1
|
Castelluccio N, Spath K, Li D, De Coo IFM, Butterworth L, Wells D, Mertes H, Poulton J, Heindryckx B. Genetic and reproductive strategies to prevent mitochondrial diseases. Hum Reprod Update 2025:dmaf004. [PMID: 40085924 DOI: 10.1093/humupd/dmaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
Mitochondrial DNA (mtDNA) diseases pose unique challenges for genetic counselling and require tailored approaches to address recurrence risks and reproductive options. The intricate dynamics of mtDNA segregation and heteroplasmy shift significantly impact the chances of having affected children. In addition to natural pregnancy, oocyte donation, and adoption, IVF-based approaches can reduce the risk of disease transmission. Prenatal diagnosis (PND) and preimplantation genetic testing (PGT) remain the standard methods for women carrying pathogenic mtDNA mutations; nevertheless, they are not suitable for every patient. Germline nuclear transfer (NT) has emerged as a novel therapeutic strategy, while mitochondrial gene editing has increasingly become a promising research area in the field. However, challenges and safety concerns associated with all these techniques remain, highlighting the need for long-term follow-up studies, an improved understanding of disease mechanisms, and personalized approaches to diagnosis and treatment. Given the inherent risks of adverse maternal and child outcomes, careful consideration of the balance between potential benefits and drawbacks is also warranted. This review will provide critical insights, identify knowledge gaps, and underscore the importance of advancing mitochondrial disease research in reproductive health.
Collapse
Affiliation(s)
- Noemi Castelluccio
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | | | - Danyang Li
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Irenaeus F M De Coo
- Department of Translational Genomics, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Lyndsey Butterworth
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Juno Genetics UK, Oxford, UK
| | - Heidi Mertes
- Department of Philosophy and Moral Sciences and Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
2
|
Van Der Kelen A, Li Piani L, Mertens J, Regin M, Couvreu de Deckersberg E, Van de Velde H, Sermon K, Tournaye H, Verpoest W, Hes FJ, Blockeel C, Spits C. The interplay between mitochondrial DNA genotypes, female infertility, ovarian response, and mutagenesis in oocytes. Hum Reprod Open 2024; 2025:hoae074. [PMID: 39830711 PMCID: PMC11739621 DOI: 10.1093/hropen/hoae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Indexed: 01/22/2025] Open
Abstract
STUDY QUESTION Is there an association between different mitochondrial DNA (mtDNA) genotypes and female infertility or ovarian response, and is the appearance of variants in the oocytes favored by medically assisted reproduction (MAR) techniques? SUMMARY ANSWER Ovarian response was negatively associated with global non-synonymous protein-coding homoplasmic variants but positively associated with haplogroup K; the number of oocytes retrieved in a cycle correlates with the number of heteroplasmic variants in the oocytes, principally with variants located in the hypervariable (HV) region and rRNA loci, as well as non-synonymous protein-coding variants. WHAT IS KNOWN ALREADY Several genes have been shown to be positively associated with infertility, and there is growing concern that MAR may facilitate the transmission of these harmful variants to offspring, thereby passing on infertility. The potential role of mtDNA variants in these two perspectives remains poorly understood. STUDY DESIGN SIZE DURATION This cohort study included 261 oocytes from 132 women (mean age: 32 ± 4 years) undergoing ovarian stimulation between 2019 and 2020 at an academic center. The oocyte mtDNA genotypes were examined for associations with the women's fertility characteristics. PARTICIPANTS/MATERIALS SETTING METHODS The mtDNA of the oocytes underwent deep sequencing, and the mtDNA genotypes were compared between infertile and fertile groups using Fisher's exact test. The impact of the mtDNA genotype on anti-Müllerian hormone (AMH) levels and the number of (mature) oocytes retrieved was assessed using the Mann-Whitney U test for univariate analysis and logistic regression for multivariate analysis. Additionally, we examined the associations of oocyte maturation stage, infertility status, number of ovarian stimulation units, and number of oocytes retrieved with the type and load of heteroplasmic variants using univariate analysis and Poisson or linear regression analysis. MAIN RESULTS AND THE ROLE OF CHANCE Neither homoplasmic mtDNA variants nor haplogroups in the oocytes were associated with infertility status or with AMH levels. Conversely, when the relationship between the number of oocytes retrieved and different mtDNA genotypes was examined, a positive association was observed between the number of metaphase (MII) oocytes (P = 0.005) and haplogroup K. Furthermore, the presence of global non-synonymous homoplasmic variants in the protein-coding region was significantly associated with a reduced number of total oocytes and MII oocytes retrieved (P < 0.001 for both). Regarding the type and load of heteroplasmic variants in the different regions, there were no significant associations according to maturation stage of the oocyte or to fertility status; however, the number of oocytes retrieved correlated positively with the total number of heteroplasmic variants, and specifically with non-synonymous protein-coding, HV and rRNA variants (P < 0.001 for all). LIMITATIONS REASONS FOR CAUTION The current work is constrained by its retrospective design and single-center approach, potentially limiting the generalizability of our findings. The small sample size for specific types of infertility restricts this aspect of the findings. WIDER IMPLICATIONS OF THE FINDINGS This work suggests that mitochondrial genetics may have an impact on ovarian response and corroborates previous findings indicating that the size of the oocyte cohort after stimulation correlates with the presence of potentially deleterious variants in the oocyte. Future epidemiological and functional studies based on the results of the current study will provide valuable insights to address gaps in knowledge to assess any prospective risks for MAR-conceived offspring. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Research Foundation Flanders (FWO, Grant numbers 1506617N and 1506717N to C.S.), by the Fonds Wetenschappelijk Fonds, Willy Gepts Research Foundation of Universitair Ziekenhuis Brussel (Grant numbers WFWG14-15, WFWG16-43, and WFWG19-19 to C.S.), and by the Methusalem Grant of the Vrije Universiteit Brussel (to K.S.). M.R. and E.C.d.D. were supported predoctoral fellowships by the FWO, Grant numbers 1133622N and 1S73521N, respectively. The authors declare no conflict of interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Annelore Van Der Kelen
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Medical Genetics, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Letizia Li Piani
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Reproductive Medicine, Brussels IVF, Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Infertility Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Joke Mertens
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Marius Regin
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Hilde Van de Velde
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Reproductive Medicine, Brussels IVF, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Karen Sermon
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Herman Tournaye
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Reproductive Medicine, Brussels IVF, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Willem Verpoest
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Reproductive Medicine, Brussels IVF, Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Reproductive Medicine, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - Frederik Jan Hes
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Medical Genetics, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Christophe Blockeel
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Reproductive Medicine, Brussels IVF, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Claudia Spits
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
3
|
Chen J, Li H, Liang R, Huang Y, Tang Q. Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. Biogerontology 2024; 26:33. [PMID: 39729246 DOI: 10.1007/s10522-024-10175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases. In the field of aging research, it is critical to unravel the intricate mechanisms underpinning mtDNA mutations in living organisms and to elucidate the pathological consequences they trigger. Interestingly, certain effects, such as oxidative stress and apoptosis, may not universally accelerate aging as traditionally perceived. These phenomena demand deeper investigation and a more nuanced reinterpretation of current findings to address persistent scientific uncertainties. By synthesizing recent insights, this review seeks to clarify how pathogenic mtDNA mutations drive cellular senescence and systemic health deterioration, while also exploring the complex dynamics of mtDNA inheritance that may propagate these mutations. Such a comprehensive understanding could ultimately inform the development of innovative therapeutic strategies to counteract mitochondrial dysfunctions associated with aging.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
4
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Ji D, Zhang N, Zou W, Zhang Z, Marley JL, Liu Z, Liang C, Shen L, Liu Y, Liang D, Su T, Du Y, Cao Y. Modeling-based prediction tools for preimplantation genetic testing of mitochondrial DNA diseases: estimating symptomatic thresholds, risk, and chance of success. J Assist Reprod Genet 2023; 40:2185-2196. [PMID: 37439868 PMCID: PMC10440331 DOI: 10.1007/s10815-023-02880-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
PURPOSE Preimplantation genetic testing (PGT) has become a reliable tool for preventing the germline transmission of mitochondrial DNA (mtDNA) variants. However, procedures are not standardized across mtDNA variants. In this study, we aim to estimate symptomatic thresholds, risk, and chance of success for PGT for mtDNA pathogenic variant carriers. METHODS We performed a systematic analysis of heteroplasmy data including 455 individuals from 187 familial pedigrees with the common m.3243A>G, m.8344A>G, or m.8993T>G pathogenic variants. We applied binary logistic regression for estimating symptomatic thresholds of heteroplasmy, simplified Sewell-Wright formula and Kimura equations for predicting the risk of disease transmission, and binomial distribution for predicting minimum oocyte numbers. RESULTS We estimated the symptomatic thresholds of m.8993T>G and m.8344A>G as 29.86% and 16.15%, respectively. We could not determine a threshold for m.3243A>G. We established models for mothers harboring common and rare mtDNA pathogenic variants to predict the risk of disease transmission and the number of oocytes required to produce an embryo with sufficiently low variant load. In addition, we provide a table allowing the prediction of transmission risk and the minimum required oocytes for PGT patients with different variant levels. CONCLUSION We have established models that can determine the symptomatic thresholds of common mtDNA pathogenic variants. We also constructed universal models applicable to nearly all mtDNA pathogenic variants which can predict risk and minimum numbers for PGT patients. These models have advanced our understanding of mtDNA disease pathogenesis and will enable more effective prevention of disease transmission using PGT.
Collapse
Affiliation(s)
- Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Ning Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Zhikang Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jordan Lee Marley
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Zhuoli Liu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunmei Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Lingchao Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Tianhong Su
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| |
Collapse
|
6
|
Franco M, Pickett SJ, Fleischmann Z, Khrapko M, Cote-L’Heureux A, Aidlen D, Stein D, Markuzon N, Popadin K, Braverman M, Woods DC, Tilly JL, Turnbull DM, Khrapko K. Dynamics of the most common pathogenic mtDNA variant m.3243A > G demonstrate frequency-dependency in blood and positive selection in the germline. Hum Mol Genet 2022; 31:4075-4086. [PMID: 35849052 PMCID: PMC9703810 DOI: 10.1093/hmg/ddac149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
The A-to-G point mutation at position 3243 in the human mitochondrial genome (m.3243A > G) is the most common pathogenic mtDNA variant responsible for disease in humans. It is widely accepted that m.3243A > G levels decrease in blood with age, and an age correction representing ~ 2% annual decline is often applied to account for this change in mutation level. Here we report that recent data indicate that the dynamics of m.3243A > G are more complex and depend on the mutation level in blood in a bi-phasic way. Consequently, the traditional 2% correction, which is adequate 'on average', creates opposite predictive biases at high and low mutation levels. Unbiased age correction is needed to circumvent these drawbacks of the standard model. We propose to eliminate both biases by using an approach where age correction depends on mutation level in a biphasic way to account for the dynamics of m.3243A > G in blood. The utility of this approach was further tested in estimating germline selection of m.3243A > G. The biphasic approach permitted us to uncover patterns consistent with the possibility of positive selection for m.3243A > G. Germline selection of m.3243A > G shows an 'arching' profile by which selection is positive at intermediate mutant fractions and declines at high and low mutant fractions. We conclude that use of this biphasic approach will greatly improve the accuracy of modelling changes in mtDNA mutation frequencies in the germline and in somatic cells during aging.
Collapse
Affiliation(s)
- Melissa Franco
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research and Institute for Translational and Clinical Research, Newcastle University and Newcastle Medical School, Newcastle-upon-Tyne NE2 4HH, UK
| | - Zoe Fleischmann
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Mark Khrapko
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | | - Dylan Aidlen
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - David Stein
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | | - Konstantin Popadin
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Center for Mitochondrial Functional Genomics, Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236040, Russia
| | - Maxim Braverman
- Department of Mathematics, Northeastern University, Boston, MA 02115, USA
| | - Dori C Woods
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Jonathan L Tilly
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research and Institute for Translational and Clinical Research, Newcastle University and Newcastle Medical School, Newcastle-upon-Tyne NE2 4HH, UK
| | | |
Collapse
|
7
|
Radzvilavicius AL, Johnston IG. Organelle bottlenecks facilitate evolvability by traversing heteroplasmic fitness valleys. Front Genet 2022; 13:974472. [PMID: 36386853 PMCID: PMC9650085 DOI: 10.3389/fgene.2022.974472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/11/2022] [Indexed: 07/09/2024] Open
Abstract
Bioenergetic organelles-mitochondria and plastids-retain their own genomes (mtDNA and ptDNA), and these organelle DNA (oDNA) molecules are vital for eukaryotic life. Like all genomes, oDNA must be able to evolve to suit new environmental challenges. However, mixed oDNA populations in cells can challenge cellular bioenergetics, providing a penalty to the appearance and adaptation of new mutations. Here we show that organelle "bottlenecks," mechanisms increasing cell-to-cell oDNA variability during development, can overcome this mixture penalty and facilitate the adaptation of beneficial mutations. We show that oDNA heteroplasmy and bottlenecks naturally emerge in evolutionary simulations subjected to fluctuating environments, demonstrating that this evolvability is itself evolvable. Usually thought of as a mechanism to clear damaging mutations, organelle bottlenecks therefore also resolve the tension between intracellular selection for pure cellular oDNA populations and the "bet-hedging" need for evolvability and adaptation to new environments. This general theory suggests a reason for the maintenance of organelle heteroplasmy in cells, and may explain some of the observed diversity in organelle maintenance and inheritance across taxa.
Collapse
Affiliation(s)
- Arunas L. Radzvilavicius
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Li D, Liang C, Zhang T, Marley JL, Zou W, Lian M, Ji D. Pathogenic mitochondrial DNA 3243A>G mutation: From genetics to phenotype. Front Genet 2022; 13:951185. [PMID: 36276941 PMCID: PMC9582660 DOI: 10.3389/fgene.2022.951185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial DNA (mtDNA) m.3243A>G mutation is one of the most common pathogenic mtDNA variants, showing complex genetics, pathogenic molecular mechanisms, and phenotypes. In recent years, the prevention of mtDNA-related diseases has trended toward precision medicine strategies, such as preimplantation genetic diagnosis (PGD) and mitochondrial replacement therapy (MRT). These techniques are set to allow the birth of healthy children, but clinical implementation relies on thorough insights into mtDNA genetics. The genotype and phenotype of m.3243A>G vary greatly from mother to offspring, which compromises genetic counseling for the disease. This review is the first to systematically elaborate on the characteristics of the m.3243A>G mutation, from genetics to phenotype and the relationship between them, as well as the related influencing factors and potential strategies for preventing disease. These perceptions will provide clarity for clinicians providing genetic counseling to m.3243A>G patients.
Collapse
Affiliation(s)
- Danyang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Chunmei Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Tao Zhang
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jordan Lee Marley
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Muqing Lian
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- *Correspondence: Dongmei Ji,
| |
Collapse
|
9
|
Ng YS, Lim AZ, Panagiotou G, Turnbull DM, Walker M. Endocrine Manifestations and New Developments in Mitochondrial Disease. Endocr Rev 2022; 43:583-609. [PMID: 35552684 PMCID: PMC9113134 DOI: 10.1210/endrev/bnab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/19/2022]
Abstract
Mitochondrial diseases are a group of common inherited diseases causing disruption of oxidative phosphorylation. Some patients with mitochondrial disease have endocrine manifestations, with diabetes mellitus being predominant but also include hypogonadism, hypoadrenalism, and hypoparathyroidism. There have been major developments in mitochondrial disease over the past decade that have major implications for all patients. The collection of large cohorts of patients has better defined the phenotype of mitochondrial diseases and the majority of patients with endocrine abnormalities have involvement of several other systems. This means that patients with mitochondrial disease and endocrine manifestations need specialist follow-up because some of the other manifestations, such as stroke-like episodes and cardiomyopathy, are potentially life threatening. Also, the development and follow-up of large cohorts of patients means that there are clinical guidelines for the management of patients with mitochondrial disease. There is also considerable research activity to identify novel therapies for the treatment of mitochondrial disease. The revolution in genetics, with the introduction of next-generation sequencing, has made genetic testing more available and establishing a precise genetic diagnosis is important because it will affect the risk for involvement for different organ systems. Establishing a genetic diagnosis is also crucial because important reproductive options have been developed that will prevent the transmission of mitochondrial disease because of mitochondrial DNA variants to the next generation.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Albert Zishen Lim
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Grigorios Panagiotou
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark Walker
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Liu Q, Iqbal MF, Yaqub T, Firyal S, Zhao Y, Stoneking M, Li M. The Transmission of Human Mitochondrial DNA in Four-Generation Pedigrees. Hum Mutat 2022; 43:1259-1267. [PMID: 35460575 DOI: 10.1002/humu.24390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/06/2022]
Abstract
Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild-type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two-generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four-generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21-71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Muhammad Faaras Iqbal
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan.,University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Yaqub
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sehrish Firyal
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany.,Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Zhang H, Esposito M, Pezet MG, Aryaman J, Wei W, Klimm F, Calabrese C, Burr SP, Macabelli CH, Viscomi C, Saitou M, Chiaratti MR, Stewart JB, Jones N, Chinnery PF. Mitochondrial DNA heteroplasmy is modulated during oocyte development propagating mutation transmission. SCIENCE ADVANCES 2021; 7:eabi5657. [PMID: 34878831 PMCID: PMC8654302 DOI: 10.1126/sciadv.abi5657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/15/2021] [Indexed: 05/02/2023]
Abstract
Heteroplasmic mitochondrial DNA (mtDNA) mutations are a common cause of inherited disease, but a few recurrent mutations account for the vast majority of new families. The reasons for this are not known. We studied heteroplasmic mice transmitting m.5024C>T corresponding to a human pathogenic mutation. Analyzing 1167 mother-pup pairs, we show that m.5024C>T is preferentially transmitted from low to higher levels but does not reach homoplasmy. Single-cell analysis of the developing mouse oocytes showed the preferential increase in mutant over wild-type mtDNA in the absence of cell division. A similar inheritance pattern is seen in human pedigrees transmitting several pathogenic mtDNA mutations. In m.5024C>T mice, this can be explained by the preferential propagation of mtDNA during oocyte maturation, counterbalanced by purifying selection against high heteroplasmy levels. This could explain how a disadvantageous mutation in a carrier increases to levels that cause disease but fails to fixate, causing multigenerational heteroplasmic mtDNA disorders.
Collapse
Affiliation(s)
- Haixin Zhang
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Marco Esposito
- EPSRC Centre for the Mathematics of Precision Healthcare, Department of Mathematics, Imperial College, London, UK
- Leverhulme Centre for Cellular Bionics, Imperial College, London, UK
| | - Mikael G. Pezet
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Juvid Aryaman
- EPSRC Centre for the Mathematics of Precision Healthcare, Department of Mathematics, Imperial College, London, UK
| | - Wei Wei
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Florian Klimm
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- EPSRC Centre for the Mathematics of Precision Healthcare, Department of Mathematics, Imperial College, London, UK
| | - Claudia Calabrese
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen P. Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Carolina H. Macabelli
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Carlo Viscomi
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Marcos R. Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - James B. Stewart
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Nick Jones
- EPSRC Centre for the Mathematics of Precision Healthcare, Department of Mathematics, Imperial College, London, UK
- Leverhulme Centre for Cellular Bionics, Imperial College, London, UK
| | - Patrick F. Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
12
|
Liu C, Fetterman JL, Qian Y, Sun X, Blackwell TW, Pitsillides A, Cade BE, Wang H, Raffield LM, Lange LA, Anugu P, Abecasis G, Adrienne Cupples L, Redline S, Correa A, Vasan RS, Wilson JG, Ding J, Levy D. Presence and transmission of mitochondrial heteroplasmic mutations in human populations of European and African ancestry. Mitochondrion 2021; 60:33-42. [PMID: 34303007 PMCID: PMC8464516 DOI: 10.1016/j.mito.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/13/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
We investigated the concordance of mitochondrial DNA heteroplasmic mutations (heteroplasmies) in 6745 maternal pairs of European (EA, n = 4718 pairs) and African (AA, n = 2027 pairs) Americans in whole blood. Mother-offspring pairs displayed the highest concordance rate, followed by sibling-sibling and more distantly-related maternal pairs. The allele fractions of concordant heteroplasmies exhibited high correlation (R2 = 0.8) between paired individuals. Discordant heteroplasmies were more likely to be in coding regions, be nonsynonymous or nonsynonymous-deleterious (p < 0.001). The number of deleterious heteroplasmies was significantly correlated with advancing age (20-44, 45-64, and ≥65 years, p-trend = 0.01). One standard deviation increase in heteroplasmic burden (i.e., the number of heteroplasmies carried by an individual) was associated with 0.17 to 0.26 (p < 1e - 23) standard deviation decrease in mtDNA copy number, independent of age. White blood cell count and differential count jointly explained 0.5% to 1.3% (p ≤ 0.001) variance in heteroplasmic burden. A genome-wide association and meta-analysis identified a region at 11p11.12 (top signal rs779031139, p = 2.0e - 18, minor allele frequency = 0.38) associated with the heteroplasmic burden. However, the 11p11.12 region is adjacent to a nuclear mitochondrial DNA (NUMT) corresponding to a 542 bp area of the D-loop. This region was no longer significant after excluding heteroplasmies within the 542 bp from the heteroplasmic burden. The discovery that blood mtDNA heteroplasmies were both inherited and somatic origins and that an increase in heteroplasmic burden was strongly associated with a decrease in average number of mtDNA copy number in blood are important findings to be considered in association studies of mtDNA with disease traits.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA.
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 20118, USA
| | - Yong Qian
- Longitudinal Studies Section, Translational Gerontology Branch, NIA/NIH, Baltimore, MD 21224, USA
| | - Xianbang Sun
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Achilleas Pitsillides
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Leslie A Lange
- School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pramod Anugu
- Coordinating Center, University of Mississippi of Medical Center, Jackson, MS 39216, USA
| | - Goncalo Abecasis
- TOPMed Informatics Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA 01702, USA; Sections of Preventive Medicine and Epidemiology, and Cardiovascular Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jun Ding
- Longitudinal Studies Section, Translational Gerontology Branch, NIA/NIH, Baltimore, MD 21224, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA 01702, USA; Population Sciences Branch, NHLBI/NIH, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Ng YS, Bindoff LA, Gorman GS, Klopstock T, Kornblum C, Mancuso M, McFarland R, Sue CM, Suomalainen A, Taylor RW, Thorburn DR, Turnbull DM. Mitochondrial disease in adults: recent advances and future promise. Lancet Neurol 2021; 20:573-584. [PMID: 34146515 DOI: 10.1016/s1474-4422(21)00098-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial diseases are some of the most common inherited neurometabolic disorders, and major progress has been made in our understanding, diagnosis, and treatment of these conditions in the past 5 years. Development of national mitochondrial disease cohorts and international collaborations has changed our knowledge of the spectrum of clinical phenotypes and natural history of mitochondrial diseases. Advances in high-throughput sequencing technologies have altered the diagnostic algorithm for mitochondrial diseases by increasingly using a genetics-first approach, with more than 350 disease-causing genes identified to date. While the current management strategy for mitochondrial disease focuses on surveillance for multisystem involvement and effective symptomatic treatment, new endeavours are underway to find better treatments, including repurposing current drugs, use of novel small molecules, and gene therapies. Developments made in reproductive technology offer women the opportunity to prevent transmission of DNA-related mitochondrial disease to their children.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, LMU Hospital, Ludwig Maximilians University, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Cornelia Kornblum
- Department of Neurology, Neuromuscular Disease Section, University Hospital Bonn, Bonn, Germany; Centre for Rare Diseases, University Hospital Bonn, Bonn, Germany
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Italy
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Anu Suomalainen
- Research Program in Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Neuroscience Centre, HiLife, University of Helsinki, Helsinki, Finland; Helsinki University Hospital, HUSlab, Helsinki, Finland
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
14
|
Bernardino Gomes TM, Ng YS, Pickett SJ, Turnbull DM, Vincent AE. Mitochondrial DNA disorders: From pathogenic variants to preventing transmission. Hum Mol Genet 2021; 30:R245-R253. [PMID: 34169319 PMCID: PMC8490015 DOI: 10.1093/hmg/ddab156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/27/2022] Open
Abstract
Mitochondrial DNA (mtDNA) disorders are recognized as one of the most common causes of inherited metabolic disorders. The mitochondrial genome occurs in multiple copies resulting in both homoplasmic and heteroplasmic pathogenic mtDNA variants. A biochemical defect arises when the pathogenic variant level reaches a threshold, which differs between variants. Moreover, variants can segregate, clonally expand, or be lost from cellular populations resulting in a dynamic and tissue-specific mosaic pattern of oxidative deficiency. MtDNA is maternally inherited but transmission patterns of heteroplasmic pathogenic variants are complex. During oogenesis, a mitochondrial bottleneck results in offspring with widely differing variant levels to their mother, whilst highly deleterious variants, such as deletions, are not transmitted. Complemented by a complex interplay between mitochondrial and nuclear genomes, these peculiar genetics produce marked phenotypic variation, posing challenges to the diagnosis and clinical management of patients. Novel therapeutic compounds and several genetic therapies are currently under investigation, but proven disease-modifying therapies remain elusive. Women who carry pathogenic mtDNA variants require bespoke genetic counselling to determine their reproductive options. Recent advances in in vitro fertilization techniques, have greatly improved reproductive choices, but are not without their challenges. Since the first pathogenic mtDNA variants were identified over 30 years ago, there has been remarkable progress in our understanding of these diseases. However, many questions remain unanswered and future studies are required to investigate the mechanisms of disease progression and to identify new disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Tiago M Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
15
|
Oxygen tension modulates the mitochondrial genetic bottleneck and influences the segregation of a heteroplasmic mtDNA variant in vitro. Commun Biol 2021; 4:584. [PMID: 33990696 PMCID: PMC8121860 DOI: 10.1038/s42003-021-02069-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Most humans carry a mixed population of mitochondrial DNA (mtDNA heteroplasmy) affecting ~1–2% of molecules, but rapid percentage shifts occur over one generation leading to severe mitochondrial diseases. A decrease in the amount of mtDNA within the developing female germ line appears to play a role, but other sub-cellular mechanisms have been implicated. Establishing an in vitro model of early mammalian germ cell development from embryonic stem cells, here we show that the reduction of mtDNA content is modulated by oxygen and reaches a nadir immediately before germ cell specification. The observed genetic bottleneck was accompanied by a decrease in mtDNA replicating foci and the segregation of heteroplasmy, which were both abolished at higher oxygen levels. Thus, differences in oxygen tension occurring during early development likely modulate the amount of mtDNA, facilitating mtDNA segregation and contributing to tissue-specific mutation loads. Using an in vitro culture system, Pezet et al. studied the influence of oxygen on the mitochondrial DNA (mtDNA) in primordial germ cell-like cells (PGCLCs) in vitro. Low oxygen levels resembling in vivo reduced the cell mtDNA content causing a genetic bottleneck and the segregation of different mtDNA genotypes.
Collapse
|
16
|
Spath K, Babariya D, Konstantinidis M, Lowndes J, Child T, Grifo JA, Poulton J, Wells D. Clinical application of sequencing-based methods for parallel preimplantation genetic testing for mitochondrial DNA disease and aneuploidy. Fertil Steril 2021; 115:1521-1532. [PMID: 33745725 DOI: 10.1016/j.fertnstert.2021.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To validate and apply a strategy permitting parallel preimplantation genetic testing (PGT) for mitochondrial DNA (mtDNA) disease and aneuploidy (PGT-A). DESIGN Preclinical test validation and case reports. SETTING Fertility centers. Diagnostics laboratory. PATIENTS Four patients at risk of transmitting mtDNA disease caused by m.8993T>G (Patients A and B), m.10191T>G (Patient C), and m.3243A>G (Patient D). Patients A, B, and C had affected children. Patients A and D displayed somatic heteroplasmy for mtDNA mutations. INTERVENTIONS Embryo biopsy, genetic testing, and uterine transfer of embryos predicted to be euploid and mutation-free. MAIN OUTCOME MEASURES Test accuracy, treatment outcomes, and mutation segregation. RESULTS Accuracy of mtDNA mutation quantification was confirmed. The test was compatible with PGT-A, and half of the embryos tested were shown to be aneuploid (16/33). Mutations were detected in approximately 40% of embryo biopsies from Patients A and D (10/24) but in none from Patients B and C (n = 29). Patients B and C had healthy children following PGT and natural conception, respectively. The m.8993T>G mutation displayed skewed segregation, whereas m.3243A>G mutation levels were relatively low and potentially impacted embryo development. CONCLUSIONS Considering the high aneuploidy rate, strategies providing a combination of PGT for mtDNA disease and aneuploidy may be advantageous compared with approaches that consider only mtDNA. Heteroplasmic women had a higher incidence of affected embryos than those with undetectable somatic mutant mtDNA but were still able to produce mutation-free embryos. While not conclusive, the results are consistent with the existence of mutation-specific segregation mechanisms occurring during oogenesis and possibly embryogenesis.
Collapse
Affiliation(s)
- Katharina Spath
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Juno Genetics, Oxford, United Kingdom.
| | - Dhruti Babariya
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Juno Genetics, Oxford, United Kingdom
| | | | - Jo Lowndes
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Oxford Fertility, Fertility Partnership, Oxford, United Kingdom
| | | | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Juno Genetics, Oxford, United Kingdom
| |
Collapse
|
17
|
Stewart JB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 2021; 22:106-118. [PMID: 32989265 DOI: 10.1038/s41576-020-00284-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Contrary to the long-held view that most humans harbour only identical mitochondrial genomes, deep resequencing has uncovered unanticipated extreme genetic variation within mitochondrial DNA (mtDNA). Most, if not all, humans contain multiple mtDNA genotypes (heteroplasmy); specific patterns of variants accumulate in different tissues, including cancers, over time; and some variants are preferentially passed down or suppressed in the maternal germ line. These findings cast light on the origin and spread of mtDNA mutations at multiple scales, from the organelle to the human population, and challenge the conventional view that high percentages of a mutation are required before a new variant has functional consequences.
Collapse
Affiliation(s)
- James B Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Abstract
The mitochondria, present in almost all eukaryotic cells, produce energy but also contribute to many other essential cellular functions. One of the unique characteristics of the mitochondria is that they have their own genome, which is only maternally transmitted via highly specific mechanisms that occur during gametogenesis and embryogenesis. The mature oocyte has the highest mitochondrial DNA copy number of any cell. This high mitochondrial mass is directly correlated to the capacity of the oocyte to support the early stages of embryo development in many species. Indeed, the subtle energetic and metabolic modifications that are necessary for each of the key steps of early embryonic development rely heavily on the oocyte’s mitochondrial load and activity. For example, epigenetic reprogramming depends on the metabolic cofactors produced by the mitochondrial metabolism, and the reactive oxygen species derived from the mitochondrial respiratory chain are essential for the regulation of cell signaling in the embryo. All these elements have also led scientists to consider the mitochondria as a potential biomarker of oocyte competence and embryo viability, as well as a key target for future potential therapies. However, more studies are needed to confirm these findings. This review article summarizes the past two decades of research that have led to the current understanding of mitochondrial functions in reproduction
Collapse
|
19
|
Steffann J, Monnot S, Magen M, Assouline Z, Gigarel N, Ville Y, Salomon L, Bessiere B, Martinovic J, Rötig A, Bengoa J, Borghèse R, Munnich A, Barcia G, Bonnefont JP. A retrospective study on the efficacy of prenatal diagnosis for pregnancies at risk of mitochondrial DNA disorders. Genet Med 2020; 23:720-731. [PMID: 33303968 DOI: 10.1038/s41436-020-01043-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Prenatal diagnosis of mitochondrial DNA (mtDNA) disorders is challenging due to potential instability of fetal mutant loads and paucity of data connecting prenatal mutant loads to postnatal observations. Retrospective study of our prenatal cohort aims to examine the efficacy of prenatal diagnosis to improve counseling and reproductive options for those with pregnancies at risk of mtDNA disorders. METHODS We report on a retrospective review of 20 years of prenatal diagnosis of pathogenic mtDNA variants in 80 pregnant women and 120 fetuses. RESULTS Patients with undetectable pathogenic variants (n = 29) consistently had fetuses free of variants, while heteroplasmic women (n = 51) were very likely to transmit their variant (57/78 fetuses, 73%). In the latter case, 26 pregnancies were terminated because fetal mutant loads were >40%. Of the 84 children born, 27 were heteroplasmic (mutant load <65%). To date, no medical problems related to mitochondrial dysfunction have been reported. CONCLUSION Placental heterogeneity of mutant loads questioned the reliability of chorionic villous testing. Fetal mutant load stability, however, suggests the reliability of a single analysis of amniotic fluid at any stage of pregnancy for prenatal diagnosis of mtDNA disorders. Mutant loads under 40% reliably predict lack of symptoms in the progeny of heteroplasmic women.
Collapse
Affiliation(s)
- Julie Steffann
- Université de Paris-Sorbonne Paris Cité, Imagine Institute, INSERM UMR1163, Paris, France. .,Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France.
| | - Sophie Monnot
- Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Maryse Magen
- Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Zahra Assouline
- Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Nadine Gigarel
- Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Yves Ville
- Université de Paris-Sorbonne Paris Cité, Imagine Institute, INSERM UMR1163, Paris, France.,Service d'Obstétrique - Maternité, chirurgie médecine et imagerie fœtale, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Laurent Salomon
- Université de Paris-Sorbonne Paris Cité, Imagine Institute, INSERM UMR1163, Paris, France.,Service d'Obstétrique - Maternité, chirurgie médecine et imagerie fœtale, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Bettina Bessiere
- Service d'histo-embryologie et fœtopathologie, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Jelena Martinovic
- Unité de Foetopathologie, Hôpital Antoine Béclère, GHU Paris Saclay, AP-HP, Clamart, France
| | - Agnès Rötig
- Université de Paris-Sorbonne Paris Cité, Imagine Institute, INSERM UMR1163, Paris, France
| | - Joana Bengoa
- Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Roxana Borghèse
- Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Arnold Munnich
- Université de Paris-Sorbonne Paris Cité, Imagine Institute, INSERM UMR1163, Paris, France.,Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Giulia Barcia
- Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Jean-Paul Bonnefont
- Université de Paris-Sorbonne Paris Cité, Imagine Institute, INSERM UMR1163, Paris, France.,Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
20
|
Wei W, Chinnery PF. Inheritance of mitochondrial DNA in humans: implications for rare and common diseases. J Intern Med 2020; 287:634-644. [PMID: 32187761 PMCID: PMC8641369 DOI: 10.1111/joim.13047] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022]
Abstract
The first draft human mitochondrial DNA (mtDNA) sequence was published in 1981, paving the way for two decades of discovery linking mtDNA variation with human disease. Severe pathogenic mutations cause sporadic and inherited rare disorders that often involve the nervous system. However, some mutations cause mild organ-specific phenotypes that have a reduced clinical penetrance, and polymorphic variation of mtDNA is associated with an altered risk of developing several late-onset common human diseases including Parkinson's disease. mtDNA mutations also accumulate during human life and are enriched in affected organs in a number of age-related diseases. Thus, mtDNA contributes to a wide range of human pathologies. For many decades, it has generally been accepted that mtDNA is inherited exclusively down the maternal line in humans. Although recent evidence has challenged this dogma, whole-genome sequencing has identified nuclear-encoded mitochondrial sequences (NUMTs) that can give the false impression of paternally inherited mtDNA. This provides a more likely explanation for recent reports of 'bi-parental inheritance', where the paternal alleles are actually transmitted through the nuclear genome. The presence of both mutated and wild-type variant alleles within the same individual (heteroplasmy) and rapid shifts in allele frequency can lead to offspring with variable severity of disease. In addition, there is emerging evidence that selection can act for and against specific mtDNA variants within the developing germ line, and possibly within developing tissues. Thus, understanding how mtDNA is inherited has far-reaching implications across medicine. There is emerging evidence that this highly dynamic system is amenable to therapeutic manipulation, raising the possibility that we can harness new understanding to prevent and treat rare and common human diseases where mtDNA mutations play a key role.
Collapse
Affiliation(s)
- W Wei
- From the, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - P F Chinnery
- From the, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Oliveira MT, Pontes CDB, Ciesielski GL. Roles of the mitochondrial replisome in mitochondrial DNA deletion formation. Genet Mol Biol 2020; 43:e20190069. [PMID: 32141473 PMCID: PMC7197994 DOI: 10.1590/1678-4685-gmb-2019-0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial
diseases. Mutations in the genes encoding components of the mitochondrial
replisome, such as DNA polymerase gamma (Pol γ) and the mtDNA helicase Twinkle,
have been associated with the accumulation of such deletions and the development
of pathological conditions in humans. Recently, we demonstrated that changes in
the level of wild-type Twinkle promote mtDNA deletions, which implies that not
only mutations in, but also dysregulation of the stoichiometry between the
replisome components is potentially pathogenic. The mechanism(s) by which
alterations to the replisome function generate mtDNA deletions is(are) currently
under debate. It is commonly accepted that stalling of the replication fork at
sites likely to form secondary structures precedes the deletion formation. The
secondary structural elements can be bypassed by the replication-slippage
mechanism. Otherwise, stalling of the replication fork can generate single- and
double-strand breaks, which can be repaired through recombination leading to the
elimination of segments between the recombination sites. Here, we discuss
aberrances of the replisome in the context of the two debated outcomes, and
suggest new mechanistic explanations based on replication restart and template
switching that could account for all the deletion types reported for
patients.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | | | | |
Collapse
|
22
|
Evolving mtDNA populations within cells. Biochem Soc Trans 2020; 47:1367-1382. [PMID: 31484687 PMCID: PMC6824680 DOI: 10.1042/bst20190238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes vital respiratory machinery. Populations of mtDNA molecules exist in most eukaryotic cells, subject to replication, degradation, mutation, and other population processes. These processes affect the genetic makeup of cellular mtDNA populations, changing cell-to-cell distributions, means, and variances of mutant mtDNA load over time. As mtDNA mutant load has nonlinear effects on cell functionality, and cell functionality has nonlinear effects on tissue performance, these statistics of cellular mtDNA populations play vital roles in health, disease, and inheritance. This mini review will describe some of the better-known ways in which these populations change over time in different organisms, highlighting the importance of quantitatively understanding both mutant load mean and variance. Due to length constraints, we cannot attempt to be comprehensive but hope to provide useful links to some of the many excellent studies on these topics.
Collapse
|
23
|
Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees. Proc Natl Acad Sci U S A 2019; 116:25172-25178. [PMID: 31757848 PMCID: PMC6911200 DOI: 10.1073/pnas.1906331116] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Heteroplasmy-the presence of multiple mitochondrial DNA (mtDNA) haplotypes in an individual-can lead to numerous mitochondrial diseases. The presentation of such diseases depends on the frequency of the heteroplasmic variant in tissues, which, in turn, depends on the dynamics of mtDNA transmissions during germline and somatic development. Thus, understanding and predicting these dynamics between generations and within individuals is medically relevant. Here, we study patterns of heteroplasmy in 2 tissues from each of 345 humans in 96 multigenerational families, each with, at least, 2 siblings (a total of 249 mother-child transmissions). This experimental design has allowed us to estimate the timing of mtDNA mutations, drift, and selection with unprecedented precision. Our results are remarkably concordant between 2 complementary population-genetic approaches. We find evidence for a severe germline bottleneck (7-10 mtDNA segregating units) that occurs independently in different oocyte lineages from the same mother, while somatic bottlenecks are less severe. We demonstrate that divergence between mother and offspring increases with the mother's age at childbirth, likely due to continued drift of heteroplasmy frequencies in oocytes under meiotic arrest. We show that this period is also accompanied by mutation accumulation leading to more de novo mutations in children born to older mothers. We show that heteroplasmic variants at intermediate frequencies can segregate for many generations in the human population, despite the strong germline bottleneck. We show that selection acts during germline development to keep the frequency of putatively deleterious variants from rising. Our findings have important applications for clinical genetics and genetic counseling.
Collapse
|
24
|
Johnston IG. Varied Mechanisms and Models for the Varying Mitochondrial Bottleneck. Front Cell Dev Biol 2019; 7:294. [PMID: 31824946 PMCID: PMC6879659 DOI: 10.3389/fcell.2019.00294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA (mtDNA) molecules exist in populations within cells, and may carry mutations. Different cells within an organism, and organisms within a family, may have different proportions of mutant mtDNA in these cellular populations. This diversity is often thought of as arising from a “genetic bottleneck.” This article surveys approaches to characterize and model the generation of this genetic diversity, aiming to provide an introduction to the range of concepts involved, and to highlight some recent advances in understanding. In particular, differences between the statistical “genetic bottleneck” (mutant proportion spread) and the physical mtDNA bottleneck and other cellular processes are highlighted. Particular attention is paid to the quantitative analysis of the “genetic bottleneck,” estimation of its magnitude from observed data, and inference of its underlying mechanisms. Evidence that the “genetic bottleneck” (mutant proportion spread) varies with age, between individuals and species, and across mtDNA sequences, is described. The interpretation issues that arise from sampling errors, selection, and different quantitative definitions are also discussed.
Collapse
Affiliation(s)
- Iain G Johnston
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
25
|
Boggan RM, Lim A, Taylor RW, McFarland R, Pickett SJ. Resolving complexity in mitochondrial disease: Towards precision medicine. Mol Genet Metab 2019; 128:19-29. [PMID: 31648942 DOI: 10.1016/j.ymgme.2019.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases, caused by mutations in either the nuclear or mitochondrial genomes (mtDNA), are the most common form of inherited neurometabolic disorders. They are remarkably heterogeneous, both in their clinical presentation and genetic etiology, presenting challenges for diagnosis, clinical management and elucidation of molecular mechanism. The multifaceted nature of these diseases, compounded by the unique characteristics of mitochondrial genetics, cement their space in the field of complex disease. In this review we examine the m.3243A>G variant, one of the most prevalent mitochondrial DNA mutations, using it as an exemplar to demonstrate the challenges presented by these complex disorders. Disease caused by m.3243A>G is one of the most phenotypically diverse of all mitochondrial diseases; we outline known causes of this heterogeneity including mtDNA heteroplasmy, mtDNA copy number and nuclear genetic factors. We consider the impact that this has in the clinic, discussing the personalized management of common manifestations attributed to this pathogenic mtDNA variant, including hearing impairment, diabetes mellitus, myopathy, cardiac disease, stroke-like episodes and gastrointestinal disturbances. Future research into this complex disorder must account for this heterogeneity, benefitting from the use of large patient cohorts to build upon current clinical expertise. Through multi-disciplinary collaboration, the complexities of this mitochondrial disease can be addressed with the variety of diagnostic, prognostic, and treatment approaches that are moulded to best fit the needs of each individual patient.
Collapse
Affiliation(s)
- Róisín M Boggan
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Albert Lim
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
26
|
Kaufman BA, Picard M, Sondheimer N. Mitochondrial DNA, nuclear context, and the risk for carcinogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:455-462. [PMID: 29332303 PMCID: PMC6045969 DOI: 10.1002/em.22169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/25/2017] [Accepted: 12/20/2017] [Indexed: 05/05/2023]
Abstract
The inheritance of mitochondrial DNA (mtDNA) from mother to child is complicated by differences in the stability of the mitochondrial genome. Although the germ line mtDNA is protected through the minimization of replication between generations, sequence variation can occur either through mutation or due to changes in the ratio between distinct genomes that are present in the mother (known as heteroplasmy). Thus, the unpredictability in transgenerational inheritance of mtDNA may cause the emergence of pathogenic mitochondrial and cellular phenotypes in offspring. Studies of the role of mitochondrial metabolism in cancer have a long and rich history, but recent evidence strongly suggests that changes in mitochondrial genotype and phenotype play a significant role in the initiation, progression and treatment of cancer. At the intersection of these two fields lies the potential for emerging mtDNA mutations to drive carcinogenesis in the offspring. In this review, we suggest that this facet of transgenerational carcinogenesis remains underexplored and is a potentially important contributor to cancer. Environ. Mol. Mutagen. 60:455-462, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brett A. Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA (USA)
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY 10032 USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032 USA
- Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032 USA
| | - Neal Sondheimer
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada M5G1X8
- Department of Paediatrics, The University of Toronto School of Medicine, Toronto, ON, Canada M5G1X8
- Correspondence to: Neal Sondheimer, 555 University Avenue, Toronto ON M5G 1X8, p – 416-813-7654 x 301480, f – 416-813-5345,
| |
Collapse
|
27
|
Wei W, Tuna S, Keogh MJ, Smith KR, Aitman TJ, Beales PL, Bennett DL, Gale DP, Bitner-Glindzicz MAK, Black GC, Brennan P, Elliott P, Flinter FA, Floto RA, Houlden H, Irving M, Koziell A, Maher ER, Markus HS, Morrell NW, Newman WG, Roberts I, Sayer JA, Smith KGC, Taylor JC, Watkins H, Webster AR, Wilkie AOM, Williamson C, Ashford S, Penkett CJ, Stirrups KE, Rendon A, Ouwehand WH, Bradley JR, Raymond FL, Caulfield M, Turro E, Chinnery PF. Germline selection shapes human mitochondrial DNA diversity. Science 2019; 364:eaau6520. [PMID: 31123110 DOI: 10.1126/science.aau6520] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/22/2019] [Accepted: 04/03/2019] [Indexed: 02/02/2023]
Abstract
Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.1% of individuals from 1526 mother-offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the propensity for maternal transmission differs across the mitochondrial genome. Over one generation, we observed selection both for and against variants in specific genomic regions; known variants were more likely to be transmitted than previously unknown variants. However, new heteroplasmies were more likely to match the nuclear genetic ancestry as opposed to the ancestry of the mitochondrial genome on which the mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the population level is shaped by selective forces within the female germ line under nuclear genetic control, which ensures consistency between the two independent genetic lineages.
Collapse
|
28
|
Grace HE, Galdun P, Lesnefsky EJ, West FD, Iyer S. mRNA Reprogramming of T8993G Leigh's Syndrome Fibroblast Cells to Create Induced Pluripotent Stem Cell Models for Mitochondrial Disorders. Stem Cells Dev 2019; 28:846-859. [PMID: 31017045 DOI: 10.1089/scd.2019.0045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early molecular and developmental events impacting many incurable mitochondrial disorders are not fully understood and require generation of relevant patient- and disease-specific stem cell models. In this study, we focus on the ability of a nonviral and integration-free reprogramming method for deriving clinical-grade induced pluripotent stem cells (iPSCs) specific to Leigh's syndrome (LS), a fatal neurodegenerative mitochondrial disorder of infants. The cause of fatality could be due to the presence of high abundance of mutant mitochondrial DNA (mtDNA) or decline in respiration levels, thus affecting early molecular and developmental events in energy-intensive tissues. LS patient fibroblasts (designated LS1 in this study), carrying a high percentage of mutant T8993G mtDNA, were reprogrammed using a combined mRNA-miRNA nonviral approach to generate human iPSCs (hiPSCs). The LS1-hiPSCs were evaluated for their self-renewal, embryoid body (EB) formation, and differentiation potential, using immunocytochemistry and gene expression profiling methods. Sanger sequencing and next-generation sequencing approaches were used to detect the mutation and quantify the percentage of mutant mtDNA in the LS1-hiPSCs and differentiated derivatives. Reprogrammed LS-hiPSCs expressed pluripotent stem cell markers including transcription factors OCT4, NANOG, and SOX2 and cell surface markers SSEA4, TRA-1-60, and TRA-1-81 at the RNA and protein level. LS1-hiPSCs also demonstrated the capacity for self-renewal and multilineage differentiation into all three embryonic germ layers. EB analysis demonstrated impaired differentiation potential in cells carrying high percentage of mutant mtDNA. Next-generation sequencing analysis confirmed the presence of high abundance of T8993G mutant mtDNA in the patient fibroblasts and their reprogrammed and differentiated derivatives. These results represent for the first time the derivation and characterization of a stable nonviral hiPSC line reprogrammed from a LS patient fibroblast carrying a high abundance of mutant mtDNA. These outcomes are important steps toward understanding disease origins and developing personalized therapies for patients suffering from mitochondrial diseases.
Collapse
Affiliation(s)
- Harrison E Grace
- 1 Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,2 Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Patrick Galdun
- 3 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- 3 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.,4 Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia.,5 Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia.,6 Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Franklin D West
- 1 Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,2 Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Shilpa Iyer
- 7 Department of Biological Sciences, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
29
|
Pickett SJ, Blain A, Ng YS, Wilson IJ, Taylor RW, McFarland R, Turnbull DM, Gorman GS. Mitochondrial Donation - Which Women Could Benefit? N Engl J Med 2019; 380:1971-1972. [PMID: 31091381 DOI: 10.1056/nejmc1808565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Alasdair Blain
- Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Yi Shiau Ng
- Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ian J Wilson
- Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Otten ABC, Sallevelt SCEH, Carling PJ, Dreesen JCFM, Drüsedau M, Spierts S, Paulussen ADC, de Die-Smulders CEM, Herbert M, Chinnery PF, Samuels DC, Lindsey P, Smeets HJM. Mutation-specific effects in germline transmission of pathogenic mtDNA variants. Hum Reprod 2019; 33:1331-1341. [PMID: 29850888 DOI: 10.1093/humrep/dey114] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
STUDY QUESTION Does germline selection (besides random genetic drift) play a role during the transmission of heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutations in humans? SUMMARY ANSWER We conclude that inheritance of mtDNA is mutation-specific and governed by a combination of random genetic drift and negative and/or positive selection. WHAT IS KNOWN ALREADY mtDNA inherits maternally through a genetic bottleneck, but the underlying mechanisms are largely unknown. Although random genetic drift is recognized as an important mechanism, selection mechanisms are thought to play a role as well. STUDY DESIGN, SIZE, DURATION We determined the mtDNA mutation loads in 160 available oocytes, zygotes, and blastomeres of five carriers of the m.3243A>G mutation, one carrier of the m.8993T>G mutation, and one carrier of the m.14487T>C mutation. PARTICIPANTS/MATERIALS, SETTING, METHODS Mutation loads were determined in PGD samples using PCR assays and analysed mathematically to test for random sampling effects. In addition, a meta-analysis has been performed on mutation load transmission data in the literature to confirm the results of the PGD samples. MAIN RESULTS AND THE ROLE OF CHANCE By applying the Kimura distribution, which assumes random mechanisms, we found that mtDNA segregations patterns could be explained by variable bottleneck sizes among all our carriers (moment estimates ranging from 10 to 145). Marked differences in the bottleneck size would determine the probability that a carrier produces offspring with mutations markedly different than her own. We investigated whether bottleneck sizes might also be influenced by non-random mechanisms. We noted a consistent absence of high mutation loads in all our m.3243A>G carriers, indicating non-random events. To test this, we fitted a standard and a truncated Kimura distribution to the m.3243A>G segregation data. A Kimura distribution truncated at 76.5% heteroplasmy has a significantly better fit (P-value = 0.005) than the standard Kimura distribution. For the m.8993T>G mutation, we suspect a skewed mutation load distribution in the offspring. To test this hypothesis, we performed a meta-analysis on published blood mutation levels of offspring-mother (O-M) transmission for the m.3243A>G and m.8993T>G mutations. This analysis revealed some evidence that the O-M ratios for the m.8993T>G mutation are different from zero (P-value <0.001), while for the m.3243A>G mutation there was little evidence that the O-M ratios are non-zero. Lastly, for the m.14487T>G mutation, where the whole range of mutation loads was represented, we found no indications for selective events during its transmission. LARGE SCALE DATA All data are included in the Results section of this article. LIMITATIONS, REASON FOR CAUTION The availability of human material for the mutations is scarce, requiring additional samples to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS Our data show that non-random mechanisms are involved during mtDNA segregation. We aimed to provide the mechanisms underlying these selection events. One explanation for selection against high m.3243A>G mutation loads could be, as previously reported, a pronounced oxidative phosphorylation (OXPHOS) deficiency at high mutation loads, which prohibits oogenesis (e.g. progression through meiosis). No maximum mutation loads of the m.8993T>G mutation seem to exist, as the OXPHOS deficiency is less severe, even at levels close to 100%. In contrast, high mutation loads seem to be favoured, probably because they lead to an increased mitochondrial membrane potential (MMP), a hallmark on which healthy mitochondria are being selected. This hypothesis could provide a possible explanation for the skewed segregation pattern observed. Our findings are corroborated by the segregation pattern of the m.14487T>C mutation, which does not affect OXPHOS and MMP significantly, and its transmission is therefore predominantly determined by random genetic drift. Our conclusion is that mutation-specific selection mechanisms occur during mtDNA inheritance, which has implications for PGD and mitochondrial replacement therapy. STUDY FUNDING/COMPETING INTEREST(S) This work has been funded by GROW-School of Oncology and Developmental Biology. The authors declare no competing interests.
Collapse
Affiliation(s)
- Auke B C Otten
- Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| | - Suzanne C E H Sallevelt
- Department of Clinical Genetics, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
| | - Phillippa J Carling
- Department of Neuroscience, Sheffield institute for translational neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Joseph C F M Dreesen
- Department of Clinical Genetics, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
| | - Marion Drüsedau
- Department of Clinical Genetics, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
| | - Sabine Spierts
- Department of Clinical Genetics, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
| | - Aimee D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
| | | | - Mary Herbert
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, Cambridge, Biomedical Campus, Cambridge, UK
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patrick Lindsey
- Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| | - Hubert J M Smeets
- Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
31
|
Klucnika A, Ma H. A battle for transmission: the cooperative and selfish animal mitochondrial genomes. Open Biol 2019; 9:180267. [PMID: 30890027 PMCID: PMC6451365 DOI: 10.1098/rsob.180267] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial genome is an evolutionarily persistent and cooperative component of metazoan cells that contributes to energy production and many other cellular processes. Despite sharing the same host as the nuclear genome, the multi-copy mitochondrial DNA (mtDNA) follows very different rules of replication and transmission, which translate into differences in the patterns of selection. On one hand, mtDNA is dependent on the host for its transmission, so selections would favour genomes that boost organismal fitness. On the other hand, genetic heterogeneity within an individual allows different mitochondrial genomes to compete for transmission. This intra-organismal competition could select for the best replicator, which does not necessarily give the fittest organisms, resulting in mito-nuclear conflict. In this review, we discuss the recent advances in our understanding of the mechanisms and opposing forces governing mtDNA transmission and selection in bilaterians, and what the implications of these are for mtDNA evolution and mitochondrial replacement therapy.
Collapse
Affiliation(s)
- Anna Klucnika
- 1 Wellcome Trust/Cancer Research UK Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN , UK
- 2 Department of Genetics, University of Cambridge , Downing Street, Cambridge CB2 3EH , UK
| | - Hansong Ma
- 1 Wellcome Trust/Cancer Research UK Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN , UK
- 2 Department of Genetics, University of Cambridge , Downing Street, Cambridge CB2 3EH , UK
| |
Collapse
|
32
|
Abstract
Inherited mitochondrial DNA (mtDNA) diseases were discovered 30 years ago, and their characterization has provided a new perspective on the etiology of the common metabolic and degenerative diseases, cancer, and aging. The maternally inherited mtDNA contains 37 critical bioenergetic genes that are present in hundreds of copies per cell, but the 'mitochondrial genome' encompasses an additional 1,000-2,000 nuclear DNA (nDNA) mitochondrial genes. The interaction between these two mitochondrial genetic systems provides explanations for phenomena such as the non-Mendelian transmission of the common 'complex' diseases, age-related disease risk and progression, variable penetrance and expressivity, and gene-environment interactions. Thus, mtDNA genetics contributes to the quantitative and environmental components of human genetics that cannot be explained by Mendelian genetics. Because mtDNA is maternally inherited and cytoplasmic, it has fostered the first germline gene therapy, nuclear transplantation. However, effective interventions are still lacking for existing patients with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
The mitochondrial DNA genetic bottleneck: inheritance and beyond. Essays Biochem 2018; 62:225-234. [PMID: 29880721 DOI: 10.1042/ebc20170096] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
mtDNA is a multicopy genome. When mutations exist, they can affect a varying proportion of the mtDNA present within every cell (heteroplasmy). Heteroplasmic mtDNA mutations can be maternally inherited, but the proportion of mutated alleles differs markedly between offspring within one generation. This led to the genetic bottleneck hypothesis, explaining the rapid changes in allele frequency seen during transmission from one generation to the next. Although a physical reduction in mtDNA has been demonstrated in several species, a comprehensive understanding of the molecular mechanisms is yet to be revealed. Several questions remain, including the role of selection for and against specific alleles, whether all bottlenecks are the same, and precisely how the bottleneck is controlled during development. Although originally thought to be limited to the germline, there is evidence that bottlenecks exist in other cell types during development, perhaps explaining why different tissues in the same organism contain different levels of mutated mtDNA. Moreover, tissue-specific bottlenecks may occur throughout life in response to environmental influences, adding further complexity to the situation. Here we review key recent findings, and suggest ways forward that will hopefully advance our understanding of the role of mtDNA in human disease.
Collapse
|
34
|
Burgstaller JP, Kolbe T, Havlicek V, Hembach S, Poulton J, Piálek J, Steinborn R, Rülicke T, Brem G, Jones NS, Johnston IG. Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations. Nat Commun 2018; 9:2488. [PMID: 29950599 PMCID: PMC6021422 DOI: 10.1038/s41467-018-04797-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/22/2018] [Indexed: 11/30/2022] Open
Abstract
Vital mitochondrial DNA (mtDNA) populations exist in cells and may consist of heteroplasmic mixtures of mtDNA types. The evolution of these heteroplasmic populations through development, ageing, and generations is central to genetic diseases, but is poorly understood in mammals. Here we dissect these population dynamics using a dataset of unprecedented size and temporal span, comprising 1947 single-cell oocyte and 899 somatic measurements of heteroplasmy change throughout lifetimes and generations in two genetically distinct mouse models. We provide a novel and detailed quantitative characterisation of the linear increase in heteroplasmy variance throughout mammalian life courses in oocytes and pups. We find that differences in mean heteroplasmy are induced between generations, and the heteroplasmy of germline and somatic precursors diverge early in development, with a haplotype-specific direction of segregation. We develop stochastic theory predicting the implications of these dynamics for ageing and disease manifestation and discuss its application to human mtDNA dynamics.
Collapse
Affiliation(s)
- Joerg P Burgstaller
- Department for Agrobiotechnology, Biotechnology in Animal Production, IFA Tulln, 3430, Tulln, Austria.
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
- University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - Vitezslav Havlicek
- Department for Biomedical Sciences, Reproduction Centre Wieselburg, University of Veterinary Medicine, Vienna, Austria
| | - Stephanie Hembach
- Department for Agrobiotechnology, Biotechnology in Animal Production, IFA Tulln, 3430, Tulln, Austria
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Gottfried Brem
- Department for Agrobiotechnology, Biotechnology in Animal Production, IFA Tulln, 3430, Tulln, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
- EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London, SW7 2AZ, UK.
| | - Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
35
|
Muraresku CC, McCormick EM, Falk MJ. Mitochondrial Disease: Advances in clinical diagnosis, management, therapeutic development, and preventative strategies. CURRENT GENETIC MEDICINE REPORTS 2018; 6:62-72. [PMID: 30393588 PMCID: PMC6208355 DOI: 10.1007/s40142-018-0138-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Primary mitochondrial disease encompasses an impressive range of inherited energy deficiency disorders having highly variable molecular etiologies as well as clinical onset, severity, progression, and response to therapies of multi-system manifestations. Significant progress has been made in primary mitochondrial disease diagnostic approaches, clinical management, therapeutic options, and preventative strategies that are tailored to major mitochondrial disease phenotypes and subclasses. RECENT FINDINGS The extensive phenotypic pleiotropy of individual mitochondrial diseases from an organ-based perspective is reviewed. Improved consensus on standards for mitochondrial disease patient care are being complemented by emerging therapies that target specific molecular subtypes of mitochondrial disease. Reproductive counseling options now include preimplantation genetic diagnosis at the time of in vitro fertilization for familial mutations in nuclear genes and some mtDNA disorders. Mitochondrial replacement technologies have promise for some mtDNA disorders, although practical and societal challenges remain to allow their further research analyses and clinical utilization. SUMMARY A dramatic increase has occurred in recent years in the recognition, understanding, treatment options, and preventative strategies for primary mitochondrial disease.
Collapse
Affiliation(s)
- Colleen C. Muraresku
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth M. McCormick
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marni J. Falk
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Nadeem MS, Ahmad H, Mohammed K, Muhammad K, Ullah I, Baothman OAS, Ali N, Anwar F, Zamzami MA, Shakoori AR. Identification of variants in the mitochondrial lysine-tRNA (MT-TK) gene in myoclonic epilepsy-pathogenicity evaluation and structural characterization by in silico approach. J Cell Biochem 2018; 119:6258-6265. [PMID: 29663531 DOI: 10.1002/jcb.26857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Variations in mitochondrial genes have an established link with myoclonic epilepsy. In the present study we evaluated the nucleotide sequence of MT-TK gene of 52 individuals from 12 unrelated families and reported three variations in 2 of the 13 epileptic patients. The DNA sequences coding for MT-TK gene were sequenced and mutations were detected in all participants. The mutations were further analyzed by the in silico analysis and their structural and pathogenic effects were determined. All the investigated patients had symptoms of myoclonus, 61.5% were positive for ataxia, 23.07% were suffering from hearing loss, 15.38% were having mild to severe dementia, 69.23% were males, and 61.53% had cousin marriage in their family history. DNA extracted from saliva was used for the PCR amplification of a 440 bp DNA fragment encompassing complete MT-TK gene. The nucleotide sequence analysis revealed three mutations, m.8306T>C, m.8313G>C, and m.8362T>G that are divergent from available reports. The identified mutations designate the heteroplasmic condition. Furthermore, pathogenicity of the identified variants was predicted by in silico tools viz., PON-mt-tRNA and MitoTIP. Secondary structure of altered MT-TK was predicted by RNAStructure web server. Studies by MitoTIP and PON-mt-tRNA tools have provided strong evidences of pathogenic effects of these mutations. Single nucleotide variations resulted in disruptive secondary structure of mutant MT-TK models, as predicted by RNAStructure. In vivo confirmation of structural and pathogenic effects of identified mutations in the animal models can be prolonged on the basis of these findings.
Collapse
Affiliation(s)
- Muhammad S Nadeem
- Department of Biochemistry, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Habib Ahmad
- Department of Genetics, Faculty of Life Sciences, Hazara University, Mansehra, Pakistan
| | - Kaleemuddin Mohammed
- Department of Biochemistry, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Khushi Muhammad
- Department of Genetics, Faculty of Life Sciences, Hazara University, Mansehra, Pakistan
| | - Inam Ullah
- Department of Genetics, Faculty of Life Sciences, Hazara University, Mansehra, Pakistan
| | - Othman A S Baothman
- Department of Biochemistry, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Nasir Ali
- Department of Genetics, Faculty of Life Sciences, Hazara University, Mansehra, Pakistan
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Abdul Rauf Shakoori
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| |
Collapse
|
37
|
Poulton J, Finsterer J, Yu-Wai-Man P. Genetic Counselling for Maternally Inherited Mitochondrial Disorders. Mol Diagn Ther 2018; 21:419-429. [PMID: 28536827 DOI: 10.1007/s40291-017-0279-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this review was to provide an evidence-based approach to frequently asked questions relating to the risk of transmitting a maternally inherited mitochondrial disorder (MID). We do not address disorders linked with disturbed mitochondrial DNA (mtDNA) maintenance, causing mtDNA depletion or multiple mtDNA deletions, as these are autosomally inherited. The review addresses questions regarding prognosis, recurrence risks and the strategies available to prevent disease transmission. The clinical and genetic complexity of maternally inherited MIDs represent a major challenge for patients, their relatives and health professionals. Since many of the genetic and pathophysiological aspects of MIDs remain unknown, counselling of affected patients and at-risk family members remains difficult. MtDNA mutations are maternally transmitted or, more rarely, they are sporadic, occurring de novo (~25%). Females carrying homoplasmic mtDNA mutations will transmit the mutant species to all of their offspring, who may or may not exhibit a similar phenotype depending on modifying, secondary factors. Females carrying heteroplasmic mtDNA mutations will transmit a variable amount of mutant mtDNA to their offspring, which can result in considerable phenotypic heterogeneity among siblings. The majority of mtDNA rearrangements, such as single large-scale deletions, are sporadic, but there is a small risk of recurrence (~4%) among the offspring of affected women. The range and suitability of reproductive choices for prospective mothers is a complex area of mitochondrial medicine that needs to be managed by experienced healthcare professionals as part of a multidisciplinary team. Genetic counselling is facilitated by the identification of the underlying causative genetic defect. To provide more precise genetic counselling, further research is needed to clarify the secondary factors that account for the variable penetrance and the often marked differential expressivity of pathogenic mtDNA mutations both within and between families.
Collapse
Affiliation(s)
- Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Josef Finsterer
- Krankenanstalt Rudolfstiftung, Postfach 20, 1180, Vienna, Austria.
| | - Patrick Yu-Wai-Man
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Chiaratti MR, Garcia BM, Carvalho KF, Machado TS, Ribeiro FKDS, Macabelli CH. The role of mitochondria in the female germline: Implications to fertility and inheritance of mitochondrial diseases. Cell Biol Int 2018; 42:711-724. [PMID: 29418047 DOI: 10.1002/cbin.10947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/03/2018] [Indexed: 12/21/2022]
Abstract
Mitochondria play a fundamental role during development of the female germline. They are fragmented, round, and small. Despite these characteristics suggesting that they are inactive, there is accumulating evidence that mitochondrial dysfunctions are a major cause of infertility and generation of aneuploidies in humans. In addition, mitochondria and their own genomes (mitochondrial DNA-mtDNA) may become damaged with time, which might be one reason why aging leads to infertility. As a result, mitochondria have been proposed as an important target for evaluating oocyte and embryo quality, and developing treatments for female infertility. On the other hand, mutations in mtDNA may cause mitochondrial dysfunctions, leading to severe diseases that affect 1 in 4,300 people. Moreover, very low levels of mutated mtDNA seem to be present in every person worldwide. These may increase with time and associate with late-onset degenerative diseases such as Parkinson disease, Alzheimer disease, and common cancers. Mutations in mtDNA are transmitted down the maternal lineage, following a poorly understood pattern of inheritance. Recent findings have indicated existence in the female germline of a purifying filter against deleterious mtDNA variants. Although the underlying mechanism of this filter is largely unknown, it has been suggested to rely on autophagic degradation of dysfunctional mitochondria or selective replication/transmission of non-deleterious variants. Thus, understanding the mechanisms regulating mitochondrial inheritance is important both to improve diagnosis and develop therapeutic tools for preventing transmission of mtDNA-encoded diseases.
Collapse
Affiliation(s)
- Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil.,Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508-270, Brazil
| | - Bruna Martins Garcia
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Karen Freire Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Thiago Simões Machado
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil.,Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508-270, Brazil
| | | | | |
Collapse
|
39
|
Deep-Coverage MPS Analysis of Heteroplasmic Variants within the mtGenome Allows for Frequent Differentiation of Maternal Relatives. Genes (Basel) 2018; 9:genes9030124. [PMID: 29495418 PMCID: PMC5867845 DOI: 10.3390/genes9030124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Distinguishing between maternal relatives through mitochondrial (mt) DNA sequence analysis has been a longstanding desire of the forensic community. Using a deep-coverage, massively parallel sequencing (DCMPS) approach, we studied the pattern of mtDNA heteroplasmy across the mtgenomes of 39 mother-child pairs of European decent; haplogroups H, J, K, R, T, U, and X. Both shared and differentiating heteroplasmy were observed on a frequent basis in these closely related maternal relatives, with the minor variant often presented as 2–10% of the sequencing reads. A total of 17 pairs exhibited differentiating heteroplasmy (44%), with the majority of sites (76%, 16 of 21) occurring in the coding region, further illustrating the value of conducting sequence analysis on the entire mtgenome. A number of the sites of differentiating heteroplasmy resulted in non-synonymous changes in protein sequence (5 of 21), and to changes in transfer or ribosomal RNA sequences (5 of 21), highlighting the potentially deleterious nature of these heteroplasmic states. Shared heteroplasmy was observed in 12 of the 39 mother-child pairs (31%), with no duplicate sites of either differentiating or shared heteroplasmy observed; a single nucleotide position (16093) was duplicated between the data sets. Finally, rates of heteroplasmy in blood and buccal cells were compared, as it is known that rates can vary across tissue types, with similar observations in the current study. Our data support the view that differentiating heteroplasmy across the mtgenome can be used to frequently distinguish maternal relatives, and could be of interest to both the medical genetics and forensic communities.
Collapse
|
40
|
Complete elimination of a pathogenic homoplasmic mtDNA mutation in one generation. Mitochondrion 2018; 45:18-21. [PMID: 29408632 DOI: 10.1016/j.mito.2018.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/17/2018] [Accepted: 01/26/2018] [Indexed: 01/23/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations have been implicated in a wide variety of neurological conditions and are maternally inherited through a complex process which is not fully understood. Genetic counselling for mitochondrial conditions secondary to a mtDNA mutation can be challenging as it is not currently possible to accurately predict the mutational load/heteroplasmy of the mutation which could be passed to the offspring. In general, one expects that the higher the level of heteroplasmy the more likely that the same mtDNA mutation will be seen in the offspring. We report here a family which places a caveat on genetic counselling for mtDNA disorders. The proband is a 63 year old woman with m.14459G>A associated dystonia/spasticity/ataxia. The m.14459G>A mutation was detected at homoplasmic/near homoplasmic levels in her muscle tissue and fibroblasts, but did not appear to have been passed on to any of her offspring. To our knowledge, this is the first report of complete selection against a homoplasmic variant within maternally transmitted mtDNA. It is not clear if this novel phenomenon occurred by random chance or by another method of mitochondrial selection.
Collapse
|
41
|
Burr SP, Pezet M, Chinnery PF. Mitochondrial DNA Heteroplasmy and Purifying Selection in the Mammalian Female Germ Line. Dev Growth Differ 2018; 60:21-32. [PMID: 29363102 PMCID: PMC11520955 DOI: 10.1111/dgd.12420] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 01/19/2023]
Abstract
Inherited mutations in the mitochondrial (mt)DNA are a major cause of human disease, with approximately 1 in 5000 people affected by one of the hundreds of identified pathogenic mtDNA point mutations or deletions. Due to the severe, and often untreatable, symptoms of many mitochondrial diseases, identifying how these mutations are inherited from one generation to the next has been an area of intense research in recent years. Despite large advances in our understanding of this complex process, many questions remain unanswered, with one of the most hotly debated being whether or not purifying selection acts against pathogenic mutations during germline development.
Collapse
Affiliation(s)
- Stephen P. Burr
- MRC Mitochondrial Biology UnitDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Mikael Pezet
- MRC Mitochondrial Biology UnitDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Patrick F. Chinnery
- MRC Mitochondrial Biology UnitDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
42
|
Claeys KG, Abicht A, Häusler M, Kleinle S, Wiesmann M, Schulz JB, Horvath R, Weis J. Novel genetic and neuropathological insights in neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP). Muscle Nerve 2017; 54:328-33. [PMID: 27015314 DOI: 10.1002/mus.25125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2016] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) is caused by m.8993T>G/C mutations in the mitochondrial adenosine triphosphate synthase subunit 6 gene (MT-ATP6). Traditionally, heteroplasmy levels between 70% and 90% lead to NARP, and >90% result in Leigh syndrome. METHODS In this study we report a 30-year-old man with NARP and m.8993T>G in MT-ATP6. RESULTS Although the patient carried the mutation in homoplasmic state in blood with similarly high levels in urine (94%) and buccal swab (92%), he presented with NARP and not the expected, more severe Leigh phenotype. The mutation could not be detected in any of the 3 analyzed tissues of the mother, indicating a large genetic shift between mother and offspring. Nerve biopsy revealed peculiar endoneurial Schwann cell nuclear accumulations, clusters of concentrically arranged Schwann cells devoid of myelinated axons, and degenerated mitochondria. CONCLUSIONS We emphasize the phenotypic variability of the m.8993T>G MT-ATP6 mutation and the need for caution in predictive counseling in such patients. Muscle Nerve 54: 328-333, 2016.
Collapse
Affiliation(s)
- Kristl G Claeys
- Institute of Neuropathology and Department of Neurology, RWTH Aachen University, Aachen, Germany.,Department of Neurology, University Hospitals Leuven and University of Leuven (KU Leuven), Herestraat 49, 3000, Leuven, Belgium
| | | | - Martin Häusler
- Department of Pediatrics, Division of Neuropediatrics and Social Pediatrics, RWTH Aachen University, Aachen, Germany
| | | | - Martin Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology and Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Rita Horvath
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
43
|
Abstract
Mitochondrial disease is a challenging area of genetics because two distinct genomes can contribute to disease pathogenesis. It is also challenging clinically because of the myriad of different symptoms and, until recently, a lack of a genetic diagnosis in many patients. The last five years has brought remarkable progress in this area. We provide a brief overview of mitochondrial origin, function, and biology, which are key to understanding the genetic basis of mitochondrial disease. However, the primary purpose of this review is to describe the recent advances related to the diagnosis, genetic basis, and prevention of mitochondrial disease, highlighting the newly described disease genes and the evolving methodologies aimed at preventing mitochondrial DNA disease transmission.
Collapse
Affiliation(s)
- Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| |
Collapse
|
44
|
Gómez-Tatay L, Hernández-Andreu JM, Aznar J. Mitochondrial Modification Techniques and Ethical Issues. J Clin Med 2017; 6:E25. [PMID: 28245555 PMCID: PMC5372994 DOI: 10.3390/jcm6030025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Current strategies for preventing the transmission of mitochondrial disease to offspring include techniques known as mitochondrial replacement and mitochondrial gene editing. This technology has already been applied in humans on several occasions, and the first baby with donor mitochondria has already been born. However, these techniques raise several ethical concerns, among which is the fact that they entail genetic modification of the germline, as well as presenting safety problems in relation to a possible mismatch between the nuclear and mitochondrial DNA, maternal mitochondrial DNA carryover, and the "reversion" phenomenon. In this essay, we discuss these questions, highlighting the advantages of some techniques over others from an ethical point of view, and we conclude that none of these are ready to be safely applied in humans.
Collapse
Affiliation(s)
- Lucía Gómez-Tatay
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain.
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Departamento de Ciencias Médicas Básicas, Grupo de Medicina Molecular y Mitocondrial, Valencia 46001, Spain.
- Institute of Life Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain.
| | - José M Hernández-Andreu
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Departamento de Ciencias Médicas Básicas, Grupo de Medicina Molecular y Mitocondrial, Valencia 46001, Spain.
- Institute of Life Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain.
| | - Justo Aznar
- Institute of Life Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain.
| |
Collapse
|
45
|
Pereira CV, Moraes CT. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy. Front Biosci (Landmark Ed) 2017; 22:991-1010. [PMID: 27814659 DOI: 10.2741/4529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial disease is a multifactorial disorder involving both nuclear and mitochondrial genomes. Over the past 20 years, great progress was achieved in the field of gene editing which raised the possibility of partial or complete elimination of mutant mtDNA that causes disease phenotypes. Each cell contains thousands of copies of mtDNA which can be either wild-type (WT) or mutant, a condition called heteroplasmy. As there are multiple copies of mtDNA inside a cell, the percentage of mutant mtDNA can vary and a directional shift in the heteroplasmy ratio towards an increase of WT mtDNA copies would have therapeutic value. Gene editing tools have been adapted to translocate to mitochondria and were able to change heteroplasmy in a predictable manner. These include mitochondrial targeted restriction endonucleases, Zinc-finger nucleases, and TAL-effector nucleases. These procedures could also be adapted to reduce the levels of mutant mtDNA in embryos, offering an option to the controversial mitochondrial replacement techniques during in vitro fertilization. The current strategies to induce heteroplasmy shift of mtDNA and its implications will be comprehensively discussed.
Collapse
Affiliation(s)
- Claudia V Pereira
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA,
| |
Collapse
|
46
|
Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol 2016; 241:236-250. [PMID: 27659608 PMCID: PMC5215404 DOI: 10.1002/path.4809] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/30/2022]
Abstract
Mitochondria are double-membrane-bound organelles that are present in all nucleated eukaryotic cells and are responsible for the production of cellular energy in the form of ATP. Mitochondrial function is under dual genetic control - the 16.6-kb mitochondrial genome, with only 37 genes, and the nuclear genome, which encodes the remaining ∼1300 proteins of the mitoproteome. Mitochondrial dysfunction can arise because of defects in either mitochondrial DNA or nuclear mitochondrial genes, and can present in childhood or adulthood in association with vast clinical heterogeneity, with symptoms affecting a single organ or tissue, or multisystem involvement. There is no cure for mitochondrial disease for the vast majority of mitochondrial disease patients, and a genetic diagnosis is therefore crucial for genetic counselling and recurrence risk calculation, and can impact on the clinical management of affected patients. Next-generation sequencing strategies are proving pivotal in the discovery of new disease genes and the diagnosis of clinically affected patients; mutations in >250 genes have now been shown to cause mitochondrial disease, and the biochemical, histochemical, immunocytochemical and neuropathological characterization of these patients has led to improved diagnostic testing strategies and novel diagnostic techniques. This review focuses on the current genetic landscape associated with mitochondrial disease, before focusing on advances in studying associated mitochondrial pathology in two, clinically relevant organs - skeletal muscle and brain. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Mariana C Rocha
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Nichola Z Lax
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
47
|
May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferré-L'Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 2016; 22:725-743. [PMID: 27562289 DOI: 10.1093/humupd/dmw028] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There is a great inter-individual variability of ovarian ageing, and almost 20% of patients consulting for infertility show signs of premature ovarian ageing. This feature, taken together with delayed childbearing in modern society, leads to the emergence of age-related ovarian dysfunction concomitantly with the desire for pregnancy. Assisted reproductive technology is frequently inefficacious in cases of ovarian ageing, thus raising the economic, medical and societal costs of the procedures. OBJECTIVE AND RATIONAL Ovarian ageing is characterized by quantitative and qualitative alteration of the ovarian oocyte reserve. Mitochondria play a central role in follicular atresia and could be the main target of the ooplasmic factors determining oocyte quality adversely affected by ageing. Indeed, the oocyte is the richest cell of the body in mitochondria and depends largely on these organelles to acquire competence for fertilization and early embryonic development. Moreover, the oocyte ensures the uniparental transmission and stability of the mitochondrial genome across the generations. This review focuses on the role played by mitochondria in ovarian ageing and on the possible consequences over the generations. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning mitochondria and ovarian ageing, in animal and human species. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA'; 'ovarian reserve', 'oocyte', 'ovary' or 'cumulus cells'; and 'ageing' or 'ovarian ageing'. These keywords were combined with other search phrases relevant to the topic. References from these articles were used to obtain additional articles. OUTCOMES There is a close relationship, in mammalian models and humans, between mitochondria and the decline of oocyte quality with ageing. Qualitatively, ageing-related mitochondrial (mt) DNA instability, which leads to the accumulation of mtDNA mutations in the oocyte, plays a key role in the deterioration of oocyte quality in terms of competence and of the risk of transmitting mitochondrial abnormalities to the offspring. In contrast, some mtDNA haplogroups are protective against the decline of ovarian reserve. Quantitatively, mitochondrial biogenesis is crucial during oogenesis for constituting a mitochondrial pool sufficiently large to allow normal early embryonic development and to avoid the untimely activation of mitochondrial biogenesis. Ovarian ageing also seriously affects the dynamic nature of mitochondrial biogenesis in the surrounding granulosa cells that may provide interesting alternative biomarkers of oocyte quality. WIDER IMPLICATIONS A fuller understanding of the involvement of mitochondria in cases of infertility linked to ovarian ageing would contribute to a better management of the disorder in the future.
Collapse
Affiliation(s)
- Pascale May-Panloup
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France .,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Lisa Boucret
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Juan-Manuel Chao de la Barca
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Valérie Desquiret-Dumas
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Véronique Ferré-L'Hotellier
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Catherine Morinière
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Philippe Descamps
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Vincent Procaccio
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Pascal Reynier
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|