1
|
Zhou X, Wang J, Lu M, Fang L, Zhao J, Li D. Leucine-rich repeat-containing 56 promotes breast cancer progression via modulation of the RhoA/ROCKs signaling axis. MOLECULAR BIOMEDICINE 2025; 6:31. [PMID: 40388100 PMCID: PMC12089637 DOI: 10.1186/s43556-025-00271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025] Open
Abstract
Breast cancer is one of the most common malignancies with a poor five-year survival rate with metastatic disease among women. It has well been documented that leucine-rich repeat-containing (LRRC) family of proteins are remarkably and aberrantly dysregulated across diverse cancer types. Notably, leucine-rich repeat-containing 56 (LRRC56) was found upregulated in metastatic breast cancer, and plays a crucial role for the movement of cilia via intraflagellar transport 88 (IFT88). However, the role for LRRC56 in breast cancer progression and regulation of IFT88 and associated pathways in metastatic progression of breast cancer has not been defined. Via in vitro functional assessments, we found that LRRC56 pivotally influences the proliferative, migratory and invasive capabilities of cancer cells. Further, via in-vivo assessments, we demonstrated that downregulation of LRRC56 effectively inhibits the growth of breast cancer xenograft tumors and their metastasis to the lungs. Mechanistically, we found that LRRC56 interacts with IFT88 to regulate yes-associated protein 1 (YAP1) expression via modulating the Ras homolog family member A (RhoA)/ Rho-associated protein kinases (ROCKs) signaling pathway. LRRC56 also regulates the expression of integrins and several other key molecules including MMP2, MMP9, FAK, as well as markers of epithelial-mesenchymal transition such as E-cadherin and N-cadherin. In summary, our results demonstrate that overexpression of LRRC56 promotes breast cancer progression via upregulating IFT88/YAP1-RhoA/ROCKs pathway, reprogramming extracellular matrix, and enhancing epithelial-mesenchymal transition. These findings highlight a critical role of LRRC56 in promoting breast cancer progression, suggesting that targeting of LRRC56 may offer a promising strategy for treating metastatic breast cancer.
Collapse
Affiliation(s)
- Xiqian Zhou
- Department of Breast and Thyroid Surgery,Institute of Breast Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO.301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China
| | - Jiaxin Wang
- Department of Breast and Thyroid Surgery,Institute of Breast Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO.301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Meiling Lu
- Department of Central Laboratory, School of Life Sciences and Technology, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery,Institute of Breast Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO.301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China
| | - Junyong Zhao
- Department of Breast and Thyroid Surgery,Institute of Breast Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO.301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China.
| | - Dengfeng Li
- Department of Breast and Thyroid Surgery,Institute of Breast Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO.301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
2
|
Azizzanjani MO, Turn RE, Asthana A, Linde-Garelli KY, Xu LA, Labrie LE, Mobedi M, Jackson PK. Synchronized temporal-spatial analysis via microscopy and phosphoproteomics (STAMP) of quiescence. SCIENCE ADVANCES 2025; 11:eadt9712. [PMID: 40279433 PMCID: PMC12024681 DOI: 10.1126/sciadv.adt9712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/21/2025] [Indexed: 04/27/2025]
Abstract
Coordinated cell cycle regulation is essential for homeostasis, with most cells in the body residing in quiescence (G0). Many pathologies arise due to disruptions in tissue-specific G0, yet little is known about the temporal-spatial mechanisms that establish G0 and its signaling hub, primary cilia. Mechanistic insight is limited by asynchronous model systems and failure to connect context-specific, transient mechanisms to function. To address this gap, we developed STAMP (synchronized temporal-spatial analysis via microscopy and phosphoproteomics) to track changes in cellular landscape occurring throughout G0 transition and ciliogenesis. We synchronized ciliogenesis and G0 transition in two cell models and combined microscopy with phosphoproteomics to order signals for further targeted analyses. We propose that STAMP is broadly applicable for studying temporal-spatial signaling in many biological contexts. The findings revealed through STAMP provide critical insight into healthy cellular functions often disrupted in pathologies, paving the way for targeted therapeutics.
Collapse
Affiliation(s)
- Mohammad Ovais Azizzanjani
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel E. Turn
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anushweta Asthana
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karen Y. Linde-Garelli
- Department of Structural Biology, Department of Chemical Systems Biology, Department of Pathology, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucy Artemis Xu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leilani E. Labrie
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammadamin Mobedi
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter K. Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Mitchell B, Mu E, Currey L, Whitehead D, Walters S, Thor S, Kasherman M, Piper M. A protocol for high-resolution episcopic microscopy and 3D volumetric analyses of the adult mouse brain. Neurosci Lett 2024; 824:137675. [PMID: 38355003 DOI: 10.1016/j.neulet.2024.137675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The rapid evolution of different imaging modalities in the last two decades has enabled the investigation of the role of different genes in development and disease to be studied in a range of model organisms. However, selection of the appropriate imaging technique depends on a number of constraints, including cost, time, image resolution, size of the sample, computational complexity and processing power. Here, we use the adult mouse central nervous system to investigate whether High-Resolution Episcopic Microscopy (HREM) can provide an effective means to study the volume of individual subregions within the brain. We find that HREM can provide precise volume quantification of different structures within the mouse brain, albeit with limitations regarding the time involved for analysis and the necessity of some estimations.
Collapse
Affiliation(s)
- Benjamin Mitchell
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Erica Mu
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Laura Currey
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Darryl Whitehead
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shaun Walters
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Maria Kasherman
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia; Katharina Gaus Light Microscopy Facility, Division of Research, Lowy Cancer Research Center C25, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Michael Piper
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
4
|
Xu D, Zhi Y, Liu X, Guan L, Yu J, Zhang D, Zhang W, Wang Y, Tao W, Xu Z. WDR62-deficiency Causes Autism-like Behaviors Independent of Microcephaly in Mice. Neurosci Bull 2023; 39:1333-1347. [PMID: 36571716 PMCID: PMC10465473 DOI: 10.1007/s12264-022-00997-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022] Open
Abstract
Brain size abnormality is correlated with an increased frequency of autism spectrum disorder (ASD) in offspring. Genetic analysis indicates that heterozygous mutations of the WD repeat domain 62 (WDR62) are associated with ASD. However, biological evidence is still lacking. Our study showed that Wdr62 knockout (KO) led to reduced brain size with impaired learning and memory, as well as ASD-like behaviors in mice. Interestingly, Wdr62 Nex-cKO mice (depletion of WDR62 in differentiated neurons) had a largely normal brain size but with aberrant social interactions and repetitive behaviors. WDR62 regulated dendritic spinogenesis and excitatory synaptic transmission in cortical pyramidal neurons. Finally, we revealed that retinoic acid gavages significantly alleviated ASD-like behaviors in mice with WDR62 haploinsufficiency, probably by complementing the expression of ASD and synapse-related genes. Our findings provide a new perspective on the relationship between the microcephaly gene WDR62 and ASD etiology that will benefit clinical diagnosis and intervention of ASD.
Collapse
Affiliation(s)
- Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.
| | - Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Xinyi Liu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Guan
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Dan Zhang
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiya Zhang
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wucheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Bergwell M, Smith A, Smith E, Dierlam C, Duran R, Haastrup E, Napier-Jameson R, Seidel R, Potter W, Norris A, Iyer J. A primary microcephaly-associated sas-6 mutation perturbs centrosome duplication, dendrite morphogenesis, and ciliogenesis in Caenorhabditis elegans. Genetics 2023; 224:iyad105. [PMID: 37279547 PMCID: PMC10411591 DOI: 10.1093/genetics/iyad105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
The human SASS6(I62T) missense mutation has been linked with the incidence of primary microcephaly in a Pakistani family, although the mechanisms by which this mutation causes disease remain unclear. The SASS6(I62T) mutation corresponds to SAS-6(L69T) in Caenorhabditis elegans. Given that SAS-6 is highly conserved, we modeled this mutation in C. elegans and examined the sas-6(L69T) effect on centrosome duplication, ciliogenesis, and dendrite morphogenesis. Our studies revealed that all the above processes are perturbed by the sas-6(L69T) mutation. Specifically, C. elegans carrying the sas-6(L69T) mutation exhibit an increased failure of centrosome duplication in a sensitized genetic background. Further, worms carrying this mutation also display shortened phasmid cilia, an abnormal phasmid cilia morphology, shorter phasmid dendrites, and chemotaxis defects. Our data show that the centrosome duplication defects caused by this mutation are only uncovered in a sensitized genetic background, indicating that these defects are mild. However, the ciliogenesis and dendritic defects caused by this mutation are evident in an otherwise wild-type background, indicating that they are stronger defects. Thus, our studies shed light on the novel mechanisms by which the sas-6(L69T) mutation could contribute to the incidence of primary microcephaly in humans.
Collapse
Affiliation(s)
- Mary Bergwell
- Oklahoma Medical Research Foundation, Cell Cycle & Cancer Biology Research Program, Oklahoma City, OK 73104, USA
| | - Amy Smith
- Pfizer Inc., Pharmaceutical R&D – Drug Product Design & Development, Chesterfield, MO 63017, USA
| | - Ellie Smith
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Carter Dierlam
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Ramon Duran
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Erin Haastrup
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | | | - Rory Seidel
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - William Potter
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Adam Norris
- Southern Methodist University, Department of Biological Sciences, Dallas, TX 75275, USA
| | - Jyoti Iyer
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| |
Collapse
|
6
|
Bieder A, Chandrasekar G, Wason A, Erkelenz S, Gopalakrishnan J, Kere J, Tapia-Páez I. Genetic and protein interaction studies between the ciliary dyslexia candidate genes DYX1C1 and DCDC2. BMC Mol Cell Biol 2023; 24:20. [PMID: 37237337 DOI: 10.1186/s12860-023-00483-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND DYX1C1 (DNAAF4) and DCDC2 are two of the most replicated dyslexia candidate genes in genetic studies. They both have demonstrated roles in neuronal migration, in cilia growth and function and they both are cytoskeletal interactors. In addition, they both have been characterized as ciliopathy genes. However, their exact molecular functions are still incompletely described. Based on these known roles, we asked whether DYX1C1 and DCDC2 interact on the genetic and the protein level. RESULTS Here, we report the physical protein-protein interaction of DYX1C1 and DCDC2 as well as their respective interactions with the centrosomal protein CPAP (CENPJ) on exogenous and endogenous levels in different cell models including brain organoids. In addition, we show a synergistic genetic interaction between dyx1c1 and dcdc2b in zebrafish exacerbating the ciliary phenotype. Finally, we show a mutual effect on transcriptional regulation among DYX1C1 and DCDC2 in a cellular model. CONCLUSIONS In summary, we describe the physical and functional interaction between the two genes DYX1C1 and DCDC2. These results contribute to the growing understanding of the molecular roles of DYX1C1 and DCDC2 and set the stage for future functional studies.
Collapse
Affiliation(s)
- Andrea Bieder
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Arpit Wason
- Center for Molecular Medicine, Institute for Biochemistry I of the University of Cologne, Cologne, Germany
| | - Steffen Erkelenz
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Isabel Tapia-Páez
- Department of Medicine, Solna, Karolinska Institutet, Solnavägen 30, SE-171 76, Solna, Sweden.
| |
Collapse
|
7
|
Li J, Qi Y, Li B, Liu Y, Yang K, Zhang Z, Zhu J, Du E. STIL/AURKA axis promotes cell proliferation by influencing primary cilia formation in bladder cancer. J Transl Med 2023; 21:281. [PMID: 37101292 PMCID: PMC10131372 DOI: 10.1186/s12967-023-04118-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The primary cilia (PC) is a microtubule-based and nonmotile organelle which protrudes from the surface of almost all mammalian cells. At present, PC has been found to be a deficiency or loss in multiple cancers. Restoring PC could be a novel targeting therapy strategy. Our research showed that PC was reduced in human bladder cancer (BLCA) cells, and PC deficiency promotes cell proliferation. However, the concrete mechanisms remain unknown. SCL/TAL1 interrupting locus (STIL), a PC-related protein, was screened in our previous study and could influence the cell cycle by regulating PC in tumor cells. In this study, we aimed to elucidate the function of STIL for PC to explore the underlying mechanism of PC in BLCA. METHODS Public database analysis, western blot, and enzyme-linked immunosorbent assay (ELISA) were used to screen genes and explore gene expression alteration. Immunofluorescence and western blot were utilized to investigate PC. Wound healing assay, clone formation assay, and CCK-8 assay were used to explore cell migration, growth, and proliferation. The co-immunoprecipitation and western blot were employed to reveal the interaction of STIL and AURKA. RESULTS We found that high STIL expression is correlated with poor outcomes of BLCA patients. Further analysis revealed that STIL overexpression could inhibit PC formation, activate SHH signaling pathways, and promote cell proliferation. In contrast, STIL-knockdown could promote PC formation, inactivate SHH signaling, and inhibit cell proliferation. Furthermore, we found that the regulatory functions of STIL for PC depend on AURKA. STIL could influence proteasome activity and maintain AURKA stabilization. AURKA-knockdown could reverse PC deficiency caused by STIL overexpression for PC in BLCA cells. We observed that co-knockdown in STIL and AURKA significantly enhanced PC assembly. CONCLUSION In summary, our result provides a potential therapy target for BLCA based on the restoration of PC.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bo Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yan Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kuo Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Jianqiang Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Primary Cilia Influence Progenitor Function during Cortical Development. Cells 2022; 11:cells11182895. [PMID: 36139475 PMCID: PMC9496791 DOI: 10.3390/cells11182895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Corticogenesis is an intricate process controlled temporally and spatially by many intrinsic and extrinsic factors. Alterations during this important process can lead to severe cortical malformations. Apical neuronal progenitors are essential cells able to self-amplify and also generate basal progenitors and/or neurons. Apical radial glia (aRG) are neuronal progenitors with a unique morphology. They have a long basal process acting as a support for neuronal migration to the cortical plate and a short apical process directed towards the ventricle from which protrudes a primary cilium. This antenna-like structure allows aRG to sense cues from the embryonic cerebrospinal fluid (eCSF) helping to maintain cell shape and to influence several key functions of aRG such as proliferation and differentiation. Centrosomes, major microtubule organising centres, are crucial for cilia formation. In this review, we focus on how primary cilia influence aRG function during cortical development and pathologies which may arise due to defects in this structure. Reporting and cataloguing a number of ciliary mutant models, we discuss the importance of primary cilia for aRG function and cortical development.
Collapse
|
9
|
Fair SR, Schwind W, Julian DL, Biel A, Guo G, Rutherford R, Ramadesikan S, Westfall J, Miller KE, Kararoudi MN, Hickey SE, Mosher TM, McBride KL, Neinast R, Fitch J, Lee DA, White P, Wilson RK, Bedrosian TA, Koboldt DC, Hester ME. Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain 2022; 146:387-404. [PMID: 35802027 PMCID: PMC9825673 DOI: 10.1093/brain/awac244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 01/12/2023] Open
Abstract
Variants in the AUTS2 gene are associated with a broad spectrum of neurological conditions characterized by intellectual disability, microcephaly, and congenital brain malformations. Here, we use a human cerebral organoid model to investigate the pathophysiology of a heterozygous de novo missense AUTS2 variant identified in a patient with multiple neurological impairments including primary microcephaly and profound intellectual disability. Proband cerebral organoids exhibit reduced growth, deficits in neural progenitor cell (NPC) proliferation and disrupted NPC polarity within ventricular zone-like regions compared to control cerebral organoids. We used CRISPR-Cas9-mediated gene editing to correct this variant and demonstrate rescue of impaired organoid growth and NPC proliferative deficits. Single-cell RNA sequencing revealed a marked reduction of G1/S transition gene expression and alterations in WNT-β-catenin signalling within proband NPCs, uncovering a novel role for AUTS2 in NPCs during human cortical development. Collectively, these results underscore the value of cerebral organoids to investigate molecular mechanisms underlying AUTS2 syndrome.
Collapse
Affiliation(s)
- Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Wesley Schwind
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Alecia Biel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Gongbo Guo
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Swetha Ramadesikan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jesse Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kim L McBride
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Reid Neinast
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dean A Lee
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel C Koboldt
- Correspondence may also be addressed to: Daniel C. Koboldt, MS E-mail:
| | - Mark E Hester
- Correspondence to: Mark E. Hester, PhD 575 Children’s Crossroad Columbus OH 43205-2716, USA E-mail:
| |
Collapse
|
10
|
Hao L, Ma J, Wu F, Ma X, Qian M, Sheng W, Yan T, Tang N, Jiang X, Zhang B, Xiao D, Qian Y, Zhang J, Jiang N, Zhou W, Chen W, Ma D, Huang G. WDR62 variants contribute to congenital heart disease by inhibiting cardiomyocyte proliferation. Clin Transl Med 2022; 12:e941. [PMID: 35808830 PMCID: PMC9270576 DOI: 10.1002/ctm2.941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect and has high heritability. Although some susceptibility genes have been identified, the genetic basis underlying the majority of CHD cases is still undefined. Methods A total of 1320 unrelated CHD patients were enrolled in our study. Exome‐wide association analysis between 37 tetralogy of Fallot (TOF) patients and 208 Han Chinese controls from the 1000 Genomes Project was performed to identify the novel candidate gene WD repeat‐containing protein 62 (WDR62). WDR62 variants were searched in another expanded set of 200 TOF patients by Sanger sequencing. Rescue experiments in zebrafish were conducted to observe the effects of WDR62 variants. The roles of WDR62 in heart development were examined in mouse models with Wdr62 deficiency. WDR62 variants were investigated in an additional 1083 CHD patients with similar heart phenotypes to knockout mice by multiplex PCR‐targeting sequencing. The cellular phenotypes of WDR62 deficiency and variants were tested in cardiomyocytes, and the molecular mechanisms were preliminarily explored by RNA‐seq and co‐immunoprecipitation. Results Seven WDR62 coding variants were identified in the 237 TOF patients and all were indicated to be loss of function variants. A total of 25 coding and 22 non‐coding WDR62 variants were identified in 80 (6%) of the 1320 CHD cases sequenced, with a higher proportion of WDR62 variation (8%) found in the ventricular septal defect (VSD) cohort. WDR62 deficiency resulted in a series of heart defects affecting the outflow tract and right ventricle in mouse models, including VSD as the major abnormality. Cell cycle arrest and an increased number of cells with multipolar spindles that inhibited proliferation were observed in cardiomyocytes with variants or knockdown of WDR62. WDR62 deficiency weakened the association between WDR62 and the cell cycle‐regulated kinase AURKA on spindle poles, reduced the phosphorylation of AURKA, and decreased expression of target genes related to cell cycle and spindle assembly shared by WDR62 and AURKA. Conclusions WDR62 was identified as a novel susceptibility gene for CHD with high variant frequency. WDR62 was shown to participate in the cardiac development by affecting spindle assembly and cell cycle pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Lili Hao
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Ma
- ENT institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Maoxiang Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Tizhen Yan
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Ning Tang
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Xin Jiang
- Medical Laboratory of Nantong ZhongKe, Nantong, Jiangsu
| | - Bowen Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guoying Huang
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
11
|
Yadav N, Kirola L, Geetha TS, Mittal K, Kadandale J, Yogev Y, Birk OS, Gupta N, Balakrishnan P, Jana M, Gupta M, Kabra M, Thelma BK. A novel leaky splice variant in centromere protein J (CENPJ)-associated Seckel syndrome. Ann Hum Genet 2022; 86:245-256. [PMID: 35451063 DOI: 10.1111/ahg.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Primary microcephaly and Seckel syndrome are rare genetically and clinically heterogenous brain development disorders. Several exonic/splicing mutations are reported for these disorders to date, but ∼40% of all cases remain unexplained. We aimed to uncover the genetic correlate(s) in a family of multiple siblings with microcephaly. A novel homozygous intronic variant (NC_000013.10:g.25459823T>C) in CENPJ (13q12) segregating with all four affected male siblings was identified by exome sequencing and validated by targeted linkage approach (logarithm of the odds score 1.8 at θ 0.0). RT-PCR of CENPJ in affected siblings using their EBV derived cell lines showed aberrant transcripts suggestive of exon skipping confirmed by Sanger sequencing. Significantly reduced wild type transcript/protein in the affected siblings having the splice variant indicates a leaky gene expression of pathological relevance. Based on known CENPJ function, assessing for mitotic alterations revealed defect in centrosome duplication causing mono/multicentrosome(s) at prophase, delayed metaphase, and unequal chromosomal segregation in patient cells. Clinical features witnessed in this study expand the spectrum of CENPJ-associated primary microcephaly and Seckel syndrome. Furthermore, besides the importance of regulatory variants in classical monogenic disorders these findings provide new insights into splice site biology with possible implications for ASO-based therapies.
Collapse
Affiliation(s)
- Navneesh Yadav
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Laxmi Kirola
- Department of Genetics, University of Delhi South Campus, New Delhi, India.,Department of Molecular and Human Genetics, Banaras Hindu University, Uttar Pradesh, India
| | - Thenral S Geetha
- Department of Genetics, University of Delhi South Campus, New Delhi, India.,Medgenome, Labs, Bangalore, India
| | - Kirti Mittal
- Department of Genetics, University of Delhi South Campus, New Delhi, India.,Lunenfeld-Tanenbaum, Research Institute, Toronto, Canada
| | | | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neerja Gupta
- Division of Genetics, Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Prahlad Balakrishnan
- Division of Genetics, Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India.,Genes2me, Haryana, India
| | - Manisha Jana
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Meena Gupta
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, New Delhi, India.,Department of Neurology, Paras Hospitals, Haryana, India
| | - Madhulika Kabra
- Division of Genetics, Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
12
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
13
|
Tingler M, Philipp M, Burkhalter MD. DNA Replication proteins in primary microcephaly syndromes. Biol Cell 2022; 114:143-159. [PMID: 35182397 DOI: 10.1111/boc.202100061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
SCOPE Improper expansion of neural stem and progenitor cells during brain development manifests in primary microcephaly. It is characterized by a reduced head circumference, which correlates with a reduction in brain size. This often corresponds to a general underdevelopment of the brain and entails cognitive, behavioral and motoric retardation. In the past decade significant research efforts have been undertaken to identify genes and the molecular mechanisms underlying microcephaly. One such gene set encompasses factors required for DNA replication. Intriguingly, a growing body of evidence indicates that a substantial number of these genes mediate faithful centrosome and cilium function in addition to their canonical function in genome duplication. Here, we summarize, which DNA replication factors are associated with microcephaly syndromes and to which extent they impact on centrosomes and cilia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Melanie Tingler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| |
Collapse
|
14
|
Li J, Yang Z, Qi Y, Liu X, Liu Y, Gao X, Li S, Zhu J, Zhang C, Du E, Zhang Z. STIL Acts as an Oncogenetic Driver in a Primary Cilia-Dependent Manner in Human Cancer. Front Cell Dev Biol 2022; 10:804419. [PMID: 35155425 PMCID: PMC8826476 DOI: 10.3389/fcell.2022.804419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
SCL/TAL1 Interrupting locus (STIL) is a ciliary-related gene involved in regulating the cell cycle and duplication of centrioles in dividing cells. STIL has been found disordered in multiple cancers and driven carcinogenesis. However, the molecular mechanisms and biological functions of STIL in cancers remain ambiguous. Here, we systematically analyzed the genetic alterations, molecular mechanisms, and clinical relevance of STIL across >10,000 samples representing 33 cancer types in The Cancer Genome Atlas (TCGA) dataset. We found that STIL expression is up-regulated in most cancer types compared with their adjacent normal tissues. The expression dysregulation of STIL was affected by copy number variation, mutation, and DNA methylation. High STIL expression was associated with worse outcomes and promoted the progression of cancers. Gene Ontology (GO) enrichment analysis and Gene Set Variation Analysis (GSVA) further revealed that STIL is involved in cell cycle progression, Mitotic spindle, G2M checkpoint, and E2F targets pathways across cancer types. STIL expression was negatively correlated with multiple genes taking part in ciliogenesis and was positively correlated with several genes which participated with centrosomal duplication or cilia degradation. Moreover, STIL silencing could promote primary cilia formation and inhibit cell cycle protein expression in prostate and kidney cancer cell lines. The phenotype and protein expression alteration due to STIL silencing could be reversed by IFT88 silencing in cancer cells. These results revealed that STIL could regulate the cell cycle through primary cilia in tumor cells. In summary, our results revealed the importance of STIL in cancers. Targeting STIL might be a novel therapeutic approach for cancers.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zikun Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xun Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyu Gao
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Shuai Li
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Jianqiang Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changwen Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: E Du, ; Zhihong Zhang,
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: E Du, ; Zhihong Zhang,
| |
Collapse
|
15
|
Wilsch-Bräuninger M, Huttner WB. Primary Cilia and Centrosomes in Neocortex Development. Front Neurosci 2021; 15:755867. [PMID: 34744618 PMCID: PMC8566538 DOI: 10.3389/fnins.2021.755867] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
During mammalian brain development, neural stem and progenitor cells generate the neurons for the six-layered neocortex. The proliferative capacity of the different types of progenitor cells within the germinal zones of the developing neocortex is a major determinant for the number of neurons generated. Furthermore, the various modes of progenitor cell divisions, for which the orientation of the mitotic spindle of progenitor cells has a pivotal role, are a key parameter to ensure the appropriate size and proper cytoarchitecture of the neocortex. Here, we review the roles of primary cilia and centrosomes of progenitor cells in these processes during neocortical development. We specifically focus on the apical progenitor cells in the ventricular zone. In particular, we address the alternating, dual role of the mother centriole (i) as a component of one of the spindle poles during mitosis, and (ii) as the basal body of the primary cilium in interphase, which is pivotal for the fate of apical progenitor cells and their proliferative capacity. We also discuss the interactions of these organelles with the microtubule and actin cytoskeleton, and with junctional complexes. Centriolar appendages have a specific role in this interaction with the cell cortex and the plasma membrane. Another topic of this review is the specific molecular composition of the ciliary membrane and the membrane vesicle traffic to the primary cilium of apical progenitors, which underlie the ciliary signaling during neocortical development; this signaling itself, however, is not covered in depth here. We also discuss the recently emerging evidence regarding the composition and roles of primary cilia and centrosomes in basal progenitors, a class of progenitors thought to be of particular importance for neocortex expansion in development and evolution. While the tight interplay between primary cilia and centrosomes makes it difficult to allocate independent roles to either organelle, mutations in genes encoding ciliary and/or centrosome proteins indicate that both are necessary for the formation of a properly sized and functioning neocortex during development. Human neocortical malformations, like microcephaly, underpin the importance of primary cilia/centrosome-related processes in neocortical development and provide fundamental insight into the underlying mechanisms involved.
Collapse
Affiliation(s)
| | - Wieland B Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
16
|
Rashidieh B, Shohayeb B, Bain AL, Fortuna PRJ, Sinha D, Burgess A, Mills R, Adams RC, Lopez JA, Blumbergs P, Finnie J, Kalimutho M, Piper M, Hudson JE, Ng DCH, Khanna KK. Cep55 regulation of PI3K/Akt signaling is required for neocortical development and ciliogenesis. PLoS Genet 2021; 17:e1009334. [PMID: 34710087 PMCID: PMC8577787 DOI: 10.1371/journal.pgen.1009334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 11/09/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Homozygous nonsense mutations in CEP55 are associated with several congenital malformations that lead to perinatal lethality suggesting that it plays a critical role in regulation of embryonic development. CEP55 has previously been studied as a crucial regulator of cytokinesis, predominantly in transformed cells, and its dysregulation is linked to carcinogenesis. However, its molecular functions during embryonic development in mammals require further investigation. We have generated a Cep55 knockout (Cep55-/-) mouse model which demonstrated preweaning lethality associated with a wide range of neural defects. Focusing our analysis on the neocortex, we show that Cep55-/- embryos exhibited depleted neural stem/progenitor cells in the ventricular zone as a result of significantly increased cellular apoptosis. Mechanistically, we demonstrated that Cep55-loss downregulates the pGsk3β/β-Catenin/Myc axis in an Akt-dependent manner. The elevated apoptosis of neural stem/progenitors was recapitulated using Cep55-deficient human cerebral organoids and we could rescue the phenotype by inhibiting active Gsk3β. Additionally, we show that Cep55-loss leads to a significant reduction of ciliated cells, highlighting a novel role in regulating ciliogenesis. Collectively, our findings demonstrate a critical role of Cep55 during brain development and provide mechanistic insights that may have important implications for genetic syndromes associated with Cep55-loss.
Collapse
Affiliation(s)
- Behnam Rashidieh
- QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Environment and Sciences, Griffith University, Nathan, Australia
| | - Belal Shohayeb
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | | | | | - Debottam Sinha
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Andrew Burgess
- ANZAC Research Institute, Sydney, Australia
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, Australia
| | - Richard Mills
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Rachael C. Adams
- QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - J. Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Environment and Sciences, Griffith University, Nathan, Australia
| | - Peter Blumbergs
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - John Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | | | - Michael Piper
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | | | - Dominic C. H. Ng
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
17
|
Das R, Sjöström M, Shrestha R, Yogodzinski C, Egusa EA, Chesner LN, Chen WS, Chou J, Dang DK, Swinderman JT, Ge A, Hua JT, Kabir S, Quigley DA, Small EJ, Ashworth A, Feng FY, Gilbert LA. An integrated functional and clinical genomics approach reveals genes driving aggressive metastatic prostate cancer. Nat Commun 2021; 12:4601. [PMID: 34326322 PMCID: PMC8322386 DOI: 10.1038/s41467-021-24919-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Genomic sequencing of thousands of tumors has revealed many genes associated with specific types of cancer. Similarly, large scale CRISPR functional genomics efforts have mapped genes required for cancer cell proliferation or survival in hundreds of cell lines. Despite this, for specific disease subtypes, such as metastatic prostate cancer, there are likely a number of undiscovered tumor specific driver genes that may represent potential drug targets. To identify such genetic dependencies, we performed genome-scale CRISPRi screens in metastatic prostate cancer models. We then created a pipeline in which we integrated pan-cancer functional genomics data with our metastatic prostate cancer functional and clinical genomics data to identify genes that can drive aggressive prostate cancer phenotypes. Our integrative analysis of these data reveals known prostate cancer specific driver genes, such as AR and HOXB13, as well as a number of top hits that are poorly characterized. In this study we highlight the strength of an integrated clinical and functional genomics pipeline and focus on two top hit genes, KIF4A and WDR62. We demonstrate that both KIF4A and WDR62 drive aggressive prostate cancer phenotypes in vitro and in vivo in multiple models, irrespective of AR-status, and are also associated with poor patient outcome.
Collapse
Affiliation(s)
- Rajdeep Das
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Raunak Shrestha
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher Yogodzinski
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Emily A Egusa
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa N Chesner
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - William S Chen
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Donna K Dang
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jason T Swinderman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Alex Ge
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Junjie T Hua
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Shaheen Kabir
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Luke A Gilbert
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Guerreiro A, De Sousa F, Liaudet N, Ivanova D, Eskat A, Meraldi P. WDR62 localizes katanin at spindle poles to ensure synchronous chromosome segregation. J Cell Biol 2021; 220:212394. [PMID: 34137788 PMCID: PMC8240857 DOI: 10.1083/jcb.202007171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in the WDR62 gene cause primary microcephaly, a pathological condition often associated with defective cell division that results in severe brain developmental defects. The precise function and localization of WDR62 within the mitotic spindle is, however, still under debate, as it has been proposed to act either at centrosomes or on the mitotic spindle. Here we explored the cellular functions of WDR62 in human epithelial cell lines using both short-term siRNA protein depletions and long-term CRISPR/Cas9 gene knockouts. We demonstrate that WDR62 localizes at spindle poles, promoting the recruitment of the microtubule-severing enzyme katanin. Depletion or loss of WDR62 stabilizes spindle microtubules due to insufficient microtubule minus-end depolymerization but does not affect plus-end microtubule dynamics. During chromosome segregation, WDR62 and katanin promote efficient poleward microtubule flux and favor the synchronicity of poleward movements in anaphase to prevent lagging chromosomes. We speculate that these lagging chromosomes might be linked to developmental defects in primary microcephaly.
Collapse
Affiliation(s)
- Amanda Guerreiro
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Filipe De Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiation Oncology Division, Geneva University Hospitals, Geneva, Switzerland
| | - Nicolas Liaudet
- Bioimaging Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daria Ivanova
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anja Eskat
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Shohayeb B, Muzar Z, Cooper HM. Conservation of neural progenitor identity and the emergence of neocortical neuronal diversity. Semin Cell Dev Biol 2021; 118:4-13. [PMID: 34083116 DOI: 10.1016/j.semcdb.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/27/2022]
Abstract
One paramount challenge for neuroscientists over the past century has been to identify the embryonic origins of the enormous diversity of cortical neurons found in the adult human neocortex and to unravel the developmental processes governing their emergence. In all mammals, including humans, the radial glia lining the ventricles of the embryonic telencephalon, more recently reclassified as apical radial glia (aRGs), have been identified as the neural progenitors giving rise to all excitatory neurons and inhibitory interneurons of the six-layered cortex. In this review, we explore the fundamental molecular and cellular mechanisms that regulate aRG function and the generation of neuronal diversity in the dorsal telencephalon. We survey the key structural features essential for the retention of the highly polarized aRG morphology and therefore impose aRG identity after cytokinesis. We discuss how these structures and associated molecular signaling complexes influence aRG proliferative capacity and the decision to undergo proliferative self-renewing symmetric or neurogenic asymmetric divisions. We also explore the intriguing and complex question of how the extensive neuronal diversity within the adult neocortex arises from the small aRG population located within the cortical proliferative zone. We further highlight the recent clonal lineage tracing and single-cell transcriptomic profiling studies providing compelling evidence that individual neuronal identity emerges as a consequence of exposure to temporally regulated extrinsic cues which coordinate waves of transcriptional activity that evolve over time to drive neuronal commitment and maturation.
Collapse
Affiliation(s)
- Belal Shohayeb
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia.
| | - Zukhrofi Muzar
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia
| | - Helen M Cooper
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
20
|
Ho UY, Feng CWA, Yeap YY, Bain AL, Wei Z, Shohayeb B, Reichelt ME, Homer H, Khanna KK, Bowles J, Ng DCH. WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis. Commun Biol 2021; 4:645. [PMID: 34059773 PMCID: PMC8167107 DOI: 10.1038/s42003-021-02171-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
WDR62 is a scaffold protein involved in centriole duplication and spindle assembly during mitosis. Mutations in WDR62 can cause primary microcephaly and premature ovarian insufficiency. We have generated a genetrap mouse model deficient in WDR62 and characterised the developmental effects of WDR62 deficiency during meiosis in the testis. We have found that WDR62 deficiency leads to centriole underduplication in the spermatocytes due to reduced or delayed CEP63 accumulation in the pericentriolar matrix. This resulted in prolonged metaphase that led to apoptosis. Round spermatids that inherited a pair of centrioles progressed through spermiogenesis, however, manchette removal was delayed in WDR62 deficient spermatids due to delayed Katanin p80 accumulation in the manchette, thus producing misshapen spermatid heads with elongated manchettes. In mice, WDR62 deficiency resembles oligoasthenoteratospermia, a common form of subfertility in men that is characterised by low sperm counts, poor motility and abnormal morphology. Therefore, proper WDR62 function is necessary for timely spermatogenesis and spermiogenesis during male reproduction. Uda Ho et al find that loss of centriolar scaffold protein WDR62 in mouse testis leads to defects in spermatogenesis. They find that WDR62 deficiency leads to centriole underduplication in spermatocytes and delayed manchette removal in spermatids due to delayed Katanin p80 accumulation.
Collapse
Affiliation(s)
- Uda Y Ho
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Chun-Wei Allen Feng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Y Yeap
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda L Bain
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Zhe Wei
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hayden Homer
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Luo J, Li P. Human pluripotent stem cell-derived brain organoids as in vitro models for studying neural disorders and cancer. Cell Biosci 2021; 11:99. [PMID: 34049587 PMCID: PMC8161602 DOI: 10.1186/s13578-021-00617-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
The sheer complexities of brain and resource limitation of human brain tissue greatly hamper our understanding of the brain disorders and cancers. Recently developed three-dimensional (3D) brain organoids (BOs) are self-organized and spontaneously differentiated from human pluripotent stem cells (hPSCs) in vitro, which exhibit similar features with cell type diversity, structural organization, and functional connectivity as the developing human brain. Based on these characteristics, hPSC-derived BOs (hPDBOs) provide new opportunities to recapitulate the complicated processes during brain development, neurodegenerative disorders, and brain cancers in vitro. In this review, we will provide an overview of existing BO models and summarize the applications of this technology in modeling the neural disorders and cancers. Furthermore, we will discuss the challenges associated with their use as in vitro models for disease modeling and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
22
|
Huang J, Sun L, Mennigen JA, Liu Y, Liu S, Zhang M, Wang Q, Tu W. Developmental toxicity of the novel PFOS alternative OBS in developing zebrafish: An emphasis on cilia disruption. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124491. [PMID: 33223314 DOI: 10.1016/j.jhazmat.2020.124491] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
In recent years, sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has emerged as a substitute for PFOS with large demand and application in the Chinese market. However, little is known about potential developmental effects of OBS. In this study, zebrafish embryos were acutely exposed to different concentrations of OBS and the positive control PFOS for a comparative developmental toxicity assessment. OBS caused hatching delays, body axis curvature, neurobehavioral inhibition and abnormal cardiovascular development. These organismal effects were accompanied by change of development related genes expression profile, in which some cases were similar to PFOS. Overall, the toxic effects induced by OBS were generally milder than that of PFOS. Further investigation suggested that both OBS and PFOS disrupted ciliogenesis, evidenced by the ciliary immunostaining, changes in gene expression of kinesin family, dynein arm family and tubulin family members, as well as downregulation of the abundance of motor proteins including KIF3C, DYNC1H1 and DYNC1LI1. The influence of PFOS was stronger than that of OBS on ciliary genes and proteins. Molecular docking analysis revealed that both OBS and PFOS fitted into the motor proteins tightly, but binding affinity between OBS and motor proteins was lower than PFOS. Collectively, OBS and PFOS may act on ciliary motor proteins to interfere with ciliogenesis, leading to ciliary dysfunction and providing a novel probable action mode linked to developmental toxicity. This raises concerns regarding the health risks of the novel PFOS alternative OBS.
Collapse
Affiliation(s)
- Jing Huang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | | | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Miao Zhang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
23
|
Primary cilia and the DNA damage response: linking a cellular antenna and nuclear signals. Biochem Soc Trans 2021; 49:829-841. [PMID: 33843966 DOI: 10.1042/bst20200751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
The maintenance of genome stability involves integrated biochemical activities that detect DNA damage or incomplete replication, delay the cell cycle, and direct DNA repair activities on the affected chromatin. These processes, collectively termed the DNA damage response (DDR), are crucial for cell survival and to avoid disease, particularly cancer. Recent work has highlighted links between the DDR and the primary cilium, an antenna-like, microtubule-based signalling structure that extends from a centriole docked at the cell surface. Ciliary dysfunction gives rise to a range of complex human developmental disorders termed the ciliopathies. Mutations in ciliopathy genes have been shown to impact on several functions that relate to centrosome integrity, DNA damage signalling, responses to problems in DNA replication and the control of gene expression. This review covers recent findings that link cilia and the DDR and explores the various roles played by key genes in these two contexts. It outlines how proteins encoded by ciliary genes impact checkpoint signalling, DNA replication and repair, gene expression and chromatin remodelling. It discusses how these diverse activities may integrate nuclear responses with those that affect a structure of the cell periphery. Additional directions for exploration of the interplay between these pathways are highlighted, with a focus on new ciliary gene candidates that alter genome stability.
Collapse
|
24
|
Liu S, Trupiano MX, Simon J, Guo J, Anton ES. The essential role of primary cilia in cerebral cortical development and disorders. Curr Top Dev Biol 2021; 142:99-146. [PMID: 33706927 DOI: 10.1016/bs.ctdb.2020.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary cilium, first described in the 19th century in different cell types and organisms by Alexander Ecker, Albert Kolliker, Aleksandr Kowalevsky, Paul Langerhans, and Karl Zimmermann (Ecker, 1844; Kolliker, 1854; Kowalevsky, 1867; Langerhans, 1876; Zimmermann, 1898), play an essential modulatory role in diverse aspects of nervous system development and function. The primary cilium, sometimes referred to as the cell's 'antennae', can receive wide ranging inputs from cellular milieu, including morphogens, growth factors, neuromodulators, and neurotransmitters. Its unique structural and functional organization bequeaths it the capacity to hyper-concentrate signaling machinery in a restricted cellular domain approximately one-thousandth the volume of cell soma. Thus enabling it to act as a signaling hub that integrates diverse developmental and homestatic information from cellular milieu to regulate the development and function of neural cells. Dysfunction of primary cilia contributes to the pathophysiology of several brain malformations, intellectual disabilities, epilepsy, and psychiatric disorders. This review focuses on the most essential contributions of primary cilia to cerebral cortical development and function, in the context of neurodevelopmental disorders and malformations. It highlights the recent progress made in identifying the mechanisms underlying primary cilia's role in cortical progenitors, neurons and glia, in health and disease. A future challenge will be to translate these insights and advances into effective clinical treatments for ciliopathies.
Collapse
Affiliation(s)
- Siling Liu
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Mia X Trupiano
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jeremy Simon
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jiami Guo
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States.
| |
Collapse
|
25
|
Farooq M, Lindbæk L, Krogh N, Doganli C, Keller C, Mönnich M, Gonçalves AB, Sakthivel S, Mang Y, Fatima A, Andersen VS, Hussain MS, Eiberg H, Hansen L, Kjaer KW, Gopalakrishnan J, Pedersen LB, Møllgård K, Nielsen H, Baig SM, Tommerup N, Christensen ST, Larsen LA. RRP7A links primary microcephaly to dysfunction of ribosome biogenesis, resorption of primary cilia, and neurogenesis. Nat Commun 2020; 11:5816. [PMID: 33199730 PMCID: PMC7670429 DOI: 10.1038/s41467-020-19658-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
Primary microcephaly (MCPH) is characterized by reduced brain size and intellectual disability. The exact pathophysiological mechanism underlying MCPH remains to be elucidated, but dysfunction of neuronal progenitors in the developing neocortex plays a major role. We identified a homozygous missense mutation (p.W155C) in Ribosomal RNA Processing 7 Homolog A, RRP7A, segregating with MCPH in a consanguineous family with 10 affected individuals. RRP7A is highly expressed in neural stem cells in developing human forebrain, and targeted mutation of Rrp7a leads to defects in neurogenesis and proliferation in a mouse stem cell model. RRP7A localizes to centrosomes, cilia and nucleoli, and patient-derived fibroblasts display defects in ribosomal RNA processing, primary cilia resorption, and cell cycle progression. Analysis of zebrafish embryos supported that the patient mutation in RRP7A causes reduced brain size, impaired neurogenesis and cell proliferation, and defective ribosomal RNA processing. These findings provide novel insight into human brain development and MCPH. The RRP7A a gene is involved in ribosome biogenesis. Here the authors report a homozygous missense mutation segregating with primary microcephaly, and show that this occurs via functional defects in both nucleoli and primary cilia disrupting cell proliferation and neurogenesis.
Collapse
Affiliation(s)
- Muhammad Farooq
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark.,Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Baghdad ul Jadeed Campus, 63100, Bahawalpur, Punjab, Pakistan
| | - Louise Lindbæk
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Canan Doganli
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Cecilie Keller
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Maren Mönnich
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - André Brás Gonçalves
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Srinivasan Sakthivel
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Yuan Mang
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Ambrin Fatima
- Human Molecular Genetics Laboratory; Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering PIEAS, Jhang Road, 38000, Faisalabad, Punjab, Pakistan
| | - Vivi Søgaard Andersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Muhammad S Hussain
- Institute of Biochemistry I, University of Cologne, Joseph-Stelzmann-Strasse 52, D50931, Cologne, Germany.,Cologne Center for Genomics and Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Strasse 21, D50931, Cologne, Germany
| | - Hans Eiberg
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Lars Hansen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Klaus Wilbrandt Kjaer
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsstrasse 1, Heinrich-Heine-University, D-40225, Düsseldorf, Germany
| | - Lotte Bang Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Shahid M Baig
- Human Molecular Genetics Laboratory; Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering PIEAS, Jhang Road, 38000, Faisalabad, Punjab, Pakistan
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Søren Tvorup Christensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | - Lars Allan Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
26
|
Jean F, Stuart A, Tarailo-Graovac M. Dissecting the Genetic and Etiological Causes of Primary Microcephaly. Front Neurol 2020; 11:570830. [PMID: 33178111 PMCID: PMC7593518 DOI: 10.3389/fneur.2020.570830] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Autosomal recessive primary microcephaly (MCPH; “small head syndrome”) is a rare, heterogeneous disease arising from the decreased production of neurons during brain development. As of August 2020, the Online Mendelian Inheritance in Man (OMIM) database lists 25 genes (involved in molecular processes such as centriole biogenesis, microtubule dynamics, spindle positioning, DNA repair, transcriptional regulation, Wnt signaling, and cell cycle checkpoints) that are implicated in causing MCPH. Many of these 25 genes were only discovered in the last 10 years following advances in exome and genome sequencing that have improved our ability to identify disease-causing variants. Despite these advances, many patients still lack a genetic diagnosis. This demonstrates a need to understand in greater detail the molecular mechanisms and genetics underlying MCPH. Here, we briefly review the molecular functions of each MCPH gene and how their loss disrupts the neurogenesis program, ultimately demonstrating that microcephaly arises from cell cycle dysregulation. We also explore the current issues in the genetic basis and clinical presentation of MCPH as additional avenues of improving gene/variant prioritization. Ultimately, we illustrate that the detailed exploration of the etiology and inheritance of MCPH improves the predictive power in identifying previously unknown MCPH candidates and diagnosing microcephalic patients.
Collapse
Affiliation(s)
- Francesca Jean
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Amanda Stuart
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Maja Tarailo-Graovac
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Shohayeb B, Ho UY, Hassan H, Piper M, Ng DCH. The Spindle-Associated Microcephaly Protein, WDR62, Is Required for Neurogenesis and Development of the Hippocampus. Front Cell Dev Biol 2020; 8:549353. [PMID: 33042990 PMCID: PMC7517699 DOI: 10.3389/fcell.2020.549353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Primary microcephaly genes (MCPH) are required for the embryonic expansion of the mammalian cerebral cortex. However, MCPH mutations may spare growth in other regions of the developing forebrain which reinforces context-dependent functions for distinct MCPH genes in neurodevelopment. Mutations in the MCPH2 gene, WD40-repeat protein 62 (WDR62), are causative of primary microcephaly and cortical malformations in humans. WDR62 is a spindle microtubule-associated phosphoprotein that is required for timely and oriented cell divisions. Recent studies in rodent models confirm that WDR62 loss or mutation causes thinning of the neocortex and disrupted proliferation of apical progenitors reinforcing critical requirements in the maintenance of radial glia. However, potential contributions for WDR62 in hippocampal development had not been previously defined. Using CRISPR/Cas9 gene editing, we generated mouse models with patient-derived non-synonymous missense mutations (WDR62V66M and WDR62R439H) and a null mutation (herein referred to as WDR62Stop) for comparison. We find that WDR62 deletion or mutation resulted in a significant reduction in the thickness of the hippocampal ventricular zone and the area of the dentate gyrus (DG). This was associated with the mitotic arrest and depletion of radial glia and intermediate progenitors in the ammonic neuroepithelium. As a consequence, we find that the number of mitotic dentate precursors in the migratory stream and granule neurons in the DG was reduced with WDR62 mutation. These findings reveal that WDR62 is required for neurogenesis and the growth of the hippocampus during embryonic development.
Collapse
Affiliation(s)
- Belal Shohayeb
- School of Biomedical Science, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Uda Y Ho
- School of Biomedical Science, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Halah Hassan
- School of Biomedical Science, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Michael Piper
- School of Biomedical Science, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Dominic C H Ng
- School of Biomedical Science, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
28
|
Schönauer R, Jin W, Ertel A, Nemitz-Kliemchen M, Panitz N, Hantmann E, Seidel A, Braun DA, Shril S, Hansen M, Shahzad K, Sandford R, Saunier S, Benmerah A, Bergmann C, Hildebrandt F, Halbritter J. Novel nephronophthisis-associated variants reveal functional importance of MAPKBP1 dimerization for centriolar recruitment. Kidney Int 2020; 98:958-969. [PMID: 32505465 DOI: 10.1016/j.kint.2020.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
Biallelic mutations in MAPKBP1 were recently associated with late-onset cilia-independent nephronophthisis. MAPKBP1 was found at mitotic spindle poles but could not be detected at primary cilia or centrosomes. Here, by identification and characterization of novel MAPKBP1 variants, we aimed at further investigating its role in health and disease. Genetic analysis was done by exome sequencing, homozygosity mapping, and a targeted kidney gene panel while coimmunoprecipitation was used to explore wild-type and mutant protein-protein interactions. Expression of MAPKBP1 in non-ciliated HeLa and ciliated inner medullary collecting duct cells enabled co-localization studies by fluorescence microscopy. By next generation sequencing, we identified two novel homozygous MAPKBP1 splice-site variants in patients with nephronophthisis-related chronic kidney disease. Splice-site analyses revealed truncation of C-terminal coiled-coil domains and patient-derived deletion constructs lost their ability to homodimerize and heterodimerize with paralogous WDR62. While wild-type MAPKBP1 exhibited centrosomal, basal body, and microtubule association, mutant proteins lost the latter and showed reduced recruitment to cell cycle dependent centriolar structures. Wild-type and mutant proteins had no reciprocal influence upon co-expression excluding dominant negative effects. Thus, MAPKBP1 appears to be a novel microtubule-binding protein with cell cycle dependent centriolar localization. Truncation of its coiled-coil domain is enough to abrogate its dimerization and results in severely disturbed intracellular localizations. Delineating the impact of impaired dimerization on cell cycle regulation and intracellular kidney signaling may provide new insights into common mechanisms of kidney degeneration. Thus, due to milder clinical presentation, MAPKBP1-associated nephronophthisis should be considered in adult patients with otherwise unexplained chronic kidney disease.
Collapse
Affiliation(s)
- Ria Schönauer
- Division of Nephrology, University Hospital Leipzig Medical Center, Leipzig, Germany
| | - Wenjun Jin
- Division of Nephrology, University Hospital Leipzig Medical Center, Leipzig, Germany
| | - Anastasia Ertel
- Division of Nephrology, University Hospital Leipzig Medical Center, Leipzig, Germany
| | | | - Nydia Panitz
- Division of Nephrology, University Hospital Leipzig Medical Center, Leipzig, Germany
| | - Elena Hantmann
- Division of Nephrology, University Hospital Leipzig Medical Center, Leipzig, Germany
| | - Anna Seidel
- Division of Nephrology, University Hospital Leipzig Medical Center, Leipzig, Germany
| | - Daniela A Braun
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Hansen
- Kuratorium für Dialyse und Nierentransplantation e. V. Center of Pediatric Nephrology, Clementine Children's Hospital, Frankfurt, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, Leipzig, Germany
| | - Richard Sandford
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of inherited kidney diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of inherited kidney diseases, INSERM UMR 1163, Paris, France
| | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany; Department of Medicine, University Hospital Freiburg, Freiburg, Germany; Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Halbritter
- Division of Nephrology, University Hospital Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
29
|
Gabriel E, Ramani A, Altinisik N, Gopalakrishnan J. Human Brain Organoids to Decode Mechanisms of Microcephaly. Front Cell Neurosci 2020; 14:115. [PMID: 32457578 PMCID: PMC7225330 DOI: 10.3389/fncel.2020.00115] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are stem cell-based self-assembling 3D structures that recapitulate early events of human brain development. Recent improvements with patient-specific 3D brain organoids have begun to elucidate unprecedented details of the defective mechanisms that cause neurodevelopmental disorders of congenital and acquired microcephaly. In particular, brain organoids derived from primary microcephaly patients have uncovered mechanisms that deregulate neural stem cell proliferation, maintenance, and differentiation. Not only did brain organoids reveal unknown aspects of neurogenesis but also have illuminated surprising roles of cellular structures of centrosomes and primary cilia in regulating neurogenesis during brain development. Here, we discuss how brain organoids have started contributing to decoding the complexities of microcephaly, which are unlikely to be identified in the existing non-human models. Finally, we discuss the yet unresolved questions and challenges that can be addressed with the use of brain organoids as in vitro models of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elke Gabriel
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Anand Ramani
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Nazlican Altinisik
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|