quantified, with the majority (68.8%) located in genic regions, with elevated 5hmC levels per site observed for 3' UTRs, exons, and 2-kb shorelines of CpG islands. Paired t-tests of normalized 5hmC counts between iPSC and NSC cell lines revealed global hypo-hydroxymethylation in NSCs and enrichment of differentially hydroxymethylated sites within genes associated with plasma membrane (FDR = 9.1 × 10-12) and axon guidance (FDR = 2.1 × 10-6), among other neuronal processes. The most significant difference was observed for a transcription factor binding site for the KCNK9 gene (p = 8.8 × 10-6), encoding a potassium channel protein involved in neuronal activity and migration. Protein-protein-interaction (PPI) networking showed significant connectivity (p = 3.2 × 10-10) between proteins encoded by genes harboring highly differentiated 5hmC sites, with genes involved in axon guidance and ion transmembrane transport forming distinct sub-clusters. Comparison of NSCs of BD cases and unaffected siblings revealed additional patterns of differentiation in hydroxymethylation levels, including sites in genes with functions related to synapse formation and regulation, such as CUX2 (p = 2.4 × 10-5) and DOK-7 (p = 3.6 × 10-3), as well as an enrichment of genes involved in the extracellular matrix (FDR = 1.0 × 10-8). Discussion Together, these preliminary results lend evidence toward a potential role for 5hmC in both early neuronal differentiation and BD risk, with validation and more comprehensive characterization to be achieved through follow-up study.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Mark Z. Kos
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, San Antonio, TX, United States
| | - Donna Roybal
- Traditions Behavioral Health, Larkspur, CA, United States
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Melanie A. Carless
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
5
|
New Insights into TETs in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094909. [PMID: 35563298 PMCID: PMC9103987 DOI: 10.3390/ijms23094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Psychiatric disorders are complex and heterogeneous disorders arising from the interaction of multiple factors based on neurobiology, genetics, culture, and life experience. Increasing evidence indicates that sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Over the past decade, the critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Here, we review the progress of studies designed to provide a better understanding of how profiles of TET proteins and 5hmC are powerful mechanisms by which to explain neuronal plasticity and long-term behaviors, and impact transcriptional programs operative in the brain that contribute to psychiatric disorders.
Collapse
|
6
|
Papale LA, Madrid A, Zhang Q, Chen K, Sak L, Keleş S, Alisch RS. Gene by environment interaction mouse model reveals a functional role for 5-hydroxymethylcytosine in neurodevelopmental disorders. Genome Res 2022; 32:266-279. [PMID: 34949667 PMCID: PMC8805724 DOI: 10.1101/gr.276137.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
Mouse knockouts of Cntnap2 show altered neurodevelopmental behavior, deficits in striatal GABAergic signaling, and a genome-wide disruption of an environmentally sensitive DNA methylation modification (5-hydroxymethylcytosine [5hmC]) in the orthologs of a significant number of genes implicated in human neurodevelopmental disorders. We tested adult Cntnap2 heterozygous mice (Cntnap2 +/-; lacking behavioral or neuropathological abnormalities) subjected to a prenatal stress and found that prenatally stressed Cntnap2 +/- female mice show repetitive behaviors and altered sociability, similar to the homozygote phenotype. Genomic profiling revealed disruptions in hippocampal and striatal 5hmC levels that are correlated to altered transcript levels of genes linked to these phenotypes (e.g., Reln, Dst, Trio, and Epha5). Chromatin immunoprecipitation coupled with high-throughput sequencing and hippocampal nuclear lysate pull-down data indicated that 5hmC abundance alters the binding of the transcription factor CLOCK near the promoters of these genes (e.g., Palld, Gigyf1, and Fry), providing a mechanistic role for 5hmC in gene regulation. Together, these data support gene-by-environment hypotheses for the origins of mental illness and provide a means to identify the elusive factors contributing to complex human diseases.
Collapse
Affiliation(s)
- Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Qi Zhang
- Department Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Kailei Chen
- Department of Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Lara Sak
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Sündüz Keleş
- Department of Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
| |
Collapse
|
7
|
Xu W, Zhang X, Liang F, Cao Y, Li Z, Qu W, Zhang J, Bi Y, Sun C, Zhang J, Sun B, Shu Q, Li X. Tet1 Regulates Astrocyte Development and Cognition of Mice Through Modulating GluA1. Front Cell Dev Biol 2021; 9:644375. [PMID: 34778243 PMCID: PMC8581465 DOI: 10.3389/fcell.2021.644375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Tet (Ten eleven translocation) family proteins-mediated 5-hydroxymethylcytosine (5hmC) is highly enriched in the neuronal system, and is involved in diverse biological processes and diseases. However, the function of 5hmC in astrocyte remains completely unknown. In the present study, we show that Tet1 deficiency alters astrocyte morphology and impairs neuronal function. Specific deletion of Tet1 in astrocyte impairs learning and memory ability of mice. Using 5hmC high-throughput DNA sequencing and RNA sequencing, we present the distribution of 5hmC among genomic features in astrocyte and show that Tet1 deficiency induces differentially hydroxymethylated regions (DhMRs) and alters gene expression. Mechanistically, we found that Tet1 deficiency leads to the abnormal Ca2+ signaling by regulating the expression of GluA1, which can be rescued by ectopic GluA1. Collectively, our findings suggest that Tet1 plays important function in astrocyte physiology by regulating Ca2+ signaling.
Collapse
Affiliation(s)
- Weize Xu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xicheng Zhang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Feng Liang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuhang Cao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wenzheng Qu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinyu Zhang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhua Bi
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chongran Sun
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Binggui Sun
- Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Madrid A, Borth LE, Hogan KJ, Hariharan N, Papale LA, Alisch RS, Iskandar BJ. DNA methylation and hydroxymethylation have distinct genome-wide profiles related to axonal regeneration. Epigenetics 2021; 16:64-78. [PMID: 32633672 PMCID: PMC7889172 DOI: 10.1080/15592294.2020.1786320] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Alterations in environmentally sensitive epigenetic mechanisms (e.g., DNA methylation) influence axonal regeneration in the spinal cord following sharp injury. Conventional DNA methylation detection methods using sodium bisulphite treatment do not distinguish between methylated and hydroxymethylated forms of cytosine, meaning that past studies report a composite of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). To identify the distinct contributions of DNA methylation modifications to axonal regeneration, we collected spinal cord tissue after sharp injury from untreated adult F3 male rats with enhanced regeneration of injured spinal axons or controls, derived from folate- or water-treated F0 lineages, respectively. Genomic DNA was profiled for genome-wide 5hmC levels, revealing 658 differentially hydroxymethylated regions (DhMRs). Genomic profiling with whole genome bisulphite sequencing disclosed regeneration-related alterations in composite 5mC + 5hmC DNA methylation levels at 2,260 differentially methylated regions (DMRs). While pathway analyses revealed that differentially hydroxymethylated and methylated genes are linked to biologically relevant axon developmental pathways, only 22 genes harbour both DhMR and DMRs. Since these differential modifications were more than 60 kilobases on average away from each other, the large majority of differential hydroxymethylated and methylated regions are unique with distinct functions in the axonal regeneration phenotype. These data highlight the importance of distinguishing independent contributions of 5mC and 5hmC levels in the central nervous system, and denote discrete roles for DNA methylation modifications in spinal cord injury and regeneration in the context of transgenerational inheritance.
Collapse
Affiliation(s)
- Andy Madrid
- Department of Neurological Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin – Madison, Madison, WI, USA
| | - Laura E. Borth
- Department of Neurological Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Science, University of Wisconsin – Madison, Madison, WI, USA
| | - Kirk J. Hogan
- Department of Anesthesiology, University of Wisconsin – Madison, Madison, WI, USA
| | - Nithya Hariharan
- Department of Neurological Surgery, University of Wisconsin – Madison, Madison, WI, USA
| | - Ligia A. Papale
- Department of Neurological Surgery, University of Wisconsin – Madison, Madison, WI, USA
| | - Reid S. Alisch
- Department of Neurological Surgery, University of Wisconsin – Madison, Madison, WI, USA
| | - Bermans J. Iskandar
- Department of Neurological Surgery, University of Wisconsin – Madison, Madison, WI, USA
| |
Collapse
|
9
|
Alberca CD, Papale LA, Madrid A, Gianatiempo O, Cánepa ET, Alisch RS, Chertoff M. Perinatal protein malnutrition results in genome-wide disruptions of 5-hydroxymethylcytosine at regions that can be restored to control levels by an enriched environment. Epigenetics 2020; 16:1085-1101. [PMID: 33172347 DOI: 10.1080/15592294.2020.1841871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maternal malnutrition remains one of the major adversities affecting brain development and long-term mental health outcomes, increasing the risk to develop anxiety and depressive disorders. We have previously shown that malnutrition-induced anxiety-like behaviours can be rescued by a social and sensory stimulation (enriched environment) in male mice. Here, we expand these findings to adult female mice and profiled genome-wide ventral hippocampal 5hmC levels related to malnutrition-induced anxiety-like behaviours and their rescue by an enriched environment. This approach revealed 508 differentially hydroxymethylated genes associated with protein malnutrition and that several genes (N = 34) exhibited a restored 5hmC abundance to control levels following exposure to an enriched environment, including genes involved in neuronal functions like dendrite outgrowth, axon guidance, and maintenance of neuronal circuits (e.g. Fltr3, Itsn1, Lman1, Lsamp, Nav, and Ror1) and epigenetic mechanisms (e.g. Hdac9 and Dicer1). Sequence motif predictions indicated that 5hmC may be modulating the binding of transcription factors for several of these transcripts, suggesting a regulatory role for 5hmC in response to perinatal malnutrition and exposure to an enriched environment. Together, these findings establish a role for 5hmC in early-life malnutrition and reveal genes linked to malnutrition-induced anxious behaviours that are mitigated by an enriched environment.
Collapse
Affiliation(s)
- Carolina D Alberca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Octavio Gianatiempo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Mariela Chertoff
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
10
|
Li S, Tollefsbol TO. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 2020; 187:28-43. [PMID: 33039572 DOI: 10.1016/j.ymeth.2020.10.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
DNA methylation provides a pivotal layer of epigenetic regulation in eukaryotes that has significant involvement for numerous biological processes in health and disease. The function of methylation of cytosine bases in DNA was originally proposed as a "silencing" epigenetic marker and focused on promoter regions of genes for decades. Improved technologies and accumulating studies have been extending our understanding of the roles of DNA methylation to various genomic contexts including gene bodies, repeat sequences and transcriptional start sites. The demand for comprehensively describing DNA methylation patterns spawns a diversity of DNA methylation profiling technologies that target its genomic distribution. These approaches have enabled the measurement of cytosine methylation from specific loci at restricted regions to single-base-pair resolution on a genome-scale level. In this review, we discuss the different DNA methylation analysis technologies primarily based on the initial treatments of DNA samples: bisulfite conversion, endonuclease digestion and affinity enrichment, involving methodology evolution, principles, applications, and their relative merits. This review may offer referable information for the selection of various platforms for genome-wide analysis of DNA methylation.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
11
|
Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res 2019; 98:2130-2147. [PMID: 31758607 DOI: 10.1002/jnr.24560] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique features in their cortical origins and striatal targets. In this review, we first describe axonal growth and synaptogenesis in the corticostriatal pathway during development, and then summarize the current understanding of the molecular bases of synaptic transmission and plasticity at mature corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper corticostriatal function.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Tuina Massage Improves Cognitive Functions of Hypoxic-Ischemic Neonatal Rats by Regulating Genome-Wide DNA Hydroxymethylation Levels. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1282085. [PMID: 31772590 PMCID: PMC6854251 DOI: 10.1155/2019/1282085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
In addition to abnormalities of motor and posture, children with cerebral palsy (CP) often have intellectual disability. As a complementary and alternative traditional Chinese medicine (TCM) therapy, Chinese Tuina massage, also called Tuina in China, has been widely applied in clinical treatment for CP in China for a long time. However, the molecular basis for this still remains largely unknown. Recently, DNA hydroxymethylation has been shown to be sensitive to environment and plays critical roles in some neurological disorders, whereas the research focusing on the relationship between 5 hmC and Tuina therapy for cerebral palsy is deficient. In our study, we first observed that Tuina improved learning and memory functions of hypoxic-ischemic (HI) rat pups. Meanwhile, 5 hmC level of the temporal lobe cortex in the HI neonatal rat model is decreased significantly compared to that of the rats in control and Tuina groups. Then, we used the hMeDIP-Seq method to explore whether and how DNA hydroxymethylation is involved in Tuina therapy for cerebral palsy. Genomic annotation of DhMRs of HI group's hypo-hydroxymethylation to genes revealed enrichment in multiple neurodevelopmental signaling pathways. Moreover, we found the depletion of 5 hmC modifications in genes associated with neuronal development was accompanied by reduced mRNA levels of these genes. Taken together, our results indicate that Tuina may regulate the expression of neurodevelopment-related genes by changing the status of DNA hydroxymethylation, thereby improving learning and memory functions of cerebral palsy.
Collapse
|
13
|
Corley MJ, Vargas-Maya N, Pang APS, Lum-Jones A, Li D, Khadka V, Sultana R, Blanchard DC, Maunakea AK. Epigenetic Delay in the Neurodevelopmental Trajectory of DNA Methylation States in Autism Spectrum Disorders. Front Genet 2019; 10:907. [PMID: 31681403 PMCID: PMC6797928 DOI: 10.3389/fgene.2019.00907] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are hypothesized to originate in utero from perturbations in neural stem cell niche regions of the developing brain. Dynamic epigenetic processes including DNA methylation are integral to coordinating typical brain development. However, the extent and consequences of alterations to DNA methylation states in neural stem cell compartments in ASD are unknown. Here, we report significant DNA methylation defects in the subventricular zone of the lateral ventricles from postmortem brain of 17 autism diagnosed compared to 17 age- and gender-matched typically developing individuals. Both array- and sequencing-based genome-wide methylome analyses independently revealed that these alterations were preferentially targeted to intragenic and bivalently modified chromatin domains of genes predominately involved in neurodevelopment, which associated with aberrant precursor messenger RNA splicing events of ASD-relevant genes. Integrative analysis of our ASD and typically developing postmortem brain methylome datasets with that from fetal brain at different neurodevelopmental stages revealed that the methylation states of differentially methylated loci associated with ASD remarkably resemble the methylation states at earlier time points in fetal brain development. This observation was confirmed using additional methylome datasets from three other brain regions. Altogether, these findings implicate an epigenetic delay in the trajectory of normal DNA methylation states during the course of brain development that may consequently lead to deleterious transcriptomic events in ASD and support the hypothesis of an early developmental origin of ASD.
Collapse
Affiliation(s)
- Michael J Corley
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Nauru Vargas-Maya
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Alina P S Pang
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Annette Lum-Jones
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Vedbar Khadka
- Office of Biostatistics & Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Razvan Sultana
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - D Caroline Blanchard
- Bekesy Neurobiology Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Alika K Maunakea
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
14
|
Zhang Y, Zhang Y, Chen D, Wang C, Chen L, Gao C, Fan W, Shi J, Zhang J, Li B. Genome-Wide Alteration of 5-Hydroxymethylcytosine in Hypoxic-Ischemic Neonatal Rat Model of Cerebral Palsy. Front Mol Neurosci 2019; 12:214. [PMID: 31551709 PMCID: PMC6737274 DOI: 10.3389/fnmol.2019.00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023] Open
Abstract
Cerebral palsy (CP) is a neurodevelopmental disorder usually occurring early in life and persisting through the whole life. Several risk factors, including perinatal hypoxia-ischemia (HI), may contribute to occurrence of CP in preterm infants. DNA hydroxymethylation has been shown to play an important role in neurodevelopment and neurodegenerative disorders. However, the effect of DNA hydroxymethylation in CP remains unknown. The aim of this study is to explore whether and how DNA hydroxymethylation is involved in CP pathogenesis. We observed that overall 5-hydroxymethylcytosine (5hmC) abundance in the cortex of the temporal lobe of rat pups was decreased significantly after hypoxic-ischemic injury, and the reduced expression of Tet1 and Tet2 enzymes might be responsible for this change. Identified differential hydroxymethylation regions (DhMRs) were richly involved in multiple signaling pathways related to neuronal development and function. Furthermore, we found that reduced 5hmC modification on the DhMRs-related genes were accompanied by decrease of their mRNA expression levels. These results suggest that 5hmC modifications are involved in the CP pathogenesis and may potentially serve as a new therapeutic target.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaodong Zhang
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Danmei Chen
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Cuiting Wang
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Long Chen
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Wei Fan
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jimin Shi
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jihong Zhang
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bing Li
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
15
|
Siu MT, Butcher DT, Turinsky AL, Cytrynbaum C, Stavropoulos DJ, Walker S, Caluseriu O, Carter M, Lou Y, Nicolson R, Georgiades S, Szatmari P, Anagnostou E, Scherer SW, Choufani S, Brudno M, Weksberg R. Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants. Clin Epigenetics 2019; 11:103. [PMID: 31311581 PMCID: PMC6636171 DOI: 10.1186/s13148-019-0684-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a common and etiologically heterogeneous neurodevelopmental disorder. Although many genetic causes have been identified (> 200 ASD-risk genes), no single gene variant accounts for > 1% of all ASD cases. A role for epigenetic mechanisms in ASD etiology is supported by the fact that many ASD-risk genes function as epigenetic regulators and evidence that epigenetic dysregulation can interrupt normal brain development. Gene-specific DNAm profiles have been shown to assist in the interpretation of variants of unknown significance. Therefore, we investigated the epigenome in patients with ASD or two of the most common genomic variants conferring increased risk for ASD. Genome-wide DNA methylation (DNAm) was assessed using the Illumina Infinium HumanMethylation450 and MethylationEPIC arrays in blood from individuals with ASD of heterogeneous, undefined etiology (n = 52), and individuals with 16p11.2 deletions (16p11.2del, n = 9) or pathogenic variants in the chromatin modifier CHD8 (CHD8+/−, n = 7). Results DNAm patterns did not clearly distinguish heterogeneous ASD cases from controls. However, the homogeneous genetically-defined 16p11.2del and CHD8+/− subgroups each exhibited unique DNAm signatures that distinguished 16p11.2del or CHD8+/− individuals from each other and from heterogeneous ASD and control groups with high sensitivity and specificity. These signatures also classified additional 16p11.2del (n = 9) and CHD8 (n = 13) variants as pathogenic or benign. Our findings that DNAm alterations in each signature target unique genes in relevant biological pathways including neural development support their functional relevance. Furthermore, genes identified in our CHD8+/− DNAm signature in blood overlapped differentially expressed genes in CHD8+/− human-induced pluripotent cell-derived neurons and cerebral organoids from independent studies. Conclusions DNAm signatures can provide clinical utility complementary to next-generation sequencing in the interpretation of variants of unknown significance. Our study constitutes a novel approach for ASD risk-associated molecular classification that elucidates the vital cross-talk between genetics and epigenetics in the etiology of ASD. Electronic supplementary material The online version of this article (10.1186/s13148-019-0684-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M T Siu
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - D T Butcher
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - A L Turinsky
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Cytrynbaum
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - D J Stavropoulos
- Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - S Walker
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - O Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - M Carter
- Department of Genetics, The Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Y Lou
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - R Nicolson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - S Georgiades
- Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster University, Hamilton, Ontario, Canada
| | - P Szatmari
- Child and Youth Mental Health Collaborative, Centre for Addiction and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - E Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - S W Scherer
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - M Brudno
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - R Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Differentially Methylated Genes in Saliva are linked to Childhood Stress. Sci Rep 2018; 8:10785. [PMID: 30018309 PMCID: PMC6050255 DOI: 10.1038/s41598-018-29107-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Chronic and severe stress exposure in early childhood is associated with the development of psychiatric disorders. Yet, the molecular mechanisms underlying this relationship remain poorly understood. Here, we profile molecular marks (DNA methylation and gene expression) throughout the human genome to determine the associations between childhood stress exposure and gene regulation. To do so, we collected saliva tissue from prepubertal girls (mean age 10.9 ± 1.26 years) who had experienced different levels of childhood adversity, ranging from mild to severe. We found 122 differentially methylated genes (FDR P-value < 0.05) associated with high childhood stress exposures that affect brain development. Of these differentially methylated genes, 12 also differed in gene expression. To further investigate the potential effects of stress exposure on gene regulation, we examined the DNA sequences flanking all the differentially methylated loci. This analysis revealed enrichment of known binding sites for transcription factors, suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding on these genes. Together, these findings indicate a possible neuromolecular mechanism linking children’s social experiences with risk for anxiety and depressive disorders.
Collapse
|
17
|
Zhu Q, Stöger R, Alberio R. A Lexicon of DNA Modifications: Their Roles in Embryo Development and the Germline. Front Cell Dev Biol 2018; 6:24. [PMID: 29637072 PMCID: PMC5880922 DOI: 10.3389/fcell.2018.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
5-methylcytosine (5mC) on CpG dinucleotides has been viewed as the major epigenetic modification in eukaryotes for a long time. Apart from 5mC, additional DNA modifications have been discovered in eukaryotic genomes. Many of these modifications are thought to be solely associated with DNA damage. However, growing evidence indicates that some base modifications, namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC), and N6-methadenine (6mA), may be of biological relevance, particularly during early stages of embryo development. Although abundance of these DNA modifications in eukaryotic genomes can be low, there are suggestions that they cooperate with other epigenetic markers to affect DNA-protein interactions, gene expression, defense of genome stability and epigenetic inheritance. Little is still known about their distribution in different tissues and their functions during key stages of the animal lifecycle. This review discusses current knowledge and future perspectives of these novel DNA modifications in the mammalian genome with a focus on their dynamic distribution during early embryonic development and their potential function in epigenetic inheritance through the germ line.
Collapse
Affiliation(s)
- Qifan Zhu
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
18
|
Madrid A, Chopra P, Alisch RS. Species-Specific 5 mC and 5 hmC Genomic Landscapes Indicate Epigenetic Contribution to Human Brain Evolution. Front Mol Neurosci 2018; 11:39. [PMID: 29491831 PMCID: PMC5817089 DOI: 10.3389/fnmol.2018.00039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/29/2018] [Indexed: 12/01/2022] Open
Abstract
Human evolution from non-human primates has seen substantial change in the central nervous system, with the molecular mechanisms underlying human brain evolution remaining largely unknown. Methylation of cytosine at the fifth carbon (5-methylcytosine; 5 mC) is an essential epigenetic mark linked to neurodevelopment, as well as neurological disease. The emergence of another modified form of cytosine (5-hydroxymethylcytosine; 5 hmC) that is enriched in the brain further substantiates a role for these epigenetic marks in neurodevelopment, yet little is known about the evolutionary importance of these marks in brain development. Here, human and monkey brain tissue were profiled, identifying 5,516 and 4,070 loci that were differentially methylated and hydroxymethylated, respectively, between the species. Annotation of these loci to the human genome revealed genes critical for the development of the nervous system and that are associated with intelligence and higher cognitive functioning, such as RELN and GNAS. Moreover, ontological analyses of these differentially methylated and hydroxymethylated genes revealed a significant enrichment of neuronal/immunological-related processes, including neurogenesis and axon development. Finally, the sequences flanking the differentially methylated/hydroxymethylated loci contained a significant enrichment of binding sites for neurodevelopmentally important transcription factors (e.g., OTX1 and PITX1), suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding on these transcripts. Together, these data support dynamic species-specific epigenetic contributions in the evolution and development of the human brain from non-human primates.
Collapse
Affiliation(s)
- Andy Madrid
- Department of Psychiatry, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Pankaj Chopra
- Department Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Reid S. Alisch
- Department of Psychiatry, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
19
|
Papin C, Ibrahim A, Gras SL, Velt A, Stoll I, Jost B, Menoni H, Bronner C, Dimitrov S, Hamiche A. Combinatorial DNA methylation codes at repetitive elements. Genome Res 2017; 27:934-946. [PMID: 28348165 PMCID: PMC5453327 DOI: 10.1101/gr.213983.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/21/2017] [Indexed: 12/30/2022]
Abstract
DNA methylation is an essential epigenetic modification, present in both unique DNA sequences and repetitive elements, but its exact function in repetitive elements remains obscure. Here, we describe the genome-wide comparative analysis of the 5mC, 5hmC, 5fC, and 5caC profiles of repetitive elements in mouse embryonic fibroblasts and mouse embryonic stem cells. We provide evidence for distinct and highly specific DNA methylation/oxidation patterns of the repetitive elements in both cell types, which mainly affect CA repeats and evolutionarily conserved mouse-specific transposable elements including IAP-LTRs, SINEs B1m/B2m, and L1Md-LINEs. DNA methylation controls the expression of these retroelements, which are clustered at specific locations in the mouse genome. We show that TDG is implicated in the regulation of their unique DNA methylation/oxidation signatures and their dynamics. Our data suggest the existence of a novel epigenetic code for the most recently acquired evolutionarily conserved repeats that could play a major role in cell differentiation.
Collapse
Affiliation(s)
- Christophe Papin
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 67404 Illkirch Cedex, France
| | - Abdulkhaleg Ibrahim
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 67404 Illkirch Cedex, France
| | - Stéphanie Le Gras
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 67404 Illkirch Cedex, France
| | - Amandine Velt
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 67404 Illkirch Cedex, France
| | - Isabelle Stoll
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 67404 Illkirch Cedex, France
| | - Bernard Jost
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 67404 Illkirch Cedex, France
| | - Hervé Menoni
- Institut Albert Bonniot, Université de Grenoble Alpes /INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France
| | - Christian Bronner
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 67404 Illkirch Cedex, France
| | - Stefan Dimitrov
- Institut Albert Bonniot, Université de Grenoble Alpes /INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe labellisée Ligue contre le Cancer, 67404 Illkirch Cedex, France
| |
Collapse
|
20
|
Papale LA, Madrid A, Li S, Alisch RS. Early-life stress links 5-hydroxymethylcytosine to anxiety-related behaviors. Epigenetics 2017; 12:264-276. [PMID: 28128679 PMCID: PMC5398765 DOI: 10.1080/15592294.2017.1285986] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Environmental stress contributes to the development of psychiatric disorders, including posttraumatic stress disorder and anxiety. While even acute stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in the brain and is associated with active transcription of neuronal genes. Here we examined behavioral and molecular alterations in adult mice that experienced an early-life stress before weaning (postnatal day 12 to 18) and found anxiety-like behaviors in adult female mice that were accompanied by correlated disruptions of hypothalamic 5hmC and gene expression in 118 genes, revealing potentially functional 5hmC (i.e., gene regulation). These genes are known and potentially novel stress-related targets, including Nr3c2, Nrxn1, Nfia, and Clip1, that have a significant enrichment for neuronal ontological functions, such as neuronal development and differentiation. Sequence motif predictions indicated that 5hmC may regulate gene expression by mediating transcription factor binding and alternative splicing of many of these transcripts. Together, these findings represent a critical step toward understanding the effects of early environment on the neuromolecular mechanisms that underlie the risk to develop anxiety disorders.
Collapse
Affiliation(s)
- Ligia A Papale
- a Department of Psychiatry , University of Wisconsin , Madison , WI , USA
| | - Andy Madrid
- a Department of Psychiatry , University of Wisconsin , Madison , WI , USA.,b Neuroscience Training Program , University of Wisconsin , Madison , WI , USA
| | - Sisi Li
- a Department of Psychiatry , University of Wisconsin , Madison , WI , USA.,b Neuroscience Training Program , University of Wisconsin , Madison , WI , USA
| | - Reid S Alisch
- a Department of Psychiatry , University of Wisconsin , Madison , WI , USA
| |
Collapse
|
21
|
Salvaing J, Peynot N, Bedhane MN, Veniel S, Pellier E, Boulesteix C, Beaujean N, Daniel N, Duranthon V. Assessment of 'one-step' versus 'sequential' embryo culture conditions through embryonic genome methylation and hydroxymethylation changes. Hum Reprod 2016; 31:2471-2483. [PMID: 27664206 PMCID: PMC5088634 DOI: 10.1093/humrep/dew214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION In comparison to in vivo development, how do different conditions of in vitro culture (‘one step’ versus ‘sequential medium’) impact DNA methylation and hydroxymethylation in preimplantation embryos? SUMMARY ANSWER Using rabbit as a model, we show that DNA methylation and hydroxymethylation are both affected by in vitro culture of preimplantation embryos and the effect observed depends on the culture medium used. WHAT IS KNOWN ALREADY Correct regulation of DNA methylation is essential for embryonic development and DNA hydroxymethylation appears more and more to be a key player. Modifications of the environment of early embryos are known to have long term effects on adult phenotypes and health; these probably rely on epigenetic alterations. STUDY DESIGN SIZE, DURATION The study design we used is both cross sectional (control versus treatment) and longitudinal (time-course). Each individual in vivo experiment used embryos flushed from the donor at the 2-, 4-, 8-, 16- or morula stage. Each stage was analyzed in at least two independent experiments. Each individual in vitro experiment used embryos flushed from donors at the 1-cell stage (19 h post-coïtum) which were then cultured in parallel in the two tested media until the 2-, 4-, 8- 16-cell or morula stages. Each stage was analyzed in at least three independent experiments. In both the in vivo and in vitro experiments, 4-cell stage embryos were always included as an internal reference. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunofluorescence with antibodies specific for 5-methylcytosine (5meC) and 5-hydroxymethylcytosine (5hmeC) was used to quantify DNA methylation and hydroxymethylation levels in preimplantation embryos. We assessed the expression of DNA methyltransferases (DNMT), of ten eleven translocation (TET) dioxigenases and of two endogenous retroviral sequences (ERV) using RT-qPCR, since the expression of endogenous retroviral sequences is known to be regulated by DNA methylation. Three repeats were first done for all stages; then three additional repetitions were performed for those stages showing differences or tendencies toward differences between the different conditions in the first round of quantification. MAIN RESULTS AND THE ROLE OF CHANCE The kinetics of DNA methylation and hydroxymethylation were modified in in vitro cultured embryos, and the observed differences depended on the type of medium used. These differences were statistically significant. In addition, the expression of TET1 and TET2 was significantly reduced in post-embryonic genome activation (EGA) embryos after in vitro culture in both tested conditions. Finally, the expression of two retroviral sequences was analyzed and found to be significantly affected by in vitro culture. LIMITATIONS REASONS FOR CAUTION Our study remains mostly descriptive as no direct link can be established between the epigenetic changes observed and the expression changes in both effectors and targets of the studied epigenetic modifications. The results we obtained suggest that gene expression could be affected on a large scale, but this remains to be confirmed. WIDER IMPLICATIONS OF THE FINDINGS Our results are in agreement with the literature, showing that DNA methylation is sensitive to in vitro culture. As we observed an effect of both tested culture conditions on the tested epigenetic marks and on gene expression, we cannot conclude which medium is potentially closest to in vivo conditions. However, as the observed effects are different, additional studies may provide more information and potential recommendations for the use of culture media in assisted reproductive technology. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by an ‘AMP diagnostic prénatal et diagnostic génétique’ 2012 grant from the French Agence de la Biomédecine. This study was performed within the framework of ANR LABEX ‘REVIVE’ (ANR-10-LABX-73). Authors are members of RGB-Net (TD 1101) and Epiconcept (FA 1201) COST actions. The authors declare that there is no competing interest.
Collapse
Affiliation(s)
- J Salvaing
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France .,UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - N Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - M N Bedhane
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France.,Present address: Jigjiga University, Ethiopia
| | - S Veniel
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - E Pellier
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France.,Present address: Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex C5, France
| | - C Boulesteix
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - N Beaujean
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France.,Present address: INSERM U1208, INRA USC1361 Stem Cell and Brain Research Institute Department of Pluripotent Stem Cells in Mammals, 18 avenue Doyen Lépine, 69675 Bron, France
| | - N Daniel
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - V Duranthon
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| |
Collapse
|
22
|
Papale LA, Li S, Madrid A, Zhang Q, Chen L, Chopra P, Jin P, Keleş S, Alisch RS. Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress. Neurobiol Dis 2016; 96:54-66. [PMID: 27576189 DOI: 10.1016/j.nbd.2016.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 01/18/2023] Open
Abstract
Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex.
Collapse
Affiliation(s)
- Ligia A Papale
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | - Sisi Li
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Andy Madrid
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Qi Zhang
- Department of Statistics, University of Nebraska, Lincoln, NE, USA
| | - Li Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sündüz Keleş
- Department of Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Reid S Alisch
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
23
|
Hack LM, Dick AL, Provençal N. Epigenetic mechanisms involved in the effects of stress exposure: focus on 5-hydroxymethylcytosine. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw016. [PMID: 29492296 PMCID: PMC5804530 DOI: 10.1093/eep/dvw016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/03/2016] [Accepted: 06/11/2016] [Indexed: 05/31/2023]
Abstract
5-hydroxymethylcytosine (5hmC) is a recently re-discovered transient intermediate in the active demethylation pathway that also appears to play an independent role in modulating gene function. Epigenetic marks, particularly 5-methylcytosine, have been widely studied in relation to stress-related disorders given the long-lasting effect that stress has on these marks. 5hmC is a good candidate for involvement in the etiology of these disorders given its elevated concentration in mammalian neurons, its dynamic regulation during development of the central nervous system, and its high variability among individuals. Although we are unaware of any studies published to date examining 5 hmC profiles in human subjects who have developed a psychiatric disorder after a life stressor, there is emerging evidence from the animal literature that 5hmC profiles are altered in the context of fear-conditioning paradigms and stress exposure, suggesting a possible role for 5hmC in the biological underpinnings of stress-related disorders. In this review, the authors examine the available approaches for profiling 5hmC and describe their advantages and disadvantages as well as discuss the studies published thus far investigating 5hmC in the context of fear-related learning and stress exposure in animals. The authors also highlight the global versus locus-specific regulation of 5hmC in these studies. Finally, the limitations of the current studies and their implications are discussed.
Collapse
Affiliation(s)
- Laura M. Hack
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University Medical School, Atlanta, GA, USA
| | - Alec L.W. Dick
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nadine Provençal
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
24
|
Li S, Papale LA, Zhang Q, Madrid A, Chen L, Chopra P, Keleş S, Jin P, Alisch RS. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress. Neurobiol Dis 2015; 86:99-108. [PMID: 26598390 DOI: 10.1016/j.nbd.2015.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders, including anxiety and post-traumatic stress disorder. While even acute stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, we found a hippocampal increase of 5hmC in the glucocorticoid receptor gene (Nr3c1) following acute stress, warranting a deeper investigation of stress-related 5hmC levels. Here we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate the first genome-wide profile of hippocampal 5hmC following exposure to acute restraint stress and a one-hour recovery. This approach found a genome-wide disruption in 5hmC associated with acute stress response, primarily in genic regions, and identified known and potentially novel stress-related targets that have a significant enrichment for neuronal ontological functions. Integration of these data with hippocampal gene expression data from these same mice found stress-related hydroxymethylation correlated to altered transcript levels and sequence motif predictions indicated that 5hmC may function by mediating transcription factor binding to these transcripts. Together, these data reveal an environmental impact on this newly discovered epigenetic mark in the brain and represent a critical step toward understanding stress-related epigenetic mechanisms that alter gene expression and can lead to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Sisi Li
- Department of Psychiatry University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Ligia A Papale
- Department of Psychiatry University of Wisconsin, Madison, WI, USA
| | - Qi Zhang
- Department Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Andy Madrid
- Department of Psychiatry University of Wisconsin, Madison, WI, USA; Endocrinology and Reproductive Physiology Training Program, University of Wisconsin, Madison, WI, USA
| | - Li Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sündüz Keleş
- Department Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Reid S Alisch
- Department of Psychiatry University of Wisconsin, Madison, WI, USA.
| |
Collapse
|