1
|
Albeitawi S, Bani-Mousa SU, Jarrar B, Aloqaily I, Al-Shlool N, Alsheyab G, Kassab A, Qawasmi B, Awaisheh A. Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women-A Systematic Review. Biomolecules 2025; 15:443. [PMID: 40149979 PMCID: PMC11940193 DOI: 10.3390/biom15030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
(1) Background: The follicular fluid (FF) comprises a large portion of ovarian follicles, and serves as both a communication and growth medium for oocytes, and thus should be representative of the metabolomic status of the follicle. This review aims to explore FF biomarkers as well as their effects on fertilization, oocyte, and embryo development, and later on implantation and maintenance of pregnancy. (2) Methods: This review was registered in the PROSPERO database with the ID: CRD42025633101. We parsed PubMed, Scopus, and Google Scholar for research on the effects of different FF biomarkers on IVF/ICSI outcomes in normo-ovulatory women. Included studies were assessed for risk of bias using the NOS scale. Data were extracted and tabulated by two independent researchers. (3) Results: 22 included articles, with a sample size range of 31 to 414 and a median of 60 participants, contained 61 biomarkers, including proteins, growth factors, steroid and polypeptide hormones, inflammation and oxidative stress markers, amino acids, vitamins, lipids of different types, and miRNAs. Most of the biomarkers studied had significant effects on IVF/ICSI outcomes, and seem to have roles in various cellular pathways responsible for oocyte and embryo growth, implantation, placental formation, and maintenance of pregnancy. The FF metabolome also seems to be interconnected, with its various components influencing the levels and activities of each other through feedback loops. (4) Conclusions: FF biomarkers can be utilized for diagnostic and therapeutic purposes in IVF; however, further studies are required for choosing the most promising ones due to heterogeneity of results. Widespread adoption of LC-MS and miRNA microarrays can help quantify a representative FF metabolome, and we see great potential for in vitro supplementation (IVS) of some FF biomarkers in improving IVF/ICSI outcomes.
Collapse
Affiliation(s)
- Soha Albeitawi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | | | - Baraa Jarrar
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ibrahim Aloqaily
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Nour Al-Shlool
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ghaida Alsheyab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ahmad Kassab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Baha’a Qawasmi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Abdalrahman Awaisheh
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| |
Collapse
|
2
|
Zhang B, Han Y, Cheng M, Yan L, Gao K, Zhou D, Wang A, Lin P, Jin Y. Metabolomic effects of intrauterine meloxicam perfusion on histotroph in dairy heifers during diestrus. Front Vet Sci 2025; 12:1528530. [PMID: 40171410 PMCID: PMC11959509 DOI: 10.3389/fvets.2025.1528530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
In ruminants, conceptus elongation is a crucial developmental process that depends on uterine lumen fluid (ULF) and coincides with a period of high pregnancy loss. Prostaglandins (PGs) play indispensable roles in conceptus elongation and implantation. However, the effects of uterus-derived PGs on the uterine environment remain unclear. To explore the metabolic pathways and metabolites induced by endometrium-derived PGs that may affect conceptus elongation and implantation in dairy cows, we investigated the biochemical composition of ULF following intrauterine perfusion of meloxicam from days 12 to 14 of the estrous cycle. Intrauterine administration of meloxicam significantly downregulated the prostaglandin-related metabolites in the ULF. A total of 385 distinct metabolites, primarily clustered within lipids and lipid-like molecules, organic acids and derivatives, organoheterocyclic compounds, and benzenoids, were identified. The metabolite network analysis identified 10 core metabolites as follows: S-adenosylhomocysteine, guanosine, inosine, thymidine, cholic acid, xanthine, niacinamide, prostaglandin I2, 5-hydroxyindoleacetic acid, and indoleacetaldehyde. The pathway enrichment analysis revealed three significantly altered metabolic pathways: arachidonic acid metabolism, tryptophan (Trp) metabolism, and linoleic acid metabolism. A total of five metabolites-guanosine, inosine, thymidine, butyryl-l-carnitine, and l-carnitine-were associated with attachment and pregnancy loss and could serve as predictors of fertility. This global metabolic study of ULF enhances our understanding of histotroph alternations induced by uterus-derived PGs during diestrus in dairy cows, with implications for improving dairy cow fertility.
Collapse
Affiliation(s)
- Beibei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Longgang Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangkang Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Naigaonkar A, Dadachanji R, Kumari M, Mukherjee S. Insight into metabolic dysregulation of polycystic ovary syndrome utilizing metabolomic signatures: a narrative review. Crit Rev Clin Lab Sci 2025; 62:85-112. [PMID: 39697160 DOI: 10.1080/10408363.2024.2430775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex multifactorial endocrinopathy affecting reproductive aged women globally, whose presentation is strongly influenced by genetic makeup, ethnic, and geographic diversity leaving these affected women substantially predisposed to reproductive and metabolic perturbations. Sophisticated techniques spanning genomics, proteomics, epigenomics, and transcriptomics have been harnessed to comprehensively understand the enigmatic pathophysiology of PCOS, however, conclusive markers for PCOS are still lacking today. Metabolomics represents a paradigm shift in biotechnological advances enabling the simultaneous identification and quantification of metabolites and the use of this approach has added yet another dimension to help unravel the strong metabolic component of PCOS. Reports dissecting the metabolic signature of PCOS have revealed disparate levels of metabolites such as pyruvate, lactate, triglycerides, free fatty acids, carnitines, branched chain and essential amino acids, and steroid intermediates in major biological compartments. These metabolites have been shown to be altered in women with PCOS overall, after phenotypic subgrouping, in animal models of PCOS, and also following therapeutic intervention. This review seeks to supplement previous reviews by highlighting the aforementioned aspects and to provide easy, coherent and elementary access to significant findings and emerging trends. This will in turn help to delineate the metabolic plot in women with PCOS in various biological compartments including plasma, urine, follicular microenvironment, and gut. This may pave the way to design additional studies on the quest of unraveling the etiology of PCOS and delving into novel biomarkers for its diagnosis, prognosis and management.
Collapse
Affiliation(s)
- Aalaap Naigaonkar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Roshan Dadachanji
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Manisha Kumari
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
4
|
Hood RB, Liang D, Wang Y, Tan Y, Souter I, Jones DP, Hauser R, Chavarro JE, Gaskins AJ. Metabolic Mechanisms Underlying the Association Between the Profertility Diet and In Vitro Fertilization End Points. J Nutr 2025; 155:559-569. [PMID: 39551358 PMCID: PMC11867127 DOI: 10.1016/j.tjnut.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND The profertility diet is a dietary pattern composed of nutrients and foods most consistently associated with in vitro fertilization (IVF) end points in women. OBJECTIVES We examined the potential biological mechanisms underlying the association between adherence to a profertility diet and IVF end points using high-resolution metabolomics. METHODS Among 120 women who underwent an autologous oocyte IVF cycle (2007-2015) in Northeast United States, we collected a serum sample during controlled ovarian stimulation and a follicular fluid sample on the day of oocyte retrieval. Women completed a food frequency questionnaire upon enrollment into the study to examine adherence to the profertility diet pattern. Liquid chromatography with high-resolution mass spectrometry was used for untargeted metabolomic analysis of biospecimens. We identified metabolic features (and enriched biological pathways) associated with the profertility diet and 2 IVF end points, live birth and clinical pregnancy, via a meet-in-the-middle approach. RESULTS In the follicular fluid metabolome, vitamin D-3 metabolism was associated with adherence to the profertility diet pattern and live birth. Additionally, vitamin D-3 metabolism, vitamin B-6 metabolism, and bile acid biosynthesis were associated with both adherence to the profertility diet pattern and clinical pregnancy. In the serum metabolome, only tryptophan metabolism was associated with adherence to the profertility diet pattern and live birth. We confirmed the chemical identity of a metabolite with level 1 evidence, 4-pyridoxate, which was higher in the serum and follicular fluid among women with stronger adherence to the profertility diet pattern and among women with a live birth. CONCLUSIONS The beneficial association between adherence to the profertility diet and IVF outcomes may be mediated through vitamin D-3 metabolism, vitamin B-6 metabolism, and bile acid biosynthesis in the follicular fluid and tryptophan metabolism in the serum. These results provide new insight in the important biological pathways underlying a dietary pattern providing optimal fertility benefits to women.
Collapse
Affiliation(s)
- Robert B Hood
- Department of Epidemiology, Emory University, Rollins School of Public Health, Atlanta, GA, United States.
| | - Donghai Liang
- Department of Epidemiology, Emory University, Rollins School of Public Health, Atlanta, GA, United States; Gangarosa Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA, United States
| | - Yilin Wang
- Gangarosa Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA, United States
| | - Youran Tan
- Gangarosa Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA, United States
| | - Irene Souter
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jorge E Chavarro
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University, Rollins School of Public Health, Atlanta, GA, United States
| |
Collapse
|
5
|
Faessen JP, Homminga I, Buso ME, Nagy RA, van Echten-Arends J, Feskens EJ, Tietge UJ, Hoek A, Brouwer-Brolsma EM. Preconception diet quality and modified natural cycle in vitro fertilisation outcomes. J Nutr Sci 2025; 14:e7. [PMID: 39943937 PMCID: PMC11811871 DOI: 10.1017/jns.2024.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 05/09/2025] Open
Abstract
Lifestyle has been associated with in vitro fertilisation (IVF) success rates, but studies on diet and IVF outcomes are inconclusive. We studied associations between adherence to the Dutch guidelines for a Healthy diet 2015 and pregnancy chances among women receiving modified natural cycle in vitro fertilisation (MNC-IVF). This prospective cohort study utilised data from 109 women undergoing MNC-IVF between 2014 and 2018 at University Medical Centre Groningen enrolled in a study examining associations between metabolic profile of follicular fluid and oocyte quality. Adherence to dietary guidelines was assessed by daily food records quantified based on the Dutch Healthy Diet (DHD) 2015 Index. IVF outcomes (i.e. positive pregnancy test, ongoing pregnancy, and live birth) were obtained from patient records. Statistical analyses involved Cox proportional hazard regression analyses while adjusting for maternal covariates age, smoking, and Body Mass Index (BMI), and stratified for treatment, age, BMI, and energy intake. Women were 31.5 ± 3.3 years old, and had a BMI of 23.5 ± 3.5 kg/m2. Higher DHD2015 adherence was linked to a reduced probability of achieving an ongoing pregnancy (HR = 0.77, 95%CI: 0.62-0.96), live birth (HR = 0.78, 95%CI: 0.62-0.98), and showed a non-significant trend towards a lower probability of a positive pregnancy test (HR = 0.85, 95%CI: 0.71-1.01). Associations were particularly present among women undergoing MNC-ICSI (n = 87, p-for-interaction = 0.06), with shorter duration of infertility (n = 44, p-for-interaction=0.06), being overweight (n = 31, p-for interaction = 0.11), and having higher energy intakes (n = 55, p-for-interaction = 0.14). This explorative study suggests inverse trends between DHD2015 adherence and MNC-IVF outcomes, encouraging well-powered stratified analyses in larger studies to further explore these unexpected findings.
Collapse
Affiliation(s)
- Janine P.M. Faessen
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Irene Homminga
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marion E.C. Buso
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Ruxandra A. Nagy
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jannie van Echten-Arends
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Edith J.M. Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Uwe J.F. Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Annemieke Hoek
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Elske M. Brouwer-Brolsma
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
6
|
Ding S, Li W, Xiong X, Si M, Yun C, Wang Y, Huang L, Yan S, Zhen X, Qiao J, Qi X. Bile acids in follicular fluid: potential new therapeutic targets and predictive markers for women with diminished ovarian reserve. J Ovarian Res 2024; 17:250. [PMID: 39702491 DOI: 10.1186/s13048-024-01573-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE To investigate the changes in bile acid (BA) metabolites within the follicular fluid (FF) of patients with diminished ovarian reserve (DOR) and to identify novel diagnostic markers that could facilitate early detection and intervention in DOR patients. DESIGN A total of 182 patients undergoing assisted reproductive technology (ART) were enrolled and categorized into the normal ovarian reserve (NOR) group (n = 91) or the DOR group (n = 91) to measure BA levels in FF. To identify the changes in granulosa cells (GCs), we collected GCs from an additional 7 groups of patients for transcriptome sequencing. SETTING Reproductive medicine center within a hospital and university research laboratory. POPULATION A total of 182 patients undergoing assisted reproductive technology were enrolled and categorized into the NOR group (n = 91) or the DOR group (n = 91). METHODS In this study, BA metabolites in FF of DOR and NOR patients were analyzed in detail by targeted metabolomics, and the correlation between BA levels in FF and clinical indicators was discussed. Then, we constructed a diagnostic model for DOR using the random forest algorithm based on five different BAs. Additionally, we performed a functional enrichment analysis on differentially expressed genes (DEGs) in GCs from both DOR and NOR patients. MAIN OUTCOME MEASURES BA levels in FF and their correlation with clinical indicators; the areas under the curve (AUCs) of the random forest diagnostic model for DOR; and the DEGs and corresponding functional enrichment results of GC RNA analysis. RESULT (S) The levels of lithocholic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid and cholic acid in FF of DOR group were lower than those of NOR group. And significant reductions in total, primary, secondary, and unconjugated BA levels were observed in the DOR group. The above five BAs levels were closely related to indicators of ovarian reserve. The AUC of the diagnostic model based on the above five BAs was 0.964. Based on transcriptome sequencing data from two groups of GCs, a total of 482 up-regulated and 654 down-regulated DEGs were identified. Gene ontology analysis revealed that the metabolic and biosynthetic processes of fatty acids, steroids, and cholesterol were enriched in these DEGs, whereas Kyoto Encyclopedia of Genes and Genomes analysis indicated enrichment of fatty acid and ovarian steroidogenesis. CONCLUSION(S) The levels of multiple BA metabolites in FF are significantly lower than those in patients with DOR and are closely related to the evaluation of ovarian reserve function.
Collapse
Affiliation(s)
- Shu Ding
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wenyan Li
- Peking University People's Hospital, Beijing, P. R. China
| | - Xianglei Xiong
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Manfei Si
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yuqian Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Lixuan Huang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Sen Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiumei Zhen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xinyu Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Peking University Third Hospital, Beijing, China.
| |
Collapse
|
7
|
Shijing T, Yinping P, Qiong Y, Deshuai L, Liancai Z, Jun T, Shaoyong L, Bochu W. Synthesis of TUDCA from chicken bile: immobilized dual-enzymatic system for producing artificial bear bile substitute. Microb Cell Fact 2024; 23:326. [PMID: 39623449 PMCID: PMC11613824 DOI: 10.1186/s12934-024-02592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Bear bile, a valuable animal-derived medicinal substance primarily composed of tauroursodeoxycholic acid (TUDCA), is widely distributed in the medicinal market across various countries due to its significant therapeutic potential. Given the extreme cruelty involved in bear bile extraction, researchers are focusing on developing synthetic bear bile powder as a more humane alternative. This review presents an industrially practical and environmentally friendly process for producing an artificial substitute for bear bile powder using inexpensive and readily available chicken bile powder through an immobilized 7α-,7β-HSDH dual-enzymatic syste. Current technology has facilitated the industrial production of TUDCA from Tauodeoxycholic acid (TCDCA) using chicken bile powder. The review begins by examining the chemical composition, structure, and properties of bear bile, followed by an outline of the pharmacological mechanisms and manufacturing methods of TUDCA, covering chemical synthesis and biotransformation methods, and a discussion on their respective advantages and disadvantages. Finally, the process of converting chicken bile powder into bear bile powder using an immobilized 7α-Hydroxysteroid Dehydrogenases(7α-HSDH) with 7β- Hydroxysteroid Dehydrogenases (7β-HSDH) dual-enzyme system is thoroughly explained. The main objective of this review is to propose a comprehensive strategy for the complete synthesis of artificial bear bile from chicken bile within a controlled laboratory setting.
Collapse
Affiliation(s)
- Tang Shijing
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Pan Yinping
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Yang Qiong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Lou Deshuai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Zhu Liancai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| | - Tan Jun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Liu Shaoyong
- Shanghai Kaibao Pharmaceutical Co., LTD., Shanghai, 200030, People's Republic of China
| | - Wang Bochu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
8
|
Chen M, Zhao X, Chang Z, Liu H, Zhu L, Wang S, Zhang D, Wang J. Chenodeoxycholic acid fortified diet drives ovarian steroidogenesis to improve embryo implantation through enhancing uterine receptivity via progesterone receptor signaling pathway in rats. J Nutr Biochem 2024; 134:109774. [PMID: 39343323 DOI: 10.1016/j.jnutbio.2024.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Infertility is a worldwide reproductive health problem influenced by the embryo implantation efficiency. We previously revealed that dietary chenodeoxycholic acid (CDCA) positively influence the early embryo implantation. But how CDCA regulate embryo implantation is largely unexplored. Herein, we investigated the mechanism behind CDCA's regulation on embryo implantation in rats. Results showed that CDCA promoted uterine receptivity, leading to increased number of implantation sites. Mechanistically, CDCA reshaped maternal amino acid metabolism and enhanced serum progesterone levels. CDCA enhanced ovarian progesterone synthesis by improving steroidogenesis-related protein (StAR and CYP11A1) expression via Takeda G-protein-coupled receptor 5. Elevated progesterone exaggerated uterine progesterone but weakened the estradiol signaling in the CDCA group, contributing to better uterine receptive for embryo implantation. Additionally, elevated transcription repressor Stat5b induced the down-regulation of progesterone-metabolizing enzyme 20-hydroxysteroid dehydrogenase 20α-HSD, complementally explained uterine progesterone signaling enhancement. Overall, our data revealed that CDCA drove ovarian steroidogenesis to improve embryo implantation through enhancing uterine receptivity via progesterone receptor pathway in rats. Therefore, CDCA diet may be a potential favorable nutritional strategy for infertility and pregnancy management.
Collapse
Affiliation(s)
- Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Xiaoyi Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; College of Animal Science, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Zhuo Chang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Longlong Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyang Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
9
|
Feng F, Huang C, Luosang D, Ma X, La Y, Wu X, Guo X, Pingcuo Z, Liang C. Serum Metabolomic Analysis of Synchronous Estrus in Yaks Based on UPLC-Q-TOF MS Technology. Animals (Basel) 2024; 14:1399. [PMID: 38791618 PMCID: PMC11117382 DOI: 10.3390/ani14101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The yak is a unique species of livestock found in the Qinghai-Tibet Plateau and its surrounding areas. Due to factors such as late sexual maturity and a low rate of estrus, its reproductive efficiency is relatively low. The process of estrus synchronization in yaks plays a crucial role in enhancing their reproductive success and ensuring the continuation of their species. In order to clarify the characteristics of the serum metabolites of yak estrus synchronization, the yaks with inactive ovaries were compared with the estrus synchronization yaks. In this study, yaks were divided into the inactive ovaries group (IO), gonarelin-induced yak estrus group (GnRH), and chloprostenol sodium-induced yak estrus group (PGF). After the completion of the estrus synchronization treatment, blood samples were collected from the jugular veins of the non-estrus yaks in the control group and the yaks with obvious estrus characteristics in the GnRH and PGF groups. Metabolites were detected by ultra-high performance liquid chromatography-mass spectrometry, and differential metabolites were screened by multivariate statistical analysis. The results showed that a total of 70 significant differential metabolites were screened and identified in the GnRH vs. IO group, and 77 significant differential metabolites were screened and identified in the PGF vs. IO group. Compared with non-estrus yaks, 36 common significant differential metabolites were screened out after the induction of yak estrus by gonarelin (GnRH) and cloprostenol sodium (PGF), which were significantly enriched in signaling pathways such as the beta oxidation of very long chain fatty acids, bile acid biosynthesis, oxidation of branched chain fatty acids, steroidogenesis, steroid biosynthesis, and arginine and proline metabolism. This study analyzed the effects of gonadotropin releasing hormone (GnRH) and prostaglandin F (PGF) on the reproductive performance of yaks treated with estrus synchronization, which provides a theoretical basis for the optimization and application of yak estrus synchronization technology and promotes the healthy development of the yak industry.
Collapse
Affiliation(s)
- Fen Feng
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (C.H.); (X.M.); (Y.L.); (X.W.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chun Huang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (C.H.); (X.M.); (Y.L.); (X.W.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Dunzhu Luosang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lasa 850004, China;
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (C.H.); (X.M.); (Y.L.); (X.W.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (C.H.); (X.M.); (Y.L.); (X.W.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (C.H.); (X.M.); (Y.L.); (X.W.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (C.H.); (X.M.); (Y.L.); (X.W.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Zhandui Pingcuo
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lasa 850004, China;
| | - Chunnian Liang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (C.H.); (X.M.); (Y.L.); (X.W.); (X.G.)
- Plateau Agricultural Science and Technology Innovation Center, Lasa 850004, China
| |
Collapse
|
10
|
He Y, Wang X, Liu Q, Liu H, Yang S. Exploring the mechanism of clomiphene citrate to improve ovulation disorder in PCOS rats based on follicular fluid metabolomics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2281-2296. [PMID: 37815607 DOI: 10.1007/s00210-023-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
To examine the effects of clomiphene citrate (CC) on follicular fluid metabolites and related metabolic pathways in rats with polycystic ovary syndrome (PCOS) using non-targeted metabolomics and determine how CC treats ovulation disorder in PCOS. The Sprague Dawley rats were randomly divided into control, model, and CC groups. A PCOS model was established with letrozole. Body weight, ovarian weight, estrus cycles, serum hormone levels, and ovary histopathology of the rats were collected for further evaluation. Moreover, through ultra-performance liquid chromatography-mass spectrometry, the study of follicular fluid metabolites revealed the mechanism of action of CC. CC reduced ovarian weight and regulated estrous cycles and serum hormone levels in PCOS rats but did not affect their body weight. Moreover, the metabolomic results showed that CC adjusted 153 metabolites, among which 16 cross metabolites like testosterone, androstenedione, 17α-hydroxyprogesterone, and cholic acid were considered as potential biomarkers for CC to improve ovulation disorders in PCOS rats. Kyoto Encyclopedia of Genes and Genomes pathway enrichment also showed that the CC group mainly engaged in tryptophan metabolism and steroid hormone biosynthesis. CC can improve ovulation disorders in rats, and its mechanism is related to the regulation of the secretion of serum hormone and follicular fluid metabolites and the amelioration of multi-metabolic pathways.
Collapse
Affiliation(s)
- Yiqing He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xi Wang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Quan Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Huiping Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Shuo Yang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
11
|
Wei S, Kang X, Yang C, Wang F, Dai T, Guo X, Ma Z, Li C, Zhao H, Dan X. Analysis of reproduction-related transcriptomes on pineal-hypothalamic-pituitary-ovarian tissues during estrus and anestrus in Tan sheep. Front Vet Sci 2022; 9:1068882. [PMID: 36504859 PMCID: PMC9729709 DOI: 10.3389/fvets.2022.1068882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Seasonal estrus is an important factor limiting the fertility of some animals such as sheep. Promoting estrus in the anestrus season is one of the major ways in improving the fecundity of seasonally breeding animals. The pineal-hypothalamus-pituitary-ovary (PHPO) axis plays a decisive role in regulating animal reproduction. However, the molecular mechanisms by which the PHPO axis regulates seasonal reproduction in animals are not well understood, especially in Tan sheep. To this end, we collected pineal, hypothalamus, pituitary and ovary tissues from Tan sheep during estrus and anestrus for RNA-Sequencing, and performed bioinformatics analysis on the entire regulatory axis of the pineal-hypothalamic-pituitary-ovary (PHPO). The results showed that 940, 1,638, 750, and 971 DEGs (differentially expressed genes, DEGs) were identified in pineal, hypothalamus, pituitary and ovary, respectively. GO analysis showed that DEGs from PHPO axis-related tissues were mainly enriched in "biological processes" such as transmembrane transport, peptide and amide biosynthesis and DNA synthesis. Meanwhile, KEGG enrichment analysis showed that the bile acid secretion pathway and the neuroactive ligand-receptor interaction pathway were significantly enriched. Additionally, four potential candidate genes related to seasonal reproduction (VEGFA, CDC20, ASPM, and PLCG2) were identified by gene expression profiling and protein-protein interaction (PPI) analysis. These findings will contribute to be better understanding of seasonal reproduction regulation in Tan sheep and will serve as a useful reference for molecular breeding of high fertility Tan sheep.
Collapse
|
12
|
Profile of Bile Acid Metabolomics in the Follicular Fluid of PCOS Patients. Metabolites 2021; 11:metabo11120845. [PMID: 34940603 PMCID: PMC8703527 DOI: 10.3390/metabo11120845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 01/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex heterogeneous endocrine disease affected by genetic and environmental factors. In this manuscript, we aimed to describe the composition of bile acid metabolomics in the follicular fluid (FF) of PCOS. The FF was collected from 31 control patients and 35 PCOS patients diagnosed according to the Rotterdam diagnostic criteria. The Bile Acid Assay Kit and ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) were used in this study to detect the total bile acid and 24 bile acid metabolites. Glycocholic acid (GC3A), taurocholic acid (TCA), glycochenodeoxycholic acid (GCDCA), and chenodeoxycholic acid-3-β-d-glucuronide (CDCA-3Gln) were elevated in the PCOS group. GCDCA was positively correlated with the serum follicle-stimulating hormone (FSH) (r = 0.3787, p = 0.0017) and luteinizing hormone (LH) (r = 0.2670, p = 0.0302). The level of CDCA-3Gln also rose with the increase in antral follicle counts (AFC) (r = 0.3247, p = 0.0078). Compared with the control group, the primary bile acids (p = 0.0207) and conjugated bile acids (p = 0.0283) were elevated in PCOS. For the first time, our study described the changes in bile acid metabolomics in the FF of PCOS patients, suggesting that bile acids may play an important role in the pathogenesis of PCOS.
Collapse
|
13
|
Wang Z, Nagy RA, Groen H, Cantineau AEP, van Oers AM, van Dammen L, Wekker V, Roseboom TJ, Mol BWJ, Tietge UJF, Hoek A. Preconception insulin resistance and neonatal birth weight in women with obesity: role of bile acids. Reprod Biomed Online 2021; 43:931-939. [PMID: 34627684 DOI: 10.1016/j.rbmo.2021.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
RESEARCH QUESTION Does maternal preconception insulin resistance affect neonatal birth weight among women with obesity? Is insulin resistance associated with circulating bile acids? Do bile acids influence the association between maternal preconception insulin resistance and neonatal birth weight? DESIGN An exploratory post-hoc analysis of the LIFEstyle randomized controlled trial comparing lifestyle intervention with conventional infertility treatment in women with a BMI of ≥29 kg/m2. Fasting blood samples were collected at randomization and after 3 and 6 months in 469 women. Insulin resistance was quantified using the homeostasis model assessment of insulin resistance (HOMA-IR). Bile acid sub-species were determined by liquid chromatography with tandem mass spectrometry. Singletons were included (n = 238). Birth weight Z-scores were adjusted for age, offspring gender and parity. Multilevel analysis and linear regressions were used. RESULTS A total of 913 pairs of simultaneous preconception HOMA-IR (median [Q25; Q75]: 2.96 [2.07; 4.16]) and total bile acid measurements (1.79 [1.10; 2.94]) µmol/l were taken. Preconception HOMA-IR was positively associated with total bile acids (adjusted B 0.15; 95% CI 0.09 to 0.22; P < 0.001) and all bile acid sub-species. At the last measurement before pregnancy, HOMA-IR (2.71 [1.91; 3.74]) was positively related to birth weight Z-score (mean ± SD 0.4 ± 1.1; adjusted B 0.08; 95% CI 0.01 to 0.14; P = 0.03). None of the preconception bile acids measured were associated with birth weight. CONCLUSION Maternal preconception insulin resistance is an important determinant of neonatal birth weight in women with obesity, whereas preconception bile acids are not.
Collapse
Affiliation(s)
- Zheng Wang
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Ruxandra A Nagy
- University of Groningen, University Medical Centre Groningen, Department of Clinical Genetics, Groningen, The Netherlands
| | - Henk Groen
- University of Groningen, University Medical Centre Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Astrid E P Cantineau
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Anne M van Oers
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Lotte van Dammen
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Epidemiology, Groningen, The Netherlands; Iowa State University, Department of Human Development and Family Studies, Ames Iowa, USA
| | - Vincent Wekker
- Academic Medical Centre, University of Amsterdam, Department of Obstetrics and Gynecology, Amsterdam, The Netherlands; Amsterdam Public Health research institute, Academic Medical Centre, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, the Netherlands
| | - Tessa J Roseboom
- Academic Medical Centre, University of Amsterdam, Department of Obstetrics and Gynecology, Amsterdam, The Netherlands; Amsterdam Public Health research institute, Academic Medical Centre, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, the Netherlands.
| | - Ben W J Mol
- Monash University, Department of Obstetrics and Gynecology, Clayton, Australia
| | - Uwe J F Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Annemieke Hoek
- University of Groningen, University Medical Centre Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | | |
Collapse
|
14
|
Correlation between Pre-Ovulatory Follicle Diameter and Follicular Fluid Metabolome Profiles in Lactating Beef Cows. Metabolites 2021; 11:metabo11090623. [PMID: 34564438 PMCID: PMC8471867 DOI: 10.3390/metabo11090623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 01/01/2023] Open
Abstract
Induced ovulation of small pre-ovulatory follicles reduced pregnancy rates, embryo survival, day seven embryo quality, and successful embryo cleavage in beef cows undergoing fixed-time artificial insemination. RNA-sequencing of oocytes and associated cumulus cells collected from pre-ovulatory follicles 23 h after gonadotropin-releasing hormone (GnRH) administration to induce the pre-ovulatory gonadotropin surge suggested reduced capacity for glucose metabolism in cumulus cells of follicles ≤11.7 mm. We hypothesized that the follicular fluid metabolome influences metabolic capacity of the cumulus-oocyte complex and contributes to reduced embryo cleavage and quality grade observed following induced ovulation of small follicles. Therefore, we performed a study to determine the correlation between pre-ovulatory follicle diameter and follicular fluid metabolome profiles in lactating beef cows (Angus, n = 130). We synchronized the development of a pre-ovulatory follicle and collected the follicular contents approximately 20 h after GnRH administration. We then performed ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) metabolomic studies on 43 follicular fluid samples and identified 38 metabolites within pre-ovulatory follicles of increasing size. We detected 18 metabolites with a significant, positive correlation to follicle diameter. Individual and pathway enrichment analysis of significantly correlated metabolites suggest that altered glucose and amino acid metabolism likely contribute to reduced developmental competence of oocytes when small pre-ovulatory follicles undergo induced ovulation.
Collapse
|
15
|
Nagy RA, Homminga I, Jia C, Liu F, Anderson JLC, Hoek A, Tietge UJF. Trimethylamine-N-oxide is present in human follicular fluid and is a negative predictor of embryo quality. Hum Reprod 2021; 35:81-88. [PMID: 31916569 PMCID: PMC9185935 DOI: 10.1093/humrep/dez224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/25/2019] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Are levels of trimethylamine-N-oxide (TMAO) in human follicular fluid (FF) related to IVF outcomes? SUMMARY ANSWER Higher levels of TMAO are a negative predictor of oocyte fertilization and embryo quality. WHAT IS KNOWN ALREADY TMAO is a metabolic product of dietary choline and l-carnitine produced via subsequent enzymatic modifications by the intestinal microbiota and hepatocytes. TMAO promotes inflammatory and oxidative stress pathways and has been characterized as a causative biomarker for the development of cardiometabolic disease. STUDY DESIGN, SIZE, DURATION For the present cross-sectional study, samples (FF and plasma) from 431 modified natural cycle (MNC)-IVF cycles of 132 patients were collected prospectively between October 2014 and March 2018 in a single academic medical center. PARTICIPANTS/MATERIALS, SETTING, METHODS TMAO and its precursors (choline, l-carnitine and gamma-butyrobetaine) were measured by ultra-high-performance liquid chromatography/mass spectrometry in (i) matched FF and plasma from 63 MNC-IVF cycles, in order to compare metabolite levels in the two matrices and (ii) FF from 232 MNC-IVF cycles in which only one oocyte was retrieved at follicular puncture. The association between metabolite levels and oocyte fertilization, embryo fragmentation percentage, embryo quality and the occurrence of pregnancy was analyzed using multilevel generalized estimating equations with adjustment for patient and cycle characteristics. MAIN RESULTS AND THE ROLE OF CHANCE The level of choline was higher in FF as compared to matched plasma (P < 0.001). Conversely, the levels of TMAO and gamma-butyrobetaine were lower in FF as compared to plasma (P = 0.001 and P = 0.075, respectively). For all metabolites, there was a positive correlation between FF and plasma levels. Finally, levels of TMAO and its gut-derived precursor gamma-butyrobetaine were lower in FF from oocytes that underwent normal fertilization (TMAO: odds ratio [OR] 0.66 [0.49–0.90], P = 0.008 per 1.0-μmol/L increase; gamma-butyrobetaine: OR 0.77 [0.60–1.00], P = 0.047 per 0.1-μmol/L increase) and developed into top-quality embryos (TMAO: OR 0.56 [0.42–0.76], P < 0.001 per 1.0-μmol/L increase; gamma-butyrobetaine: OR 0.79 [0.62–1.00], P = 0.050 per 0.1-μmol/L increase) than in FF from oocytes of suboptimal development. LIMITATIONS, REASONS FOR CAUTION The individual contributions of diet, gut bacteria and liver to the metabolite pools have not been quantified in this analysis. WIDER IMPLICATIONS OF THE FINDINGS More research on the contribution of diet and the effect of gut bacteria on FF TMAO is warranted. Since TMAO integrates diet, microbiota and genetic setup of the person, our results indicate potential important clinical implications for its use as biomarker for lifestyle interventions to improve fertility. STUDY FUNDING/COMPETING INTEREST(S) No external funding was received for this project. The Department of Obstetrics and Gynecology of the University Medical Center Groningen received an unrestricted educational grant of Ferring Pharmaceutical BV, the Netherlands. The authors have no other conflicts of interest. TRIAL REGISTRATION NUMBER Netherlands Trial Register number NTR4409.
Collapse
Affiliation(s)
- R A Nagy
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands.,Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - I Homminga
- Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - C Jia
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - F Liu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - J L C Anderson
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - A Hoek
- Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - U J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| |
Collapse
|
16
|
Funeshima N, Miura R, Katoh T, Yaginuma H, Kitou T, Yoshimura I, Konda K, Hamano S, Shirasuna K. Metabolomic profiles of plasma and uterine luminal fluids from healthy and repeat breeder Holstein cows. BMC Vet Res 2021; 17:54. [PMID: 33509174 PMCID: PMC7842029 DOI: 10.1186/s12917-021-02755-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Repeat breeding is a critical reproductive disorder in cattle. The problem of repeat breeder cattle remains largely unmanageable due to a lack of informative biomarkers. Here, we utilized metabolomic profiling in an attempt to identify metabolites in the blood plasma and uterine luminal fluids. We collected blood and uterine fluid from repeat breeder and healthy cows on day 7 of the estrous cycle. Results Metabolomic analysis identified 17 plasma metabolites detected at concentrations that distinguished between the two groups, including decreased various bile acids among the repeat breeders. However, no metabolites that varied significantly were detected in the uterine luminal fluids between two groups. Among the plasma samples, kynurenine was identified as undergoing the most significant variation. Kynurenine is a metabolite produced from tryptophan via the actions of indoleamine 2,3-dioxygenase (IDO). As IDO is key for maternal immune tolerance and induced in response to interferon tau (IFNT, ruminant maternal recognition of pregnancy factor), we examined the responsiveness to IFNT on peripheral blood mononuclear cells (PBMC) isolated from healthy and repeat breeder cows. The mRNA expression of IFNT-response makers (ISG15 and MX2) were significantly increased by IFNT treatment in a dose-dependent manner in both groups. Although treatment with IFNT promoted the expression of IDO in PBMCs from both groups, it did so at a substantially reduced rate among the repeat breeder cows, suggesting that decreased levels of kynurenine may relate to the reduced IDO expression in repeat breeder cows. Conclusions These findings provide valuable information towards the identification of critical biomarkers for repeat breeding syndrome in cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02755-7.
Collapse
Affiliation(s)
- Natsumi Funeshima
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, 243-0034, Japan
| | - Ryotaro Miura
- Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Taiga Katoh
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, 243-0034, Japan
| | - Hikari Yaginuma
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Shinagawa, Tokyo, 135-0041, Japan
| | - Takeshi Kitou
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Shinagawa, Tokyo, 135-0041, Japan
| | - Itaru Yoshimura
- Fuji Animal Research Farm, Nippon Veterinary and Life Science University, Kawaguchiko, Yamanashi, 401-3338, Japan
| | - Kunitoshi Konda
- Kanagawa Prefectural Livestock Industry Technology Center, Ebina, Kanagawa, 243-0417, Japan
| | - Seizo Hamano
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan Inc., Maebashi, Gunma, 371-0121, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, 243-0034, Japan.
| |
Collapse
|
17
|
Effects of an early life diet containing large phospholipid-coated lipid globules on hepatic lipid metabolism in mice. Sci Rep 2020; 10:16128. [PMID: 32999305 PMCID: PMC7527984 DOI: 10.1038/s41598-020-72777-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
We recently reported that feeding mice in their early life a diet containing a lipid structure more similar to human milk (eIMF, Nuturis) results in lower body weights and fat mass gain upon high fat feeding in later life, compared to control (cIMF). To understand the underlying mechanisms, we now explored parameters possibly involved in this long-term effect. Male C57BL/6JOlaHsd mice, fed rodent diets containing eIMF or cIMF from postnatal (PN) day 16-42, were sacrificed at PN42. Hepatic proteins were measured using targeted proteomics. Lipids were assessed by LC-MS/MS (acylcarnitines) and GC-FID (fatty-acyl chain profiles). Early life growth and body composition, cytokines, and parameters of bile acid metabolism were similar between the groups. Hepatic concentrations of multiple proteins involved in β-oxidation (+ 17%) the TCA cycle (+ 15%) and mitochondrial antioxidative proteins (+ 28%) were significantly higher in eIMF versus cIMF-fed mice (p < 0.05). Hepatic L-carnitine levels, required for fatty acid uptake into the mitochondria, were higher (+ 33%, p < 0.01) in eIMF-fed mice. The present study indicates that eIMF-fed mice have higher hepatic levels of proteins involved in fatty acid metabolism and oxidation. We speculate that eIMF feeding programs the metabolic handling of dietary lipids.
Collapse
|
18
|
Dosedělová V, Itterheimová P, Kubáň P. Analysis of bile acids in human biological samples by microcolumn separation techniques: A review. Electrophoresis 2020; 42:68-85. [PMID: 32645223 DOI: 10.1002/elps.202000139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Bile acids are a group of compounds essential for lipid digestion and absorption with a steroid skeleton and a carboxylate side chain usually conjugated to glycine or taurine. Bile acids are regulatory molecules for a number of metabolic processes and can be used as biomarkers of various disorders. Since the middle of the twentieth century, the detection of bile acids has evolved from simple qualitative analysis to accurate quantification in complicated mixtures. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. This article overviews the literature from the last two decades (2000-2020) and focuses on bile acid analysis in various human biological samples. The methods for sample preparation, including the sample treatment of conventional (blood plasma, blood serum, and urine) and unconventional samples (bile, saliva, duodenal/gastric juice, feces, etc.) are shortly discussed. Eventually, the focus is on novel analytical approaches and methods for each particular biological sample, providing an overview of the microcolumn separation techniques, such as high-performance liquid chromatography, gas chromatography, and capillary electrophoresis, used in their analysis. This is followed by a discussion on selected clinical applications.
Collapse
Affiliation(s)
- Věra Dosedělová
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic
| | - Petra Itterheimová
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic
| | - Petr Kubáň
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
19
|
An early-life diet containing large phospholipid-coated lipid globules programmes later-life postabsorptive lipid trafficking in high-fat diet- but not in low-fat diet-fed mice. Br J Nutr 2020; 125:961-971. [PMID: 32616081 DOI: 10.1017/s0007114520002421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Feeding mice in early life a diet containing an experimental infant milk formula (Nuturis®; eIMF), with a lipid structure similar to human milk, transiently lowered body weight (BW) and fat mass gain upon Western-style diet later in life, when compared with mice fed diets based on control IMF (cIMF). We tested the hypothesis that early-life eIMF feeding alters the absorption or the postabsorptive trafficking of dietary lipids in later life. Male C57BL/6JOlaHsd mice were fed eIMF/cIMF from postnatal day 16-42, followed by low- (LFD, American Institute of Nutrition (AIN)-93 G, 7 wt% fat) or high-fat diet (HFD, D12451, 24 wt% fat) until day 63-70. Lipid absorption rate and tissue concentrations were determined after intragastric administration of stable isotope (2H or 13C) labelled lipids in separate groups. Lipid enrichments in plasma and tissues were analysed using GC-MS. The rate of triolein absorption was similar between eIMF and cIMF fed LFD: 3·2 (sd 1·8) and 3·9 (sd 2·1) and HFD: 2·6 (sd 1·7) and 3·8 (sd 3·0) % dose/ml per h. Postabsorptive lipid trafficking, that is, concentrations of absorbed lipids in tissues, was similar in the eIMF and cIMF groups after LFD. Tissue levels of absorbed TAG after HFD feeding were lower in heart (-42 %) and liver (-46 %), and higher in muscle (+81 %, all P < 0·05) in eIMF-fed mice. In conclusion, early-life IMF diet affected postabsorptive trafficking of absorbed lipids after HFD, but not LFD. Changes in postabsorptive lipid trafficking could underlie the observed lower BW and body fat accumulation in later life upon a persistent long-term obesogenic challenge.
Collapse
|
20
|
Jia C, Nagy RA, Homminga I, Hoek A, Tietge UJF. The anti-inflammatory function of follicular fluid HDL and outcome of modified natural cycle in vitro fertilization†. Biol Reprod 2020; 103:7-9. [PMID: 32333006 PMCID: PMC7313252 DOI: 10.1093/biolre/ioaa061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Congzhuo Jia
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ruxandra A Nagy
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene Homminga
- Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke Hoek
- Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Méndez-Tepepa M, Zepeda-Pérez D, Espindola-Lozano M, Rodríguez-Castelán J, Arroyo-Helguera O, Pacheco P, Nicolás-Toledo L, Cuevas-Romero E. Hypothyroidism modifies differentially the content of lipids and glycogen, lipid receptors, and intraepithelial lymphocytes among oviductal regions of rabbits. Reprod Biol 2020; 20:247-253. [PMID: 32089504 DOI: 10.1016/j.repbio.2020.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022]
Abstract
Hypothyroidism affects the content of triacylglycerol (TAG), total cholesterol (TC), oxidized lipids, glycogen, and infiltration of immune cells into the ovary and uterus. This study aimed to analyze the impact of hypothyroidism on the lipid content of different regions of the oviduct. Control (n = 6) and hypothyroid (n = 6; 10 mg/kg/day of methimazole in the drinking water for 30 days) adult rabbits were used. In the fimbriae/infundibulum (FIM/INF), ampulla, (AMP), isthmus (IST), and utero-tubal junction (UTJ), the TAG and TC concentrations, presence of oxidized lipid, relative expressions of perilipin A (PLIN A), peroxisome proliferator-activated receptor γ (PPARγ), CAAT/enhancer-binding protein α (C/EBPα), and farnesoid X receptor (FXRα) were analyzed. The content of glycogen and glycans, as well as the infiltration of lymphocytes, were also quantified. In the FIM/INF, hypothyroidism reduced the content of TC, expression of C/EBPα, and presence of glycans while increased the number of intraepithelial lymphocytes. In the AMP and IST-UTJ regions, hypothyroidism increased the content of TAG, oxidized lipids, expression of PPARγ, and glycogen content but decreased the expression of PLIN-A. The FXRα expression in secretory cells of IST-UTJ was higher in the hypothyroid rabbits compared to controls. Additionally, hypothyroidism reduced the C/EBPα expression and the number of intraepithelial lymphocytes in the AMP and IST-UTJ regions, respectively. We demonstrated that the effect of hypothyroidism depends on the oviductal region, possibly associated with different physiological functions specific to each region. These alterations may be related to infertility, tubal disturbances, and ectopic pregnancy observed in hypothyroid women.
Collapse
Affiliation(s)
- Maribel Méndez-Tepepa
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Dafne Zepeda-Pérez
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Julia Rodríguez-Castelán
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico; Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Pablo Pacheco
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Leticia Nicolás-Toledo
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Estela Cuevas-Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| |
Collapse
|
22
|
Olesti E, Garcia A, Rahban R, Rossier MF, Boccard J, Nef S, González-Ruiz V, Rudaz S. Steroid profile analysis by LC-HRMS in human seminal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1136:121929. [DOI: 10.1016/j.jchromb.2019.121929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/05/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
|
23
|
Blaschka C, Sánchez-Guijo A, Wudy SA, Wrenzycki C. Profile of bile acid subspecies is similar in blood and follicular fluid of cattle. Vet Med Sci 2019; 6:167-176. [PMID: 31713347 PMCID: PMC7196682 DOI: 10.1002/vms3.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/09/2019] [Accepted: 09/19/2019] [Indexed: 11/06/2022] Open
Abstract
The composition of follicular fluid (FF) has an impact on the developmental capacity of the oocyte and the resulting embryo. FF is composed of blood plasma constituents which cross the blood follicular barrier and the secretory components of granulosa and theca cells. Moreover, it has been shown recently that follicular cells have the ability to synthesize bile acids (BAs). BAs are present in several fluids of mammals especially in bile, blood and urine. FF is an essential impacting factor on the oocyte quality and therefore resulting embryos. To achieve a better understanding of this subject, the presence and concentration of BAs were measured in fluid collected from bovine follicles, categorized according to their size, throughout two entire oestrus cycles and compared to those in blood and urine. The body fluids were collected during the same examination procedure and in total samples from four heifers were obtained. A broad spectrum of 11 BA derivatives was measured applying liquid chromatography-tandem mass spectrometry (LC-MS/MS). The simultaneous and direct quantification of BAs in different body fluids of cattle are reported. Within the follicular fluid, blood and urine, cholic acid and glycocholic acid are the dominant BA subspecies irrespective of the oestrus cycle stage. Moreover, BA concentrations in blood compared to those in the FF were similar. For the first time these results clearly highlight the presence of different BA subspecies in FF, blood and urine during the oestrus cycle in cattle.
Collapse
Affiliation(s)
- Carina Blaschka
- Clinic for Veterinary Obstetrics, Gynecology and Andrology, Molecular Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| | - Alberto Sánchez-Guijo
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Christine Wrenzycki
- Clinic for Veterinary Obstetrics, Gynecology and Andrology, Molecular Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
24
|
Nagy RA, Hollema H, Andrei D, Jurdzinski A, Kuipers F, Hoek A, Tietge UJ. The Origin of Follicular Bile Acids in the Human Ovary. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2036-2045. [DOI: 10.1016/j.ajpath.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 01/31/2023]
|
25
|
Anti-oxidative function of follicular fluid HDL and outcomes of modified natural cycle-IVF. Sci Rep 2019; 9:12817. [PMID: 31492916 PMCID: PMC6731220 DOI: 10.1038/s41598-019-49091-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
High density lipoproteins (HDL) are the main cholesterol carriers in follicular fluid (FF), the natural environment of oocyte development. Additionally, HDL have critical biological functions such as anti-oxidative capacity, which have not been studied in reproduction. Therefore, this study aimed to investigate whether the anti-oxidative function of FF-HDL is associated with fertility outcomes. From 253 women undergoing modified natural cycle (MNC)- IVF at a single academic centre FF and plasma were collected (n = 375 cycles). Anti-oxidative function of FF was mainly attributable to HDL (n = 8; 83%). FF-HDL had a higher anti-oxidative function than plasma HDL (n = 19, P < 0.001) coinciding with increased vitamin E and sphingosine 1 phosphate content (P = 0.028 each). Proteomic analysis indicated no significant differences in major anti-oxidative proteins such as paraoxonase 1, apolipoprotein (apo) A-I or apoA-IV between FF-HDL and matched plasma-HDL (n = 5), while apoC-III, apoE and apoC-II were relatively lower in FF-HDL. Finally, FF-HDL anti-oxidative function was related to a decrease in the odds of the oocyte undergoing normal fertilization, an association that persisted after adjustment for confounders (odds ratio 0.97 (0.93–1), P = 0.041). In conclusion, FF-HDL has considerable anti-oxidative properties that might be relevant for embryo quality.
Collapse
|
26
|
van Montfoort APA, Nagy RA, van Echten-Arends J, Hoek A, Tietge UJF. Preconceptional Maternal Bile Acids and Birth Weight of Neonates. Hepatol Commun 2019; 3:849-850. [PMID: 31168520 PMCID: PMC6545869 DOI: 10.1002/hep4.1344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preconceptional maternal bile acid species are significantly associated with birth weight of the offspring.
Collapse
Affiliation(s)
- Aafke P A van Montfoort
- Department of Obstetrics and Gynecology, Section Reproductive Medicine University of Groningen, University Medical Center Groningen Groningen the Netherlands.,Department of Obstetrics & Gynecology, GROW School for Oncology and Developmental Biology Maastricht University Medical Center Maastricht the Netherlands
| | - Ruxandra A Nagy
- Department of Obstetrics and Gynecology, Section Reproductive Medicine University of Groningen, University Medical Center Groningen Groningen the Netherlands.,Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases University of Groningen, University Medical Center Groningen Groningen the Netherlands
| | - Jannie van Echten-Arends
- Department of Obstetrics and Gynecology, Section Reproductive Medicine University of Groningen, University Medical Center Groningen Groningen the Netherlands
| | - Annemieke Hoek
- Department of Obstetrics and Gynecology, Section Reproductive Medicine University of Groningen, University Medical Center Groningen Groningen the Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases University of Groningen, University Medical Center Groningen Groningen the Netherlands
| |
Collapse
|
27
|
Association between pre-breeding metabolic profiles and reproductive performance in heifers and lactating dairy cows. Theriogenology 2019; 131:79-88. [PMID: 30959440 DOI: 10.1016/j.theriogenology.2019.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/09/2019] [Accepted: 03/20/2019] [Indexed: 01/25/2023]
Abstract
Lactating cows and nulliparous heifers are in distinctive and unique physiological conditions when they are approaching the planned time of breeding, at approximately 60 days in milk and 13-15 months of age, respectively. This study aimed to profile the metabolic milieu in heifers (N = 14) and lactating cows (N = 15) in the weeks leading up to planned time of breeding. All cows were followed for a period of 15 weeks, from 3 weeks pre-calving to 12 weeks post-calving, while heifers were monitored for a period of 4 weeks leading up to the tentative week of breeding (pre-breeding period). For data analysis, we further divided cows into primiparous (N = 8) and multiparous (N = 7) cows owing to the significant difference in their milk yield. Assessment of reproductive performance showed that primiparous and multiparous cows tended to have lower pregnancy rates compared to heifers (P < 0.1). Plasma concentrations of β-hydroxybutyric acid were about 2-fold higher in multiparous cows than those of heifers in the week leading up to planned time of breeding (P < 0.05). Total bile acid levels during the pre-breeding period were higher in all lactating cows compared to heifers (P < 0.05) and glucose levels were lower in lactating cows (P < 0.05). Triglyceride concentrations were lowest in multiparous cows compared to both primiparous cows and nulliparous heifers (P < 0.05). In addition, lactating cows had higher concentrations of total-cholesterol and the high-density lipoprotein and low-density lipoprotein compared to heifers (P < 0.05). Conversely, concentrations of very low-density lipoprotein were lower in multiparous cows than primiparous cows and nulliparous heifers (P < 0.05). There were no differences in plasma glutathione levels, as measured by liquid chromatography-tandem mass spectrometry, between the groups, but the ferric reducing ability of plasma was higher in lactating cows compared to heifers (P < 0.05). These data establish the differences in the profile of metabolic and oxidative markers during the period approaching planned time of breeding in lactating cows compared to nulliparous heifers. As certain metabolites in the plasma have been shown to be represented in the ovarian follicular microenvironment, the unique profiles may influence reproductive performance in dairy cattle in different physiological stages.
Collapse
|
28
|
Takae K, Nakata M, Watanabe T, Sasada H, Fujii H, Tomioka I. Evidence for the involvement of FXR signaling in ovarian granulosa cell function. J Reprod Dev 2018; 65:47-55. [PMID: 30449821 PMCID: PMC6379767 DOI: 10.1262/jrd.2018-054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Farnesoid X receptor (FXR) is mainly present in enterohepatic tissues and regulates cholesterol, lipid, and glucose homeostasis in coordination with target genes such as
SHP and FABP6. Although FXR has been revealed to be expressed in reproductive tissues, FXR function and expression levels in the ovary remain unknown. In
this study, we investigated FXR expression in mouse ovaries and its target genes in ovarian granulosa cells. In situ hybridization and immunohistochemical staining showed
that FXR was mainly distributed in secondary and tertiary follicles. The agonist-induced activation of FXR in cultured granulosa cells induced the expression of SHP and
FABP6, while siRNA targeting of FXR decreased CYP19a1 and HSD17b1 expression. Upon examination of the roles of SHP and
FABP6 in granulosa cells, we found that SHP overexpression significantly decreased StAR, CYP11a1, and HSD3b gene
expression. In addition, siRNA targeting of FABP6 decreased CYP19a1 and HSD17b1 expression, while FABP6 overexpression
increased CYP19a1 expression. In conclusion, the present study demonstrates the presence of FXR signaling in the ovary and reveals that FXR signaling may have a role in
function of granulosa cells.
Collapse
Affiliation(s)
- Kentaro Takae
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Mizuho Nakata
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Takafumi Watanabe
- Laboratory of Animal Functional Anatomy, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Hiroshi Sasada
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | - Hiroshi Fujii
- Laboratory of Biochemistry, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Ikuo Tomioka
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| |
Collapse
|
29
|
Siristatidis CS, Sertedaki E, Vaidakis D, Varounis C, Trivella M. Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies. Cochrane Database Syst Rev 2018; 3:CD011872. [PMID: 29547689 PMCID: PMC6494410 DOI: 10.1002/14651858.cd011872.pub3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND In order to overcome the low effectiveness of assisted reproductive technologies (ART) and the high incidence of multiple births, metabolomics is proposed as a non-invasive method to assess oocyte quality, embryo viability, and endometrial receptivity, and facilitate a targeted subfertility treatment. OBJECTIVES To evaluate the effectiveness and safety of metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity for improving live birth or ongoing pregnancy rates in women undergoing ART, compared to conventional methods of assessment. SEARCH METHODS We searched the Cochrane Gynaecology and Fertility Group Trials Register, CENTRAL, MEDLINE, Embase, CINAHL and two trial registers (Feburary 2018). We also examined the reference lists of primary studies and review articles, citation lists of relevant publications, and abstracts of major scientific meetings. SELECTION CRITERIA Randomised controlled trials (RCTs) on metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity in women undergoing ART. DATA COLLECTION AND ANALYSIS Pairs of review authors independently assessed trial eligibility and risk of bias, and extracted the data. The primary outcomes were rates of live birth or ongoing pregnancy (composite outcome) and miscarriage. Secondary outcomes were clinical pregnancy, multiple and ectopic pregnancy, cycle cancellation, and foetal abnormalities. We combined data to calculate odds ratios (ORs) for dichotomous data and 95% confidence intervals (CIs). Statistical heterogeneity was assessed using the I² statistic. We assessed the overall quality of the evidence for the main comparisons using GRADE methods. MAIN RESULTS We included four trials with a total of 924 women, with a mean age of 33 years. All assessed the role of metabolomic investigation of embryo viability. We found no RCTs that addressed the metabolomic assessment of oocyte quality or endometrial receptivity.We found low-quality evidence of little or no difference between metabolomic and non-metabolomic assessment of embryos for rates of live birth or ongoing pregnancy (OR 1.02, 95% CI 0.77 to 1.35, I² = 0%; four RCTs; N = 924), live birth alone (OR 0.99, 95% CI 0.69 to 1.44, I² = 0%; three RCTs; N = 597), or miscarriage (OR 1.18, 95% CI 0.77 to 1.82; I² = 0%; three RCTs; N = 869). A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for live birth or ongoing pregnancy (OR 0.90, 95% CI 0.66 to 1.25, I² = 0%; two RCTs; N = 744). Our findings suggested that if the rate of live birth or ongoing pregnancy was 36% in the non-metabolomic group, it would be between 32% and 45% with the use of metabolomics.We found low-quality evidence of little or no difference between groups in rates of clinical pregnancy (OR 1.11, 95% CI 0.85 to 1.45; I²= 44%; four trials; N = 924) or multiple pregnancy (OR 1.50, 95% CI 0.70 to 3.19; I² = 0%; two RCTs, N = 180). Rates of cycle cancellation were higher in the metabolomics group (OR 1.78, 95% CI 1.18 to 2.69; I² = 51%; two RCTs; N = 744, low quality evidence). There was very low-quality evidence of little or no difference between groups in rates of ectopic pregnancy rates (OR 3.00, 95% CI 0.12 to 74.07; one RCT; N = 417), and foetal abnormality (no events; one RCT; N = 125). Data were lacking on other adverse effects. A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for clinical pregnancy (OR 1.03, 95% CI 0.76 to 1.38; I² = 40%; two RCTs; N = 744).The overall quality of the evidence ranged from very low to low. Limitations included serious risk of bias (associated with poor reporting of methods, attrition bias, selective reporting, and other biases), imprecision, and inconsistency across trials. AUTHORS' CONCLUSIONS According to current trials in women undergoing ART, there is no evidence to show that metabolomic assessment of embryos before implantation has any meaningful effect on rates of live birth, ongoing pregnancy, miscarriage, multiple pregnancy, ectopic pregnancy or foetal abnormalities. The existing evidence varied from very low to low-quality. Data on other adverse events were sparse, so we could not reach conclusions on these. At the moment, there is no evidence to support or refute the use of this technique for subfertile women undergoing ART. Robust evidence is needed from further RCTs, which study the effects on live birth and miscarriage rates for the metabolomic assessment of embryo viability. Well designed and executed trials are also needed to study the effects on oocyte quality and endometrial receptivity, since none are currently available.
Collapse
Affiliation(s)
- Charalampos S Siristatidis
- Medical School, National and Kapodistrian University of AthensAssisted Reproduction Unit, 3rd Department of Obstetrics and GynaecologyAttikon University HospitalRimini 1AthensChaidariGreece12462
| | - Eleni Sertedaki
- Medical School, National and Kapodistrian University of Athens75 M. Assias StreetGoudiAthensGreece115 27
| | - Dennis Vaidakis
- University of Athens3rd Department of Obstetrics and Gynecology'Attikon' Hospital, ChaidariAthensGreece
| | - Christos Varounis
- Attikon University Hospital2nd Department of Cardiology, University of Athens Medical SchoolRimini 1HaidariAthensGreece12462
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | | |
Collapse
|
30
|
Geyer J, Bakhaus K, Bernhardt R, Blaschka C, Dezhkam Y, Fietz D, Grosser G, Hartmann K, Hartmann MF, Neunzig J, Papadopoulos D, Sánchez-Guijo A, Scheiner-Bobis G, Schuler G, Shihan M, Wrenzycki C, Wudy SA, Bergmann M. The role of sulfated steroid hormones in reproductive processes. J Steroid Biochem Mol Biol 2017; 172:207-221. [PMID: 27392637 DOI: 10.1016/j.jsbmb.2016.07.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Sulfated steroid hormones, such as dehydroepiandrosterone sulfate or estrone-3-sulfate, have long been regarded as inactive metabolites as they cannot activate classical steroid receptors. Some of them are present in the blood circulation at quite high concentrations, but generally sulfated steroids exhibit low membrane permeation due to their hydrophilic properties. However, sulfated steroid hormones can actively be imported into specific target cells via uptake carriers, such as the sodium-dependent organic anion transporter SOAT, and, after hydrolysis by the steroid sulfatase (so-called sulfatase pathway), contribute to the overall regulation of steroid responsive organs. To investigate the biological significance of sulfated steroid hormones for reproductive processes in humans and animals, the research group "Sulfated Steroids in Reproduction" was established by the German Research Foundation DFG (FOR1369). Projects of this group deal with transport of sulfated steroids, sulfation of free steroids, desulfation by the steroid sulfatase, effects of sulfated steroids on steroid biosynthesis and membrane receptors as well as MS-based profiling of sulfated steroids in biological samples. This review and concept paper presents key findings from all these projects and provides a broad overview over the current research on sulfated steroid hormones in the field of reproduction.
Collapse
Affiliation(s)
- Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany.
| | - Katharina Bakhaus
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Carina Blaschka
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Yaser Dezhkam
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Gary Grosser
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Katja Hartmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Jens Neunzig
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Dimitrios Papadopoulos
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Alberto Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Gerhard Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Mazen Shihan
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Christine Wrenzycki
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Martin Bergmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
31
|
ANGPTL4 promotes bile acid absorption during taurocholic acid supplementation via a mechanism dependent on the gut microbiota. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1056-1067. [PMID: 28733267 DOI: 10.1016/j.bbalip.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Angiopoietin-like 4 (ANGPTL4) raises plasma triglyceride levels by inhibiting lipoprotein lipase. A set of compounds that are able to reduce plasma triglyceride levels are bile acids (BA). Because BA have been shown to decrease ANGPTL4 secretion by intestinal cells, we hypothesized that BA lower plasma triglycerides (partly) via ANGPTL4. To test that hypothesis, wild-type and Angptl4-/- mice were fed chow supplemented with taurocholic acid (TCA) for seven days. TCA supplementation effectively lowered plasma triglycerides in wild-type and Angptl4-/- mice, indicating that ANGPTL4 is not required for plasma triglyceride-lowering by BA. Intriguingly, however, plasma and hepatic BA concentrations were significantly lower in TCA-supplemented Angptl4-/- mice than in TCA-supplemented wild-type mice. These changes in the Angptl4-/- mice were accompanied by lower BA levels in ileal scrapings and decreased expression of FXR-target genes in the ileum, including the BA transporter Slc10a2. By contrast, faecal excretion of specifically primary BA was higher in the Angptl4-/- mice, suggesting that loss of ANGPTL4 impairs intestinal BA absorption. Since the gut microbiota converts primary BA into secondary BA, elevated excretion of primary BA in Angptl4-/- mice may reflect differences in gut microbial composition and/or functionality. Indeed, colonic microbial composition was markedly different between Angptl4-/- and wild-type mice. Suppression of the gut bacteria using antibiotics abolished differences in plasma, hepatic, and faecal BA levels between TCA-supplemented Angptl4-/- and wild-type mice. In conclusion, 1) ANGPTL4 is not involved in the triglyceride-lowering effect of BA; 2) ANGPTL4 promotes BA absorption during TCA supplementation via a mechanism dependent on the gut microbiota.
Collapse
|
32
|
Siristatidis CS, Sertedaki E, Vaidakis D. Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies. Cochrane Database Syst Rev 2017; 5:CD011872. [PMID: 28534597 PMCID: PMC6481756 DOI: 10.1002/14651858.cd011872.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In order to overcome the low effectiveness of assisted reproductive technologies (ART) and the high incidence of multiple births, metabolomics is proposed as a non-invasive method to assess oocyte quality, embryo viability, and endometrial receptivity, and facilitate a targeted subfertility treatment. OBJECTIVES To evaluate the effectiveness and safety of metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity for improving live birth or ongoing pregnancy rates in women undergoing ART, compared to conventional methods of assessment. SEARCH METHODS We searched the Cochrane Gynaecology and Fertility Group Trials Register, CENTRAL, MEDLINE, Embase, CINAHL and two trial registers (November 2016). We also examined the reference lists of primary studies and review articles, citation lists of relevant publications, and abstracts of major scientific meetings. SELECTION CRITERIA Randomised controlled trials (RCTs) on metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity in women undergoing ART. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and risk of bias, and extracted the data. The primary outcomes were rates of live birth or ongoing pregnancy (composite outcome) and miscarriage. Secondary outcomes were clinical pregnancy, multiple and ectopic pregnancy, cycle cancellation, and foetal abnormalities. We combined data to calculate odds ratios (ORs) for dichotomous data and 95% confidence intervals (CIs). Statistical heterogeneity was assessed using the I² statistic. We assessed the overall quality of the evidence for the main comparisons using GRADE methods. MAIN RESULTS We included four trials with a total of 802 women, with a mean age of 33 years. All assessed the role of metabolomic investigation of embryo viability. We found no RCTs that addressed the metabolomic assessment of oocyte quality or endometrial receptivity.We found low-quality evidence of little or no difference between metabolomic and non-metabolomic assessment of embryos for rates of live birth or ongoing pregnancy (OR 1.11, 95% CI 0.83 to 1.48; I² = 0%; four RCTs; N = 802), or miscarriage (OR 0.96, 95% CI 0.52 to 1.78; I² = 0%; two RCTs; N = 434). A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for live birth or ongoing pregnancy (OR 0.99, 95% CI 0.71 to 1.38; I² = 0%; two RCTs; N = 621). Our findings suggested that if the rate of live birth or ongoing pregnancy was 36% in the non-metabolomic group, it would be between 32% and 45% with the use of metabolomics.We found low-quality evidence of little or no difference between groups in rates of clinical pregnancy (OR 1.22, 95% CI 0.92 to 1.62; I²= 26%; four trials; N = 802), or multiple pregnancy (OR 1.52, 95% CI 0.71 to 3.23; I² = 0%; two RCTs, N = 181). There was very low-quality evidence of little or no difference between groups in ectopic pregnancy rates (OR 3.37, 95% CI 0.14 to 83.40; one RCT; N = 309), and foetal abnormalities (no events; one RCT; N = 125), and very low-quality evidence of higher rates of cycle cancellation in the metabolomics group (OR 1.78, 95% CI 1.18 to 2.69; I² = 51%; two RCTs; N = 744). Data were lacking on other adverse effects. A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for clinical pregnancy (OR 1.14, 95% CI 0.83 to 1.57; I² = 0%; two RCTs; N = 621).The overall quality of the evidence ranged from very low to low. Limitations included serious risk of bias (associated with poor reporting of methods, attrition bias, selective reporting, and other biases), imprecision, and inconsistency across trials. AUTHORS' CONCLUSIONS According to current trials in women undergoing ART, there is insufficient evidence to show that metabolomic assessment of embryos before implantation has any meaningful effect on rates of live birth, ongoing pregnancy, or miscarriage rates. The existing evidence varied from very low to low-quality. Data on adverse events were sparse, so we could not reach conclusions on these. At the moment, there is no evidence to support or refute the use of this technique for subfertile women undergoing ART. Robust evidence is needed from further RCTs, which study the effects on live birth and miscarriage rates for the metabolomic assessment of embryo viability. Well designed and executed trials are also needed to study the effects on oocyte quality and endometrial receptivity, since none are currently available.
Collapse
Affiliation(s)
- Charalampos S Siristatidis
- Medical School, National and Kapodistrian University of AthensAssisted Reproduction Unit, 3rd Department of Obstetrics and GynaecologyAttikon University Hospital,Rimini 1AthensGreece12462
| | - Eleni Sertedaki
- Medical School, National and Kapodistrian University of Athens75 M. Assias StreetGoudiAthensGreece115 27
| | - Dennis Vaidakis
- University of Athens3rd Department of Obstetrics and Gynecology'Attikon' Hospital, ChaidariAthensGreece
| |
Collapse
|
33
|
Janssen AWF, Houben T, Katiraei S, Dijk W, Boutens L, van der Bolt N, Wang Z, Brown JM, Hazen SL, Mandard S, Shiri-Sverdlov R, Kuipers F, Willems van Dijk K, Vervoort J, Stienstra R, Hooiveld GJEJ, Kersten S. Modulation of the gut microbiota impacts nonalcoholic fatty liver disease: a potential role for bile acids. J Lipid Res 2017; 58:1399-1416. [PMID: 28533304 DOI: 10.1194/jlr.m075713] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, yet the pathogenesis of NAFLD is only partially understood. Here, we investigated the role of the gut bacteria in NAFLD by stimulating the gut bacteria via feeding mice the fermentable dietary fiber, guar gum (GG), and suppressing the gut bacteria via chronic oral administration of antibiotics. GG feeding profoundly altered the gut microbiota composition, in parallel with reduced diet-induced obesity and improved glucose tolerance. Strikingly, despite reducing adipose tissue mass and inflammation, GG enhanced hepatic inflammation and fibrosis, concurrent with markedly elevated plasma and hepatic bile acid levels. Consistent with a role of elevated bile acids in the liver phenotype, treatment of mice with taurocholic acid stimulated hepatic inflammation and fibrosis. In contrast to GG, chronic oral administration of antibiotics effectively suppressed the gut bacteria, decreased portal secondary bile acid levels, and attenuated hepatic inflammation and fibrosis. Neither GG nor antibiotics influenced plasma lipopolysaccharide levels. In conclusion, our data indicate a causal link between changes in gut microbiota and hepatic inflammation and fibrosis in a mouse model of NAFLD, possibly via alterations in bile acids.
Collapse
Affiliation(s)
- Aafke W F Janssen
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Tom Houben
- Department of Molecular Genetics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Saeed Katiraei
- Departments of Human Genetics Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Wieneke Dijk
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Lily Boutens
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands; Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nieke van der Bolt
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - Stéphane Mandard
- Lipness Team-INSERM Research Center UMR1231 and LabEx LipSTIC, Faculté de Médecine, Université de Bourgogne-Franche Comté, 21079 Dijon CEDEX, France
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Folkert Kuipers
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatrics and Laboratory Medicine, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Ko Willems van Dijk
- Departments of Human Genetics Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Departments of Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands; Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
34
|
Sánchez-Guijo A, Blaschka C, Hartmann MF, Wrenzycki C, Wudy SA. Profiling of bile acids in bovine follicular fluid by fused-core-LC-MS/MS. J Steroid Biochem Mol Biol 2016; 162:117-25. [PMID: 26924583 DOI: 10.1016/j.jsbmb.2016.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 12/19/2022]
Abstract
Bile acids (BAs) are present in follicular fluid (FF) from humans and cattle. This fact has triggered an interest on the role BAs might play in folliculogenesis and their possible association with fertility. To achieve a better understanding about this subject, new methods are needed to provide reliable information about concentrations of the most important BAs in FF. In this context, liquid chromatography-tandem mass spectrometry (LC-MS/MS) offers high specificity with a relatively simple sample workup. We developed and validated a new assay for the quick profiling of the 9 most abundant BAs in follicular fluid from cattle. The method uses 200μl of FF and can quantify cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA) and their glycine (G) and taurine (T) conjugates. Lithocholic acid (LCA), its conjugates GLCA and TLCA, and sulfated forms, were present in some samples, but their concentration was low compared to other BAs (in average, below 60ng/ml for LCA, GLCA or TLCA and below 20ng/ml for their corresponding sulfates). Method performance was studied at three quality controls for each compound in consonance with their physiological concentration. Excellent linearity and recovery were found for all compounds at every control level. Intra-day and between-day precisions (%CV) and accuracies (relative errors) were below 15% for all the compounds. Matrix effects were negligible for most of the analytes. Samples undergoing freeze-thaw showed no degradation of their BAs. The method makes use of a fused-core phenyl column coupled to a triple quadrupole tandem mass spectrometer to achieve chromatographic separation within 5min. We quantified BAs grouped in four different follicle sizes (3-5mm, 6-8mm, 9-14mm, >15mm), obtaining a similar relative BA profile for all the sizes, with CA always in higher concentration, ranging between 1600 and 18000ng/ml, approximately, followed by its conjugate glycocholic acid, GCA, which ranged between 800 and 9000ng/ml. The highest concentration in CA, DCA or CDCA was always detected in FF stemming from follicles of 6-8mm. To our knowledge, this is the first report in which BAs subspecies have been detected and quantified in bovine follicular fluid.
Collapse
Affiliation(s)
- A Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, 35392 Giessen, Germany.
| | - C Blaschka
- Clinic for Veterinary Obstetrics, Gynecology and Andrology, Department of Molecular Reproductive Medicine, Justus Liebig University, Giessen, Germany
| | - M F Hartmann
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, 35392 Giessen, Germany
| | - C Wrenzycki
- Clinic for Veterinary Obstetrics, Gynecology and Andrology, Department of Molecular Reproductive Medicine, Justus Liebig University, Giessen, Germany
| | - S A Wudy
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|