1
|
Yu K, Sun C, Dong M, Song S, Wang Y, Zhao N, Xu N, Liu W. The use of adeno-associated vírus-based gene therapy to achieve long-term expression of recombinant neutralizing antibody against ricin. Toxicon 2025; 256:108289. [PMID: 39938697 DOI: 10.1016/j.toxicon.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Ricin is a highly toxic plant protein for which there are no specific antidotes. Current prophylactic and emergency treatments for ricin intoxication are limited by the need for prior vaccination and the short half-life of antibody drugs in the circulation. To address these limitations, we developed a novel immunotherapeutic strategy using adeno-associated virus (AAV) gene transfer to achieve prolonged systemic serum levels of immunoglobulins to ricin. In this study, a single administration of rAAV was used to deliver protein immunotherapeutics, and its efficacy in protecting mice against lethal doses of ricin was investigated. The results revealed that the single administration of rAAV three days prior to ricin exposure effectively protected mice from lethal doses of ricin. Remarkably, this protection was sustained for up to 90 days after AAV injection, demonstrating long-term efficacy. Overall, our findings suggest that the rAAV-mediated approach holds promise for both early and long-term prevention of ricin intoxication. The favorable safety profile of this system and its potential for the development of novel ricin antibody therapeutics make it a noteworthy candidate for further exploration and development in the field.
Collapse
Affiliation(s)
- Kaikai Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Suli Song
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun Jilin, China
| | - Yan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China; Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Na Zhao
- Jilin Medical University, Jilin, Jilin, China
| | - Na Xu
- Jilin Medical University, Jilin, Jilin, China.
| | - Wensen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China.
| |
Collapse
|
2
|
Li Q, Li X, He S, Li J. Hotspots and status of Fetal Alpha-Thalassemia from 2009 to 2023: a bibliometric analysis. Front Pediatr 2024; 12:1467760. [PMID: 39726529 PMCID: PMC11670076 DOI: 10.3389/fped.2024.1467760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Objective to evaluate the research status and development hotspots of fetal α-thalassemia by quantitatively analyzing the diagnostic status, key areas, related management measures and prospects of the disease by bibliometrics. Methods The global literature on fetal α-thalassemia and severe α-thalassemia from 2009-2023 in the Web of Science Core Collection (WOSCC) was visually analyzed by VOSviewer and CiteSpace. Results (1) The examination of the quantity of publications concerning fetal α-thalassemia indicates a rising tendency prior to 2018, followed by a decrease after 2018. (2)The United States, China, Italy, Thailand have published more papers, and the United States has more collaborating countries such as Italy and China. (3) Chiang Mai University and Harvard University are the top two institutions with the highest contribution. However, Chiang Mai University's H index (12) and citation frequency per article (8.05) are relatively low and the NC (6,342), H index (33) and citations per article (75.42) of Harvard University are higher than those of the other institutions. (4) Tongsong T, Gambari R and Fucharoen S are the top three prolific authors. Fucharoen S emerges as the most frequently cited author with 738 citations, excluding self-citations. (5) HEMOGLOBIN leading with 87 published papers (NC:601,IF: 0.82, H-index: 13), followed by BLOOD(58 papers, Nc: 3755, IF: 25.48, H-index: 40) and BLOOD CELLS MOLECULES AND DISEASES(39 papers, Nc: 729, IF: 2.37, H-index: 16). (6) The most cited article was published in science and the second and third cited articles were featured in the Proceedings of the National Academy of Sciences; the top 3 clusters of co-cited literature are "gene editing", "polymorphisms", "hydroxyurea". (7) Keywords analysis showe that the top two categories of keyword cluster focus on the prenatal diagnosis and the current treatment strategy of the disease, which remain the research hotspots. Conclusions Recent research on this topic has primarily focused on prenatal diagnosis and treatment strategies. A particular area of interest is the ongoing research on gene therapy.The advances in non-invasive diagnosis and therapeutic methods will change the current management approaches for fetal severe α-thalassemia in the future.
Collapse
Affiliation(s)
- Qiuying Li
- Department of Ultrasonography, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyan Li
- Department of Ultrasonography, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng He
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China
- Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiao Li
- Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
3
|
Wu J, Shen W, Fan Q, Zhang J, Zeng F. shRNA Targeting Lentiviral Vector Minus-Strand Product Improves the Viral Titer During Viral Packaging. Mol Biotechnol 2024; 66:2665-2672. [PMID: 38300454 DOI: 10.1007/s12033-023-01038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
Lentiviral vector (LVV) has been used as one of the common carriers for gene therapy in clinical trials. LVV-mediated clinical trials have being reported in successfully treating hundreds of β-thalassemia cases. These LVVs bear an inversely placed β-hemoglobin (HBB) gene expression cassette for preserving introns during the viral RNA packaging. Consequently, these LVVs often produce a small amount of negatively orientated transcript driven by its internal gene promoter and would lower the viral titer by the minus-strand complemented with the viral backbone. To overcome this problem, we designed shRNAs specifically target the minus-strand RNA driven by the LVV internal promoter that resulted in a notable increase in the viral titer. This report demonstrates a simple and positive mean for increasing the effectiveness for gene therapy with the LVV system.
Collapse
Affiliation(s)
- Jiahui Wu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Wenchen Shen
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Qianhai Fan
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Jingzhi Zhang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China.
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China.
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China.
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China.
- School of Pharmacy, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
4
|
Dimitrievska M, Bansal D, Vitale M, Strouboulis J, Miccio A, Nicolaides KH, El Hoss S, Shangaris P, Jacków-Malinowska J. Revolutionising healing: Gene Editing's breakthrough against sickle cell disease. Blood Rev 2024; 65:101185. [PMID: 38493007 DOI: 10.1016/j.blre.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Recent advancements in gene editing illuminate new potential therapeutic approaches for Sickle Cell Disease (SCD), a debilitating monogenic disorder caused by a point mutation in the β-globin gene. Despite the availability of several FDA-approved medications for symptomatic relief, allogeneic hematopoietic stem cell transplantation (HSCT) remains the sole curative option, underscoring a persistent need for novel treatments. This review delves into the growing field of gene editing, particularly the extensive research focused on curing haemoglobinopathies like SCD. We examine the use of techniques such as CRISPR-Cas9 and homology-directed repair, base editing, and prime editing to either correct the pathogenic variant into a non-pathogenic or wild-type one or augment fetal haemoglobin (HbF) production. The article elucidates ways to optimize these tools for efficacious gene editing with minimal off-target effects and offers insights into their effective delivery into cells. Furthermore, we explore clinical trials involving alternative SCD treatment strategies, such as LentiGlobin therapy and autologous HSCT, distilling the current findings. This review consolidates vital information for the clinical translation of gene editing for SCD, providing strategic insights for investigators eager to further the development of gene editing for SCD.
Collapse
Affiliation(s)
- Marija Dimitrievska
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Dravie Bansal
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Marta Vitale
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - John Strouboulis
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France
| | - Kypros H Nicolaides
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | - Sara El Hoss
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| | - Panicos Shangaris
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| | | |
Collapse
|
5
|
Ghosh A, Maiti S, Chakraborty D. Emerging opportunities for gene editing therapies in India. Nat Med 2024; 30:324-325. [PMID: 38238618 DOI: 10.1038/s41591-023-02752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
6
|
Xu L, Lahiri P, Skowronski J, Bhatia N, Lattanzi A, Porteus MH. Molecular dynamics of genome editing with CRISPR-Cas9 and rAAV6 virus in human HSPCs to treat sickle cell disease. Mol Ther Methods Clin Dev 2023; 30:317-331. [PMID: 37637384 PMCID: PMC10447934 DOI: 10.1016/j.omtm.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Ex vivo gene correction with CRISPR-Cas9 and a recombinant adeno-associated virus serotype 6 (rAAV6) in autologous hematopoietic stem/progenitor cells (HSPCs) to treat sickle cell disease (SCD) has now entered early-phase clinical investigation. To facilitate the progress of CRISPR-Cas9/rAAV6 genome editing technology, we analyzed the molecular changes in key reagents and cellular responses during and after the genome editing procedure in human HSPCs. We demonstrated the high stability of rAAV6 to serve as the donor DNA template. We assessed the benefit of longer HSPC pre-stimulation in terms of increased numbers of edited cells. We observed that the p53 pathway was transiently activated, peaking at 6 h, and resolved over time. Notably, we revealed a strong correlation between p21 mRNA level and rAAV6 genome number in cells and beneficial effects of transient inhibition of p53 with siRNA on genome editing, cell proliferation, and cell survival. In terms of potential immunogenicity, we found that rAAV6 capsid protein was not detectable, while a trace amount of residual Cas9 protein was still detected at 48 h post-genome editing. We believe this information will provide important insights for future improvements of gene correction protocols in HSPCs.
Collapse
Affiliation(s)
- Liwen Xu
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Premanjali Lahiri
- Stanford Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Jason Skowronski
- Stanford Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Neehar Bhatia
- Stanford Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Annalisa Lattanzi
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
7
|
Piel FB, Rees DC, DeBaun MR, Nnodu O, Ranque B, Thompson AA, Ware RE, Abboud MR, Abraham A, Ambrose EE, Andemariam B, Colah R, Colombatti R, Conran N, Costa FF, Cronin RM, de Montalembert M, Elion J, Esrick E, Greenway AL, Idris IM, Issom DZ, Jain D, Jordan LC, Kaplan ZS, King AA, Lloyd-Puryear M, Oppong SA, Sharma A, Sung L, Tshilolo L, Wilkie DJ, Ohene-Frempong K. Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission. Lancet Haematol 2023; 10:e633-e686. [PMID: 37451304 PMCID: PMC11459696 DOI: 10.1016/s2352-3026(23)00096-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023]
Abstract
All over the world, people with sickle cell disease (an inherited condition) have premature deaths and preventable severe chronic complications, which considerably affect their quality of life, career progression, and financial status. In addition, these people are often affected by stigmatisation or structural racism, which can contribute to stress and poor mental health. Inequalities affecting people with sickle cell disease are also reflected in the distribution of the disease—mainly in sub-Saharan Africa, India, and the Caribbean—whereas interventions, clinical trials, and funding are mostly available in North America, Europe, and the Middle East. Although some of these characteristics also affect people with other genetic diseases, the fate of people with sickle cell disease seems to be particularly unfair. Simple, effective interventions to reduce the mortality and morbidity associated with sickle cell disease are available. The main obstacle preventing better outcomes in this condition, which is a neglected disease, is associated with inequalities impacting the patient populations. The aim of this Commission is to highlight the problems associated with sickle cell disease and to identify achievable goals to improve outcomes both in the short and long term. The ambition for the management of people with sickle cell disease is that curative treatments become available to every person with the condition. Although this would have seemed unrealistic a decade ago, developments in gene therapy make this potentially achievable, albeit in the distant future. Until these curative technologies are fully developed and become widely available, health-care professionals (with the support of policy makers, funders, etc) should make sure that a minimum standard of care (including screening, prophylaxis against infection, acute medical care, safe blood transfusion, and hydroxyurea) is available to all patients. In considering what needs to be achieved to reduce the global burden of sickle cell disease and improve the quality of life of patients, this Commission focuses on five key areas: the epidemiology of sickle cell disease (Section 1 ); screening and prevention (Section 2 ); established and emerging treatments for the management of the disease (Section 3 ); cellular therapies with curative potential (Section 4 ); and training and education needs (Section 5 ). As clinicians, researchers, and patients, our objective to reduce the global burden of sickle cell disease aligns with wider public health aims to reduce inequalities, improve health for all, and develop personalised treatment options. We have observed in the past few years some long-awaited momentum following the development of innovative point-of-care testing devices, new approved drugs, and emerging curative options. Reducing the burden of sickle cell disease will require substantial financial and political commitment, but it will impact the lives of millions of patients and families worldwide and the lessons learned in achieving this goal would unarguably benefit society as a whole.
Collapse
Affiliation(s)
- Frédéric B Piel
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
| | - David C Rees
- Department of Paediatric Haematology, King's College London, King's College Hospital, London, UK
| | - Michael R DeBaun
- Department of Pediatrics, Vanderbilt-Meharry Center of Excellence for Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Obiageli Nnodu
- Department of Haematology and Blood Transfusion, College of Health Sciences and Centre of Excellence for Sickle Cell Disease Research and Training, University of Abuja, Abuja, Nigeria
| | - Brigitte Ranque
- Department of Internal Medicine, Georges Pompidou European Hospital, Assistance Publique-Hopitaux de Paris Centre, University of Paris Cité, Paris, France
| | - Alexis A Thompson
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell E Ware
- Division of Hematology and Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, and Sickle Cell Program, American University of Beirut, Beirut, Lebanon
| | - Allistair Abraham
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Emmanuela E Ambrose
- Department of Paediatrics and Child Health, Bugando Medical Centre, Mwanza, Tanzania
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Connecticut, USA
| | - Roshan Colah
- Department of Haematogenetics, Indian Council of Medical Research National Institute of Immunohaematology, Mumbai, India
| | - Raffaella Colombatti
- Pediatric Oncology Hematology Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Nicola Conran
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Fernando F Costa
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Robert M Cronin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Mariane de Montalembert
- Department of Pediatrics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris Centre, Paris, France
| | - Jacques Elion
- Paris Cité University and University of the Antilles, Inserm, BIGR, Paris, France
| | - Erica Esrick
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Anthea L Greenway
- Department Clinical Haematology, Royal Children's Hospital, Parkville and Department Haematology, Monash Health, Clayton, VIC, Australia
| | - Ibrahim M Idris
- Department of Hematology, Aminu Kano Teaching Hospital/Bayero University Kano, Kano, Nigeria
| | - David-Zacharie Issom
- Department of Business Information Systems, School of Management, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Dipty Jain
- Department of Paediatrics, Government Medical College, Nagpur, India
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zane S Kaplan
- Department of Clinical Haematology, Monash Health and Monash University, Melbourne, VIC, Australia
| | - Allison A King
- Departments of Pediatrics and Internal Medicine, Divisions of Pediatric Hematology and Oncology and Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Michele Lloyd-Puryear
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel A Oppong
- Department of Obstetrics and Gynecology, University of Ghana Medical School, Accra, Ghana
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Leon Tshilolo
- Institute of Biomedical Research/CEFA Monkole Hospital Centre and Official University of Mbuji-Mayi, Mbuji-Mayi, Democratic Republic of the Congo
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Kwaku Ohene-Frempong
- Division of Hematology, Children's Hospital of Philadelphia, Pennsylvania, USA; Sickle Cell Foundation of Ghana, Kumasi, Ghana
| |
Collapse
|
8
|
Piletska E, Veron P, Bertin B, Mingozzi F, Jones D, Norman RL, Earley J, Karim K, Garcia-Cruz A, Piletsky S. Analysis of Adeno-Associated Virus Serotype 8 (AAV8)-antibody complexes using epitope mapping by molecular imprinting leads to the identification of Fab peptides that potentially evade AAV8 neutralisation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102691. [PMID: 37329939 DOI: 10.1016/j.nano.2023.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Gene therapy is a promising approach for treating genetic disorders by delivering therapeutic genes to replace or correct malfunctioning genes. However, the introduced gene therapy vector can trigger an immune response, leading to reduced efficacy and potential harm to the patient. To improve the efficiency and safety of gene therapy, preventing the immune response to the vector is crucial. This can be achieved through the use of immunosuppressive drugs, vector engineering to evade the immune system, or delivery methods that bypass the immune system altogether. By reducing the immune response, gene therapy can deliver therapeutic genes more effectively and potentially cure genetic diseases. In this study, a novel molecular imprinting technique, combined with mass-spectrometry and bioinformatics, was used to identify four antigen-binding fragments (Fab) sequences of Adeno-Associated Virus (AAV) - neutralising antibodies capable of binding to AAV. The identified Fab peptides were shown to prevent AAV8's binding to antibodies, demonstrating their potential to improve gene therapy efficiency by preventing the immune response.
Collapse
Affiliation(s)
- Elena Piletska
- School of Chemistry, University of Leicester, LE1 7RH, UK.
| | - Philippe Veron
- Laboratory of Immunology, Genethon, 91002 Evry Cedex, France
| | | | | | - Donald Jones
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK; Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Rachel L Norman
- Cancer Research Centre, RKCSB, University of Leicester, Leicester LE1 7RH, UK; Van Geest MS Omics Facility, University of Leicester, Leicester LE1 9HN, UK
| | - Joseph Earley
- School of Chemistry, University of Leicester, LE1 7RH, UK
| | - Kal Karim
- School of Chemistry, University of Leicester, LE1 7RH, UK
| | | | | |
Collapse
|
9
|
Ghanem B, Seoane-Vazquez E, Brown L, Rodriguez-Monguio R. Analysis of the Gene Therapies Authorized by the United States Food and Drug Administration and the European Medicines Agency. Med Care 2023; 61:438-447. [PMID: 36884030 DOI: 10.1097/mlr.0000000000001840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
BACKGROUND Gene therapy, altering the genes inside human cells, has recently emerged as an alternative for preventing and treating disease. Concerns have been expressed about the clinical value and the high cost of gene therapies. OBJECTIVE This study assessed the characteristics of the clinical trials, authorizations, and prices of gene therapies in the United States and the European Union. RESEARCH DESIGN We collected regulatory information from the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) and manufacturer-listed prices from the United States, UK, and Germany. Descriptive statistics and t tests were conducted in the study. RESULTS As of January 1, 2022, the FDA and EMA authorized 8 and 10 gene therapies, respectively. The FDA and EMA granted orphan designation to all gene therapies except talimogene laherparepvec. Pivotal clinical trials were nonrandomized, open level, uncontrolled, phase I-III, and included a limited number of patients. Study primary outcomes were mainly surrogate endpoints without demonstration of direct patient benefit. The price of gene therapies at market entry ranged from $200,064 to $2,125,000 million. CONCLUSIONS Gene therapy is used to treat incurable diseases that affect only a small number of patients (orphan diseases). Based on this, they are approved by the EMA and FDA with insufficient clinical evidence to ensure safety and efficacy, in addition to the high cost.
Collapse
Affiliation(s)
- Buthainah Ghanem
- Department of Pharmaceutical Economics and Policy, Chapman University School of Pharmacy, Irvine
| | - Enrique Seoane-Vazquez
- Department of Pharmaceutical Economics and Policy, Chapman University School of Pharmacy, Irvine
- Economic Science Institute, Chapman University, Orange
| | - Lawrence Brown
- Department of Pharmaceutical Economics and Policy, Chapman University School of Pharmacy, Irvine
| | - Rosa Rodriguez-Monguio
- Department of Clinical Pharmacy
- Medication Outcomes Center
- Philip R. Lee Institute for Health Policy Studies, University of California San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Azar SS, Gopal S. Serious Blood Disorders: A Focus on Sickle Cell Disease and Hemophilia. PALLIATIVE CARE IN HEMATOLOGIC MALIGNANCIES AND SERIOUS BLOOD DISORDERS 2023:37-54. [DOI: 10.1007/978-3-031-38058-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Wolff JH, Mikkelsen JG. Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25 years. J Biomed Sci 2022; 29:79. [PMID: 36209077 PMCID: PMC9548131 DOI: 10.1186/s12929-022-00865-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses are naturally endowed with the capacity to transfer genetic material between cells. Following early skepticism, engineered viruses have been used to transfer genetic information into thousands of patients, and genetic therapies are currently attracting large investments. Despite challenges and severe adverse effects along the way, optimized technologies and improved manufacturing processes are driving gene therapy toward clinical translation. Fueled by the outbreak of AIDS in the 1980s and the accompanying focus on human immunodeficiency virus (HIV), lentiviral vectors derived from HIV have grown to become one of the most successful and widely used vector technologies. In 2022, this vector technology has been around for more than 25 years. Here, we celebrate the anniversary by portraying the vector system and its intriguing properties. We dive into the technology itself and recapitulate the use of lentiviral vectors for ex vivo gene transfer to hematopoietic stem cells and for production of CAR T-cells. Furthermore, we describe the adaptation of lentiviral vectors for in vivo gene delivery and cover the important contribution of lentiviral vectors to basic molecular research including their role as carriers of CRISPR genome editing technologies. Last, we dwell on the emerging capacity of lentiviral particles to package and transfer foreign proteins.
Collapse
Affiliation(s)
- Jonas Holst Wolff
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
12
|
Mamas T, Kakourou G, Vrettou C, Traeger-Synodinos J. Hemoglobinopathies and preimplantation diagnostics. Int J Lab Hematol 2022; 44 Suppl 1:21-27. [PMID: 35443077 DOI: 10.1111/ijlh.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
Hemoglobinopathies constitute some of the most common inherited disorders worldwide. Manifestations are very severe, patient management is difficult and treatment is not easily accessible. Preimplantation genetic testing for monogenic disorders (PGT-M) is a valuable reproductive option for hemoglobinopathy carrier-couples as it precludes the initiation of an affected pregnancy. PGT-M is performed on embryos generated by assisted reproductive technologies and only those found to be free of the monogenic disorder are transferred to the uterus. PGT-M has been applied for 30 years now and β-thalassemia is one of the most common indications. PGT may also be applied for human leukocyte antigen typing to identify embryos that are unaffected and also compatible with an affected sibling in need of hemopoietic stem cell transplantation. PGT-M protocols have evolved from PCR amplification-based, where a small number of loci were analysed, to whole genome amplification-based, the latter increasing diagnostic accuracy, enabling the development of more generic strategies and facilitating multiple diagnoses in one embryo. Currently, numerous PGT-M cycles are performed for the simultaneous diagnosis of hemoglobinopathies and screening for chromosomal abnormalities in the embryo in an attempt to further improve success rates and increase deliveries of unaffected babies.
Collapse
Affiliation(s)
- Thalia Mamas
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Kakourou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
13
|
Shi R, Jia S, Liu H, Nie H. Clinical grade lentiviral vector purification and quality control requirements. J Sep Sci 2022; 45:2093-2101. [PMID: 35247228 DOI: 10.1002/jssc.202100937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/10/2022]
Abstract
Lentiviral vectors have been proven to be a powerful tool in gene therapies that includes the ability to perform long-term gene editing in both dividing and non-dividing cells. In order to meet the rising demand of clinical grade lentiviral vectors for future clinical trials and requirements by regulatory agencies, new methods and technologies were developed, including the rapid optimization of production and purification processes. However, gaps still exist in achieving ideal yields and recovery rates in large-scale manufacturing process steps. The downstream purification process is a critical step required to obtain sufficient quantity and high-quality lentiviral vectors products, which is challenged by the low stability of the LV particles and large production volumes associated with the manufacturing process. This review summarizes the most recent and promising technologies and enhancements used in the large-scale purification process step of LV manufacturing and aims to provide a significant contribution towards the achievement of providing sufficient quantity and quality of LVs in scalable processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ruina Shi
- Immunochina Pharmaceutical Co., Ltd., Beijing, China
| | - Shenghua Jia
- Immunochina Pharmaceutical Co., Ltd., Beijing, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Analytical Instrumental Center, Peking University, Beijing, China
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The aim of this study was to summarize recent findings in kidney gene therapy while proposing cystinuria as a model kidney disease target for genome engineering therapeutics. RECENT FINDINGS Despite the advances of gene therapy for treating diseases of other organs, the kidney lags behind. Kidney-targeted gene delivery remains an obstacle to gene therapy of kidney disease. Nanoparticle and adeno-associated viral vector technologies offer emerging hope for kidney gene therapy. Cystinuria represents a model potential target for kidney gene therapy due to its known genetic and molecular basis, targetability, and capacity for phenotypic rescue. SUMMARY Although gene therapy for kidney disease remains a major challenge, new and evolving technologies may actualize treatment for cystinuria and other kidney diseases.
Collapse
Affiliation(s)
- Jennifer L. Peek
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Matthew H. Wilson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Health Services, Nashville, TN, 37212
| |
Collapse
|
15
|
Jiao B, Basu A, Ramsey S, Roth J, Bender MA, Quach D, Devine B. Health State Utilities for Sickle Cell Disease: A Catalog Prepared From a Systematic Review. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2022; 25:276-287. [PMID: 35094801 PMCID: PMC8804335 DOI: 10.1016/j.jval.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/27/2021] [Accepted: 08/06/2021] [Indexed: 04/08/2024]
Abstract
OBJECTIVES Sickle cell disease (SCD) is a complex, chronic condition that impairs health-related quality of life of affected individuals and their caregivers. As curative therapies emerge, comprehensive cost-effectiveness models will inform their value. These models will require descriptions of health states and their corresponding utility values that accurately reflect health-related quality of life over the disease trajectory. The objectives of this systematic review were to develop a catalog of health state utility (HSU) values for SCD, identify research gaps, and provide future directions for preference elicitation. METHODS Records were identified through searches of PubMed and Embase, Tufts Medical Center Cost-Effectiveness Analysis Registry, reference lists of relevant articles, and consultation with SCD experts (2008-2020). We removed duplicate records and excluded ineligible studies. For included studies, we summarized the study characteristics, methods used for eliciting HSUs, and HSU values. RESULTS Five studies empirically elicited utilities using indirect methods (EQ-5D) (n = 3) and Short Form-6 Dimension (n = 2); these represent health states associated with general SCD (n = 1), SCD complications (n = 2), and SCD treatments (n = 3). Additionally, we extracted HSUs from 7 quality-adjusted life-years-based outcome research studies. The HSU among patients with general SCD without specifying complications ranged from 0.64 to 0.887. Only 36% of the HSUs used in the quality-adjusted life-year-based outcomes research studies were derived from individuals with SCD. No study estimated HSUs in caregivers. CONCLUSIONS There is a dearth of literature of HSUs for use in SCD models. Future empirical studies should elicit a comprehensive set of HSUs from individuals with SCD and their caregivers.
Collapse
Affiliation(s)
- Boshen Jiao
- The Comparative Health Outcomes, Policy, and Economics Institute, University of Washington, Seattle, WA, USA
| | - Anirban Basu
- The Comparative Health Outcomes, Policy, and Economics Institute, University of Washington, Seattle, WA, USA; Department of Health Services, University of Washington, Seattle, WA, USA
| | - Scott Ramsey
- The Comparative Health Outcomes, Policy, and Economics Institute, University of Washington, Seattle, WA, USA; Hutchinson Institute for Cancer Outcomes Research and Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joshua Roth
- Hutchinson Institute for Cancer Outcomes Research and Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - M A Bender
- Department of Pediatrics, University of Washington and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dalyna Quach
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Beth Devine
- The Comparative Health Outcomes, Policy, and Economics Institute, University of Washington, Seattle, WA, USA; Department of Health Services, University of Washington, Seattle, WA, USA; Department of Biomedical Informatics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Thuret I, Ruggeri A, Angelucci E, Chabannon C. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:407-414. [PMID: 35267028 PMCID: PMC9052404 DOI: 10.1093/stcltm/szac007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/13/2021] [Indexed: 01/19/2023] Open
Abstract
Beta-thalassemia is one of the most common monogenic disorders. Standard treatment of the most severe forms, i.e., transfusion-dependent thalassemia (TDT) with long-term transfusion and iron chelation, represents a considerable medical, psychological, and economic burden. Allogeneic hematopoietic stem cell transplantation from an HLA-identical donor is a curative treatment with excellent results in children. Recently, several gene therapy approaches were evaluated in academia or industry-sponsored clinical trials as alternative curative options for children and young adults without an HLA-identical donor. Gene therapy by addition of a functional beta-globin gene using self-inactivating lentiviral vectors in autologous stem cells resulted in transfusion independence for a majority of TDT patients across different age groups and genotypes, with a current follow-up of multiple years. More recently, promising results were reported in TDT patients treated with autologous hematopoietic stem cells edited with the clustered regularly interspaced short palindromic repeats-Cas9 technology targeting erythroid BCL11A expression, a key regulator of the normal switch from fetal to adult globin production. Patients achieved high levels of fetal hemoglobin allowing for discontinuation of transfusions. Despite remarkable clinical efficacy, 2 major hurdles to gene therapy access for TDT patients materialized in 2021: (1) a risk of secondary hematological malignancies that is complex and multifactorial in origin and not limited to the risk of insertional mutagenesis, (2) the cost—even in high-income countries—is leading to the arrest of commercialization in Europe of the first gene therapy medicinal product indicated for TDT despite conditional approval by the European Medicines Agency.
Collapse
Affiliation(s)
- Isabelle Thuret
- Department of Pediatric Onco-Hematology, Center for Hemoglobinopathies, La Timone Hospital, Marseille University, Marseille, France
| | - Annalisa Ruggeri
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Eurocord, Hopital Saint Louis, Paris, France
- EBMT Cellular Therapy and Immunobiology Working Party, Leiden, the Netherlands
| | - Emanuele Angelucci
- Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Christian Chabannon
- Corresponding author: Christian Chabannon, MD, PhD, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France. Tel: +33 491 223 441;
| |
Collapse
|
17
|
Shah N, Krishnamurti L. Evidence-Based Minireview: In young children with severe sickle cell disease, do the benefits of HLA-identical sibling donor HCT outweigh the risks? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:190-195. [PMID: 34889371 PMCID: PMC8791135 DOI: 10.1182/hematology.2021000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In case 1, a 14-month-old male child with sickle cell disease (SCD) was referred for evaluation for an allogeneic hematopoietic stem cell transplant (HCT). The patient had a history of dactylitis 3 times in his first year of life and febrile episodes twice at the consult. His 4-year-old sister was found to be human leukocyte antigen (HLA) identical. The patient was started on hydroxyurea (HU) at 2.5 years of age. His parents again sought consultation when he was 5 years old because of concerns about his medical condition. At the time, the patient had experienced 2 vaso-occlusive pain episodes (VOEs) requiring hospitalization during the previous 2 years. He had also experienced intermittent pain crises requiring rest at home for 2 to 3 days. The child has not attended school in person due to the COVID-19 pandemic. The family is considering HCT but is ambivalent about it because of potential toxicity. In case 2, an 8-year-old female child is 3 years out from HCT for SCD from her HLA-identical sibling. Before HCT, despite receiving HU, she had experienced >5 VOEs requiring hospitalization and 2 episodes of acute chest syndromes in the previous 3 years. She had also been missing almost 50 days of school days each year. After HCT, she is now attending school regularly and participating in all normal age-appropriate activities. The parents believe that HCT has been transformative in their child's life.
Collapse
Affiliation(s)
- Niketa Shah
- Section of Pediatric Hematology/Oncology/BMT, Yale School of Medicine, New Haven, CT
| | - Lakshmanan Krishnamurti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| |
Collapse
|
18
|
Jiao B, Basu A, Roth J, Bender M, Rovira I, Clemons T, Quach D, Ramsey S, Devine B. The Use of Cost-Effectiveness Analysis in Sickle Cell Disease: A Critical Review of the Literature. PHARMACOECONOMICS 2021; 39:1225-1241. [PMID: 34368937 PMCID: PMC10697726 DOI: 10.1007/s40273-021-01072-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 05/22/2023]
Abstract
Novel interventions for sickle cell disease (SCD) bring hope to patients, yet concern about the associated economic costs exists. Cost-effectiveness analysis (CEA) uses standardized methods, with robust underpinnings in health economics, to estimate the value of these interventions compared with usual care. However, because of the complexity and lifetime trajectory of SCD, CEAs are challenging to conduct. The objectives of this rapid review were to summarize the main characteristics, components, and results of published CEAs of existing interventions for SCD, identify research gaps, and provide directions for future analyses. We identified records through searches of bibliographic databases, from reference lists of relevant review articles, and through consultation with experts. A total of 13 CEAs met our inclusion criteria and were qualitatively synthesized. These evaluated blood transfusions (n = 2), hematopoietic stem cell transplantation (n = 1), pharmaceuticals (n = 2), hypothetical cell or genetic therapy (n = 1), screening programs (n = 4), and interventions for SCD treatment complications (n = 3). A limited number of potential SCD and treatment complications were evaluated. No study adopted a societal perspective in the base case, six studies examined lifetime cost-effectiveness, seven studies employed a Markov or discrete-event simulation model, and eight studies used an outcome metric that captured both quality and length of life. To better compare the value of emerging and current therapies, future CEAs should adopt a societal perspective incorporating both medical and nonmedical costs, comprehensively model SCD complexity using robust health economic simulation models over the patient's entire lifespan, and capture the intervention's effect on both survival and quality of life.
Collapse
Affiliation(s)
- Boshen Jiao
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, 1959 NE Pacific Street, H-375T, Box 357630, Seattle, WA, 98195-7630, USA
| | - Anirban Basu
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, 1959 NE Pacific Street, H-375T, Box 357630, Seattle, WA, 98195-7630, USA
- Department of Health Services, University of Washington, Seattle, USA
| | - Joshua Roth
- Hutchinson Institute for Cancer Outcomes Research and Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - M Bender
- Department of Pediatrics, University of Washington, Seattle, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Ilsa Rovira
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | | | - Dalyna Quach
- Department of Pharmacy, University of Washington, Seattle, USA
| | - Scott Ramsey
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, 1959 NE Pacific Street, H-375T, Box 357630, Seattle, WA, 98195-7630, USA
- Hutchinson Institute for Cancer Outcomes Research and Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Beth Devine
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, 1959 NE Pacific Street, H-375T, Box 357630, Seattle, WA, 98195-7630, USA.
- Department of Health Services, University of Washington, Seattle, USA.
| |
Collapse
|
19
|
Musallam KM, Bou‐Fakhredin R, Cappellini MD, Taher AT. 2021 update on clinical trials in β-thalassemia. Am J Hematol 2021; 96:1518-1531. [PMID: 34347889 DOI: 10.1002/ajh.26316] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023]
Abstract
The treatment landscape for patients with β-thalassemia is witnessing a swift evolution, yet several unmet needs continue to persist. Patients with transfusion-dependent β-thalassemia (TDT) primarily rely on regular transfusion and iron chelation therapy, which can be associated with considerable treatment burden and cost. Patients with non-transfusion-dependent β-thalassemia (NTDT) are also at risk of significant morbidity due to the underlying anemia and iron overload, but treatment options in this patient subgroup are limited. In this review, we provide updates on clinical trials of novel therapies targeting the underlying pathology in β-thalassemia, including the α/non-α-globin chain imbalance, ineffective erythropoiesis, and iron dysregulation.
Collapse
Affiliation(s)
- Khaled M. Musallam
- Thalassemia Center, Burjeel Medical City Abu Dhabi United Arab Emirates
- International Network of Hematology London UK
| | - Rayan Bou‐Fakhredin
- Department of Internal Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community University of Milan, Ca’ Granda Foundation IRCCS Maggiore Policlinico Hospital Milan Italy
| | - Ali T. Taher
- Department of Internal Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
20
|
Mussolino C, Strouboulis J. Recent Approaches for Manipulating Globin Gene Expression in Treating Hemoglobinopathies. Front Genome Ed 2021; 3:618111. [PMID: 34713248 PMCID: PMC8525358 DOI: 10.3389/fgeed.2021.618111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue oxygenation throughout life depends on the activity of hemoglobin (Hb) one of the hemeproteins that binds oxygen in the lungs and secures its delivery throughout the body. Hb is composed of four monomers encoded by eight different genes the expression of which is tightly regulated during development, resulting in the formation of distinct hemoglobin tetramers in each developmental stage. Mutations that alter hemoglobin structure or its regulated expression result in a large group of diseases typically referred to as hemoglobinopathies that are amongst the most common genetic defects worldwide. Unprecedented efforts in the last decades have partially unraveled the complex mechanisms that control globin gene expression throughout development. In addition, genome wide association studies have revealed protective genetic traits capable of ameliorating the clinical manifestations of severe hemoglobinopathies. This knowledge has fueled the exploration of innovative therapeutic approaches aimed at modifying the genome or the epigenome of the affected cells to either restore hemoglobin function or to mimic the effect of protective traits. Here we describe the key steps that control the switch in gene expression that concerns the different globin genes during development and highlight the latest efforts in altering globin regulation for therapeutic purposes.
Collapse
Affiliation(s)
- Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John Strouboulis
- Laboratory of Molecular Erythropoiesis, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
21
|
Barbarani G, Łabedz A, Ronchi AE. β-Hemoglobinopathies: The Test Bench for Genome Editing-Based Therapeutic Strategies. Front Genome Ed 2021; 2:571239. [PMID: 34713219 PMCID: PMC8525389 DOI: 10.3389/fgeed.2020.571239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022] Open
Abstract
Hemoglobin is a tetrameric protein composed of two α and two β chains, each containing a heme group that reversibly binds oxygen. The composition of hemoglobin changes during development in order to fulfill the need of the growing organism, stably maintaining a balanced production of α-like and β-like chains in a 1:1 ratio. Adult hemoglobin (HbA) is composed of two α and two β subunits (α2β2 tetramer), whereas fetal hemoglobin (HbF) is composed of two γ and two α subunits (α2γ2 tetramer). Qualitative or quantitative defects in β-globin production cause two of the most common monogenic-inherited disorders: β-thalassemia and sickle cell disease. The high frequency of these diseases and the relative accessibility of hematopoietic stem cells make them an ideal candidate for therapeutic interventions based on genome editing. These strategies move in two directions: the correction of the disease-causing mutation and the reactivation of the expression of HbF in adult cells, in the attempt to recreate the effect of hereditary persistence of fetal hemoglobin (HPFH) natural mutations, which mitigate the severity of β-hemoglobinopathies. Both lines of research rely on the knowledge gained so far on the regulatory mechanisms controlling the differential expression of globin genes during development.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Agata Łabedz
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
22
|
Wang X, Ma C, Rodríguez Labrada R, Qin Z, Xu T, He Z, Wei Y. Recent advances in lentiviral vectors for gene therapy. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1842-1857. [PMID: 34708326 DOI: 10.1007/s11427-021-1952-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Lentiviral vectors (LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth studies on this gene therapy vehicle over the past two decades, LVs have been widely used in both research and clinical trials. For instance, third-generation and self-inactive LVs have been used to introduce a gene with therapeutic potential into the host genome and achieve targeted delivery into specific tissue. When LVs are employed in leukemia, the transduced T cells recognize and kill the tumor B cells; in β-thalassemia, the transduced CD34+ cells express normal β-globin; in adenosine deaminase-deficient severe combined immunodeficiency, the autologous CD34+ cells express adenosine deaminase and realize immune reconstitution. Overall, LVs can perform significant roles in the treatment of primary immunodeficiency diseases, hemoglobinopathies, B cell leukemia, and neurodegenerative diseases. In this review, we discuss the recent developments and therapeutic applications of LVs. The safe and efficient LVs show great promise as a tool for human gene therapy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cuicui Ma
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Roberto Rodríguez Labrada
- Department Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, 80100, Cuba
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yuquan Wei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
23
|
The non-coding genome in genetic brain disorders: new targets for therapy? Essays Biochem 2021; 65:671-683. [PMID: 34414418 PMCID: PMC8564736 DOI: 10.1042/ebc20200121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
The non-coding genome, consisting of more than 98% of all genetic information in humans and once judged as ‘Junk DNA’, is increasingly moving into the spotlight in the field of human genetics. Non-coding regulatory elements (NCREs) are crucial to ensure correct spatio-temporal gene expression. Technological advancements have allowed to identify NCREs on a large scale, and mechanistic studies have helped to understand the biological mechanisms underlying their function. It is increasingly becoming clear that genetic alterations of NCREs can cause genetic disorders, including brain diseases. In this review, we concisely discuss mechanisms of gene regulation and how to investigate them, and give examples of non-coding alterations of NCREs that give rise to human brain disorders. The cross-talk between basic and clinical studies enhances the understanding of normal and pathological function of NCREs, allowing better interpretation of already existing and novel data. Improved functional annotation of NCREs will not only benefit diagnostics for patients, but might also lead to novel areas of investigations for targeted therapies, applicable to a wide panel of genetic disorders. The intrinsic complexity and precision of the gene regulation process can be turned to the advantage of highly specific treatments. We further discuss this exciting new field of ‘enhancer therapy’ based on recent examples.
Collapse
|
24
|
Miliotou AN, Papagiannopoulou D, Vlachaki E, Samiotaki M, Laspa D, Theodoridou S, Tsiftsoglou AS, Papadopoulou LC. PTD-mediated delivery of α-globin chain into Κ-562 erythroleukemia cells and α-thalassemic (HBH) patients' RBCs ex vivo in the frame of Protein Replacement Therapy. ACTA ACUST UNITED AC 2021; 28:16. [PMID: 34284828 PMCID: PMC8290593 DOI: 10.1186/s40709-021-00148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022]
Abstract
Background α-Thalassemia, a congenital hemoglobinopathy, is characterized by deficiency and/or reduced levels of α-globin chains in serious forms of α-thalassemia (HbH disease/Hb Bart’s). This research work deals with a Protein Replacement Therapy approach in order to manage α-thalassemia manifestations, caused by the excess of β-globin chain into HbH RBCs. The main goal was to produce the recombinant human α-globin chain in fusion with TAT, a Protein Transduction Domain, to ex vivo deliver it into HbH patients RBCs, to replace the endogenous missing α-globin chain. Results Cloning of the α-globin coding sequence, fused to the nucleotide sequence of TAT peptide was conducted and the human recombinant fusion proteins, 10xHis-XaSITE-α-globin-HA and 10xHis-XaSITE-TAT-α-globin-HA were produced. The ability of human recombinant 10xHis-XaSITE-α-globin-HA to interact in vitro with the previously produced 10xHis-XaSITE-TAT-β-globin-HA and form α-/β-globin heterodimers, was assessed and confirmed by size exclusion chromatography. The recombinant 10xHis-XaSITE-TAT-α-globin-HA was successfully delivered into human proerythroid K-562 cells, during the preliminary transduction evaluation experiments. Finally, the recombinant, TAT-fused α-globin was successfully transduced into RBCs, derived from HbH patients and reduced the formation of HbH-Inclusion Bodies, known to contain harmful β4-globin chain tetramers. Conclusions Our data confirm the successful ex vivo transduction of recombinant α-globin chains in HbH RBCs to replace the missing a-globin chain and reduce the HbH-inclusion bodies, seen in α-thalassemias. These findings broaden the possibility of applying a Protein Replacement Therapy approach to module sever forms of α-thalassemia, using recombinant α-globin chains, through PTD technology. Supplementary Information The online version contains supplementary material available at 10.1186/s40709-021-00148-3.
Collapse
Affiliation(s)
- Androulla N Miliotou
- Laboratory of Pharmacology, Department of Pharmacognosy - Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Dionysia Papagiannopoulou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Efthymia Vlachaki
- Adult Thalassemia Unit, Hippokrateion General Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", 16672, Vari, Greece
| | - Dimitra Laspa
- Laboratory of Pharmacology, Department of Pharmacognosy - Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Stamatia Theodoridou
- Adult Thalassemia Unit, Hippokrateion General Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmacognosy - Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Lefkothea C Papadopoulou
- Laboratory of Pharmacology, Department of Pharmacognosy - Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
25
|
Lattanzi A, Camarena J, Lahiri P, Segal H, Srifa W, Vakulskas CA, Frock RL, Kenrick J, Lee C, Talbott N, Skowronski J, Cromer MK, Charlesworth CT, Bak RO, Mantri S, Bao G, DiGiusto D, Tisdale J, Wright JF, Bhatia N, Roncarolo MG, Dever DP, Porteus MH. Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Transl Med 2021; 13:13/598/eabf2444. [PMID: 34135108 DOI: 10.1126/scitranslmed.abf2444] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the β-globin gene (HBB). Ex vivo β-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.
Collapse
Affiliation(s)
- Annalisa Lattanzi
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Premanjali Lahiri
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Helen Segal
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Waracharee Srifa
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Richard L Frock
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Josefin Kenrick
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Ciaran Lee
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland
| | - Narae Talbott
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Jason Skowronski
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus, Denmark
| | - Sruthi Mantri
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77006, USA
| | - David DiGiusto
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - John Tisdale
- Molecular and Clinical Hematology Branch, NHLBI, Bethesda, MD 20814, USA
| | - J Fraser Wright
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Neehar Bhatia
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA.,Deceased
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA. .,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Abstract
IMPORTANCE Genomic newborn screening (gNBS) may optimize the health and well-being of children and families. Screening programs are required to be evidence based, acceptable, and beneficial. OBJECTIVES To identify what has been discovered following the reporting of the first gNBS pilot projects and to provide a summary of key points for the design of gNBS. EVIDENCE REVIEW A systematic literature review was performed on April 14, 2021, identifying 36 articles that addressed the following questions: (1) what is the interest in and what would be the uptake of gNBS? (2) what diseases and genes should be included? (3) what is the validity and utility of gNBS? and (4) what are the ethical, legal, and social implications? Articles were only included if they generated new evidence; all opinion pieces were excluded. FINDINGS In the 36 articles included, there was high concordance, except for gene disease inclusion, which was highly variable. Key findings were the need for equitable access, appropriate educational materials, and informed and flexible consent. The process for selecting genes for testing should be transparent and reflect that parents value the certainty of prediction over actionability. Data should be analyzed in a way that minimizes uncertainty and incidental findings. The expansion of traditional newborn screening (tNBS) to identify more life-threatening and treatable diseases needs to be balanced against the complexity of consenting parents of newborns for genomic testing as well as the risk that overall uptake of tNBS may decline. The literature reflected that the right of a child to self-determination should be valued more than the possibility of the whole family benefiting from a newborn genomic test. CONCLUSIONS AND RELEVANCE The findings of this systematic review suggest that implementing gNBS will require a nuanced approach. There are gaps in our knowledge, such as the views of diverse populations, the capabilities of health systems, and health economic implications. It will be essential to rigorously evaluate outcomes and ensure programs can evolve to maximize benefit.
Collapse
Affiliation(s)
- Lilian Downie
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane Halliday
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Sharon Lewis
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David J. Amor
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Royal Children’s Hospital, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Karamperis K, Tsoumpeli MT, Kounelis F, Koromina M, Mitropoulou C, Moutinho C, Patrinos GP. Genome-based therapeutic interventions for β-type hemoglobinopathies. Hum Genomics 2021; 15:32. [PMID: 34090531 PMCID: PMC8178887 DOI: 10.1186/s40246-021-00329-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
For decades, various strategies have been proposed to solve the enigma of hemoglobinopathies, especially severe cases. However, most of them seem to be lagging in terms of effectiveness and safety. So far, the most prevalent and promising treatment options for patients with β-types hemoglobinopathies, among others, predominantly include drug treatment and gene therapy. Despite the significant improvements of such interventions to the patient's quality of life, a variable response has been demonstrated among different groups of patients and populations. This is essentially due to the complexity of the disease and other genetic factors. In recent years, a more in-depth understanding of the molecular basis of the β-type hemoglobinopathies has led to significant upgrades to the current technologies, as well as the addition of new ones attempting to elucidate these barriers. Therefore, the purpose of this article is to shed light on pharmacogenomics, gene addition, and genome editing technologies, and consequently, their potential use as direct and indirect genome-based interventions, in different strategies, referring to drug and gene therapy. Furthermore, all the latest progress, updates, and scientific achievements for patients with β-type hemoglobinopathies will be described in detail.
Collapse
Affiliation(s)
- Kariofyllis Karamperis
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
- The Golden Helix Foundation, London, UK
| | - Maria T Tsoumpeli
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Fotios Kounelis
- Department of Computing, Group of Large-Scale Data & Systems, Imperial College London, London, UK
| | - Maria Koromina
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
| | | | - Catia Moutinho
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece.
- College of Medicine and Health Sciences, Department of Pathology, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
28
|
EnvIRONmental Aspects in Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:ijms22105202. [PMID: 34068996 PMCID: PMC8156755 DOI: 10.3390/ijms22105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic iron overload is multifactorial in patients suffering from myelodysplastic syndrome (MDS). Disease-immanent ineffective erythropoiesis together with chronic red blood cell transfusion represent the main underlying reasons. However, like the genetic heterogeneity of MDS, iron homeostasis is also diverse in different MDS subtypes and can no longer be generalized. While a certain amount of iron and reactive oxygen species (ROS) are indispensable for proper hematological output, both are harmful if present in excess. Consequently, iron overload has been increasingly recognized as an important player in MDS, which is worth paying attention to. This review focuses on iron- and ROS-mediated effects in the bone marrow niche, their implications for hematopoiesis and their yet unclear involvement in clonal evolution. Moreover, we provide recent insights into hepcidin regulation in MDS and its interaction between erythropoiesis and inflammation. Based on Tet methylcytosine dioxygenase 2 (TET2), representing one of the most frequently mutated genes in MDS, leading to disturbances in both iron homeostasis and hematopoiesis, we highlight that different genetic alteration may have different implications and that a comprehensive workup is needed for a complete understanding and development of future therapies.
Collapse
|
29
|
Grosveld F, van Staalduinen J, Stadhouders R. Transcriptional Regulation by (Super)Enhancers: From Discovery to Mechanisms. Annu Rev Genomics Hum Genet 2021; 22:127-146. [PMID: 33951408 DOI: 10.1146/annurev-genom-122220-093818] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accurate control of gene expression in the right cell at the right moment is of fundamental importance to animal development and homeostasis. At the heart of gene regulation lie the enhancers, a class of gene regulatory elements that ensures precise spatiotemporal activation of gene transcription. Mammalian genomes are littered with enhancers, which are frequently organized in cooperative clusters such as locus control regions and superenhancers. Here, we discuss our current knowledge of enhancer biology, including an overview of the discovery of the various enhancer subsets and the mechanistic models used to explain their gene regulatory function.
Collapse
Affiliation(s)
- Frank Grosveld
- Department of Cell Biology, Erasmus MC, 3000 CA Rotterdam, The Netherlands; ,
| | | | - Ralph Stadhouders
- Department of Cell Biology, Erasmus MC, 3000 CA Rotterdam, The Netherlands; , .,Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
30
|
Nualkaew T, Sii-Felice K, Giorgi M, McColl B, Gouzil J, Glaser A, Voon HPJ, Tee HY, Grigoriadis G, Svasti S, Fucharoen S, Hongeng S, Leboulch P, Payen E, Vadolas J. Coordinated β-globin expression and α2-globin reduction in a multiplex lentiviral gene therapy vector for β-thalassemia. Mol Ther 2021; 29:2841-2853. [PMID: 33940155 PMCID: PMC8417505 DOI: 10.1016/j.ymthe.2021.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/08/2021] [Accepted: 04/27/2021] [Indexed: 01/30/2023] Open
Abstract
A primary challenge in lentiviral gene therapy of β-hemoglobinopathies is to maintain low vector copy numbers to avoid genotoxicity while being reliably therapeutic for all genotypes. We designed a high-titer lentiviral vector, LVβ-shα2, that allows coordinated expression of the therapeutic βA-T87Q-globin gene and of an intron-embedded miR-30-based short hairpin RNA (shRNA) selectively targeting the α2-globin mRNA. Our approach was guided by the knowledge that moderate reduction of α-globin chain synthesis ameliorates disease severity in β-thalassemia. We demonstrate that LVβ-shα2 reduces α2-globin mRNA expression in erythroid cells while keeping α1-globin mRNA levels unchanged and βA-T87Q-globin gene expression identical to the parent vector. Compared with the first βA-T87Q-globin lentiviral vector that has received conditional marketing authorization, BB305, LVβ-shα2 shows 1.7-fold greater potency to improve α/β ratios. It may thus result in greater therapeutic efficacy and reliability for the most severe types of β-thalassemia and provide an improved benefit/risk ratio regardless of the β-thalassemia genotype.
Collapse
Affiliation(s)
- Tiwaporn Nualkaew
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia; Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| | - Karine Sii-Felice
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France; Paris-Saclay University, CEA, INSERM, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses & Le Kremlin Bicêtre, France
| | - Marie Giorgi
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Bradley McColl
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| | - Julie Gouzil
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Astrid Glaser
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| | - Hsiao P J Voon
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hsin Y Tee
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - George Grigoriadis
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Philippe Leboulch
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France; Genetics Division, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Emmanuel Payen
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France; Paris-Saclay University, CEA, INSERM, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses & Le Kremlin Bicêtre, France.
| | - Jim Vadolas
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia; Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
31
|
Zittersteijn HA, Harteveld CL, Klaver-Flores S, Lankester AC, Hoeben RC, Staal FJT, Gonçalves MAFV. A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies. Front Genome Ed 2021; 2:617780. [PMID: 34713239 PMCID: PMC8525365 DOI: 10.3389/fgeed.2020.617780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Throughout the past decades, the search for a treatment for severe hemoglobinopathies has gained increased interest within the scientific community. The discovery that ɤ-globin expression from intact HBG alleles complements defective HBB alleles underlying β-thalassemia and sickle cell disease, has provided a promising opening for research directed at relieving ɤ-globin repression mechanisms and, thereby, improve clinical outcomes for patients. Various gene editing strategies aim to reverse the fetal-to-adult hemoglobin switch to up-regulate ɤ-globin expression through disabling either HBG repressor genes or repressor binding sites in the HBG promoter regions. In addition to these HBB mutation-independent strategies involving fetal hemoglobin (HbF) synthesis de-repression, the expanding genome editing toolkit is providing increased accuracy to HBB mutation-specific strategies encompassing adult hemoglobin (HbA) restoration for a personalized treatment of hemoglobinopathies. Moreover, besides genome editing, more conventional gene addition strategies continue under investigation to restore HbA expression. Together, this research makes hemoglobinopathies a fertile ground for testing various innovative genetic therapies with high translational potential. Indeed, the progressive understanding of the molecular clockwork underlying the hemoglobin switch together with the ongoing optimization of genome editing tools heightens the prospect for the development of effective and safe treatments for hemoglobinopathies. In this context, clinical genetics plays an equally crucial role by shedding light on the complexity of the disease and the role of ameliorating genetic modifiers. Here, we cover the most recent insights on the molecular mechanisms underlying hemoglobin biology and hemoglobinopathies while providing an overview of state-of-the-art gene editing platforms. Additionally, current genetic therapies under development, are equally discussed.
Collapse
Affiliation(s)
- Hidde A. Zittersteijn
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis L. Harteveld
- Department of Human and Clinical Genetics, The Hemoglobinopathies Laboratory, Leiden University Medical Center, Leiden, Netherlands
| | | | - Arjan C. Lankester
- Department of Pediatrics, Stem Cell Transplantation Program, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
32
|
Bachmeier I, Blecha C, Föll J, Wolff D, Jägle H. [Maculopathy in sickle cell disease]. Ophthalmologe 2021; 118:1013-1023. [PMID: 33502544 PMCID: PMC8492597 DOI: 10.1007/s00347-020-01319-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
Hintergrund Die Sichelzellerkrankung (SZE) ist eine hereditäre Hämoglobinopathie, die durch rezidivierende vasookklusive Episoden zur Mikrozirkulationsstörung verschiedener Organsysteme mit teils letalem Ausgang führt. Bei der okulären Manifestation der SZE ist am bekanntesten die periphere Sichelzellretinopathie (SZR). Unabhängig davon kann es bereits früh im Krankheitsverlauf zur Sichelzellmakulopathie (SZM) kommen. Methoden Review der internationalen und deutschsprachigen Literatur zur okulären Beteiligung bei SZE mit Fokus auf die SZR und SZM sowie Überblick über aktuelle systemische Therapieansätze bei SZE anlässlich der Vorstellung zweier Patienten mit HbSS-SZE. Ergebnis und Schlussfolgerung Im Gegensatz zur SZR ist die SZM mit temporaler Verdünnung der inneren Netzhautschichten erst in den letzten 5 Jahren mit der Einführung von SD-OCT und OCTA vermehrt in die Literatur eingegangen. Unabhängig vom Vorliegen einer SZR kann es immerhin bei etwa der Hälfte der Patienten bereits früh im Krankheitsverlauf zu einer SZM kommen. Das Krankheitsbild wird auch in Deutschland durch den Fortschritt der systemischen Therapiemöglichkeiten und aufgrund von Migration präsenter werden. Durch Wissen um diese Komplikation der SZE kann eine frühzeitige Diagnosestellung erfolgen und unnötige Diagnostik vermieden werden.
Collapse
Affiliation(s)
- Isabel Bachmeier
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland.
| | - Christiane Blecha
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland
| | - Jürgen Föll
- Abteilung für Pädiatrische Hämatologie, Onkologie und Stammzelltransplantation, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Daniel Wolff
- Klinik und Poliklinik für Innere Medizin III, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Herbert Jägle
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland
| |
Collapse
|
33
|
Xu X, Chen W, Zhu W, Chen J, Ma B, Ding J, Wang Z, Li Y, Wang Y, Zhang X. Adeno-associated virus (AAV)-based gene therapy for glioblastoma. Cancer Cell Int 2021; 21:76. [PMID: 33499886 PMCID: PMC7836184 DOI: 10.1186/s12935-021-01776-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant Grade IV primary craniocerebral tumor caused by glial cell carcinogenesis with an extremely poor median survival of 12–18 months. The current standard treatments for GBM, including surgical resection followed by chemotherapy and radiotherapy, fail to substantially prolong survival outcomes. Adeno-associated virus (AAV)-mediated gene therapy has recently attracted considerable interest because of its relatively low cytotoxicity, poor immunogenicity, broad tissue tropism, and long-term stable transgene expression. Furthermore, a range of gene therapy trials using AAV as vehicles are being investigated to thwart deadly GBM in mice models. At present, AAV is delivered to the brain by local injection, intracerebroventricular (ICV) injection, or systematic injection to treat experimental GBM mice model. In this review, we summarized the experimental trials of AAV-based gene therapy as GBM treatment and compared the advantages and disadvantages of different AAV injection approaches. We systematically introduced the prospect of the systematic injection of AAV as an approach for AAV-based gene therapy for GBM.
Collapse
Affiliation(s)
- Xin Xu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Wenli Chen
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Zhu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, 222006, China
| | - Jing Chen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Bin Ma
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianxia Ding
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zaichuan Wang
- School of Medicine, Yangzhou University, Yangzhou, 225600, China
| | - Yifei Li
- School of Medicine, Yangzhou University, Yangzhou, 225600, China
| | - Yeming Wang
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, 222006, Jiangsu, China.
| | - Xiaochun Zhang
- School of Medicine, Yangzhou University, Yangzhou, 225600, China. .,Department of Oncology, Yangzhou Traditional Chinese Medical Hospital, Yangzhou, 225600, Jiangsu, China.
| |
Collapse
|
34
|
Benítez-Carabante MI, Beléndez C, González-Vicent M, Alonso L, Uría-Oficialdegui ML, Torrent M, Pérez-Hurtado JM, Fuster JL, Cela E, Díaz-de-Heredia C. Matched sibling donor stem cell transplantation for sickle cell disease: Results from the Spanish group for bone marrow transplantation in children. Eur J Haematol 2021; 106:408-416. [PMID: 33296531 DOI: 10.1111/ejh.13566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The prevalence of sickle cell disease (SCD) in Spain is markedly inferior compared with other European and Mediterranean countries. However, the diagnosis of new patients with SCD is expected to increase. In this multicenter retrospective study, we analyze the hematopoietic stem cell transplantation (HSCT) results obtained in Spain. METHODS Forty-five patients who underwent a matched sibling donor (MSD) HSCT between 1999 and 2018 were included. Primary endpoint was event-free survival (EFS), and secondary endpoints included acute and chronic graft-versus-host disease (GvHD) and overall survival (OS). RESULTS Bone marrow was the most frequent stem cell source (93.3%). Most patients received a conditioning regimen based on busulfan and cyclophosphamide (69%). Cumulative incidence of grade III-IV acute GvHD and chronic GvHD was 6.8% (95% CI: 2.3%-20.1%) and 5.4% (95% CI: 1.38%-19.9%), respectively. EFS and overall survival (OS) at 3 years post-HSCT were 89.4% (95% CI: 73.9%-95.9%) and 92.1% (95% CI: 77.2%-97.4%), respectively. All patients aged ≤ 5 presented 100% EFS and OS. CONCLUSIONS An early referral to HSCT centers should be proposed early in life, before severe complications occur. MSD HSCT should be considered a curative option for all patients aged ≤ 5 years and for older pediatric patients who present complications derived from the disease.
Collapse
Affiliation(s)
- María Isabel Benítez-Carabante
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Cristina Beléndez
- Department of Pediatric Hematology and Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marta González-Vicent
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Laura Alonso
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - María Luz Uría-Oficialdegui
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Monserrat Torrent
- Department of Pediatric Hematology and Oncology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | | | - José Luis Fuster
- Department of Pediatric Hematology and Oncology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Elena Cela
- Department of Pediatric Hematology and Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Cristina Díaz-de-Heredia
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | | |
Collapse
|
35
|
Papizan JB, Porter SN, Sharma A, Pruett-Miller SM. Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies. J Biomed Res 2021; 35:115-134. [PMID: 33349624 PMCID: PMC8038529 DOI: 10.7555/jbr.34.20200096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
With advancements in gene editing technologies, our ability to make precise and efficient modifications to the genome is increasing at a remarkable rate, paving the way for scientists and clinicians to uniquely treat a multitude of previously irremediable diseases. CRISPR-Cas9, short for clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9, is a gene editing platform with the ability to alter the nucleotide sequence of the genome in living cells. This technology is increasing the number and pace at which new gene editing treatments for genetic disorders are moving toward the clinic. The β-hemoglobinopathies are a group of monogenic diseases, which despite their high prevalence and chronic debilitating nature, continue to have few therapeutic options available. In this review, we will discuss our existing comprehension of the genetics and current state of treatment for β-hemoglobinopathies, consider potential genome editing therapeutic strategies, and provide an overview of the current state of clinical trials using CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- James B Papizan
- Department of Cellular and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shaina N Porter
- Department of Cellular and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cellular and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
36
|
Fan X, Gao Y, Zhang X, Lughmani HY, Kennedy DJ, Haller ST, Pierre SV, Shapiro JI, Tian J. A strategic expression method of miR-29b and its anti-fibrotic effect based on RNA-sequencing analysis. PLoS One 2020; 15:e0244065. [PMID: 33332475 PMCID: PMC7746150 DOI: 10.1371/journal.pone.0244065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue fibrosis is a significant health issue associated with organ dysfunction and failure. Increased deposition of collagen and other extracellular matrix (ECM) proteins in the interstitial area is a major process in tissue fibrosis. The microRNA-29 (miR-29) family has been demonstrated as anti-fibrotic microRNAs. Our recent work showed that dysregulation of miR-29 contributes to the formation of cardiac fibrosis in animal models of uremic cardiomyopathy, whereas replenishing miR-29 attenuated cardiac fibrosis in these animals. However, excessive overexpression of miR-29 is a concern because microRNAs usually have multiple targets, which could result in unknown and unexpected side effect. In the current study, we constructed a novel Col1a1-miR-29b vector using collagen 1a1 (Col1a1) promoter, which can strategically express miR-29b-3p (miR-29b) in response to increased collagen synthesis and reach a dynamic balance between collagen and miR-29b. Our experimental results showed that in mouse embryonic fibroblasts (MEF cells) transfected with Col1a1-miR-29b vector, the miR-29b expression is about 1000 times less than that in cells transfected with CMV-miR-29b vector, which uses cytomegalovirus (CMV) as a promoter for miR-29b expression. Moreover, TGF-β treatment increased the miR-29b expression by about 20 times in cells transfected with Col1a1-miR-29b, suggesting a dynamic response to fibrotic stimulation. Western blot using cell lysates and culture media demonstrated that transfection of Col1a1-miR-29b vector significantly reduced TGF-β induced collagen synthesis and secretion, and the effect was as effective as the CMV-miR-29b vector. Using RNA-sequencing analysis, we found that 249 genes were significantly altered (180 upregulated and 69 downregulated, at least 2-fold change and adjusted p-value <0.05) after TGF-β treatment in MEF cells transfected with empty vector. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using GAGE R-package showed that the top 5 upregulated pathways after TGF-β treatment were mostly fibrosis-related, including focal adhesion, ECM reaction, and TGF-β signaling pathways. As expected, transfection of Col1a1-miR-29b or CMV-miR-29b vector partially reversed the activation of these pathways. We also analyzed the expression pattern of the top 100 miR-29b targeting genes in these cells using the RNA-sequencing data. We identified that miR-29b targeted a broad spectrum of ECM genes, but the inhibition effect is mostly moderate. In summary, our work demonstrated that the Col1a1-miR-29b vector can be used as a dynamic regulator of collagen and other ECM protein expression in response to fibrotic stimulation, which could potentially reduce unnecessary side effect due to excessive miR-29b levels while remaining an effective potential therapeutic approach for fibrosis.
Collapse
Affiliation(s)
- Xiaoming Fan
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States of America
| | - Xiaolu Zhang
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Haroon Y. Lughmani
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - David J. Kennedy
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Steven T. Haller
- Department of Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States of America
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Department of Biomedical Sciences, Marshall University, Huntington, West Virginia, United States of America
| | - Jiang Tian
- Joan C. Edwards School of Medicine, Department of Biomedical Sciences, Marshall University, Huntington, West Virginia, United States of America
| |
Collapse
|
37
|
Abstract
Fetal hemoglobin (HbF) can blunt the pathophysiology, temper the clinical course, and offer prospects for curative therapy of sickle cell disease. This review focuses on (1) HbF quantitative trait loci and the geography of β-globin gene haplotypes, especially those found in the Middle East; (2) how HbF might differentially impact the pathophysiology and many subphenotypes of sickle cell disease; (3) clinical implications of person-to-person variation in the distribution of HbF among HbF-containing erythrocytes; and (4) reactivation of HbF gene expression using both pharmacologic and cell-based therapeutic approaches. A confluence of detailed understanding of the molecular basis of HbF gene expression, coupled with the ability to precisely target by genomic editing most areas of the genome, is producing important preliminary therapeutic results that could provide new options for cell-based therapeutics with curative intent.
Collapse
Affiliation(s)
- Martin H Steinberg
- Division of Hematology/Oncology, Department of Medicine, Center of Excellence for Sickle Cell Disease, Center for Regenerative Medicine, Genome Science Institute, Boston University School of Medicine and Boston Medical Center, Boston, MA
| |
Collapse
|
38
|
Martínez-Molina E, Chocarro-Wrona C, Martínez-Moreno D, Marchal JA, Boulaiz H. Large-Scale Production of Lentiviral Vectors: Current Perspectives and Challenges. Pharmaceutics 2020; 12:pharmaceutics12111051. [PMID: 33153183 PMCID: PMC7693937 DOI: 10.3390/pharmaceutics12111051] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Lentiviral vectors (LVs) have gained value over recent years as gene carriers in gene therapy. These viral vectors are safer than what was previously being used for gene transfer and are capable of infecting both dividing and nondividing cells with a long-term expression. This characteristic makes LVs ideal for clinical research, as has been demonstrated with the approval of lentivirus-based gene therapies from the Food and Drug Administration and the European Agency for Medicine. A large number of functional lentiviral particles are required for clinical trials, and large-scale production has been challenging. Therefore, efforts are focused on solving the drawbacks associated with the production and purification of LVsunder current good manufacturing practice. In recent years, we have witnessed the development and optimization of new protocols, packaging cell lines, and culture devices that are very close to reaching the target production level. Here, we review the most recent, efficient, and promising methods for the clinical-scale production ofLVs.
Collapse
Affiliation(s)
- Eduardo Martínez-Molina
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - Carlos Chocarro-Wrona
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Daniel Martínez-Moreno
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Juan A. Marchal
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Houria Boulaiz
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-271
| |
Collapse
|
39
|
d'Arqom A, Nualkaew T, Jearawiriyapaisarn N, Kole R, Svasti S. Engineered U7 Small Nuclear RNA Restores Correct β-Globin Pre-mRNA Splicing in Mouse β IVS2-654-Thalassemic Erythroid Progenitor Cells. Hum Gene Ther 2020; 32:473-480. [PMID: 32977730 DOI: 10.1089/hum.2020.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Restoration of correct splicing of βIVS2-654-globin pre-mRNA was previously accomplished in erythroid cells from β-thalassemia/HbE patients by an engineered U7 small nuclear RNA (snRNA) that carried a sequence targeted to the cryptic branch point and an exonic splicing enhancer, U7.BP+623 snRNA. In this study, this approach was tested in thalassemic mice carrying the βIVS2-654 mutation. While correction of βIVS2-654 pre-mRNA splicing was achieved in erythroid progenitors transduced with a lentiviral vector carrying the U7.BP+623 snRNA, a high level of truncated U7.BP+623 snRNA was also observed. The discrepancy of processing of the modified U7 snRNA in human and mouse constructs hamper the evaluation of pathologic improvement in mouse model.
Collapse
Affiliation(s)
- Annette d'Arqom
- Graduate Program in Molecular Medicine.,Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Department of Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tiwaporn Nualkaew
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Ryszard Kole
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Department of Biochemistry; Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
40
|
Hicks W, Meng F, Kassa T, Alayash AI. Effects of α subunit substitutions on the oxidation of βCys93 and the stability of sickle cell hemoglobin. Redox Rep 2020; 25:95-103. [PMID: 33059548 PMCID: PMC7594797 DOI: 10.1080/13510002.2020.1834250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The β subunit substitutions, F41Y and K82D, in sickle cell hemoglobin (Hb) (βE6 V) provides significant resistance to oxidative stress by shielding βCys93 from the oxidizing ferryl heme. We evaluated the oxidative resistance of βCys93 to hydrogen peroxide (H2O2) in α subunit mutations in βE6 V (at both the putative and lateral contact regions) that included (1) αH20Q/βE6 V; (2) αH50Q/βE6 V; (3) αH20Q/H50Q/βE6 V; (4) αH20R/βE6 V; and (5) αH20R/H50Q/βE6 V. Estimation by mass spectrometry of irreversible oxidation of βCys93 to cysteic acid (CA) was unchanged or moderately increased in the single mutants harboring a H20Q or H50Q substitution when compared to control (βE6 V). The introduction of Arg (R) singularly or in combination with Q enhanced the pseudoperoxidative cycle by slightly decreasing the ferryl in favor of ferrous and ferric species after treatment with H2O2. Higher rates for heme loss from the ferric forms of the Q species to the receptor high affinity recombinant apomyglobin were observed in contrast to the R mutants and control. Because of their improved solubility, a combination of Q and R substitutions together with mutations carrying redox active variants (F41Y/K82D) may provide dual antioxidant and antisickling targets in the design of gene therapy-based candidates.
Collapse
Affiliation(s)
- Wayne Hicks
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Fantao Meng
- Hemoglobin Oxygen Therapeutics, Souderton, Pennsylvania, USA
| | - Tigist Kassa
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
41
|
Breveglieri G, Pacifico S, Zuccato C, Cosenza LC, Sultan S, D’Aversa E, Gambari R, Preti D, Trapella C, Guerrini R, Borgatti M. Discovery of Novel Fetal Hemoglobin Inducers through Small Chemical Library Screening. Int J Mol Sci 2020; 21:E7426. [PMID: 33050052 PMCID: PMC7582302 DOI: 10.3390/ijms21197426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/27/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022] Open
Abstract
The screening of chemical libraries based on cellular biosensors is a useful approach to identify new hits for novel therapeutic targets involved in rare genetic pathologies, such as β-thalassemia and sickle cell disease. In particular, pharmacologically mediated stimulation of human γ-globin gene expression, and increase of fetal hemoglobin (HbF) production, have been suggested as potential therapeutic strategies for these hemoglobinopathies. In this article, we screened a small chemical library, constituted of 150 compounds, using the cellular biosensor K562.GR, carrying enhanced green fluorescence protein (EGFP) and red fluorescence protein (RFP) genes under the control of the human γ-globin and β-globin gene promoters, respectively. Then the identified compounds were analyzed as HbF inducers on primary cell cultures, obtained from β-thalassemia patients, confirming their activity as HbF inducers, and suggesting these molecules as lead compounds for further chemical and biological investigations.
Collapse
Affiliation(s)
- Giulia Breveglieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy; (G.B.); (C.Z.); (L.C.C.); (S.S.); (E.D.); (R.G.)
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (S.P.); (D.P.); (C.T.)
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy; (G.B.); (C.Z.); (L.C.C.); (S.S.); (E.D.); (R.G.)
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy; (G.B.); (C.Z.); (L.C.C.); (S.S.); (E.D.); (R.G.)
| | - Shaiq Sultan
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy; (G.B.); (C.Z.); (L.C.C.); (S.S.); (E.D.); (R.G.)
| | - Elisabetta D’Aversa
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy; (G.B.); (C.Z.); (L.C.C.); (S.S.); (E.D.); (R.G.)
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy; (G.B.); (C.Z.); (L.C.C.); (S.S.); (E.D.); (R.G.)
| | - Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (S.P.); (D.P.); (C.T.)
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (S.P.); (D.P.); (C.T.)
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (S.P.); (D.P.); (C.T.)
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy; (G.B.); (C.Z.); (L.C.C.); (S.S.); (E.D.); (R.G.)
- Center of Biotechnology, University of Ferrara, Via Fossato di Mortara 64b, 44121 Ferrara, Italy
| |
Collapse
|
42
|
Samuel PP, Case DA. Atomistic Simulations of Heme Dissociation Pathways in Human Methemoglobins Reveal Hidden Intermediates. Biochemistry 2020; 59:4093-4107. [PMID: 32945658 DOI: 10.1021/acs.biochem.0c00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heme dissociations disrupt function and structural integrity of human hemoglobin and trigger various cardiovascular complications. These events become significant in methemoglobins that have undergone autoxidation of ferrous into ferric heme. We have structurally characterized the heme disassociation pathways for adult tetrameric methemoglobins using all-atom molecular dynamics simulations. These reveal that bis-histidine hemichromes, characterized here by the coordination of heme iron to both the F8 (proximal) and E7 (distal) histidines, are seen as intermediates following dissociation of the water molecule distally bound to each heme iron. Later, the breaking of coordination between heme iron and proximal histidine disrupts the F helix and pushes it away from the heme cavity, enabling both bulk solvent penetration and disruption of tetramer interface interactions. The interactions inhibiting heme dissociation were then seen to be (i) either a direct or a water-molecule-mediated interaction between distal histidine and heme iron and (ii) stacking between heme and the αCE1/βCD1 phenylalanine residue. These interactions are less important in the β than in α subunits due to a more flexible β subunit CE loop region. The absence of a distal histidine interaction in the H(E7)L mutant and increased heme cavity volume in the V(E11)A mutant both promoted heme escape from the protein interior. Adult and fetal hemoglobins were seen to share a general heme disassociation pathway and intermediates due to the conservation of key heme pocket residues. The intermediates seen here are analyzed in light of experimental studies of heme dissociation and pathways of certain hemoglobinopathies.
Collapse
Affiliation(s)
- Premila P Samuel
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - David A Case
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
43
|
Gutierrez-Guerrero A, Cosset FL, Verhoeyen E. Lentiviral Vector Pseudotypes: Precious Tools to Improve Gene Modification of Hematopoietic Cells for Research and Gene Therapy. Viruses 2020; 12:v12091016. [PMID: 32933033 PMCID: PMC7551254 DOI: 10.3390/v12091016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses have been repurposed into tools for gene delivery by transforming them into viral vectors. The most frequently used vectors are lentiviral vectors (LVs), derived from the human immune deficiency virus allowing efficient gene transfer in mammalian cells. They represent one of the safest and most efficient treatments for monogenic diseases affecting the hematopoietic system. LVs are modified with different viral envelopes (pseudotyping) to alter and improve their tropism for different primary cell types. The vesicular stomatitis virus glycoprotein (VSV-G) is commonly used for pseudotyping as it enhances gene transfer into multiple hematopoietic cell types. However, VSV-G pseudotyped LVs are not able to confer efficient transduction in quiescent blood cells, such as hematopoietic stem cells (HSC), B and T cells. To solve this problem, VSV-G can be exchanged for other heterologous viral envelopes glycoproteins, such as those from the Measles virus, Baboon endogenous retrovirus, Cocal virus, Nipah virus or Sendai virus. Here, we provide an overview of how these LV pseudotypes improved transduction efficiency of HSC, B, T and natural killer (NK) cells, underlined by multiple in vitro and in vivo studies demonstrating how pseudotyped LVs deliver therapeutic genes or gene editing tools to treat different genetic diseases and efficiently generate CAR T cells for cancer treatment.
Collapse
Affiliation(s)
- Alejandra Gutierrez-Guerrero
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA;
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon 1, CNRS, UMR 5308, 69007 Lyon, France;
| | - François-Loïc Cosset
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon 1, CNRS, UMR 5308, 69007 Lyon, France;
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon 1, CNRS, UMR 5308, 69007 Lyon, France;
- INSERM, C3M, Université Côte d’Azur, 06204 Nice, France
- Correspondence:
| |
Collapse
|
44
|
|
45
|
Ali G, Tariq MA, Shahid K, Ahmad FJ, Akram J. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment. Gene Ther 2020; 28:6-15. [PMID: 32355226 DOI: 10.1038/s41434-020-0153-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 11/09/2022]
Abstract
Beta (β)-thalassemia is one of the most significant hemoglobinopathy worldwide. The high prevalence of the β-thalassemia carriers aggravates the disease burden for patients and national economies in the developing world. The survival of β-thalassemia patients solely relies on repeated transfusions, which eventually results into multi-organ damage. The fetal γ-globin genes are ordinarily silenced at birth and replaced by the adult β-globin genes. However, mutations that cause lifelong persistence of fetal γ-globin, ameliorate the debilitating effects of β-globin mutations. Therefore, therapeutically reactivating the fetal γ-globin gene is a prime focus of researchers. CRISPR/Cas9 is the most common approach to correct disease causative mutations or to enhance or disrupt the expression of proteins to mitigate the effects of the disease. CRISPR/cas9 and prime gene editing to correct mutations in hematopoietic stem cells of β-thalassemia patients has been considered a novel therapeutic approach for effective hemoglobin production. However, genome-editing technologies, along with all advantages, have shown some disadvantages due to either random insertions or deletions at the target site of edition or non-specific targeting in genome. Therefore, the focus of this review is to compare pros and cons of these editing technologies and to elaborate the retrospective scope of gene therapy for β-thalassemia patients.
Collapse
Affiliation(s)
- Gibran Ali
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan.
| | - Muhammad Akram Tariq
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| | - Kamran Shahid
- Department of Oncology Medicine, University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, 75708, TX, USA
| | - Fridoon Jawad Ahmad
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan.
| | - Javed Akram
- University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| |
Collapse
|
46
|
Huang CW, Jiang H. [Research advances in transplantation for thalassemia major]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:77-81. [PMID: 31948529 PMCID: PMC7389706 DOI: 10.7499/j.issn.1008-8830.2020.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Thalassemia is an inherited blood disorder caused by disordered globin chain synthesis due to mutations in the regulatory genes for hemoglobin. At present, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is recognized as the only curative method for treatment. Through the revolution of pretransplantation regimens and selection of donor and source of stem cells, patients' survival has been greatly improved. This article reviews the development of transplantation for thalassemia and related research advances, in order to provide suitable treatment options for clinical application.
Collapse
Affiliation(s)
- Chu-Wen Huang
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China.
| | | |
Collapse
|
47
|
Matte A, Cappellini MD, Iolascon A, Enrica F, De Franceschi L. Emerging drugs in randomized controlled trials for sickle cell disease: are we on the brink of a new era in research and treatment? Expert Opin Investig Drugs 2019; 29:23-31. [PMID: 31847604 DOI: 10.1080/13543784.2020.1703947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Sickle cell disease (SCD) is caused by a mutation in the HBB gene which is key for making a component of hemoglobin. The mutation leads to the formation of an abnormal hemoglobin molecule called sickle hemoglobin (HbS). SCD is a chronic, complex disease with a multiplicity of pathophysiological targets; it has high morbidity and mortality.Hydroxyurea has for many years been the only approved drug for SCD; hence, the development of new therapeutics is critical.Areas covered: This article offers an overview of the key studies of new therapeutic options for SCD. We searched the PubMed database and Cochrane Database of Systemic Reviews for agents in early phase clinic trials and preclinical development.Expert opinion: Although knowledge of SCD has progressed, patient survival and quality of life must be improved. Phase II and phase III clinical trials investigating pathophysiology-based novel agents show promising results in the clinical management of SCD acute events. The design of long-term clinical studies is necessary to fully understand the clinical impact of these new therapeutics on the natural history of the disease. Furthermore, the building of global collaborations will enhance the clinical management of SCD and the design of primary outcomes of future clinical trials.
Collapse
Affiliation(s)
- Alessandro Matte
- Department of Medicine, University of Verona and AOUI Verona, Policlinico GB Rossi, Verona, Italy
| | - Maria Domenica Cappellini
- Ca Granda Foundation IRCCS, Dept of Clinical Science and Community, University of Milan, Milan, Italy
| | - Achille Iolascon
- Dept of Chemical Sciences, University Federico II, Naples, Italy
| | - Federti Enrica
- Department of Medicine, University of Verona and AOUI Verona, Policlinico GB Rossi, Verona, Italy
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and AOUI Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
48
|
Stallings AM, Majhail NS, Nowacki AS, Onimoe GI, Hanna R, Piccone CM. Paediatric haematologists’ attitudes regarding haematopoietic cell transplantation as treatment for sickle cell disease. Br J Haematol 2019; 188:976-984. [DOI: 10.1111/bjh.16248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/12/2019] [Indexed: 01/14/2023]
Affiliation(s)
| | | | - Amy S. Nowacki
- Quantitative Health SciencesCleveland Clinic ClevelandOHUSA
| | - Grace I. Onimoe
- Hematology and Oncology Cleveland Clinic Children’s Hospital ClevelandOHUSA
| | - Rabi Hanna
- Hematology and Oncology Cleveland Clinic Children’s Hospital ClevelandOHUSA
| | - Connie M. Piccone
- Hematology and Oncology University Hospitals Rainbow Babies and Children’s Cleveland OH USA
| |
Collapse
|