1
|
Morival C, Croyal M, Remy S, Mortier E, Libeau L, Veziers J, Provost N, Demilly J, Mendes-Madeira A, Isiegas C, Tesson L, Anegon I, Adjali O, Cronin T. Generation of a compound heterozygous ABCA4 rat model with pathological features of STGD1. Hum Mol Genet 2025:ddaf057. [PMID: 40273359 DOI: 10.1093/hmg/ddaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025] Open
Abstract
The ABCA4 protein plays an essential role in mammalian vision, ensuring the correct localization of all-trans-retinal within the visual cycle. Mutations in the ABCA4 gene are responsible for the juvenile maculopathy, Stargardt disease (STGD1). We investigated the most common variant underlying STGD1 phenotype in a rat model carrying the ortholog to the human c.5882G > A/p.(Gly1961Glu) (G1961E) in ABCA4. While the pathogenicity of this variant has recently been questioned, we examine here whether the ortholog rat variant is associated with vitamin A toxicity in the retina. By crossing the rat line with a rat line deficient in ABCA4 protein, we reveal a more pathogenic phenotype in line with compound heterozygosity, making the model suitable for testing of gene, cell and pharmacological therapies.
Collapse
Affiliation(s)
- Clément Morival
- Nantes Université, CHU Nantes, INSERM, TARGET, Nantes F-44000, France
| | - Mikaël Croyal
- Institut du thorax, Nantes Université, CNRS, INSERM, Nantes, France
- CHU Nantes, INSERM, CNRS, SFR Santé, INSERM UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Séverine Remy
- INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, TRIP facility, Nantes Université Nantes F-44000, France
| | - Elodie Mortier
- Nantes Université, CHU Nantes, INSERM, TARGET, Nantes F-44000, France
| | - Lyse Libeau
- Nantes Université, CHU Nantes, INSERM, TARGET, Nantes F-44000, France
| | - Joëlle Veziers
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes F-44000, France
| | - Nathalie Provost
- Nantes Université, CHU Nantes, INSERM, TARGET, Nantes F-44000, France
| | - Joanna Demilly
- Nantes Université, CHU Nantes, INSERM, TARGET, Nantes F-44000, France
| | | | - Carolina Isiegas
- Nantes Université, CHU Nantes, INSERM, TARGET, Nantes F-44000, France
| | - Laurent Tesson
- INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, TRIP facility, Nantes Université Nantes F-44000, France
| | - Ignacio Anegon
- INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, TRIP facility, Nantes Université Nantes F-44000, France
| | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TARGET, Nantes F-44000, France
| | - Therese Cronin
- Nantes Université, CHU Nantes, INSERM, TARGET, Nantes F-44000, France
| |
Collapse
|
2
|
Ferla R, Pugni E, Lupo M, Tiberi P, Fioretto F, Perota A, Duchi R, Lagutina I, Gesualdo C, Rossi S, Ventrella D, Elmi A, McClinton B, Toomes C, Xu T, Molday RS, Surace EM, Simonelli F, Bacci ML, Galli C, Memon MA, Shams N, Auricchio A, Trapani I. Retinal gene therapy for Stargardt disease with dual AAV intein vectors is both safe and effective in large animal models. SCIENCE ADVANCES 2025; 11:eadt9354. [PMID: 40138422 PMCID: PMC11939046 DOI: 10.1126/sciadv.adt9354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Retinal gene therapy using dual adeno-associated viral (AAV) intein vectors can be applied to genetic forms of blindness caused by mutations in genes with coding sequences that exceed single AAV cargo capacity, such as Stargardt disease (STGD1), the most common inherited macular dystrophy. In view of clinical translation of dual AAV intein vectors, here we set to evaluate both the efficiency and safety of their subretinal administration in relevant large animal models. Accordingly, we have developed the first pig model of STGD1, which we found to accumulate lipofuscin similarly to patients. This accumulation is significantly reduced upon subretinal administration of dual AAV intein vectors whose safety and pharmacodynamics we then tested in nonhuman primates, which showed modest and reversible inflammation as well as high levels of photoreceptor transduction. This bodes well for further clinical translation of dual AAV intein vectors in patients with STGD1 as well as for other blinding diseases that require the delivery of large genes.
Collapse
Affiliation(s)
| | - Eugenio Pugni
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Mariangela Lupo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Paola Tiberi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Federica Fioretto
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Andrea Perota
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Roberto Duchi
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Irina Lagutina
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, Italy
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, Italy
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Carmel Toomes
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Tongzhou Xu
- Department of Biochemistry & Molecular Biology, Department of Ophthalmology & Visual Sciences, Centre for Macular Research University of British Columbia, Vancouver, B.C., Canada
| | - Robert S. Molday
- Department of Biochemistry & Molecular Biology, Department of Ophthalmology & Visual Sciences, Centre for Macular Research University of British Columbia, Vancouver, B.C., Canada
| | - Enrico M. Surace
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria L. Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, Italy
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | | | | | - Alberto Auricchio
- AAVantgarde Bio srl, Milan, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
3
|
Li H, Sharma R, Bharti K. iPSC-derived retinal pigment epithelium: an in vitro platform to reproduce key cellular phenotypes and pathophysiology of retinal degenerative diseases. Stem Cells Transl Med 2025; 14:szae097. [PMID: 39729520 PMCID: PMC11954503 DOI: 10.1093/stcltm/szae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/30/2024] [Indexed: 12/29/2024] Open
Abstract
Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment. When derived from patients, iRPE are able to recapitulate critical cellular phenotypes of retinal degenerative diseases, such as the drusen-like sub-RPE deposits in the L-ORD and AMD models; lipid droplets and cholesterol accumulation in the STGD1 and AMD models. The iRPE model has helped discover the unexpected role of RPE in understanding retinal degenerative diseases, such as a cell-autonomous function of ABCA4 in STGD1. The iRPE model has helped uncover the pathological mechanism of retinal degenerative diseases, including the roles of alternate complement cascades and oxidative stress in AMD pathophysiology, abnormal POS processing in STGD1 and L-ORD, and its association with lipid accumulation. These studies have helped better understand-the role of RPE in retinal degenerative diseases, and molecular mechanisms underlying RPE atrophy, and have provided a basis to discover therapeutics to target RPE-associated diseases.
Collapse
Affiliation(s)
- Huirong Li
- NEI/OSCTRS/OGVFB, Bethesda, MD, United States
| | | | | |
Collapse
|
4
|
Karjosukarso DW, Bukkems F, Duijkers L, Tomkiewicz TZ, Kiefmann J, Sarlea A, Bervoets S, Vázquez-Domínguez I, Molday LL, Molday RS, Netea MG, Hoyng CB, Garanto A, Collin RWJ. Preclinical assessment of splicing modulation therapy for ABCA4 variant c.768G>T in Stargardt disease. COMMUNICATIONS MEDICINE 2025; 5:25. [PMID: 39838063 PMCID: PMC11751084 DOI: 10.1038/s43856-024-00712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Stargardt disease type 1 (STGD1) is a progressive retinal disorder caused by bi-allelic variants in the ABCA4 gene. A recurrent variant at the exon-intron junction of exon 6, c.768G>T, causes a 35-nt elongation of exon 6 that leads to premature termination of protein synthesis. METHODS To correct this aberrant splicing, twenty-five 2'-O-methoxyethyl antisense oligonucleotides (AONs) were designed, spanning the entire exon elongation. RESULTS Testing of these AONs in patient-derived photoreceptor precursor cells and retinal organoids allow the selection of a lead candidate AON (A7 21-mer) that rescues on average 52% and 50% expression of wild-type ABCA4 transcript and protein, respectively. In situ hybridization and probe-based ELISA demonstrate its distribution and stability in vitro and in vivo. No major safety concerns regarding off-targets, immunostimulation and toxicity are observed in transcriptomics analysis, cytokine stimulation assays in human primary immune cells, and cytotoxicity assays. CONCLUSIONS Additional optimization and in vivo studies will be performed to further investigate the lead candidate. Considering the high prevalence of this variant, a substantial number of patients are likely to benefit from a successful further development and implementation of this therapy.
Collapse
Affiliation(s)
- Dyah W Karjosukarso
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Femke Bukkems
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Astherna B.V., Nijmegen, The Netherlands
| | - Lonneke Duijkers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tomasz Z Tomkiewicz
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julia Kiefmann
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrei Sarlea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sander Bervoets
- Radboudumc Technology Center Bioinformatics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irene Vázquez-Domínguez
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Astherna B.V., Nijmegen, The Netherlands
- Department of Ophthalmology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
- Astherna B.V., Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Cevik S, Biswas SB, Biswas-Fiss EE. Assessment of ABCA4 Genetic Variants: Current Landscape and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:63-67. [PMID: 39930174 DOI: 10.1007/978-3-031-76550-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Genetic variants of ABCA4 are associated with a spectrum of inherited retinal degenerations, causing progressive vision loss due to rod and cone photoreceptor death and retinal pigment epithelium atrophy, ultimately leading to blindness. Understanding the functional implications and assessing the pathogenicity of the extensive number of ABCA4 variants, which exceed 3000, remains a formidable challenge. A substantial proportion of these variants remain categorized as variants of uncertain significance (VUS) or exhibit conflicting clinical interpretations (CI). Determining variant pathogenicity is imperative for clinicians to assess long-term outcomes and facilitate precise patient enrollment in ongoing clinical trials. This review aims to provide an overview of the current methodologies used to assess the functional characteristics of ABCA4 variants.
Collapse
Affiliation(s)
- Senem Cevik
- Department of Medical and Molecular Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
- Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE, USA
| | - Subhasis B Biswas
- Department of Medical and Molecular Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
- Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE, USA
| | - Esther E Biswas-Fiss
- Department of Medical and Molecular Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA.
- Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE, USA.
| |
Collapse
|
6
|
Willoughby JJ, Jensen AM. Abca4, mutated in Stargardt disease, is required for structural integrity of cone outer segments. Dis Model Mech 2025; 18:DMM052052. [PMID: 39610324 PMCID: PMC11744051 DOI: 10.1242/dmm.052052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Stargardt disease (STGD), the leading cause of inherited childhood blindness, is primarily caused by mutations in the ABCA4 gene; yet, the underlying mechanisms of photoreceptor degeneration remain elusive, partly due to limitations in existing animal disease models. To expand our understanding, we mutated the human ABCA4 paralogues abca4a and abca4b in zebrafish, which has a cone-rich retina. Our study unveiled striking dysmorphology and elongation of cone outer segments (COS) in abca4a;abca4b double mutants, alongside reduced phagocytosis by the retinal pigmented epithelium (RPE). We report that zebrafish Abca4 protein forms a distinctive stripe along the length of COS, suggesting a potential structural role. We further show that, in wild-type zebrafish, outer segments of cone cells constitutively present externalized phosphatidylserine, an apoptotic 'eat-me' signal, and that this pattern is disrupted in abca4a;abca4b double mutants, potentially contributing to reduced RPE phagocytic activity. More broadly, constitutive presentation of the 'eat-me' signal by COS - if conserved in humans - might have important implications for other retinal degenerative diseases, including age-related macular degeneration. Our zebrafish model provides novel insights into cone dysfunction and presents a promising platform for unraveling the mechanisms of STGD pathogenesis and advancing therapeutic interventions.
Collapse
Affiliation(s)
| | - Abbie M. Jensen
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Sassone F, Estay-Ahumada C, Roux MJ, Ciocca D, Rossolillo P, Birling MC, Sparrow JR, Montenegro D, Hicks D. Interruption of the visual cycle in a novel animal model induces progressive vision loss resembling Stargardts Disease. Sci Rep 2024; 14:30880. [PMID: 39730605 DOI: 10.1038/s41598-024-81869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline. The human macula is highly enriched in cones, and reasoning that the low cone percentage in mice retinas (< 3%) might compromise faithful modelling of human maculopathies, we performed sub-retinal injections of CRISPR/Cas9-abca4 Adeno-Associated Virus constructs into young Sand Rats (Psammomys obesus), a diurnal rodent containing > 30% cones. Compared to control injections of AAV-abca4-GFP, treated eyes exhibited extensive retinal degeneration by two months. Sanger sequencing of the CRISPR targeted sequence show a clear edition of Abca4 gene. Non-invasive fundus imaging showed widespread photoreceptor loss, confirmed by ocular coherence tomography. Functional recording by single flash and flicker electroretinography showed significant decline in photopic (cone) light responses. Post-mortem real-time PCR, immunohistochemistry and western blotting showed significant decrease of cone-specific (MW cone opsin) but not rod-specific (rhodopsin) markers. Transmission electron microscopy showed large numbers of lipid inclusions in treated but not control retinal pigmented epithelium. Finally, ultra-high performance liquid chromatography analysis of whole P. obesus eyes showed the presence of all-trans retinal-dimer, not detected in rod-rich rat eyes. In conclusion, Abca4 knockout in P. obesus results in a predominantly cone degeneration phenotype, more accurately reflecting the etiology of human STGD1, and should be valuable for characterizing pathogenic pathways and exploring treatment options.
Collapse
Affiliation(s)
- Fabiana Sassone
- INCI-UPR3212-CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | | | - Michel J Roux
- IGBMC/Institut Clinique de La Souris - CNRS UMR 7104 Inserm U 1258, 1 Rue Laurent Fries, BP 10142, 67404, Illkirch CEDEX, France
| | - Dominique Ciocca
- Chronobiotron UAR3415-CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Paola Rossolillo
- IGBMC/Institut Clinique de La Souris - CNRS UMR 7104 Inserm U 1258, 1 Rue Laurent Fries, BP 10142, 67404, Illkirch CEDEX, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de La Souris (ICS), 1 Rue Laurent Fries, 67404, Illkirch Graffenstaden, France
| | - Janet R Sparrow
- Departments of Ophthalmology, and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Diego Montenegro
- Departments of Ophthalmology, and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - David Hicks
- INCI-UPR3212-CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
8
|
Zee A, Lee W, Su PY, Zernant J, Tsang SH, Allikmets R. Characterization of the Subclinical Perilesional Zone in the Macula of Early-Stage ABCA4 Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.16.24317331. [PMID: 39606334 PMCID: PMC11601685 DOI: 10.1101/2024.11.16.24317331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Purpose To characterize photoreceptor layer thinning in clinically unremarkable regions adjacent to the atrophic lesion in early-stage ABCA4 disease eyes. Methods 27 patients with confined atrophic lesions (≤ 3.5mm in diameter) were included. Two pathogenic alleles were confirmed by sequencing of the ABCA4 locus. Multimodal imaging included color fundus photography, short wavelength-autofluorescence (SW-AF) and near infrared-autofluorescence (NIR-AF) imaging. Total receptor+ (TREC+) thickness was segmented in spectral domain-optical coherence tomography (SD-OCT) scans in patient eyes (n=27) along with age-matched healthy control eyes (n=20). Results μ age of the study cohort was 24.1 years and 15/27 (55.6%) patients harbored genotypes consisting of the p.(Gly1961Glu) variant in ABCA4. Atrophic lesions in the central macula ranged from 0.61 to 3.13 mm in diameter (μ = 1.73, σ = 0.70). Six patients had mild RPE mottling adjacent to the lesion on NIR-AF. The atrophic lesion corresponded to a disruption of photoreceptor-attributable bands on SD-OCT while all layers were visibly intact outside the lesion. TREC+ thickness in patient eyes were <0.15 mm or below 4σ of normal control eyes immediately adjacent to the lesion edge and gradually normalized to within ± 2σ at ≈ 1.2 mm eccentricity from the fovea. Conclusion A uniform subclinical perilesional zone (SPZ) of photoreceptor thinning extends around the perimeter of early-stage atrophic lesions in ABCA4 disease. This region spatially maps to known regions of vision loss and more accurately approximates the extent of photoreceptor abnormality compared to the disease changes visible on standard fundus imaging. Translational relevance Semi-automated segmentation of SD-OCT scans identifies a consistent subclinical biomarker relevant to early photoreceptor degeneration in ABCA4 disease.
Collapse
Affiliation(s)
- Aiden Zee
- Cypress Bay High School, Weston, FL USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Winston Lee
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pei-Yin Su
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jana Zernant
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Cevik S, Biswas SB, Ghosh A, Biswas-Fiss EE. Virus-like particles as robust tools for functional assessment: Deciphering the pathogenicity of ABCA4 genetic variants of uncertain significance. J Biol Chem 2024; 300:107739. [PMID: 39222682 PMCID: PMC11474199 DOI: 10.1016/j.jbc.2024.107739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The retina-specific ABCA transporter, ABCA4, is essential for vision, and its genetic variants are associated with a wide range of inherited retinal degenerative diseases, leading to blindness. Of the 1630 identified missense variants in ABCA4, ∼50% are of unknown pathogenicity (variants of unknown significance, VUS). This genetic uncertainty presents three main challenges: (i) inability to predict disease-causing variants in relatives of inherited retinal degenerative disease patients with multiple ABCA4 mutations; (ii) limitations in developing variant-specific treatments; and (iii) difficulty in using these variants for future disease prediction, affecting patients' life-planning and clinical trial participation. To unravel the clinical significance of ABCA4 genetic variants at the level of protein function, we have developed a virus-like particle-based system that expresses the ABCA4 protein and its variants. We validated the efficacy of this system in the enzymatic characterization (ATPase activity) of VLPs harboring ABCA4 and two variants of established pathogenicity: p.N965S and p.C1488R. Our results were consistent with previous reports and clinical phenotypes. We also applied this platform to characterize the VUS p.Y1779F and observed a functional impairment, suggesting a potential pathogenic impact. This approach offers an efficient, high-throughput method for ABCA4 VUS characterization. Our research points to the significant promise of the VLP-based system in the functional analysis of membrane proteins, offering important perspectives on the disease-causing potential of genetic variants and shedding light on genetic conditions involving such proteins.
Collapse
Affiliation(s)
- Senem Cevik
- Department of Medical and Molecular Sciences, College of Health Sciences, University of Delaware, Newark, Delaware, USA; Ammon Pinizzotto Biopharmaceutical Innovation Center, University of Delaware, Newark, Delaware, USA
| | - Subhasis B Biswas
- Department of Medical and Molecular Sciences, College of Health Sciences, University of Delaware, Newark, Delaware, USA; Ammon Pinizzotto Biopharmaceutical Innovation Center, University of Delaware, Newark, Delaware, USA
| | - Arit Ghosh
- Delaware Biotechnology Institute, UD Center for Bioimaging, University of Delaware, Newark, Delaware, USA
| | - Esther E Biswas-Fiss
- Department of Medical and Molecular Sciences, College of Health Sciences, University of Delaware, Newark, Delaware, USA; Ammon Pinizzotto Biopharmaceutical Innovation Center, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
10
|
Scortecci JF, Garces FA, Mahto JK, Molday LL, Van Petegem F, Molday RS. Structural and functional characterization of the nucleotide-binding domains of ABCA4 and their role in Stargardt disease. J Biol Chem 2024; 300:107666. [PMID: 39128720 PMCID: PMC11405800 DOI: 10.1016/j.jbc.2024.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
ABCA4 is an ATP-binding cassette (ABC) transporter that prevents the buildup of toxic retinoid compounds by facilitating the transport of N-retinylidene-phosphatidylethanolamine across membranes of rod and cone photoreceptor cells. Over 1500 missense mutations in ABCA4, many in the nucleotide-binding domains (NBDs), have been genetically linked to Stargardt disease. Here, we show by cryo-EM that ABCA4 is converted from an open outward conformation to a closed conformation upon the binding of adenylyl-imidodiphosphate. Structural information and biochemical studies were used to further define the role of the NBDs in the functional properties of ABCA4 and the mechanisms by which mutations lead to the loss in activity. We show that ATPase activity in both NBDs is required for the functional activity of ABCA4. Mutations in Walker A asparagine residues cause a severe reduction in substrate-activated ATPase activity due to the loss in polar interactions with residues within the D-loops of the opposing NBD. The structural basis for how disease mutations in other NBD residues, including the R1108C, R2077W, R2107H, and L2027F, affect the structure and function of ABCA4 is described. Collectively, our studies provide insight into the structure and function of ABCA4 and mechanisms underlying Stargardt disease.
Collapse
Affiliation(s)
- Jessica Fernandes Scortecci
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jai K Mahto
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
11
|
Gregory-Evans K, Kolawole OU, Molday RS, Gregory-Evans CY. Novel Variants in ABCA4-Related Retinopathies with Structural Re-Assessment of Variants of Uncertain Significance. Ophthalmologica 2024; 247:231-240. [PMID: 39043154 DOI: 10.1159/000540361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Conclusive molecular genetic diagnoses in inherited retinal diseases remains a major challenge due to the large number of variants of uncertain significance (VUS) identified in genetic testing. Here, we determined the genotypic and phenotypic spectrum of ABCA4 gene variants in a cohort of Canadian inherited retinal dystrophy subjects. METHODS This retrospective study evaluated 64 subjects with an inherited retinal dystrophy diagnosis with variants in the ABCA4 gene. Pathogenicity of variants was assessed by comparison to genetic databases and in silico modelling. ABCA4 variants classified as VUS were further evaluated using a cryo-electron structural model of the ABCA4 protein to predict impact on protein function and were also assessed for evolutionary conservation. RESULTS Conclusive disease-causing biallelic ABCA4 variants were detected in 52 subjects with either Stargardt's disease, cone-rod dystrophy, macular dystrophy, or pattern dystrophy. A further 14 variants were novel comprising 1 nonsense, 1 frameshift, 3 splicing, and 9 missense variants. Based on in silico modelling, protein modelling and evolutionary conservation from human to zebrafish, we re-classified 5 of these as pathogenic and a further 3 as likely pathogenic. We also added to the ABCA4 phenotypic spectrum seen with four known pathogenic variants (c.2161-2A>G; Leu296Cysfs*4; Arg1640Gln; and Pro1380Leu). CONCLUSIONS This study expands the genotypic and phenotypic spectrum of ABCA4 disease-associated variants. By panel-based genetic testing, we identified 14 novel ABCA4 variants of which 8 were determined to be disease-causing or likely disease-causing. These methodologies could circumvent somewhat the need for labour intensive in vitro and in vivo assessments of novel ABCA4 variants.
Collapse
Affiliation(s)
- Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Olubayo U Kolawole
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Piccolo D, Zarouchlioti C, Bellingham J, Guarascio R, Ziaka K, Molday RS, Cheetham ME. A Proximity Complementation Assay to Identify Small Molecules That Enhance the Traffic of ABCA4 Misfolding Variants. Int J Mol Sci 2024; 25:4521. [PMID: 38674104 PMCID: PMC11050442 DOI: 10.3390/ijms25084521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.
Collapse
Affiliation(s)
- Davide Piccolo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Christina Zarouchlioti
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Rosellina Guarascio
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Kalliopi Ziaka
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Michael E. Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| |
Collapse
|
13
|
Cevik S, Wangtiraumnuay N, Van Schelvergem K, Tsukikawa M, Capasso J, Biswas SB, Bodt B, Levin AV, Biswas-Fiss E. Protein modeling and in silico analysis to assess pathogenicity of ABCA4 variants in patients with inherited retinal disease. Mol Vis 2023; 29:217-233. [PMID: 38222458 PMCID: PMC10784225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/23/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose The retina-specific ABCA transporter, ABCA4, plays an essential role in translocating retinoids required by the visual cycle. ABCA4 genetic variants are known to cause a wide range of inherited retinal disorders, including Stargardt disease and cone-rod dystrophy. More than 1,400 ABCA4 missense variants have been identified; however, more than half of these remain variants of uncertain significance (VUS). The purpose of this study was to employ a predictive strategy to assess the pathogenicity of ABCA4 variants in inherited retinal diseases using protein modeling and computational approaches. Methods We studied 13 clinically well-defined patients with ABCA4 retinopathies and identified the presence of 10 missense variants, including one novel variant in the ABCA4 gene, by next-generation sequencing (NGS). All variants were structurally analyzed using AlphaFold2 models and existing experimental structures of human ABCA4 protein. The results of these analyses were compared with patient clinical presentations to test the effectiveness of the methods employed in predicting variant pathogenicity. Results We conducted a phenotype-genotype comparison of 13 genetically and phenotypically well-defined retinal disease patients. The in silico protein structure analyses we employed successfully detected the deleterious effect of missense variants found in this affected patient cohort. Our study provides American College of Medical Genetics and Genomics (ACMG)-defined supporting evidence of the pathogenicity of nine missense ABCA4 variants, aligning with the observed clinical phenotypes in this cohort. Conclusions In this report, we describe a systematic approach to predicting the pathogenicity of ABCA4 variants by means of three-dimensional (3D) protein modeling and in silico structure analysis. Our results demonstrate concordance between disease severity and structural changes in protein models induced by genetic variations. Furthermore, the present study suggests that in silico protein structure analysis can be used as a predictor of pathogenicity and may facilitate the assessment of genetic VUS.
Collapse
Affiliation(s)
- Senem Cevik
- Department of Medical and Molecular Sciences, University of Delaware College of Health Sciences, Newark, DE
| | - Nutsuchar Wangtiraumnuay
- Department of Ophthalmology, Queen Sirikit National Institute of Child Health, Bangkok, Thailand
| | | | - Mai Tsukikawa
- Department of Ophthalmology, Duke University, Durham, NC
| | - Jenina Capasso
- Departments of Ophthalmology and Pediatrics, Flaum Eye Institute and Golisano Children's Hospital, University of Rochester, Rochester, NY
| | - Subhasis B Biswas
- Department of Medical and Molecular Sciences, University of Delaware College of Health Sciences, Newark, DE
| | - Barry Bodt
- College of Health Sciences Biostatistics Core Facility, University of Delaware, Newark, DE
| | - Alex V Levin
- Departments of Ophthalmology and Pediatrics, Flaum Eye Institute and Golisano Children's Hospital, University of Rochester, Rochester, NY
| | - Esther Biswas-Fiss
- Department of Medical and Molecular Sciences, University of Delaware College of Health Sciences, Newark, DE
| |
Collapse
|
14
|
Ścieżyńska A, Łuszczyński K, Radziszewski M, Komorowski M, Soszyńska M, Krześniak N, Shevchenko K, Lutyńska A, Malejczyk J. Role of the ABCA4 Gene Expression in the Clearance of Toxic Vitamin A Derivatives in Human Hair Follicle Stem Cells and Keratinocytes. Int J Mol Sci 2023; 24:ijms24098275. [PMID: 37175983 PMCID: PMC10179012 DOI: 10.3390/ijms24098275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The ABCA4 gene encodes an ATP-binding cassette transporter that is expressed specifically in the disc of photoreceptor outer segments. Mutations in the ABCA4 gene are the main cause of retinal degenerations known as "ABCA4-retinopathies." Recent research has revealed that ABCA4 is expressed in other cells as well, such as hair follicles and keratinocytes, although no information on its significance has been evidenced so far. In this study, we investigated the role of the ABCA4 gene in human keratinocytes and hair follicle stem cells for the first time. We have shown that silencing the ABCA4 gene increases the deleterious effect of all-trans-retinal on human hair follicle stem cells.
Collapse
Affiliation(s)
- Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Department of Medical Biology, National Institute of Cardiology, Stefan Cardinal Wyszyński State Research Institute, 04-628 Warsaw, Poland
| | - Krzysztof Łuszczyński
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Marcin Radziszewski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Michał Komorowski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Marta Soszyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Natalia Krześniak
- Department of Plastic and Reconstructive Surgery, Medical Centre of Postgraduate Education, Prof. W. Orlowski Memorial Hospital, 00-416 Warsaw, Poland
| | - Kateryna Shevchenko
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Anna Lutyńska
- Department of Medical Biology, National Institute of Cardiology, Stefan Cardinal Wyszyński State Research Institute, 04-628 Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
15
|
Xu T, Molday L, Molday R. Retinal-phospholipid Schiff-base conjugates and their interaction with ABCA4, the ABC transporter associated with Stargardt Disease. J Biol Chem 2023; 299:104614. [PMID: 36931393 PMCID: PMC10127136 DOI: 10.1016/j.jbc.2023.104614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff-base conjugate formed through the reversible reaction of retinal (Vitamin A-aldehyde) and phosphatidylethanolamine, plays a crucial role in the visual cycle and visual pigment photoregeneration. However, N-Ret-PE can react with another molecule of retinal to form toxic di-retinoids if not removed from photoreceptors through its transport across photoreceptor membranes by the ATP-binding-cassette transporter ABCA4. Loss-of-function mutations in ABCA4 are known to cause Stargardt disease (STGD1), an inherited retinal degenerative disease associated with the accumulation of fluorescent di-retinoids and severe loss in vision. A larger assessment of retinal-phospholipid Schiff-base conjugates in photoreceptors is needed, along with further investigation of ABCA4 residues important for N-Ret-PE binding. In this study we show that N-Ret-PE formation is dependent on pH and phospholipid content. When retinal is added to liposomes or photoreceptor membranes, 40-60% is converted to N-Ret-PE at physiological pH. Phosphatidylserine and taurine also react with retinal to form N-retinylidene-phosphatidylserine (N-Ret-PS) and N-retinylidene-taurine, respectively, but at significantly lower levels. N-Ret-PS is not a substrate for ABCA4 and reacts poorly with retinal to form di-retinoids. Additionally, amino acid residues within the binding pocket of ABCA4 that contribute to its interaction with N-Ret-PE were identified and characterized using site-directed mutagenesis together with functional and binding assays. Substitution of arginine residues and hydrophobic residues with alanine or residues implicated in STGD1 significantly reduced or in some cases eliminated substrate-activated ATPase activity and substrate binding. Collectively, this study provides important insight into conditions which affect retinal-phospholipid Schiff-base formation and mechanisms underlying the pathogenesis of STGD1.
Collapse
Affiliation(s)
- Tongzhou Xu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| | - LaurieL Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| | - RobertS Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada.
| |
Collapse
|
16
|
Bossaerts L, Hendrickx Van de Craen E, Cacace R, Asselbergh B, Van Broeckhoven C. Rare missense mutations in ABCA7 might increase Alzheimer's disease risk by plasma membrane exclusion. Acta Neuropathol Commun 2022; 10:43. [PMID: 35361255 PMCID: PMC8973822 DOI: 10.1186/s40478-022-01346-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
The adenosine triphosphate-binding cassette subfamily A member 7 gene (ABCA7) is associated with Alzheimer's disease (AD) in large genome-wide association studies. Targeted sequencing of ABCA7 suggests a role for rare premature termination codon (PTC) mutations in AD, with haploinsufficiency through nonsense-mediated mRNA decay as a plausible pathogenic mechanism. Since other classes of rare variants in ABCA7 are poorly understood, we investigated the contribution and pathogenicity of rare missense, indel and splice variants in ABCA7 in Belgian AD patient and control cohorts. We identified 8.36% rare variants in the patient cohort versus 6.05% in the control cohort. For 10 missense mutations identified in the Belgian cohort we analyzed the pathogenetic effect on protein localization in vitro using immunocytochemistry. Our results demonstrate that rare ABCA7 missense mutations can contribute to AD by inducing protein mislocalization, resulting in a lack of functional protein at the plasma membrane. In one pedigree, a mislocalization-inducing missense mutation in ABCA7 (p.G1820S) co-segregated with AD in an autosomal dominant inheritance pattern. Brain autopsy of six patient missense mutation carriers showed typical AD neuropathological characteristics including cerebral amyloid angiopathy type 1. Also, among the rare ABCA7 missense mutations, we observed mutations that affect amino acid residues that are conserved in ABCA1 and ABCA4, of which some correspond to established ABCA1 or ABCA4 disease-causing mutations involved in Tangier or Stargardt disease.
Collapse
|
17
|
Xiao X, Ye L, Chen C, Zheng H, Yuan J. Clinical Observation and Genotype-Phenotype Analysis of ABCA4- Related Hereditary Retinal Degeneration before Gene Therapy. Curr Gene Ther 2022; 22:342-351. [PMID: 35170407 PMCID: PMC10495610 DOI: 10.2174/1566523222666220216101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hereditary retinal degeneration (HRD) is an irreversible eye disease that results in blindness in severe cases. It is most commonly caused by variants in the ABCA4 gene. HRD presents a high degree of clinical and genetic heterogeneity. We determined genotypic and phenotypic correlations, in the natural course of clinical observation, of unrelated progenitors of HRD associated with ABCA4. OBJECTIVE To analyze the relationship between the phenotypes and genotypes of ABCA4 variants. METHODS A retrospective clinical study of five cases from the ophthalmology department of the People's Hospital of Wuhan University from January 2019 to October 2020 was conducted. We tested for ABCA4 variants in the probands. We performed eye tests, including the best-corrected visual acuity, super-wide fundus photography and spontaneous fluorescence photography, optical coherence tomography, and electrophysiological examination. RESULTS Disease-causing variants were identified in the ABCA4 genes of all patients. Among these, seven ABCA4 variants were novel. All patients were sporadic cases; only one patient had parents who were relatives, and the other four patients were offspring of unrelated parents. Two patients presented with Stargardt disease, mainly with macular lesions, two presented with retinitis pigmentosa (cone-rod type), and one presented with cone dystrophy. The visual acuity and visual field of the five patients showed varying degrees of deterioration and impairment. CONCLUSION The same ABCA4 mutation can lead to different clinical phenotypes, and there is variation in the degree of damage to vision, visual field, and electrophysiology among different clinical phenotypes. Clinicians must differentiate between and diagnose pathologies resulting from this mutation.
Collapse
Affiliation(s)
- Xuan Xiao
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Hubei, Wuhan 430060, China
| | - Lin Ye
- Department of Eye Plastic and Lacrimal Diseases, Shenzhen Eye Hospital, Shenzhen, China
| | - Changzheng Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Hubei, Wuhan 430060, China
| | - Hongmei Zheng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Hubei, Wuhan 430060, China
| | - Jiajia Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Hubei, Wuhan 430060, China
| |
Collapse
|
18
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
19
|
Cronin T, Croyal M, Provost N, Ducloyer JB, Mendes-Madeira A, Libeau L, Morival C, Toublanc E, Audrain C, Isiegas C, Pichard V, Adjali O. Effect of retinol dehydrogenase gene transfer in a novel rat model of Stargardt disease. FASEB J 2021; 35:e21934. [PMID: 34599778 DOI: 10.1096/fj.202002525rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
Dysfunction of the ATPase-binding Cassette Transporter protein (ABCA4) can lead to early onset macular degeneration, in particular to Stargardt disease. To enable translational research into this form of blindness, we evaluated the effect of Cas9-induced disruptions of the ABCA4 gene to potentially generate new transgenic rat models of the disease. We show that deletion of the short exon preceding the second nucleotide-binding domain is sufficient to drastically knock down protein levels and results in accumulation of retinoid dimers similar to that associated with Stargardt disease. Overexpression of the retinol dehydrogenase enzymes RDH8 and RDH12 can to a limited extent offset the increase in the bisretinoid levels in the Abca4Ex42-/ - KO rats possibly by restricting the time window in which retinal can dimerize before being reduced to retinol. However, in vivo imaging shows that overexpression of RDH8 can induce retinal degeneration. This may be due to the depletion in the outer segment of the cofactor NADPH, needed for RDH function. The translational potential of RDH therapy as well as other Stargardt disease therapies can be tested using the Abca4 knockdown rat model.
Collapse
Affiliation(s)
- T Cronin
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | | | - N Provost
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - J B Ducloyer
- Department of Ophthalmology, University Hospital of Nantes, CHU de Nantes, Nantes, France
| | - A Mendes-Madeira
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - L Libeau
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - C Morival
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - E Toublanc
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - C Audrain
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - C Isiegas
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - V Pichard
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - O Adjali
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| |
Collapse
|
20
|
Huang D, Heath Jeffery RC, Aung-Htut MT, McLenachan S, Fletcher S, Wilton SD, Chen FK. Stargardt disease and progress in therapeutic strategies. Ophthalmic Genet 2021; 43:1-26. [PMID: 34455905 DOI: 10.1080/13816810.2021.1966053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Stargardt disease (STGD1) is an autosomal recessive retinal dystrophy due to mutations in ABCA4, characterized by subretinal deposition of lipofuscin-like substances and bilateral centrifugal vision loss. Despite the tremendous progress made in the understanding of STGD1, there are no approved treatments to date. This review examines the challenges in the development of an effective STGD1 therapy.Materials and Methods: A literature review was performed through to June 2021 summarizing the spectrum of retinal phenotypes in STGD1, the molecular biology of ABCA4 protein, the in vivo and in vitro models used to investigate the mechanisms of ABCA4 mutations and current clinical trials.Results: STGD1 phenotypic variability remains an challenge for clinical trial design and patient selection. Pre-clinical development of therapeutic options has been limited by the lack of animal models reflecting the diverse phenotypic spectrum of STDG1. Patient-derived cell lines have facilitated the characterization of splice mutations but the clinical presentation is not always predicted by the effect of specific mutations on retinoid metabolism in cellular models. Current therapies primarily aim to delay vision loss whilst strategies to restore vision are less well developed.Conclusions: STGD1 therapy development can be accelerated by a deeper understanding of genotype-phenotype correlations.
Collapse
Affiliation(s)
- Di Huang
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
21
|
Piotter E, McClements ME, MacLaren RE. Therapy Approaches for Stargardt Disease. Biomolecules 2021; 11:1179. [PMID: 34439845 PMCID: PMC8393614 DOI: 10.3390/biom11081179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Despite being the most prevalent cause of inherited blindness in children, Stargardt disease is yet to achieve the same clinical trial success as has been achieved for other inherited retinal diseases. With an early age of onset and continual progression of disease over the life course of an individual, Stargardt disease appears to lend itself to therapeutic intervention. However, the aetiology provides issues not encountered with the likes of choroideremia and X-linked retinitis pigmentosa and this has led to a spectrum of treatment strategies that approach the problem from different aspects. These include therapeutics ranging from small molecules and anti-sense oligonucleotides to viral gene supplementation and cell replacement. The advancing development of CRISPR-based molecular tools is also likely to contribute to future therapies by way of genome editing. In this we review, we consider the most recent pre-clinical and clinical trial data relating to the different strategies being applied to the problem of generating a treatment for the large cohort of Stargardt disease patients worldwide.
Collapse
Affiliation(s)
- Elena Piotter
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
22
|
Skiba NP, Cady MA, Molday L, Han JYS, Lewis TR, Spencer WJ, Thompson WJ, Hiles S, Philp NJ, Molday RS, Arshavsky VY. TMEM67, TMEM237, and Embigin in Complex With Monocarboxylate Transporter MCT1 Are Unique Components of the Photoreceptor Outer Segment Plasma Membrane. Mol Cell Proteomics 2021; 20:100088. [PMID: 33933680 PMCID: PMC8167285 DOI: 10.1016/j.mcpro.2021.100088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/25/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
The outer segment (OS) organelle of vertebrate photoreceptors is a highly specialized cilium evolved to capture light and initiate light response. The plasma membrane which envelopes the OS plays vital and diverse roles in supporting photoreceptor function and health. However, little is known about the identity of its protein constituents, as this membrane cannot be purified to homogeneity. In this study, we used the technique of protein correlation profiling to identify unique OS plasma membrane proteins. To achieve this, we used label-free quantitative MS to compare relative protein abundances in an enriched preparation of the OS plasma membrane with a preparation of total OS membranes. We have found that only five proteins were enriched at the same level as previously validated OS plasma membrane markers. Two of these proteins, TMEM67 and TMEM237, had not been previously assigned to this membrane, and one, embigin, had not been identified in photoreceptors. We further showed that embigin associates with monocarboxylate transporter MCT1 in the OS plasma membrane, facilitating lactate transport through this cellular compartment.
Collapse
Affiliation(s)
- Nikolai P Skiba
- Albert Eye Research Institute, Duke University Medical Center, Durham, North Carolina, USA.
| | - Martha A Cady
- Albert Eye Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Laurie Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Y S Han
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tylor R Lewis
- Albert Eye Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - William J Spencer
- Albert Eye Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Will J Thompson
- Duke Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina, USA
| | - Sarah Hiles
- Duke Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vadim Y Arshavsky
- Albert Eye Research Institute, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
23
|
Lee W, Zernant J, Nagasaki T, Molday LL, Su PY, Fishman GA, Tsang SH, Molday RS, Allikmets R. Cis-acting modifiers in the ABCA4 locus contribute to the penetrance of the major disease-causing variant in Stargardt disease. Hum Mol Genet 2021; 30:1293-1304. [PMID: 33909047 DOI: 10.1093/hmg/ddab122] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 11/14/2022] Open
Abstract
Over 1200 variants in the ABCA4 gene cause a wide variety of retinal disease phenotypes, the best known of which is autosomal recessive Stargardt disease (STGD1). Disease-causing variation encompasses all mutation categories, from large copy number variants to very mild, hypomorphic missense variants. The most prevalent disease-causing ABCA4 variant, present in ~ 20% of cases of European descent, c.5882G > A p.(Gly1961Glu), has been a subject of controversy since its minor allele frequency (MAF) is as high as ~ 0.1 in certain populations, questioning its pathogenicity, especially in homozygous individuals. We sequenced the entire ~140Kb ABCA4 genomic locus in an extensive cohort of 644 bi-allelic, i.e. genetically confirmed, patients with ABCA4 disease and analyzed all variants in 140 compound heterozygous and 10 homozygous cases for the p.(Gly1961Glu) variant. A total of 23 patients in this cohort additionally harbored the deep intronic c.769-784C > T variant on the p.(Gly1961Glu) allele, which appears on a specific haplotype in ~ 15% of p.(Gly1961Glu) alleles. This haplotype was present in 5/7 of homozygous cases, where the p.(Gly1961Glu) was the only known pathogenic variant. Three cases had an exonic variant on the same allele with the p.(Gly1961Glu). Patients with the c.[769-784C > T;5882G > A] complex allele exhibit a more severe clinical phenotype, as seen in compound heterozygotes with some more frequent ABCA4 mutations, e.g. p.(Pro1380Leu). Our findings indicate that the c.769-784C > T variant is major cis-acting modifier of the p.(Gly1961Glu) allele. The absence of such additional allelic variation on most p.(Gly1961Glu) alleles largely explains the observed paucity of affected homozygotes in the population.
Collapse
Affiliation(s)
- Winston Lee
- Department of Genetics & Development, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pei-Yin Su
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Gerald A Fishman
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- The Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, IL 60608, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
Zhu Q, Rui X, Li Y, You Y, Sheng XL, Lei B. Identification of Four Novel Variants and Determination of Genotype-Phenotype Correlations for ABCA4 Variants Associated With Inherited Retinal Degenerations. Front Cell Dev Biol 2021; 9:634843. [PMID: 33732702 PMCID: PMC7957020 DOI: 10.3389/fcell.2021.634843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose The purpose of the study is to describe the genetic and clinical features of 17 patients with ABCA4-related inherited retinal degenerations (IRDs) and define the phenotype–genotype correlations. Methods In this multicenter retrospective study, 17 patients from 16 families were enrolled, and ABCA4 gene variants were detected using targeted next-generation sequencing using a custom designed panel for IRDs. Sanger sequencing and co-segregation analysis of the suspected pathogenic variants were performed with the family members. The pathogenicities of variants were evaluated according to the American College of Medical Genetics and Genomics guidelines (ACMG). Protein structure modifications mediated by the variants were studied using bioinformatic analyses. Results The probands were diagnosed with Stargardt disease 1 (7), cone-rod dystrophy type 3 (8), cone dystrophy (1), and retinitis pigmentosa 19 (1). Onset of symptoms occurred between 5 and 27 years of age (median age = 12.4 years). A total of 30 unique ABCA4 suspicious pathogenic variations were observed, including 18 missense mutations, seven frameshift mutations, two nonsense mutations, one canonical splice site mutation, one small in-frame deletion, and one insertion. Four novel ABCA4 variants were identified. Two novel frameshift variants, c.1290dupC (p.W431fs), and c.2967dupT (G990fs), were determined to be pathogenic. A novel missense variant c.G5761T (p.V1921L) was likely pathogenic, and another novel missense c.C170G (p.P57R) variant was of undetermined significance. All ABCA4 variants tested in this study inordinately changed the physico-chemical parameters and structure of protein based on in silico analysis. Conclusion ABCA4-related IRD is genetically and clinically highly heterogeneous. Four novel ABCA4 variants were identified. This study will expand the spectrum of disease-causing variants in ABCA4, which will further facilitate genetic counseling.
Collapse
Affiliation(s)
- Qing Zhu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xue Rui
- Ningxia Clinical Research Center of Blinding Eye Disease, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, China
| | - Ya Li
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.,Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute and Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ya You
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.,Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute and Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xun-Lun Sheng
- Ningxia Clinical Research Center of Blinding Eye Disease, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, China
| | - Bo Lei
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.,Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute and Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Garces FA, Scortecci JF, Molday RS. Functional Characterization of ABCA4 Missense Variants Linked to Stargardt Macular Degeneration. Int J Mol Sci 2020; 22:ijms22010185. [PMID: 33375396 PMCID: PMC7796138 DOI: 10.3390/ijms22010185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
ABCA4 is an ATP-binding cassette (ABC) transporter expressed in photoreceptors, where it transports its substrate, N-retinylidene-phosphatidylethanolamine (N-Ret-PE), across outer segment membranes to facilitate the clearance of retinal from photoreceptors. Mutations in ABCA4 cause Stargardt macular degeneration (STGD1), an autosomal recessive disorder characterized by a loss of central vision and the accumulation of bisretinoid compounds. The purpose of this study was to determine the molecular properties of ABCA4 variants harboring disease-causing missense mutations in the transmembrane domains. Thirty-eight variants expressed in culture cells were analyzed for expression, ATPase activities, and substrate binding. On the basis of these properties, the variants were divided into three classes: Class 1 (severe variants) exhibited significantly reduced ABCA4 expression and basal ATPase activity that was not stimulated by its substrate N-Ret-PE; Class 2 (moderate variants) showed a partial reduction in expression and basal ATPase activity that was modestly stimulated by N-Ret-PE; and Class 3 (mild variants) displayed expression and functional properties comparable to normal ABCA4. The p.R653C variant displayed normal expression and basal ATPase activity, but lacked substrate binding and ATPase activation, suggesting that arginine 653 contributes to N-Ret-PE binding. Our classification provides a basis for better understanding genotype–phenotype correlations and evaluating therapeutic treatments for STGD1.
Collapse
Affiliation(s)
- Fabian A. Garces
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (F.A.G.); (J.F.S.)
| | - Jessica F. Scortecci
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (F.A.G.); (J.F.S.)
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (F.A.G.); (J.F.S.)
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
- Correspondence: ; Tel.: +1-604-822-6173
| |
Collapse
|
26
|
Del Pozo-Valero M, Riveiro-Alvarez R, Blanco-Kelly F, Aguirre-Lamban J, Martin-Merida I, Iancu IF, Swafiri S, Lorda-Sanchez I, Rodriguez-Pinilla E, Trujillo-Tiebas MJ, Jimenez-Rolando B, Carreño E, Mahillo-Fernandez I, Rivolta C, Corton M, Avila-Fernandez A, Garcia-Sandoval B, Ayuso C. Genotype-Phenotype Correlations in a Spanish Cohort of 506 Families With Biallelic ABCA4 Pathogenic Variants. Am J Ophthalmol 2020; 219:195-204. [PMID: 32619608 DOI: 10.1016/j.ajo.2020.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 01/28/2023]
Abstract
PURPOSE To define genotype-phenotype correlations in the largest cohort study worldwide of patients with biallelic ABCA4 variants, including 434 patients with Stargardt disease (STGD1) and 72 with cone-rod dystrophy (CRD). DESIGN Cohort study. METHODS We characterized 506 patients with ABCA4 variants using conventional genetic tools and next-generation sequencing technologies. Medical history and ophthalmologic data were obtained from 372 patients. Genotype-phenotype correlation studies were carried out for the following variables: variant type, age at symptom onset (AO), and clinical phenotype. RESULTS A total of 228 different pathogenic variants were identified in 506 ABCA4 patients, 50 of which were novel. Genotype-phenotype correlations showed that most of the patients with biallelic truncating variants presented with CRD and that these cases had a significantly earlier AO than patients with STGD1. Three missense variants are associated with CRD for the first time (c.1804C>T; p.[Arg602Trp], c.3056C>T; p.[Thr1019Met], and c.6320G>C; p.[Arg2107Pro]). Analysis of the most prevalent ABCA4 variant in Spain, c.3386G>T; p.(Arg1129Leu), revealed that is correlated to STGD1, later AO, and foveal sparing. CONCLUSIONS Our study, conducted in the largest ABCA4-associated disease cohort reported to date, updates the genotype-phenotype model established for ABCA4 variants and broadens the mutational spectrum of the gene. According to our observations, patients with ABCA4 presenting with 2 truncating variants may first present features of STGD1 but eventually develop rod dysfunction, and specific missense variants may be associated with a different phenotype, underscoring the importance of an accurate genetic diagnosis. Also, it is a prerequisite for enrollment in clinical trials, and to date, no other treatment has been approved for STGD1.
Collapse
Affiliation(s)
- Marta Del Pozo-Valero
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Jana Aguirre-Lamban
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inmaculada Martin-Merida
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Ionut-Florin Iancu
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Saoud Swafiri
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Lorda-Sanchez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elvira Rodriguez-Pinilla
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria José Trujillo-Tiebas
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Belen Jimenez-Rolando
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ester Carreño
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ignacio Mahillo-Fernandez
- Department of Epidemiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Marta Corton
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Almudena Avila-Fernandez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Blanca Garcia-Sandoval
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain; Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
27
|
Hu FY, Gao FJ, Li JK, Xu P, Wang DD, Zhang SH, Wu JH. Novel variants of ABCA4 in Han Chinese families with Stargardt disease. BMC MEDICAL GENETICS 2020; 21:213. [PMID: 33129279 PMCID: PMC7602306 DOI: 10.1186/s12881-020-01152-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Stargardt disease (STGD1) is a common recessive hereditary macular dystrophy in early adulthood or childhood, with an estimated prevalence of 1:8000 to 1:10,000. ABCA4 is the causative gene for STGD1. The current study aims at identifying the novel disease-related ABCA4 variants in Han Chinese families with STGD1 using next-generation sequencing (NGS). METHODS In the present study, 12 unrelated Han Chinese families (19 males and 17 females) with STGD1 were tested by panel-based NGS. In order to capture the coding exons and the untranslated regions (UTRs) plus 30 bp of intronic flanking sequences of 792 genes, which were closely associated with usual ophthalmic genetic disease, we designed a customized panel, namely, Target_Eye_792_V2 chip. STGD1 patients were clinically diagnosed by experienced ophthalmologists. All the detected variants were filtered and analyzed through the public databases and in silico programs to assess potential pathogenicity. RESULTS Twenty-one ABCA4 mutant variants were detected in 12 unrelated Han Chinese families with STGD1, containing 14 missense, three splicing, two frameshift, one small deletion, and one nonsense variants. Base on the American College of Medical Genetics (ACMG) guidelines, 8 likely pathogenic and 13 pathogenic variants were determined. The functional consequences of these mutant variants were predicted through in silico programs. Of the 21 mutant variants in ABCA4, two novel coding variants c.3017G > A and c.5167 T > C and one novel null variant c.3051-1G > A were detected in three unrelated probands. CONCLUSIONS By panel-based NGS, 21 ABCA4 variants were confirmed in 12 unrelated Han Chinese families. Among them, 3 novel mutant variants were found, which further expanded the ABCA4 mutation spectrum in STGD1 patients.
Collapse
Affiliation(s)
- Fang-Yuan Hu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Feng-Juan Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jian-Kang Li
- BGI-Shenzhen, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Ping Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Dan-Dan Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Sheng-Hai Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Ji-Hong Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| |
Collapse
|
28
|
Curtis SB, Molday LL, Garces FA, Molday RS. Functional analysis and classification of homozygous and hypomorphic ABCA4 variants associated with Stargardt macular degeneration. Hum Mutat 2020; 41:1944-1956. [PMID: 32845050 DOI: 10.1002/humu.24100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Stargardt macular degeneration (Stargardt disease 1 [STGD1]) is caused by mutations in the gene encoding ABCA4, an ATP-binding cassette protein that transports N-retinylidene-phosphatidylethanolamine (N-Ret-PE) across photoreceptor membranes. Reduced ABCA4 activity results in retinoid accumulation leading to photoreceptor degeneration. The disease onset and severity vary from severe loss in visual acuity in the first decade to mild visual impairment late in life. We determined the effect of 22 disease-causing missense mutations on the expression and ATPase activity of ABCA4 in the absence and presence of N-Ret-PE. Three classes were identified that correlated with the disease onset in homozygous STGD1 individuals: Class 1 exhibited reduced ABCA4 expression and ATPase activity that was not stimulated by N-Ret-PE; individuals homozygous for these variants had an early disease onset (≤13 years); Class 2 showed reduced ATPase activity with limited stimulation by N-Ret-PE; these correlated with moderate disease onset (14-40 years); and Class 3 displayed high expression and ATPase activity that was strongly activated by N-Ret-PE; these were associated with late disease onset (>40 years). On the basis of our results, we introduce a functionality index for gauging the effect of missense mutations on STGD1 severity. Our studies support the mild phenotype exhibited by the p.Gly863Ala, p.Asn1868Ile, and p.Gly863Ala/p.Asn1868Ile variants.
Collapse
Affiliation(s)
- Susan B Curtis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian A Garces
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:E931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| |
Collapse
|
30
|
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79:100861. [PMID: 32278709 PMCID: PMC7544654 DOI: 10.1016/j.preteyeres.2020.100861] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
The ABCA4 protein (then called a “rim protein”) was first
identified in 1978 in the rims and incisures of rod photoreceptors. The
corresponding gene, ABCA4, was cloned in 1997, and variants
were identified as the cause of autosomal recessive Stargardt disease (STGD1).
Over the next two decades, variation in ABCA4 has been
attributed to phenotypes other than the classically defined STGD1 or fundus
flavimaculatus, ranging from early onset and fast progressing cone-rod dystrophy
and retinitis pigmentosa-like phenotypes to very late onset cases of mostly mild
disease sometimes resembling, and confused with, age-related macular
degeneration. Similarly, analysis of the ABCA4 locus uncovered
a trove of genetic information, including >1200 disease-causing mutations
of varying severity, and of all types – missense, nonsense, small
deletions/insertions, and splicing affecting variants, of which many are located
deep-intronic. Altogether, this has greatly expanded our understanding of
complexity not only of the diseases caused by ABCA4 mutations,
but of all Mendelian diseases in general. This review provides an in depth
assessment of the cumulative knowledge of ABCA4-associated retinopathy –
clinical manifestations, genetic complexity, pathophysiology as well as current
and proposed therapeutic approaches.
Collapse
Affiliation(s)
- Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands.
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
31
|
Dyka FM, Molday LL, Chiodo VA, Molday RS, Hauswirth WW. Dual ABCA4-AAV Vector Treatment Reduces Pathogenic Retinal A2E Accumulation in a Mouse Model of Autosomal Recessive Stargardt Disease. Hum Gene Ther 2019; 30:1361-1370. [PMID: 31418294 DOI: 10.1089/hum.2019.132] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autosomal recessive Stargardt disease is the most common inherited macular degeneration in humans. It is caused by mutations in the retina-specific ATP binding cassette transporter A4 (ABCA4) that is essential for the clearance of all-trans-retinal from photoreceptor cells. Loss of this function results in the accumulation of toxic bisretinoids in the outer segment disk membranes and their subsequent transfer into adjacent retinal pigment epithelium (RPE) cells. This ultimately leads to the Stargardt disease phenotype of increased retinal autofluorescence and progressive RPE and photoreceptor cell loss. Adeno-associated virus (AAV) vectors have been widely used in gene therapeutic applications, but their limited cDNA packaging capacity of ∼4.5 kb has impeded their use for transgenes exceeding this limit. AAV dual vectors were developed to overcome this size restriction. In this study, we have evaluated the in vitro expression of ABCA4 using three options: overlap, transplicing, and hybrid ABCA4 dual vector systems. The hybrid system was the most efficient of these dual vector alternatives and used to express the full-length ABCA4 in Abca4-/- mice. The full-length ABCA4 protein correctly localized to photoreceptor outer segments. Moreover, treatment of Abca4-/- mice with this ABCA4 hybrid dual vector system resulted in a reduced accumulation of the lipofuscin/N-retinylidene-N-retinylethanolamine (A2E) autofluorescence in vivo, and retinal A2E quantification supported these findings. These results show that the hybrid AAV dual vector option is both safe and therapeutic in mice, and the delivered ABCA4 transgene is functional and has a significant effect on reducing A2E accumulation in the Abca4-/- mouse model of Stargardt disease.
Collapse
Affiliation(s)
- Frank M Dyka
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vince A Chiodo
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
32
|
Wahl DJ, Ju MJ, Jian Y, Sarunic MV. Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence. BIOMEDICAL OPTICS EXPRESS 2019; 10:4859-4873. [PMID: 31565530 PMCID: PMC6757458 DOI: 10.1364/boe.10.004859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 05/02/2023]
Abstract
Two-photon excited fluorescence (TPEF) imaging of the retina is a developing technique that provides non-invasive compound-specific measurements from the retina. In this report, we demonstrate high-resolution TPEF imaging of the mouse retina using sensorless adaptive optics (SAO) and optical coherence tomography (OCT). A single near-infrared light source was used for simultaneous multi-modal imaging with OCT and TPEF. The image-based SAO could be performed using the en face OCT or the TPEF for aberration correction. Our results demonstrate OCT and TPEF for angiography. Also, we demonstrate non-invasive cellular-resolution imaging of fluorescently labelled cells and the Retinal Pigment Epithelium (RPE) mosaic.
Collapse
Affiliation(s)
- Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Myeong Jin Ju
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yifan Jian
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
33
|
Mäkeläinen S, Gòdia M, Hellsand M, Viluma A, Hahn D, Makdoumi K, Zeiss CJ, Mellersh C, Ricketts SL, Narfström K, Hallböök F, Ekesten B, Andersson G, Bergström TF. An ABCA4 loss-of-function mutation causes a canine form of Stargardt disease. PLoS Genet 2019; 15:e1007873. [PMID: 30889179 PMCID: PMC6424408 DOI: 10.1371/journal.pgen.1007873] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
Autosomal recessive retinal degenerative diseases cause visual impairment and blindness in both humans and dogs. Currently, no standard treatment is available, but pioneering gene therapy-based canine models have been instrumental for clinical trials in humans. To study a novel form of retinal degeneration in Labrador retriever dogs with clinical signs indicating cone and rod degeneration, we used whole-genome sequencing of an affected sib-pair and their unaffected parents. A frameshift insertion in the ATP binding cassette subfamily A member 4 (ABCA4) gene (c.4176insC), leading to a premature stop codon in exon 28 (p.F1393Lfs*1395), was identified. In contrast to unaffected dogs, no full-length ABCA4 protein was detected in the retina of an affected dog. The ABCA4 gene encodes a membrane transporter protein localized in the outer segments of rod and cone photoreceptors. In humans, the ABCA4 gene is associated with Stargardt disease (STGD), an autosomal recessive retinal degeneration leading to central visual impairment. A hallmark of STGD is the accumulation of lipofuscin deposits in the retinal pigment epithelium (RPE). The discovery of a canine homozygous ABCA4 loss-of-function mutation may advance the development of dog as a large animal model for human STGD. Stargardt disease (STGD) is the most common inherited retinal disease causing visual impairment and blindness in children and young adults, affecting 1 in 8–10 thousand people. For other inherited retinal diseases, the dog has become an established comparative animal model, both for identifying the underlying genetic causes and for developing new treatment methods. To date, there is no standard treatment for STGD and the only available animal model to study the disease is the mouse. As a nocturnal animal, the morphology of the mouse eye differs from humans and therefore the mouse model is not ideal for developing methods for treatment. We have studied a novel form of retinal degeneration in Labrador retriever dogs showing clinical signs similar to human STGD. To investigate the genetic cause of the disease, we used whole-genome sequencing of a family quartet including two affected offspring and their unaffected parents. This led to the identification of a loss-of-function mutation in the ABCA4 gene. The findings of this study may enable the development of a canine model for human STGD.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily A, Member 4/chemistry
- ATP Binding Cassette Transporter, Subfamily A, Member 4/genetics
- ATP Binding Cassette Transporter, Subfamily A, Member 4/metabolism
- ATP-Binding Cassette Transporters/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Codon, Nonsense
- Disease Models, Animal
- Dog Diseases/genetics
- Dog Diseases/metabolism
- Dog Diseases/pathology
- Dogs
- Female
- Genes, Recessive
- Homozygote
- Humans
- Lipofuscin/metabolism
- Macular Degeneration/congenital
- Macular Degeneration/genetics
- Macular Degeneration/metabolism
- Macular Degeneration/veterinary
- Male
- Microscopy, Fluorescence
- Models, Molecular
- Mutagenesis, Insertional
- Mutation
- Pedigree
- Protein Conformation
- Retina/metabolism
- Retina/pathology
- Stargardt Disease
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Suvi Mäkeläinen
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marta Gòdia
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Minas Hellsand
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Agnese Viluma
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Daniela Hahn
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karim Makdoumi
- Department of Ophthalmology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Caroline J. Zeiss
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Cathryn Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Sally L. Ricketts
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Kristina Narfström
- Section for Comparative Ophthalmology, College of Veterinary Medicine, University of Missouri-Columbia, Missouri, United States of America
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Björn Ekesten
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tomas F. Bergström
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
34
|
Garces F, Jiang K, Molday LL, Stöhr H, Weber BH, Lyons CJ, Maberley D, Molday RS. Correlating the Expression and Functional Activity of ABCA4 Disease Variants With the Phenotype of Patients With Stargardt Disease. Invest Ophthalmol Vis Sci 2019; 59:2305-2315. [PMID: 29847635 PMCID: PMC5937799 DOI: 10.1167/iovs.17-23364] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Stargardt disease (STGD1), the most common early-onset recessive macular degeneration, is caused by mutations in the gene encoding the ATP-binding cassette transporter ABCA4. Although extensive genetic studies have identified more than 1000 mutations that cause STGD1 and related ABCA4-associated diseases, few studies have investigated the extent to which mutations affect the biochemical properties of ABCA4. The purpose of this study was to correlate the expression and functional activities of missense mutations in ABCA4 identified in a cohort of Canadian patients with their clinical phenotype. Methods Eleven patients from British Columbia were diagnosed with STGD1. The exons and exon-intron boundaries were sequenced to identify potential pathologic mutations in ABCA4. Missense mutations were expressed in HEK293T cells and their level of expression, retinoid substrate binding properties, and ATPase activities were measured and correlated with the phenotype of the STGD1 patients. Results Of the 11 STGD1 patients analyzed, 7 patients had two mutations in ABCA4, 3 patients had one detected mutation, and 1 patient had no mutations in the exons and flanking regions. Included in this cohort of patients was a severely affected 11-year-old child who was homozygous for the novel p.Ala1794Pro mutation. Expression and functional analysis of this variant and other disease-associated variants compared favorably with the phenotypes of this cohort of STGD1 patients. Conclusions Although many factors contribute to the phenotype of STGD1 patients, the expression and residual activity of ABCA4 mutants play a major role in determining the disease severity of STGD1 patients.
Collapse
Affiliation(s)
- Fabian Garces
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kailun Jiang
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Christopher J Lyons
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Maberley
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|