1
|
Vrettou CS, Issaris V, Kokkoris S, Poupouzas G, Keskinidou C, Lotsios NS, Kotanidou A, Orfanos SE, Dimopoulou I, Vassiliou AG. Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness. Life (Basel) 2024; 14:1688. [PMID: 39768394 PMCID: PMC11676363 DOI: 10.3390/life14121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaporins (AQPs) are membrane proteins facilitating water and other small solutes to be transported across cell membranes. They are crucial in maintaining cellular homeostasis by regulating water permeability in various tissues. Moreover, they regulate cell migration, signaling pathways, inflammation, tumor growth, and metastasis. In critically ill patients, such as trauma, sepsis, and patients with acute respiratory distress syndrome (ARDS), which are frequently encountered in intensive care units (ICUs), water transport regulation is crucial for maintaining homeostasis, as dysregulation can lead to edema or dehydration, with the latter also implicating hemodynamic compromise. Indeed, AQPs are involved in fluid transport in various organs, including the lungs, kidneys, and brain, where their dysfunction can exacerbate conditions like ARDS, acute kidney injury (AKI), or cerebral edema. In this review, we discuss the implication of AQPs in the clinical entities frequently encountered in ICUs, such as systemic inflammation and sepsis, ARDS, AKI, and brain edema due to different types of primary brain injury from a clinical perspective. Current and possible future therapeutic implications are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (V.I.); (S.K.); (G.P.); (C.K.); (N.S.L.); (A.K.); (S.E.O.); (I.D.)
| |
Collapse
|
2
|
Ribeiro JC, Rodrigues BC, Bernardino RL, Alves MG, Oliveira PF. The interactome of cystic fibrosis transmembrane conductance regulator and its role in male fertility: A critical review. J Cell Physiol 2024; 239:e31422. [PMID: 39324358 DOI: 10.1002/jcp.31422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic adenosine monophosphate (cAMP)-regulated chloride and bicarbonate ion channel found in many human cells. Its unique biochemical characteristics and role as a member of the adenosine triphosphate (ATP)-binding cassette transporters superfamily are pivotal for the transport of several substrates across cellular membranes. CFTR is known to interact, physically and functionally, with several other cellular proteins. Hence, its properties are essential for moving various substances across cell membranes and ensuring correct cell functioning. Genetic mutations or environmental factors may disrupt CFTR's function resulting in different possible phenotypes due to gene variations that affect not only CFTR's function, localization, and processing within cells, but also those of its interactors. This has been reported as an underlying cause of various diseases, including cystic fibrosis. The severe clinical implications of cystic fibrosis have driven intense research into the role of CFTR in lung function but its significance to fertility, particularly in men, has been comparatively understudied. However, ongoing and more recent research into CFTR and its interacting proteins in the testis or specific testicular cells is beginning to shed light on this field. Herein, we provide a comprehensive and up-to-date overview of the CFTR, its interactome, and its crucial role in male reproduction, highlighting recent discoveries and advancements in understanding the molecular mechanisms involved. The comprehension of these complex interactions may pave the way for potential therapeutic approaches to improve fertility of men suffering from alterations in the function of CFTR.
Collapse
Grants
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds.
- Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018.
- This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds. Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018. This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
Collapse
Affiliation(s)
- João C Ribeiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bernardo C Rodrigues
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Raquel L Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Zhang H, Bao S, Zhao X, Bai Y, Lv Y, Gao P, Li F, Zhang W. Genome-Wide Association Study and Phenotype Prediction of Reproductive Traits in Large White Pigs. Animals (Basel) 2024; 14:3348. [PMID: 39682314 DOI: 10.3390/ani14233348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
In a study involving 385 Large White pigs, a genome-wide association study (GWAS) was conducted to investigate reproductive traits, specifically the number of healthy litters (NHs) and the number of weaned litters (NWs). Several SNP loci, including ALGA0098819, ALGA0037969, and H3GA0032302, were significantly associated with these traits. In the combined-parity analysis, candidate genes, such as BLVRA, STK17A, PSMA2, and C7orf25, were identified. GO and KEGG pathway enrichment analyses revealed that these genes are involved in key biological processes, including organic synthesis, the regulation of sperm activity, spermatogenesis, and meiosis. In the by-parity analysis, the PLCXD3 gene was significantly associated with the NW trait in the second and fourth parities, while RNASEH1, PYM1, and SEPTIN9 were linked to cell proliferation, DNA repair, and metabolism, suggesting their potential role in regulating reproductive traits. These findings provide new molecular markers for the genetic study of reproductive traits in Large White pigs. For the phenotypic prediction of NH and NW traits, several machine learning models (GBDT, RF, LightGBM, and Adaboost.R2), as well as traditional models (GBLUP, BRR, and BL), were evaluated using SNP data in varying proportions. After PCA processing, the GBDT model achieved the highest PCC for NH (0.141), while LightGBM reached the highest PCC for NW (0.146). The MAE, MSE, and RMSE results showed that the traditional models exhibited stable error rates, while the machine learning models performed comparatively better across the different SNP ratios. Overall, PCA processing provided some improvement in the predictive performance of all of the models, though the overall increase in accuracy was limited.
Collapse
Affiliation(s)
- Hao Zhang
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shiqian Bao
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaona Zhao
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yangfan Bai
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yangcheng Lv
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Pengfei Gao
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Fuzhong Li
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wuping Zhang
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
4
|
Zhang K, Huang X, Wang C, Xu X, Xu X, Dong X, Xiao Q, Bai J, Zhou Y, Liu Z, Deng X, Tang Y, Li S, Hu E, Peng W, Xiong L, Qin Q, Liu S. Unveiling potential sex-determining genes and sex-specific markers in autotetraploid Carassius auratus. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2444-2458. [PMID: 39136860 DOI: 10.1007/s11427-023-2694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/28/2024] [Indexed: 10/22/2024]
Abstract
Autotetraploid Carassius auratus is a stable hereditary autotetraploid fish resulting from the hybridization of Carassius auratus red var. (RCC, ♀) × Megalobrama amblycephala (BSB, ♂), containing four sets of RCC chromosomes. However, the molecular mechanism underlying the determination of sex in this species remains largely unknown. Currently, there lacks a full understanding of the molecular mechanisms governing sex determination and specific molecular markers to differentiate sex in this species. In this study, 25,801,677 SNPs (Single-nucleotide polymorphism) and 6,210,306 Indels (insertion-deletion) were obtained from whole-genome resequencing of 100 individuals (including 50 female and 50 male). Further identification confirmed the candidate chromosomes as Chr46B, with the sex-determining region located at Chr46B: 22,500,000-22,800,000 bp. Based on the male-specific insertion (26 bp) within the candidate sex-determining region, a pair of sex-specific molecular markers has been identified. In addition, based on the screening of candidate sex-determining region genes and RT-qPCR validation analysis, ADAM10, AQP9 and tc1a were identified as candidate sex-determining genes. These findings provide a robust foundation for investigating sex determination mechanisms in fish, the evolution of sex chromosomes, and the development of monosex populations.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xidan Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaowei Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaoping Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingwen Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jinhai Bai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yue Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhengkun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xinyi Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yan Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Siyang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Enkui Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wanjing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ling Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
- Hunan Yuelu Mountain Science and Technology Co., Ltd., for Aquatic Breeding, Changsha, 410081, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
5
|
Bordin ROA, Oliveira CD, Domeniconi RF. Immunolocalization of Aquaporin 1, 2, and 9 in Anuran Testis of the Neotropical Pointedbelly Frog Leptodactylus podicipinus. Curr Issues Mol Biol 2024; 46:9958-9969. [PMID: 39329946 PMCID: PMC11430573 DOI: 10.3390/cimb46090594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Many anuran survival strategies involve hydric regulation, and reproduction is not different. The aquaporin (AQP) family plays an important role in water transport and regulation in many tissues, including the male gonad. The testes undergo various stages of change during the reproductive cycle, and water balance is an important factor for ensuring reproductive success. Considering the relevance of water control in testicular development in anurans and the lack of research regarding the tissue localization of AQP in the male gonad, the present study investigated the expression of three AQPs (1, 2, and 9) in the testis of the neotropical anuran species Leptodactylus podicipinus during two different periods of the reproductive cycle (reproductive and non-reproductive). AQP1 and 2 immunoreactions were found in early germ cells, spermatozoa, Leydig cells, and Sertoli cells, which were more frequently expressed within the reproductive period. AQP1 was also found in the testicular blood vessels. AQP9 was identified predominantly in the epithelium of the intratesticular ducts of reproductive-period individuals. This study presents, for the first time, the localization of AQP1, AQP2, and AQP9 in the testes of an anuran species and the differences in their location during two distinct periods of the reproductive cycle.
Collapse
Affiliation(s)
- Rafael O A Bordin
- Department of Structural and Functional Biology, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus of Botucatu, São Paulo 18618689, SP, Brazil
| | - Classius de Oliveira
- Department of Biology, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus of São José do Rio Preto, São Paulo 15054000, SP, Brazil
| | - Raquel F Domeniconi
- Department of Structural and Functional Biology, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus of Botucatu, São Paulo 18618689, SP, Brazil
| |
Collapse
|
6
|
Oberska P, Grabowska M, Marynowska M, Murawski M, Gączarzewicz D, Syczewski A, Michałek K. A Step Forward in Understanding the Expression of Classical Aquaporins in the Male Reproductive Tract: Study Findings in Cattle ( Bos taurus). Int J Mol Sci 2024; 25:7653. [PMID: 39062896 PMCID: PMC11276675 DOI: 10.3390/ijms25147653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Aquaporins (AQPs), also known as water channels, appear to be particularly promising in maintaining male reproductive potential. Therefore, this study aimed to determine the presence of classical AQPs in the bovine (Bos taurus) reproductive system and analyze changes in their expression with age using immunohistochemistry and Western blotting. Of the six classical AQPs, AQP0, AQP1, AQP4, AQP5 and AQP6 were detected, while AQP2 was absent. In the testis, AQP0 was visible in Leydig cells in selected animals, while AQP1 was found in myoid cells surrounding the seminiferous tubules of mature individuals. This characteristic expression patterns of AQP0, limited only to certain bulls, is difficult to explain unequivocally. It is possible that AQP0 expression in cattle is subject to individual variability or changes in response to specific physiological conditions. In the caput and corpus epididymis, AQP0 showed weak expression in epithelial cells of immature animals and stronger expression in basal and principal cells of reproductive bulls. In all animals, AQP1 was present on the apical surface of epithelial cells in the initial segment of the caput epididymis. AQP4, AQP5 and AQP6 were identified in principal and basal cells along the entire epididymis of reproductive bulls. The abundance of AQP4 and AQP6 increased from the caput to the cauda epididymis with the growth and development of the animals. In all males, AQP4, AQP5 and AQP6 were observed in epithelial cells of the vas deferens, and their expression in this section increased with age. In conclusion, the abundance and distribution of the classical AQPs in various cell types and parts of the male reproductive system indicate their crucial role in maintaining water homeostasis, which is essential for normal reproductive function in cattle.
Collapse
Affiliation(s)
- Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Marta Marynowska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Maciej Murawski
- Department of Nutrition, Animal Biotechnology and Fisheries, University of Agriculture, 24/28 Mickiewicza Avenue, 30-059 Cracow, Poland;
| | - Dariusz Gączarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | | | - Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| |
Collapse
|
7
|
Bozkurt A, Karakoy Z, Aydin P, Ozdemir B, Toktay E, Halici Z, Cadirci E. Targeting Aquaporin-5 by Phosphodiesterase 4 Inhibition Offers New Therapeutic Opportunities for Ovarian Ischemia Reperfusion Injury in Rats. Reprod Sci 2024; 31:2021-2031. [PMID: 38453769 PMCID: PMC11217128 DOI: 10.1007/s43032-024-01496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
This study aimed to examine the effect of Phosphodiesterase 4 (PDE4) inhibition on Aquaporin-5 (AQP5) and its potential cell signaling pathway in the ovarian ischemia reperfusion (OIR) model. Thirty adult female rats were divided into five groups: Group 1; Control: Sham operation, Group 2; OIR that 3 hour ischemia followed by 3 hour reperfusion, Group 3; OIR + Rolipram 1 mg/kg, Group 4; OIR + Rolipram 3 mg/kg, Group 5; OIR + Rolipram 5 mg/kg. Rolipram was administered intraperitoneally to the rats in groups 3-4 and 5 at determined doses 30 minutes before reperfusion. From ovary tissue; Tumor necrosis factor-a (TNF-α), Cyclic adenosine monophosphate (cAMP), Nuclear factor kappa (NF-κB), Interleukin-6 (IL-6), Phosphodiesterase 4D (PDE4D), Mitogen-activated protein kinase (MAPK) and AQP5 levels were measured by ELISA. We also measured the level of AQP5 in ovary tissue by real-time reverse-transcription polymerase chain reaction (RT-PCR). In the OIR groups; TNF-α, NF-κB, IL-6, MAPK inflammatory levels increased, and cAMP and AQP5 levels decreased, which improved with the administration of rolipram doses. Also histopathological results showed damaged ovarian tissue after OIR, while rolipram administration decrased tissue damage in a dose dependent manner. We propose that the protective effect of PDE4 inhibition in OIR may be regulated by AQP5 and its potential cell signaling pathway and may be a new target in OIR therapy. However, clinical studies are needed to appraise these data in humans.
Collapse
Affiliation(s)
- Ayse Bozkurt
- Faculty of Pharmacy, Department of Pharmacology, Van Yuzuncu Yil University, Van, Turkey
| | - Zeynep Karakoy
- Faculty of Pharmacy, Department of Pharmacology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Pelin Aydin
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, 25240, Turkey
- Department of Anesthesiology and Reanimation, Educational and Research Hospital, Erzurum, Turkey
| | - Bengul Ozdemir
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Erdem Toktay
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Zekai Halici
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, 25240, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, 25240, Erzurum, Turkey
| | - Elif Cadirci
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, 25240, Turkey.
- Clinical Research, Development and Design Application and Research Center, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
8
|
Kara H, Tekiner D. Distributions and expressions of Aquaporin-5 and 7 in the testes of developing male chicks. Anat Histol Embryol 2024; 53:e12978. [PMID: 37792899 DOI: 10.1111/ahe.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/16/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023]
Abstract
Aquaporins (AQPs) are integral membrane proteins that act as water channels for which a total of 13 orthologs of AQP genes in birds have been reported. Tissue expression and cellular or subcellular localization of AQPs have been poorly investigated in the male reproductive system of birds. We aimed to determine the distribution and localization of AQP5 and AQP7 proteins by immunocytochemistry in testicular tissues obtained from developing chicks (14, 21, 28, 35 and 42 days old). Totally 175 male chicks (Ross 308) were used in the study from which testicular tissue was removed, fixed in 10% formaldehyde solution, then embedded in paraffin blocks. Five μm sections were cut, mounted on poly-L-lysine slides, dried in an oven, then dehydrated using standard immunohistochemistry staining protocol. The sections were imaged with a Nikon Eclipse 50i trinocular light microscope. Immunohistochemical evaluation of the immune reactivity of AQP5 revealed a positive immune reaction in spermatocytes and interstitial areas of the testes in 14-day-old chicks. Testicular tissue AQP5 immune reactivity was observed in the tubule and the interstitial regions of 21-, 28-, 35- and 42-day-old chicks. AQP7 immune reactions were determined in the tubule and interstitial areas testes of developing chicks' testis tissue, with increasing positivity corresponding to older age. The expression of AQP5 and AQP7 appears to be species-specific due to differences in localization and expression in male chicks compared with studies of other mammals, which is likely to play an important role in regulating fluid and sperm volume. This research can serve as a base for future studies that will contribute to the understanding of the male genital system of AQPs.
Collapse
Affiliation(s)
- Hülya Kara
- Veterinary Faculty, Department of Anatomy, Atatürk University, Erzurum, Turkey
| | - Deniz Tekiner
- Veterinary Faculty, Department of Histology and Embryology, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
Heydari SR, Dastaran S, Farzinpour A, Vaziry A, Rostamzadeh J, Sobhani K. Genital stones: Radiological, histopathological, ultrastructural, and molecular analysis in rooster. Theriogenology 2023; 212:73-82. [PMID: 37708817 DOI: 10.1016/j.theriogenology.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 09/16/2023]
Abstract
Epididymal lithiasis, characterized by the formation of stones in the epididymis, has been associated with a decline in fertility in roosters. This study aimed to investigate the reproductive performance, ultrastructural characteristics, and expression of aromatase cytochrome P450 (CYP19) and aquaporin 9 (AQP9) in aged broiler breeder roosters affected by epididymal lithiasis. X-ray analysis confirmed the presence of genital stones in both the epididymis and testicular tissue regions. While there was a significant decrease in sperm concentration in the affected roosters compared to non-affected roosters, no significant differences were observed in total and progressive sperm motility between the two groups. Furthermore, the affected roosters exhibited significant abnormalities in semen parameters, except for sperm concentration and morphology. Transmission electron microscopy (TEM) revealed the depletion and deciliation of ciliated cells in the distal efferent ductules of the epididymis in affected roosters. Additionally, the expression of CYP19 and AQP9 was found to be increased in the epididymal region of affected roosters. Notably, we report the presence of testicular stones for the first time in this study, in addition to epididymal stones. Considering the male reproductive tract lesions observed, we propose the term "genital stones" to describe these conditions. Moreover, our findings suggest that the overexpression of AQP9, which is associated with a high copy number of the CYP19 gene in the epididymal region of affected aged roosters, may contribute to the formation of genital stones by promoting increased reabsorption of fluids in the epididymis. The condensation of epididymal duct contents and reduction in the population of ciliated cells further impairs semen movement and can lead to the blockage of extra-testicular ducts, resulting in the low fertility syndrome observed in aged roosters.
Collapse
Affiliation(s)
- Seyede Rozhan Heydari
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| | - Sajad Dastaran
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| | - Amjad Farzinpour
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran.
| | - Asaad Vaziry
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| | - Jalal Rostamzadeh
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| | - Keyvan Sobhani
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| |
Collapse
|
10
|
Liu M, Mi YJ, Dai J. Aquaporin 7 is upregulated through the PI3K-Akt pathway and modulates decidualisation of endometrial stromal cells. Reprod Fertil Dev 2023; 35:669-675. [PMID: 37879294 DOI: 10.1071/rd23054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/13/2023] [Indexed: 10/27/2023] Open
Abstract
CONTEXT Aquaporin 7 (AQP7) is selectively expressed in decidualised endometrial stromal cells (ESCs) of mice surrounding the embryonic implantation sites. However, the roles of AQP7 and the underlying mechanism that regulates AQP7 expression in endometrial decidualisation after implantation are still unclear. AIMS This study aimed to investigate the role of the PI3K-Akt pathway in regulating the expression of AQP7 in ESCs and decidualisation. METHODS Primary ESCs of pregnant mice were isolated to establish in vitro decidualisation models. PI3K inhibitor LY294002 was added to the decidualisation models, then AQP7 expression, changes in decidualised ESC morphology and expression of decidualisation marker molecules were examined. KEY RESULTS AQP7 knockdown reduced the proliferation and differentiation of ESCs with in vitro induced decidualisation. Furthermore, when the activity of PI3K was inhibited by LY294002, the expression of AQP7 in decidualised ESCs was decreased and both the proliferation and differentiation of ESCs were significantly reduced. CONCLUSIONS This indicates that AQP7 is a key molecule involved in endometrial decidualisation and the expression of AQP7 is upregulated through activation of the PI3K-Akt pathways, which promotes the proliferation and differentiation of the ESCs, thus affecting occurrence of decidualisation. IMPLICATIONS This study may provide a new biomarker for the diagnosis of infertility and a new drug target for the prevention and treatment of infertility.
Collapse
Affiliation(s)
- Min Liu
- National Demonstration Centre for Experimental Clinical Medicine Education, Chengdu Medical College, Chengdu, People's Republic of China
| | - Yong-Jie Mi
- National Demonstration Centre for Experimental Clinical Medicine Education, Chengdu Medical College, Chengdu, People's Republic of China
| | - Juan Dai
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| |
Collapse
|
11
|
Ferré A, Chauvigné F, Gozdowska M, Kulczykowska E, Finn RN, Cerdà J. Neurohypophysial and paracrine vasopressinergic signaling regulates aquaporin trafficking to hydrate marine teleost oocytes. Front Endocrinol (Lausanne) 2023; 14:1222724. [PMID: 37635977 PMCID: PMC10454913 DOI: 10.3389/fendo.2023.1222724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The dual aquaporin (Aqp1ab1/Aqp1ab2)-mediated hydration of marine teleost eggs, which occurs during oocyte meiosis resumption (maturation), is considered a key adaptation underpinning their evolutionary success in the oceans. However, the endocrine signals controlling this mechanism are almost unknown. Here, we investigated whether the nonapeptides arginine vasopressin (Avp, formerly vasotocin) and oxytocin (Oxt, formerly isotocin) are involved in marine teleost oocyte hydration using the gilthead seabream (Sparus aurata) as a model. We show that concomitant with an increased systemic production of Avp and Oxt, the nonapeptides are also produced and accumulated locally in the ovarian follicles during oocyte maturation and hydration. Functional characterization of representative Avp and Oxt receptor subtypes indicates that Avpr1aa and Oxtrb, expressed in the postvitellogenic oocyte, activate phospholipase C and protein kinase C pathways, while Avpr2aa, which is highly expressed in the oocyte and in the follicular theca and granulosa cells, activates the cAMP-protein kinase A (PKA) cascade. Using ex vivo, in vitro and mutagenesis approaches, we determined that Avpr2aa plays a major role in the PKA-mediated phosphorylation of the aquaporin subdomains driving membrane insertion of Aqp1ab2 in the theca and granulosa cells, and of Aqp1ab1 and Aqp1ab2 in the distal and proximal regions of the oocyte microvilli, respectively. The data further indicate that luteinizing hormone, which surges during oocyte maturation, induces the synthesis of Avp in the granulosa cells via progestin production and the nuclear progestin receptor. Collectively, our data suggest that both the neurohypophysial and paracrine vasopressinergic systems integrate to differentially regulate the trafficking of the Aqp1ab-type paralogs via a common Avp-Avpr2aa-PKA pathway to avoid competitive occupancy of the same plasma membrane space and maximize water influx during oocyte hydration.
Collapse
Affiliation(s)
- Alba Ferré
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Roderick Nigel Finn
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Ismail N, Myint K, Khaing SL, Giribabu N, Salleh N. Cervical fluid pH, electrolytes and osmolarity changes and expression of ion transporters (ENaC, CFTR and AQP) in cervix of women with primary unexplained infertility. Mol Biol Rep 2023; 50:6729-6737. [PMID: 37382776 DOI: 10.1007/s11033-023-08555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/30/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Unexplained infertility could arise from a defect in the cervix. However, the contribution of abnormal cervical fluid microenvironment to this problem still needs to be identified. Therefore, this study identifies the changes in the cervical fluid microenvironment, i.e., pH, electrolytes and osmolarity as well as expression of ion transporters in the cervix including ENaC, CFTR and AQP in fertile women and in women suffering from primary unexplained infertility. METHODS Fertile women and women with unexplained infertility but having regular 28-day menstrual cycles were chosen in this study, Day-22 serum progesterone levels were determined. In the meantime, serum FSH and LH levels were determined on day 2 while, cervical flushing was performed at day 14 to analyse changes in the cervical fluid pH, osmolarity, Na+ and Cl- levels. Meanwhile, cells retrieved from cervical fluid were subjected to mRNA expression and protein distribution analysis for CFTR, AQP and ENaC by qPCR and immunofluorescence, respectively. RESULTS No significant changes in serum progesterone, FSH and LH levels were observed between the two groups. However, cervical fluid pH, osmolarity, Na+ and Cl- levels were significantly lower in primary unexplained infertile group when compared to fertile group. Expression of CFTR and AQP (AQP 1, AQP 2, AQP 5 and AQP 7) in endocervical cells was lower and expression of β-ENaC was higher in primary unexplained infertile women (p < 0.05 when compared to fertile group). CONCLUSIONS Alterations in the cervical fluid microenvironment linked to the defective ion transporter expression in the cervix might contribute towards the unfavourable condition that accounts for unexplained infertility in women.
Collapse
Affiliation(s)
- Nurain Ismail
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kyaimon Myint
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Si Lay Khaing
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Medical Education Department, University of Medicine, Yangon, Myanmar
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
13
|
Importance of Water Transport in Mammalian Female Reproductive Tract. Vet Sci 2023; 10:vetsci10010050. [PMID: 36669051 PMCID: PMC9865491 DOI: 10.3390/vetsci10010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are involved in water homeostasis in tissues and are ubiquitous in the reproductive tract. AQPs are classified into classical aquaporins (AQP0, 1, 2, 4, 5, 6 and 8), aquaglycerolporins (AQP3, 7, 9, and 10) and superaquaporins (AQP11 and 12). Nine AQPs were described in the mammalian female reproductive tract. Some of their functions are influenced by sexual steroid hormones. The continuous physiological changes that occur throughout the sexual cycle, pregnancy and parturition, modify the expression of AQPs, thus creating at every moment the required water homeostasis. AQPs in the ovary regulate follicular development and ovulation. In the vagina and the cervix, AQPs are involved mainly in lubrication. In the uterus, AQPs are mostly mediated by estradiol and progesterone to prepare the endometrium for possible embryo implantation and fetal development. In the placenta, AQPs are responsible for the fluid support to the fetus to maintain fetal homeostasis that ensures correct fetal development as pregnancy goes on. This review is focused on understanding the role of AQPs in the mammalian female reproductive tract during the sexual cycle of pregnancy and parturition.
Collapse
|
14
|
Xia X, Zhang Y, Cao M, Yu X, Gao L, Qin L, Wu W, Cui Y, Liu J. Adverse effect of assisted reproductive technology-related hyperoestrogensim on the secretion and absorption of uterine fluid in superovulating mice during the peri-implantation period. Front Endocrinol (Lausanne) 2023; 14:859204. [PMID: 36950692 PMCID: PMC10027003 DOI: 10.3389/fendo.2023.859204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the potential mechanism of hyperoestrogensim elicited by ovulation induction affects endometrial receptivity and leads to embryo implantation abnormality or failure. STUDY DESIGN Establishment of ovulation induction mouse model. Changes in mouse body weight, ovarian weight, serum E2 level and oestrous cycle were observed. During the peri-implantation period, morphological changes in the mouse uterus and implantation sites and the localization and protein levels of oestrogen receptors ERα and ERβ, the tight junction factors CLDN3 and OCLN, the aquaporins AQP3, AQP4 and AQP8, and the sodium channel proteins SCNN1α, SCNN1β and SCNN1γ were observed. The expression and cellular localization of ERα, CLDN3, AQP8 and SCNN1 β in RL95-2 cell line were also detected by western blotting and immunofluorescence. RESULTS Ovarian and body weights were significantly higher in the 5 IU and 10 IU groups than in the CON group. The E2 level was significantly higher in the 10 IU group than in the CON group. The mice in the 10 IU group had a disordered oestrous cycle and were in oestrus for a long time. At 5.5 dpc, significantly fewer implantation sites were observed in the 10 IU group than in the CON (p<0.001) and 5 IU (p<0.05) groups. The probability of abnormal implantation and abortion was higher in the 10 IU group than in the CON and 5 IU groups. CLDN3, OCLN, AQP8 and SCNN1β in the mouse endometrium were localized on the luminal epithelium and glandular epithelium and expression levels were lower in the 10 IU group than in the CON group. The protein expression level of ERα was increased by 50% in the 10 IU group compared to the CON group. The expressions of CLDN3, AQP8, SCNN1β in RL95-2 cell line were significantly depressed by the superphysiological E2, ERα agonist or ERβ agonist, which could be reversed by the oestrogen receptor antagonist. CONCLUSION ART-induced hyperoestrogenism reduces CLDN3, AQP8 and SCNN1β expression through ERα, thereby destroying tight junctions and water and sodium channels in the endometrial cavity epithelium, which may cause abnormal implantation due to abnormal uterine fluid secretion and absorption.
Collapse
Affiliation(s)
- Xinru Xia
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Meng Cao
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Yu
- Department of Pediatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Jiayin Liu,
| |
Collapse
|
15
|
Huang B, Wang H, Yang B. Non-Aquaporin Water Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:331-342. [PMID: 36717505 DOI: 10.1007/978-981-19-7415-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water transport through membrane is so intricate that there are still some debates. AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters, however, are also concerned in water homeostasis. UT-B has a single-channel water permeability that is similar to AQP1. CFTR was initially thought as a water channel but now not believed to transport water directly. By cotransporters, such as KCC4, NKCC1, SGLT1, GAT1, EAAT1, and MCT1, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs.
Collapse
Affiliation(s)
- Boyue Huang
- Laboratory of Neuroscience and Tissue Engineering, Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hongkai Wang
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
- Laboratory of Regenerative Rehabilitation and Department of Physical Medicine and Rehabilitation, Shirley Ryan AbilityLab and Northwestern University Feinberg School of Medicine and Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
16
|
Zhang H, Yang B. Aquaporins in Reproductive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:179-194. [PMID: 36717494 DOI: 10.1007/978-981-19-7415-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AQP0-12, a total of 13 aquaporins are expressed in the mammalian reproductive system. These aquaporins mediate the transport of water and small solutes across biofilms for maintaining reproductive tract water balance and germ cell water homeostasis. These aquaporins play important roles in the regulation of sperm and egg cell production, maturation, and fertilization processes. Impaired AQP function may lead to diminished male and female fertility. This review focuses on the distribution, function, and regulation of AQPs throughout the male and female reproductive organs and tracts. Their correlation with reproductive success, revealing recent advances in the physiological and pathophysiological roles of aquaporins in the reproductive system.
Collapse
Affiliation(s)
- Hang Zhang
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
17
|
Cortese R, Mariotto S, Mancinelli CR, Tortorella C. Pregnancy and antibody-mediated CNS disorders: What do we know and what should we know? Front Neurol 2022; 13:1048502. [PMID: 36601293 PMCID: PMC9806181 DOI: 10.3389/fneur.2022.1048502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Antibody-mediated central nervous system (CNS) disorders including those associated with aquaporin-4 or myelin oligodendrocyte glycoprotein IgG and autoimmune encephalitis often affect women of childbearing age. Pathogenic antibodies of these diseases can potentially alter reproductive functions and influence fetal development. Hormonal changes occurring during pregnancy may modify the course of autoimmune diseases by influencing relapse risk, attack severity, and affect the delivery and postpartum period. Moreover, balancing treatment related safety issues with the risk of potentially disabling relapses during pregnancy and breastfeeding are major challenges. Intentional prenatal, gestational, and post-partum counseling is paramount to address these issues and mitigate these risks. Fortunately, new insights on risk factors for adverse pregnancy outcomes and possible preventive strategies are emerging. This review aims to summarize the interplay between antibody-mediated CNS disorders and pregnancy during the prenatal, gestational, and postpartum periods, highlight current treatment recommendations, and discuss future areas of research.
Collapse
Affiliation(s)
- Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy,*Correspondence: Rosa Cortese
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Carla Tortorella
- Department of Neurosciences, S. Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
18
|
Diem L, Hammer H, Hoepner R, Pistor M, Remlinger J, Salmen A. Sex and gender differences in autoimmune demyelinating CNS disorders: Multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD) and myelin-oligodendrocyte-glycoprotein antibody associated disorder (MOGAD). INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:129-178. [PMID: 36038203 DOI: 10.1016/bs.irn.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple sclerosis (MS), Neuromyelitis optica spectrum disorder (NMOSD) and Myelin-Oligodendrocyte-Glycoprotein antibody associated disorder (MOGAD) are demyelinating disorders of the central nervous system (CNS) of autoimmune origin. Here, we summarize general considerations on sex-specific differences in the immunopathogenesis and hormonal influences as well as key clinical and epidemiological elements. Gender-specific issues are widely neglected starting with the lacking separation of sex as a biological variable and gender comprising the sociocultural components. As for other autoimmune diseases, female preponderance is common in MS and NMOSD. However, sex distribution in MOGAD seems equal. As in MS, immunotherapy in NMOSD and MOGAD is crucial to prevent further disease activity. Therefore, we assessed data on sex differences of the currently licensed disease-modifying treatments for efficacy and safety. This topic seems widely neglected with only fragmented information resulting from post-hoc analyses of clinical trials or real-world post-marketing studies afflicted with lacking power and/or inherent sources of bias. In summary, biological hypotheses of sex differences including genetic factors, the constitution of the immune system and hormonal influences are based upon human and preclinical data, especially for the paradigmatic disease of MS whereas specific data for NMOSD and MOGAD are widely lacking. Epidemiological and clinical differences between men and women are well described for MS and to some extent for NMOSD, yet, with remaining contradictory findings. MOGAD needs further detailed investigation. Sex-specific analyses of safety and efficacy of long-term immunotherapies need to be addressed in future studies designed and powered to answer the pressing questions and to optimize and individualize treatment.
Collapse
Affiliation(s)
- Lara Diem
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Helly Hammer
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Max Pistor
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Jana Remlinger
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland; Department of Biomedical Research and Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland.
| |
Collapse
|
19
|
Darbandi S, Darbandi M, Khorram Khorshid HR, Sengupta P. Electrophysiology of Human Gametes: A Systematic Review. World J Mens Health 2022; 40:442-455. [PMID: 35021309 PMCID: PMC9253800 DOI: 10.5534/wjmh.210107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Oocytes and spermatozoa are electrogenic cells with the ability to respond to electrical stimuli and modulate their electrical properties accordingly. Determination of the ionic events during the gamete maturation helps to design suitable culture media for gametes in assisted reproductive technology (ART). The present systematic review focuses on the electrophysiology of human gametes during different stages of maturation and also during fertilization. MATERIALS AND METHODS The reports published in the English language between January 2000 and July 2021 were extracted from various electronic scientific databases following the PRISMA checklist using specific MeSH keywords. RESULTS Subsequent to the screening process with defined inclusion and exclusion criteria, 60 articles have been included in this review. Among them, 11 articles were directly related to the electrophysiology of human oocytes and 49 physiology department to the electrophysiology of human spermatozoa. CONCLUSIONS Gametes generate electrical currents by ionic exchange, particularly Na+, K+, Cl-, H+, Zn2+, Cu2+, Se2+, Mg2+, HCO3-, and Ca2+ through specific ion channels in different stages of gamete maturation. The ionic concentrations, pH, and other physicochemical variables are modulated during the gametogenesis, maturation, activation, and the fertilization process following gamete function and metabolism. The electrical properties of human gametes change during different stages of maturation. Although it is demonstrated that the electrical properties are significant regulators of cell signaling and are fundamental to gamete maturation and fertilization, their exact roles in these processes are still poorly understood. Further research is required to unveil the intricate electrophysiological processes of human gamete maturation.
Collapse
Affiliation(s)
- Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Biosciences and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, India.
| |
Collapse
|
20
|
Bystrup M, Login FH, Edamana S, Borgquist S, Tramm T, Kwon TH, Nejsum LN. Aquaporin-5 in breast cancer. APMIS 2022; 130:253-260. [PMID: 35114014 PMCID: PMC9314690 DOI: 10.1111/apm.13212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023]
Abstract
The water channel aquaporin‐5 (AQP5) is essential in transepithelial water transport in secretory glands. AQP5 is ectopically overexpressed in breast cancer, where expression is associated with lymph node metastasis and poor prognosis. Besides the role in water transport, AQP5 has been found to play a role in cancer metastasis, migration, and proliferation. AQP5 has also been shown to be involved in the dysregulation of epithelial cell–cell adhesion; frequently observed in cancers. Insight into the underlying molecular mechanisms of how AQP5 contributes to cancer development and progression is essential for potentially implementing AQP5 as a prognostic biomarker and to develop targeted intervention strategies for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Malte Bystrup
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus N, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
21
|
Kannan A, Mariajoseph-Antony LF, Panneerselvam A, Loganathan C, Kiduva Jothiraman D, Anbarasu K, Prahalathan C. Aquaporin 9 regulates Leydig cell steroidogenesis in diabetes. Syst Biol Reprod Med 2022; 68:213-226. [DOI: 10.1080/19396368.2022.2033350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Arun Kannan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Lezy Flora Mariajoseph-Antony
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Antojenifer Panneerselvam
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Chithra Loganathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Diwakar Kiduva Jothiraman
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Kumarasamy Anbarasu
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Chidambaram Prahalathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
22
|
Relevance of Aquaporins for Gamete Function and Cryopreservation. Animals (Basel) 2022; 12:ani12050573. [PMID: 35268142 PMCID: PMC8909058 DOI: 10.3390/ani12050573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The interaction between cells and the extracellular medium is of great importance; changes in medium composition can drive water movement across plasma membranes. Aquaporins (AQPs) are membrane channels involved in the transport of water and some solutes across membranes. When sperm enter the female reproductive tract after ejaculation, they encounter a drastic change in extracellular composition, which leads to water flowing across the plasma membrane. This triggers a series of events that are crucial to allowing fertilization to take place, such as regulation of sperm motility. In the context of assisted reproduction techniques (ART), long-term storage of gametes is sometimes required, and, during cryopreservation, these cells undergo drastic changes in extracellular medium composition. As a result, AQPs are crucial in both sperm and oocytes during this process. Cryopreservation is of considerable importance for fertility preservation in livestock, endangered species and for individuals undergoing certain medical treatments that compromise their fertility. Further research to fully elucidate the roles and underlying mechanisms of AQPs in mammalian sperm is therefore warranted. Abstract The interaction between cells and the extracellular medium is of great importance, and drastic changes in extracellular solute concentrations drive water movement across the plasma membrane. Aquaporins (AQPs) are a family of transmembrane channels that allow the transport of water and small solutes across cell membranes. Different members of this family have been identified in gametes. In sperm, they are relevant to osmoadaptation after entering the female reproductive tract, which is crucial for sperm motility activation and capacitation and, thus, for their fertilizing ability. In addition, they are relevant during the cryopreservation process, since some members of this family are also permeable to glycerol, one of the most frequently used cryoprotective agents in livestock. Regarding oocytes, AQPs are very important in their maturation but also during cryopreservation. Further research to define the exact sets of AQPs that are present in oocytes from different species is needed, since the available literature envisages certain AQPs and their roles but does not provide complete information on the whole set of AQPs. This is of considerable importance because, in sperm, specific AQPs are known to compensate the role of non-functional members.
Collapse
|
23
|
García-Martínez T, Martínez-Rodero I, Roncero-Carol J, Vendrell-Flotats M, Gardela J, Gutiérrez-Adán A, Ramos-Ibeas P, Higgins AZ, Mogas T. The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes. Animals (Basel) 2022; 12:ani12040530. [PMID: 35203238 PMCID: PMC8868131 DOI: 10.3390/ani12040530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The permeability of the plasma membrane to water and cryoprotectants is a critical factor in the effective vitrification of oocytes. The goal of this study is to better understand the pathways used to transport water and other cryoprotectants through the plasma membrane of bovine in vitro matured oocytes, with a focus on the role of aquaporin 7 (AQP7). We demonstrated that cryoprotectants stimulated AQP3 and AQP7 but not AQP9 expression in mature bovine oocytes. Dimethyl sulfoxide upregulates AQP3 expression, while ethylene glycol upregulates AQP7 expression in oocytes in a CPA-dependent fashion. We also demonstrated that exogenous expression of aquaglyceroporins such as AQP7 is possible in in vitro matured oocytes. When permeability values for membrane transport of dimethyl sulfoxide, ethylene glycol and sucrose were assessed, we observed that AQP7 overexpressed oocytes are more permeable to water in the presence of dimethyl sulfoxide solution. These biophysical characteristics, together with the use of membrane transport modeling, will allow re-evaluation and possibly improvement of previously described protocols for bovine oocyte cryopreservation. Abstract Aquaglyceroporins are known as channel proteins, and are able to transport water and small neutral solutes. In this study, we evaluate the effect of exposure of in vitro matured bovine oocytes to hyperosmotic solutions containing ethylene glycol (EG), dimethyl sulfoxide (Me2SO) or sucrose on the expression levels of AQP3, AQP7 and AQP9. Moreover, we studied whether artificial protein expression of AQP7 in bovine oocytes increases their permeability to water and cryoprotectants. Exposure to hyperosmotic solutions stimulated AQP3 and AQP7 but not AQP9 expression. Oocytes exposed to hyperosmotic Me2SO solution exhibited upregulated AQP3 expression, while AQP7 expression was upregulated by EG hyperosmotic exposure. Microinjection of oocytes at the germinal vesicle stage with enhanced green fluorescent protein (EGFP) or EGFP+AQP7 cRNAs resulted in the expression of the corresponding proteins in ≈86% of the metaphase-II stage oocytes. AQP7 facilitated water diffusion when bovine MII oocytes were in presence of Me2SO solution but not EG or sucrose solution. However, the overexpression of this aquaporin did not increase membrane permeability to Me2SO or EG. In summary, cryoprotectant-induced increase of AQP3 and AQP7 expression could be one of the mechanisms underlying oocyte tolerance to hyperosmotic stress. Water diffusion appears to be improved when AQP7 overexpressed oocytes are exposed to Me2SO, shortening the time required for oocytes to achieve osmotic balance with cryoprotectant solutions.
Collapse
Affiliation(s)
- Tania García-Martínez
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
| | - Iris Martínez-Rodero
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
| | - Joan Roncero-Carol
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
| | - Meritxell Vendrell-Flotats
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain;
| | - Jaume Gardela
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain;
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Avda. Puerta de Hierro 12, Local 10, 28040 Madrid, Spain; (A.G.-A.); (P.R.-I.)
| | - Priscila Ramos-Ibeas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Avda. Puerta de Hierro 12, Local 10, 28040 Madrid, Spain; (A.G.-A.); (P.R.-I.)
| | - Adam Z. Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331-2702, USA;
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
- Correspondence: ; Tel.: +34-696-64-51-27
| |
Collapse
|
24
|
Lee KH. Expressional Modulation of Aquaporin 1 and 9 in the Rat Epididymis by
an Anabolic-Androgenic Steroid, Nandrolone Decanoate. Dev Reprod 2021; 25:245-255. [PMID: 35141450 PMCID: PMC8807133 DOI: 10.12717/dr.2021.25.4.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022]
Abstract
The spermatozoa become mature in the epididymis which is divided into initial
segment and caput, corpus, and cauda epididymis. The water movement across the
epididymal epithelium is important for creating luminal microenvironment for
sperm maturation. Aquaporins (Aqps) are water channel proteins,
and expression of Aqps is regulated by androgens. The current
research was focused to examine expressional regulation of Aqp1
and Aqp9 by an androgenic-anabolic steroid, nandrolone
decanoate (ND). The ND at the low dose (2 mg/ kg body weight/week) or high dose
(10 mg) was subcutaneously administrated into male rats for 2 or 12 weeks.
Transcript levels of Aqp1 and Aqp9 were
determined by quantitative real-time polymerase chain reaction (PCR) analyses.
In the initial segment, level of Aqp1 was decreased with 12
week-treatment, while Aqp9 level was decreased by the high dose
treatment for 12 weeks. In the caput epididymis, Aqp9
expression was decreased by the low dose treatment. The 2 week-treatment
resulted in an increase of Aqp1 level but a decrease of
Aqp9 expression in the corpus epididymis. In the corpus
epididymis, the 12 week-treatment at the low dose caused the reduction of
Aqp1 and Aqp9 levels, but the high dose
treatment resulted in an increase of Aqp1 expression and a
decrease of Aqp9 level. In the cauda epididymis,
Aqp1 expression was decreased by 2 and 12 week-treatments,
while increases of Aqp9 levels was detected with the high dose
treatment for 2 weeks and with 12 week-treatment. These findings indicate
differential regulation of Aqp1 and Aqp9
expression among epididymal segments by ND.
Collapse
Affiliation(s)
- Ki-Ho Lee
- Dept. of Biochemistry and Molecular
Biology, College of Medicine, Eulji University,
Daejeon 34824, Korea
- Corresponding author Ki-Ho Lee, Dept. of
Biochemistry and Molecular Biology, Eulji University, Daejeon 34824, Korea. Tel:
+82-42-259-1643, Fax:
+82-42-259-1649, E-mail:
| |
Collapse
|
25
|
Lee S, Kang HG, Ryou C, Cheon YP. Spatiotemporal expression of aquaporin 9 is critical for the antral growth of mouse ovarian follicles†. Biol Reprod 2021; 103:828-839. [PMID: 32577722 DOI: 10.1093/biolre/ioaa108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/21/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Although a few aquaporins (AQPs) expressed in granulosa cells have been postulated to mediate fluid passage into the antrum, the specific expression of AQPs in different follicle cell types and stages and their roles have not been evaluated extensively. The spatiotemporal expression of aquaporin (Aqp) 7, 8, and 9 and the functional roles of Aqp9 in antral growth and ovulation were examined using a superovulation model and 3-dimensional follicle culture. Aqp9 was expressed at a high level in the rapid growth phase (24-48 h post equine chorionic gonadotropin (eCG) for superovulation induction) compared to Aqp7 (after human chorionic gonadotropin (hCG)) and Aqp8 (8-24 h post eCG and 24 h post hCG). A dramatic increase in the expression and localization of Aqp9 mRNA in theca cells was observed, as evaluated using quantitative reverse transcription-polymerase (RT-PCR) coupled with laser capture microdissection and immunohistochemistry. AQP9 was located primarily on the theca cells of the tertiary and preovulatory follicles but not on the ovulated follicles. In phloretin-treated mice, the diameter of the preovulatory follicles and the number of ovulated oocytes decreased. Consistent with these findings, knocking down Aqp9 expression with an Aqp9 siRNA inhibited follicle growth (0.28:1 = siRNA:control) and decreased the number of ovulated follicles (0.36:1 = siRNA:control) during in vitro growth and ovulation induction. Based on these results, the expression of AQPs is under the control of the physiological status, and AQP9 expression in theca during folliculogenesis is required for antral growth and ovulation in a tissue-specific and stage-dependent manner.
Collapse
Affiliation(s)
- Sungeun Lee
- Department of Biotechnology, Sungshin University, Seoul, Korea
| | - Hee-Gyoo Kang
- Department of Biomedical Engineering and Institute of Pharmaceutical Science and Technology, Eulji University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Yong-Pil Cheon
- Department of Biotechnology, Sungshin University, Seoul, Korea
| |
Collapse
|
26
|
Gao X, Wang L, Liu C, Luo S, Du C, Jin S, Zhu J. Ultrastructure evidence for vesicles and double-membrane structures involved in cytoplasmic elimination during spermiogenesis in large yellow croaker, Larimichthys crocea (Teleostei, Perciformes, Scienidae). Micron 2021; 150:103122. [PMID: 34352468 DOI: 10.1016/j.micron.2021.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Spermatids eliminate excess cytoplasm to form streamlined sperm during spermiogenesis, which mechanism is insufficiently elucidated in fish. In this study, we investigated the cytoplasmic elimination procedure in spermatid during spermiogenesis in the large yellow croaker (Larimichthys crocea) using transmission electron microscopy. The early spermatid is subrotund with a centrally located nucleus. With further development, nucleus polarizes into one side of the cell while the cytoplasm with numerous vesicles near the membrane migrates to the caudal region. Furthermore, exocytosis-like structures were detected in middle spermatid. In late spermatid, the vesicles are reduced and rarely observed. These findings indicate that vesicles may be involved in cytoplasmic elimination possibly via exocytosis. In the later spermatid, a double-membrane, autophagosome-like structure envelopes the cytoplasm, which may develop into a single-membrane structure, and gets discarded from the cell as a residual body from the caudal region. This suggests its potential functions in the formation of residual body and cytoplasmic elimination. Overall, our results revealed that polarized development of spermatid causes polarized distribution of cytoplasm necessary for cytoplasmic elimination. Moreover, they provide ultrastructure evidence for vesicles and double-membrane structures involved in discarding spermatid cytoplasm in large yellow croaker, thus offering novel insights into cytoplasmic elimination during spermiogenesis in fish.
Collapse
Affiliation(s)
- Xinming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Li Wang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Cheng Liu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Shengyu Luo
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Shan Jin
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| |
Collapse
|
27
|
Pellavio G, Laforenza U. Human sperm functioning is related to the aquaporin-mediated water and hydrogen peroxide transport regulation. Biochimie 2021; 188:45-51. [PMID: 34087390 DOI: 10.1016/j.biochi.2021.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Aquaporins (AQPs) are transmembrane water channels and some of them are permeable in addition to water to other small solutes including hydrogen peroxide. The sperm cells of mammals and fishes express different AQPs, although there is no agreement in the literature on their localization. In humans, AQP3 and AQP11 are expressed mainly in the tail, AQP7 in the head and AQP8 in the midpiece. Thanks to the results of experiments with KO mice and to data obtained by comparing sub-fertile patients with normospermic subjects, the importance of AQPs for the normal functioning of sperms to ensure normal fertility emerged. AQP3, AQP7 and AQP11 appeared involved in the sperm volume regulation, a key role for fertility because osmoadaptation protect the sperm against a swelling and tail bending that could affect sperm motility. AQP8 seems to have a fundamental role in regulating the elimination of hydrogen peroxide, the most abundant reactive oxygen species (ROS), and therefore in the response to oxidative stress. In this review, the human AQPs expression, their localization and functions, as well as their relevance in normal fertility are discussed. To understand better the AQPs role in human sperm functionality, the results of studies obtained in other animal species were also considered.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, I-27100, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, I-27100, Italy.
| |
Collapse
|
28
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Soveral G. Recent Update on the Molecular Mechanisms of Gonadal Steroids Action in Adipose Tissue. Int J Mol Sci 2021; 22:5226. [PMID: 34069293 PMCID: PMC8157194 DOI: 10.3390/ijms22105226] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient's hormonal status.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
29
|
de Lima AO, Afonso J, Edson J, Marcellin E, Palfreyman R, Porto-Neto LR, Reverter A, Fortes MRS. Network Analyses Predict Small RNAs That Might Modulate Gene Expression in the Testis and Epididymis of Bos indicus Bulls. Front Genet 2021; 12:610116. [PMID: 33995471 PMCID: PMC8120238 DOI: 10.3389/fgene.2021.610116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Spermatogenesis relies on complex molecular mechanisms, essential for the genesis and differentiation of the male gamete. Germ cell differentiation starts at the testicular parenchyma and finishes in the epididymis, which has three main regions: head, body, and tail. RNA-sequencing data of the testicular parenchyma (TP), head epididymis (HE), and tail epididymis (TE) from four bulls (three biopsies per bull: 12 samples) were subjected to differential expression analyses, functional enrichment analyses, and co-expression analyses. The aim was to investigate the co-expression and infer possible regulatory roles for transcripts involved in the spermatogenesis of Bos indicus bulls. Across the three pairwise comparisons, 3,826 differentially expressed (DE) transcripts were identified, of which 384 are small RNAs. Functional enrichment analysis pointed to gene ontology (GO) terms related to ion channel activity, detoxification of copper, neuroactive receptors, and spermatogenesis. Using the regulatory impact factor (RIF) algorithm, we detected 70 DE small RNAs likely to regulate the DE transcripts considering all pairwise comparisons among tissues. The pattern of small RNA co-expression suggested that these elements are involved in spermatogenesis regulation. The 3,826 DE transcripts (mRNAs and small RNAs) were further subjected to co-expression analyses using the partial correlation and information theory (PCIT) algorithm for network prediction. Significant correlations underpinned the co-expression network, which had 2,216 transcripts connected by 158,807 predicted interactions. The larger network cluster was enriched for male gamete generation and had 15 miRNAs with significant RIF. The miRNA bta-mir-2886 showed the highest number of connections (601) and was predicted to down-regulate ELOVL3, FEZF2, and HOXA13 (negative co-expression correlations and confirmed with TargetScan). In short, we suggest that bta-mir-2886 and other small RNAs might modulate gene expression in the testis and epididymis, in Bos indicus cattle.
Collapse
Affiliation(s)
- Andressa O de Lima
- Department of Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Juliana Afonso
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Janette Edson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia
| | - Robin Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia
| | - Laercio R Porto-Neto
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Antonio Reverter
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
30
|
Tanski D, Skowronska A, Tanska M, Lepiarczyk E, Skowronski MT. The In Vitro Effect of Steroid Hormones, Arachidonic Acid, and Kinases Inhibitors on Aquaporin 1, 2, 5, and 7 Gene Expression in the Porcine Uterine Luminal Epithelial Cells during the Estrous Cycle. Cells 2021; 10:cells10040832. [PMID: 33917112 PMCID: PMC8067835 DOI: 10.3390/cells10040832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins, which play an important role in water homeostasis in the uterus. According to the literature, the expression of aquaporins in reproductive structures depends on the local hormonal milieu. The current study investigated the effect of selected PKA kinase inhibitor H89 and MAPK kinase inhibitor PD98059, on the expression of AQP1, 2, 5, and 7, and steroid hormones (E2), progesterone (P4), and arachidonic acid (AA) in the porcine endometrium on days 18–20 and 2–4 of the estrous cycle (the follicular phase where estrogen and follicle-stimulating hormone (FSH) are secreted increasingly in preparation for estrus and the luteal phase where the ovarian follicles begin the process of luteinization with the formation of the corpus luteum and progesterone secretion, respectively). The luminal epithelial cells were incubated in vitro in the presence of the aforementioned factors. The expression of mRNA was determined by the quantitative real-time PCR technique. In general, in Experiment 1, steroid hormones significantly increased expression of AQP1, 2, and 5 while arachidonic acid increased expression of AQP2 and AQP7. On the other hand, MAPK kinase inhibitor significantly decreased the expression of AQP1 and 5. In Experiment 2, E2, P4, or AA combined with kinase inhibitors differentially affected on AQPs expression. E2 in combination with PKA inhibitor significantly decreased expression of AQP1 but E2 or P4 combined with this inhibitor increased the expression of AQP5 and 7. On the contrary, E2 with PD98059 significantly increased AQP5 and AQP7 expression. Progesterone in combination with MAPK kinase inhibitor significantly downregulated the expression of AQP5 and upregulated AQP7. Arachidonic acid mixed with H89 or PD98059 caused a decrease in the expression of AQP5 and an increase of AQP7. The obtained results indicate that estradiol, progesterone, and arachidonic acid through PKA and MAPK signaling pathways regulate the expression of AQP1 and AQP5 in the porcine luminal epithelial cells in the periovulatory period.
Collapse
Affiliation(s)
- Damian Tanski
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland
- Correspondence: (D.T.); (M.T.S.)
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland; (A.S.); (E.L.)
| | - Malgorzata Tanska
- Department of Biochemistry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland; (A.S.); (E.L.)
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Correspondence: (D.T.); (M.T.S.)
| |
Collapse
|
31
|
Cao L, Li S, Huang S, Shi D, Li X. AQP8 participates in oestrogen-mediated buffalo follicular development by regulating apoptosis of granulosa cells. Reprod Domest Anim 2021; 56:812-820. [PMID: 33639021 DOI: 10.1111/rda.13921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQPs), a family of small membrane-spanning proteins, are involved in fluid transport, cell signalling and reproduction. Regulating AQP8 expression influences apoptosis of granulosa cells (GCs), ovarian folliculogenesis, oogenesis and early embryonic development in mice, but its role has never been investigated in other species. The aim of the present study was to characterize the AQP8 function in buffalo follicular development. The expression pattern of AQP8 in buffalo follicle was analysed by immunohistochemistry method. 17β-Estradiol (E2) or oestrogen receptor antagonist ICI182780 was used to treat GCs cultured in vitro, and the expression of AQP8 was detected using qRT-PCR. Its roles in apoptosis of buffalo GCs were investigated by shRNA technology. AQP8 was found to be expressed higher in secondary follicles (p < .05), and its mRNA level in GCs was upregulated by E2 via receptor-mediated mechanism in a dose-dependent manner. A 732-bp buffalo AQP8 coding region was obtained, which was highly conserved at the amino acid level among different species. AQP8-shRNA2 had more effective inhibition on target gene than AQP8-shRNA1 (66.49% vs. 58.31%) (p < .05). Knockdown of AQP8 induced GCs arrested at G2/M stage and occurred apoptosis. Compared with the control group, higher Caspase9 expression were observed in AQP8-shRNA2 lentivirus infected GCs (p < .05), while Bcl-2 and Bax expression levels had no obvious change (p > .05). Altogether, the above results indicate that AQP8 is involved in oestrogen-mediated regulation of buffalo follicular development by regulating cell cycle progression and apoptosis of GCs.
Collapse
Affiliation(s)
- Lihua Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Sheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,Huangshi Maternity and Children's Health Hospital of Edong Healthcare Group, Huangshi, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
32
|
Transcriptomic and metabolomic insights into the variety of sperm storage in oviduct of egg layers. Poult Sci 2021; 100:101087. [PMID: 33887680 PMCID: PMC8082553 DOI: 10.1016/j.psj.2021.101087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022] Open
Abstract
In birds, the sperm storage tubules (SST) are dispersed in uterovaginal junction (UVJ) and highly correlated with differential capacity of sperm storage (SS) in and among species with unspecified mechanisms. Here, the SS duration of 252 egg layer breeders was evaluated in 5 rounds with 3 phenotypic traits to screen high- and low-SS individuals, respectively, followed with transcriptome of UVJ tissues and metabolome of serum (high-SS vs. low-SS) to decipher the candidate genes and biochemical markers correlated with differential SS capacity. Histological characterization suggested slightly higher density of SST in UVJ (high-SS vs. low-SS). Transcriptome analyses identified 596 differentially expressed genes (336 upregulated vs. 260 downregulated), which were mainly enriched in gene ontology terms of homeostasis, steroid and lipid metabolism and hormone activity, and 12 significant pathways (P < 0.05) represented by calcium, steroid, and lipid metabolism. Immunohistochemical staining of GNAQ, ST6GAL1, ADFP, and PCNA showed similar distribution in UVJ tissues between 2 groups. Several candidates (HSD11B2, DIO2, AQP3, GNAQ, NANS, ST6GAL1) combined with 4 (11β-prostaglandin F2α, prostaglandin B1, 7α-hydroxytestosterone, and N-acetylneuraminic acid) of 40 differential metabolites enriched in serum metabolome were considered as regulators and biomarkers of SS duration in egg layer breeders. The integrated transcriptome and metabolome analyses of chicken breeder hens will provide novel insights for exploration and improvement of differential SS capacity in birds.
Collapse
|
33
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
34
|
Gao X, Du C, Zheng X, Zhu J, Jin S. Process of cytoplasm elimination during spermiogenesis in Octopus tankahkeei: Polarized development of the spermatid and discarding of the residual body. J Morphol 2021; 282:500-510. [PMID: 33459394 DOI: 10.1002/jmor.21323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 11/10/2022]
Abstract
The elimination of the spermatid cytoplasm during spermiogenesis enables the sperm to acquire a streamlined architecture, which allows for unhindered swimming. While this process has been well described in vertebrates, it has rarely been reported in invertebrates. In this study, we observed the process of cytoplasm elimination during spermiogenesis in Octopus tankahkeei (Mollusca, Cephalopoda) using light microscopy, transmission electron microscopy, and immunofluorescence. In the early spermatid, the cell is circular, and the nucleus is centrally located. With spermatid development, the cell becomes polarized. The nucleus gradually elongates and moves toward the end of the cell where the tail is forming. As a result, the cytoplasm moves past the nucleus at the anterior region of the future sperm head (the foreside of the acrosome). Following this, during the late stage of spermiogenesis, the cytoplasm condenses and collects on the foreside of the acrosome until finally the residual body is discarded from the top of the sperm head. This represents a distinct directionality for the development of cytoplasmic polarity and discarding of residual body compared with that reported for vertebrates (in which the cytoplasm of the elongating spermatids is polarized toward the caudal region). The fact that the cytoplasm also becomes concentrated suggests that water pumps may be involved in the elimination of water from the cytoplasm before the residual body is discarded. Furthermore, we found that microtubules, forming a manchette-like structure, are involved not only in reshaping of the nucleus but also in the transport of mitochondria and vesicles to the foreside of the acrosome, subsequently allowing them to be discarded with the residual body. This study broadens our understanding of the development of polarization and elimination of cytoplasm from spermatids in animals.
Collapse
Affiliation(s)
- Xinming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Zhejiang, China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Zhejiang, China
| | - Xuebin Zheng
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Zhejiang, China
| | - Shan Jin
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Zhejiang, China
| |
Collapse
|
35
|
Adolfi MC, Herpin A, Martinez-Bengochea A, Kneitz S, Regensburger M, Grunwald DJ, Schartl M. Crosstalk Between Retinoic Acid and Sex-Related Genes Controls Germ Cell Fate and Gametogenesis in Medaka. Front Cell Dev Biol 2021; 8:613497. [PMID: 33537305 PMCID: PMC7848095 DOI: 10.3389/fcell.2020.613497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Sex determination (SD) is a highly diverse and complex mechanism. In vertebrates, one of the first morphological differences between the sexes is the timing of initiation of the first meiosis, where its initiation occurs first in female and later in male. Thus, SD is intimately related to the responsiveness of the germ cells to undergo meiosis in a sex-specific manner. In some vertebrates, it has been reported that the timing for meiosis entry would be under control of retinoic acid (RA), through activation of Stra8. In this study, we used a fish model species for sex determination and lacking the stra8 gene, the Japanese medaka (Oryzias latipes), to investigate the connection between RA and the sex determination pathway. Exogenous RA treatments act as a stress factor inhibiting germ cell differentiation probably by activation of dmrt1a and amh. Disruption of the RA degrading enzyme gene cyp26a1 induced precocious meiosis and oogenesis in embryos/hatchlings of female and even some males. Transcriptome analyzes of cyp26a1–/–adult gonads revealed upregulation of genes related to germ cell differentiation and meiosis, in both ovaries and testes. Our findings show that germ cells respond to RA in a stra8 independent model species. The responsiveness to RA is conferred by sex-related genes, restricting its action to the sex differentiation period in both sexes.
Collapse
Affiliation(s)
- Mateus C Adolfi
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - Amaury Herpin
- INRA, UR1037, Fish Physiology and Genomics, Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Anabel Martinez-Bengochea
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany.,Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Susanne Kneitz
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - Martina Regensburger
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - David J Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Manfred Schartl
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany.,University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| |
Collapse
|
36
|
Ribeiro JC, Alves MG, Yeste M, Cho YS, Calamita G, Oliveira PF. Aquaporins and (in)fertility: More than just water transport. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166039. [PMID: 33338597 DOI: 10.1016/j.bbadis.2020.166039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
Aquaporins (AQPs) are a family of channel proteins that facilitate the transport of water and small solutes across biological membranes. They are widely distributed throughout the organism, having a number of key functions, some of them unexpected, both in health and disease. Among the various diseases in which AQPs are involved, infertility has been overlooked. According to the World Health Organization (WHO) infertility is a global public health problem with one third of the couples suffering from subfertility or even infertility due to male or female factors alone or combined. Thus, there is an urgent need to unveil the molecular mechanisms that control gametes production, maturation and fertilization-related events, to more specifically determine infertility causes. In addition, as more couples seek for fertility treatment through assisted reproductive technologies (ART), it is pivotal to understand how these techniques can be improved. AQPs are heterogeneously expressed throughout the male and female reproductive tracts, highlighting a possible regulatory role for these proteins in conception. In fact, their function, far beyond water transport, highlights potential intervention points to enhance ART. In this review we discuss AQPs distribution and structural organization, functions, and modulation throughout the male and female reproductive tracts and their relevance to the reproductive success. We also highlight the most recent advances and research trends regarding how the different AQPs are involved and regulated in specific mechanisms underlying (in)fertility. Finally, we discuss the involvement of AQPs in ART-related processes and how their handling can lead to improvement of infertility treatment.
Collapse
Affiliation(s)
- João C Ribeiro
- Department of Anatomy, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; QOPNA & LAQV, Department of Chemistry, University of Aveiro, Portugal
| | - Marco G Alves
- Department of Anatomy, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Yoon S Cho
- Centro di Procreazione Medicalmente Assistita, Ospedale Santa Maria, Bari, Italy
| | - Giuseppe Calamita
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Portugal.
| |
Collapse
|
37
|
Zannetti A, Benga G, Brunetti A, Napolitano F, Avallone L, Pelagalli A. Role of Aquaporins in the Physiological Functions of Mesenchymal Stem Cells. Cells 2020; 9:2678. [PMID: 33322145 PMCID: PMC7763964 DOI: 10.3390/cells9122678] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that control osmotically-driven water transport across cell membranes. Recent studies have focused on the assessment of fluid flux regulation in relation to the biological processes that maintain mesenchymal stem cell (MSC) physiology. In particular, AQPs seem to regulate MSC proliferation through rapid regulation of the cell volume. Furthermore, several reports have shown that AQPs play a crucial role in modulating MSC attachment to the extracellular matrix, their spread, and migration. Shedding light on how AQPs are able to regulate MSC physiological functions can increase our knowledge of their biological behaviours and improve their application in regenerative and reparative medicine.
Collapse
Affiliation(s)
- Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy;
| | - Gheorghe Benga
- Romanian Academy, Cluj-Napoca Branch, Strada Republicii 9, 400015 Cluj-Napoca, Romania;
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy; (F.N.); (L.A.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy; (F.N.); (L.A.)
| | - Alessandra Pelagalli
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy;
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
38
|
Kordowitzki P, Kranc W, Bryl R, Kempisty B, Skowronska A, Skowronski MT. The Relevance of Aquaporins for the Physiology, Pathology, and Aging of the Female Reproductive System in Mammals. Cells 2020; 9:cells9122570. [PMID: 33271827 PMCID: PMC7760214 DOI: 10.3390/cells9122570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
Aquaporins constitute a group of water channel proteins located in numerous cell types. These are pore-forming transmembrane proteins, which mediate the specific passage of water molecules through membranes. It is well-known that water homeostasis plays a crucial role in different reproductive processes, e.g., oocyte transport, hormonal secretion, completion of successful fertilization, blastocyst formation, pregnancy, and birth. Further, aquaporins are involved in the process of spermatogenesis, and they have been reported to be involved during the storage of spermatozoa. It is noteworthy that aquaporins are relevant for the physiological function of specific parts in the female reproductive system, which will be presented in detail in the first section of this review. Moreover, they are relevant in different pathologies in the female reproductive system. The contribution of aquaporins in selected reproductive disorders and aging will be summarized in the second section of this review, followed by a section dedicated to aquaporin-related proteins. Since the relevance of aquaporins for the male reproductive system has been reviewed several times in the recent past, this review aims to provide an update on the distribution and impact of aquaporins only in the female reproductive system. Therefore, this paper seeks to determine the physiological and patho-physiological relevance of aquaporins on female reproduction, and female reproductive aging.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-243 Olsztyn, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska Street 30, 10-082 Olsztyn, Poland;
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Correspondence: ; Tel.: +48-56-611-2231
| |
Collapse
|
39
|
Im JW, Lee CY, Kim DH, Bae HR. Differential Expressions of Aquaporin Subtypes in Female Reproductive Tract of Mice. Dev Reprod 2020; 24:177-185. [PMID: 33110949 PMCID: PMC7576970 DOI: 10.12717/dr.2020.24.3.177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 11/17/2022]
Abstract
Although many aquaporin (AQP) transcripts have been demonstrated to express in
the female reproductive tract, the defined localizations and functions of AQP
subtype proteins remain unclear. In this study, we investigated the expression
of AQP1, AQP3, AQP5, AQP6, and AQP9 proteins in female reproductive tract of
mouse and characterized their precise localizations at the cellular and
subcellular levels. Immunofluorescence analyses for AQP1, AQP3, AQP6, and AQP9
showed that these proteins were abundantly expressed in female reproductive
tract and that intense immunoreactivities were observed in mucosa epithelial
cells with a subtype-specific pattern. The most abundant aquaporin in both
vagina and uterine cervix was AQP3. Each of AQP1, AQP3, AQP6, and AQP9 exhibited
its distinct distribution in stratified squamous or columnar epithelial cells.
AQP9 expression was predominant in oviduct and ovary. AQP1, AQP3, AQP6, and AQP9
proteins were mostly seen in apical membrane of ciliated epithelial cells of the
oviduct as well as in both granulosa and theca cells of ovarian follicles. Most
of AQP subtypes were also expressed in surface epithelial cells and glandular
cells of endometrium in the uterus, but their expression levels were relatively
lower than those observed in the vagina, uterine cervix, oviduct and ovary. This
is the first study to investigate the expression and localization of 5 AQP
subtype proteins simultaneously in female reproductive tract of mouse. Our
results suggest that AQP subtypes work together to transport water and glycerol
efficiently across the mucosa epithelia for lubrication, proliferation, energy
metabolism and pH regulation in female reproductive tract.
Collapse
Affiliation(s)
- Ji Woo Im
- Dept. of Physiology, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Chae Young Lee
- Dept. of Physiology, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Dong-Hwan Kim
- Human Life Research Center, Dong-A University, Busan 49315, Korea
| | - Hae-Rahn Bae
- Dept. of Physiology, College of Medicine, Dong-A University, Busan 49201, Korea.,Human Life Research Center, Dong-A University, Busan 49315, Korea
| |
Collapse
|
40
|
Luo H, Liu Y, Song Y, Hua Y, Zhu X. Aquaporin 1 affects pregnancy outcome and regulates aquaporin 8 and 9 expressions in the placenta. Cell Tissue Res 2020; 381:543-554. [PMID: 32542408 PMCID: PMC7431401 DOI: 10.1007/s00441-020-03221-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
To explore the effects of aquaporin (AQP) 1 on pregnancy outcome and the association between expression of AQP1 and other AQPs in the placenta and foetal membranes, the rate of copulatory plugs and pregnancy, amniotic fluid (AF) volume, osmolality and composition were determined in AQP1-knockout (AQP1-/-) mice at different gestational days (GD). The expression and location of AQP1 and other AQPs in the placenta and foetal membranes of AQP1-/- mice, AQP1-siRNA transfected WISH cells and oligohydramnios patients were also detected. Compared to control mice, AQP1-/- mice exhibited reduced copulation plug and successful pregnancy rates, but these effects were accompanied by a larger AF volume and lower AF osmolality at late gestation. AQP9 expression was significantly decreased in the placenta and foetal membranes of AQP1-/- mice, while AQP8 level was elevated in the foetal membranes of AQP1-/- mice. Moreover, AQP9 expression was suppressed in WISH cells after AQP1 downregulation. Furthermore, AQP9 expression was associated with AQP1 level in the placenta and foetal membranes in oligohydramnios. AQP1 may play a critical role in regulating pregnancy outcome and maternal-foetal fluid homeostasis. Changes in AQP1 expression may lead to compensatory alterations in AQP8 and AQP9 expression in the placenta.
Collapse
Affiliation(s)
- Hui Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road Wenzhou, Zhejiang, 325027, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road Wenzhou, Zhejiang, 325027, China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road Wenzhou, Zhejiang, 325027, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road Wenzhou, Zhejiang, 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
41
|
Altintas A, Dargvainiene J, Schneider-Gold C, Asgari N, Ayzenberg I, Ciplea AI, Junker R, Leypoldt F, Wandinger KP, Hellwig K. Gender issues of antibody-mediated diseases in neurology: (NMOSD/autoimmune encephalitis/MG). Ther Adv Neurol Disord 2020; 13:1756286420949808. [PMID: 32922516 PMCID: PMC7450460 DOI: 10.1177/1756286420949808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD), autoimmune encephalitis (AE), myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) are antibody-mediated neurological diseases. They have mostly female predominance, affecting many women during childbearing age. Interactions between the underlying disease (or necessary treatment) and pregnancy can occur in every of these illnesses. Herein, we present the characteristics of NMOSD, AE, MG and LEMS in general, and review published data regarding the influence of the different diseases on fertility, pregnancy, puerperium, treatment strategy during pregnancy and post-partum period, and menopause but also male factors. We summarise key elements that should be borne in mind when confronted with such cases.
Collapse
Affiliation(s)
- Ayse Altintas
- Department of Neurology, School of Medicine, Koc University, Istanbul, Turkey
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | | | - Nasrin Asgari
- Department of Neurology, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef Hospital Bochum, Ruhr University of Bochum, Germany
| | - Andrea I Ciplea
- Department of Neurology, St. Josef Hospital Bochum, Ruhr University of Bochum, Germany
| | - Ralf Junker
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Schleswig-Holstein, Germany
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Schleswig-Holstein, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Schleswig-Holstein, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Josef Hospital Bochum, Ruhr University of Bochum, Gudrunstrasse 56, Bochum, 44791, Germany
| |
Collapse
|
42
|
Is Fertility Affected in Women of Childbearing Age with Multiple Sclerosis or Neuromyelitis Optica Spectrum Disorder? J Mol Neurosci 2020; 70:1829-1835. [PMID: 32740781 DOI: 10.1007/s12031-020-01576-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/30/2020] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the central nervous system (CNS), which is more prevalent among women of childbearing age. Neuromyelitis optica spectrum disorder (NMOSD) is a severe autoimmune disease of the CNS with similar prevalence features to MS and has recently been considered a different entity from MS. Measuring ovarian reserve is one way of evaluating fertility. Anti-Müllerian hormone (AMH) is a peptide hormone produced by ovarian granulosa cells of early follicles and is considered to be a marker for ovarian reserve. With MS and NMOSD predominance in young women, the present study aimed to address the possibility of these diseases affecting fertility by measuring AMH levels in MS and NMOSD patients and comparing it with healthy controls. The present study included 23 relapsing-remitting MS (RRMS) patients, 23 seronegative NMOSD patients, and 23 healthy age-matched controls between 18 and 45 years of age. Serum samples of the three groups were collected, and the AMH levels were measured with AMH Gen II Enzyme-Linked Immunosorbent Assay, Beckman Coulter kit. In the present study, the AMH levels did not differ significantly between the groups (p = 0.996). The mean AMH in the RRMS group was 3.59 ± 0.55 ng/ml compared with the mean of 3.60 ± 0.50 ng/ml in healthy controls. The mean AMH levels in the NMOSD group were 3.66 ± 0.61 ng/ml. Lower levels of AMH were found to be negatively associated with annualized relapse rate (in both groups of patients) and MS severity score. However, the difference was not significant. In NMOSD patients, the serum levels of AMH were negatively associated with disease duration (r = - 0.42, p = 0.023). There had been a significant negative correlation between mean AMH serum levels with Expanded Disability Status Scale (EDSS) at the time of diagnosis and at the time of study in the NMOSD group (r = - 0.402, p = 0.03 and r = - 0.457, p = 0.014, respectively). There was not a significant difference in mean serum AMH levels between RRMS and NMOSD patients compared with that of healthy controls. Further studies with larger sample sizes should be conducted, which take more variables affecting fertility in women with either RRMS or NMOSD into account to put an end to the controversial issue of fertility in this area.
Collapse
|
43
|
Elmetwally MA, Halawa AA, Tang W, Wu G, Bazer FW. Effects of Bisphenol A on expression of genes related to amino acid transporters, insulin- like growth factor, aquaporin and amino acid release by porcine trophectoderm cells. Reprod Toxicol 2020; 96:241-248. [PMID: 32710935 DOI: 10.1016/j.reprotox.2020.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022]
Abstract
The peri-implantation period of pregnancy is critical for conceptus development, implantation, and signaling for establishment of pregnancy. This study evaluated the effects of bisphenol A (BPA) on proliferation, adhesion, and migration of porcine trophectoderm (pTr2) cells, expression of transporters of arginine and synthesis of amino acids. All concentrations of BPA decreased proliferation and adhesion of pTr2 cells after 96 h compared to the control group. Lower concentrations of BPA (1 × 10-9, 1 × 10-8, 10-7M) increased (P < 0.05), but higher concentrations of BPA (1 × 10-5, 1 × 10-4 M) decreased migration of pTr2 cells. BPA increased expression of SLC7A1 mRNA at lower concentrations (1 × 10-9 to 1 × 10-6M) and SL7A6, another cationic acid transporter, at higher concentrations (1 × 10-5, 1 × 10-4 M). BPA also down-regulated the expression of IGF1 and IGF1 receptor at concentrations of 1 × 10-7 to 1 × 10-4 M compared to the control group. The expression of mRNAs for aquaporins (AQP) 3 and 4 were reduced at all concentrations of BPA, but at lower concentrations of BPA, (1 × 10-9 to 1 × 10-8M) expression of AQP9 mRNA increased and the expression of AQP11 was not affected by BPA (P > 0.05). There was an inhibitory effect of BPA on the release of synthesis of asparagine, threonine, taurine, tryptophan, and ornithine into the culture medium by pTr2 cells. Collectively, BPA adversely affected the expression of transporters for cationic amino acids like arginine, as well as AQPs, IGF1, and IGF1R associated with proliferation, migration, and adhesion of pTr2 cells. Those adverse effects would likely increase pregnancy losses during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Mohammed A Elmetwally
- Department of Animal Science, United States; Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843, United States; Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amal A Halawa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Wanjin Tang
- Department of Animal Science, United States; Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843, United States
| | - Guoyao Wu
- Department of Animal Science, United States; Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843, United States
| | - Fuller W Bazer
- Department of Animal Science, United States; Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
44
|
Alyasin A, Momeni HR, Mahdieh M. Aquaporin3 expression and the potential role of aquaporins in motility and mitochondrial membrane potential in human spermatozoa. Andrologia 2020; 52:e13588. [DOI: 10.1111/and.13588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Atieh Alyasin
- Department of Biology Faculty of Science Arak University Arak Iran
| | | | - Majid Mahdieh
- Department of Biology Faculty of Science Arak University Arak Iran
| |
Collapse
|
45
|
Tanski D, Skowronska A, Eliszewski M, Gromadzinski L, Kempisty B, Skowronski MT. Changes in Aquaporin 1, 5 and 9 Gene Expression in the Porcine Oviduct According to Estrous Cycle and Early Pregnancy. Int J Mol Sci 2020; 21:ijms21082777. [PMID: 32316329 PMCID: PMC7216242 DOI: 10.3390/ijms21082777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/21/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022] Open
Abstract
Aquaporins (AQPs) are a group of small, integral membrane proteins which play an important role in fluid homeostasis in the reproductive system. In our previous study, we demonstrated AQP1, 5 and 9 protein expression and localization in the porcine oviduct. The presence of these isoforms could suggest their role in the transport of the ovum to the uterus by influencing the epithelial cells’ production of oviductal fluid. The aim of this study was to evaluate the expression of AQP1, AQP5 and AQP9 in the infundibulum, ampulla and isthmus in the porcine oviduct during the estrous cycle (early luteal phase, days 2–4, medium luteal phase, days 10–12, late luteal phase days 14–16, follicular phase days 18–20) and pregnancy (period before implantation, days 14–16 and after the implantation, days 30–32) using the Real-Time PCR technique. As clearly demonstrated for the first time, AQP1, 5, and 9 gene expression is influenced by the estrus cycle and pregnancy. Furthermore, expression of AQPs in the porcine oviduct may provide the physiological medium that sustains and enhances fertilization and early cleavage-stage embryonic development. Overall, our study provides a characterization of oviduct AQPs, increasing our understanding of fluid homeostasis in the porcine oviduct to successfully establish and maintain pregnancy.
Collapse
Affiliation(s)
- Damian Tanski
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland
- Correspondence: (D.T); (M.T.S.); Tel.: +48-662-098-066 (D.T.); +48-607-356-323 (M.T.S.)
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland;
| | - Maciej Eliszewski
- Department of Gynecology and Obstetrics, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland;
| | - Leszek Gromadzinski
- II Department of Cardiology and Internal Medicine, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
- II Department of Cardiology and Internal Medicine, University Clinical Hospital in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Bartosz Kempisty
- Department of Histology and Embryology; Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Correspondence: (D.T); (M.T.S.); Tel.: +48-662-098-066 (D.T.); +48-607-356-323 (M.T.S.)
| |
Collapse
|
46
|
Omolaoye TS, du Plessis SS. Male infertility: A proximate look at the advanced glycation end products. Reprod Toxicol 2020; 93:169-177. [DOI: 10.1016/j.reprotox.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 01/07/2023]
|
47
|
Kannan A, Panneerselvam A, Mariajoseph-Antony LF, Loganathan C, Prahalathan C. Role of Aquaporins in Spermatogenesis and Testicular Steroidogenesis. J Membr Biol 2020; 253:109-114. [DOI: 10.1007/s00232-020-00114-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/14/2020] [Indexed: 01/25/2023]
|
48
|
Leon K, Hennebold JD, Fei SS, Young KA. Transcriptome analysis during photostimulated recrudescence reveals distinct patterns of gene regulation in Siberian hamster ovaries†. Biol Reprod 2020; 102:539-559. [PMID: 31724051 PMCID: PMC7068109 DOI: 10.1093/biolre/ioz210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/13/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
In Siberian hamsters, exposure to short days (SDs, 8 h light:16 h dark) reduces reproductive function centrally by decreasing gonadotropin secretion, whereas subsequent transfer of photoinhibited hamsters to stimulatory long days (LDs, 16 L:8 D) promotes follicle stimulating hormone (FSH) release inducing ovarian recrudescence. Although differences between SD and LD ovaries have been investigated, a systematic investigation of the ovarian transcriptome across photoperiod groups to identify potentially novel factors that contribute to photostimulated restoration of ovarian function had not been conducted. Hamsters were assigned to one of four photoperiod groups: LD to maintain ovarian cyclicity, SD to induce ovarian regression, or post transfer (PT), where females housed in SD for 14-weeks were transferred to LD for 2-days or 1-week to reflect photostimulated ovaries prior to (PTd2) and following (PTw1) the return of systemic FSH. Ovarian RNA was extracted to create RNA-sequencing libraries and short-read sequencing Illumina assays that mapped and quantified the ovarian transcriptomes (n = 4/group). Ovarian and uterine masses, plasma FSH, and numbers of antral follicles and corpora lutea decreased in SD as compared to LD ovaries (P < 0.05). When reads were aligned to the mouse genome, 18 548 genes were sufficiently quantified. Most of the differentially expressed genes noted between functional LD ovaries and regressed SD ovaries; however, five main expression patterns were identified across photoperiod groups. These results, generally corroborated by select protein immunostaining, provide a map of photoregulated ovary function and identify novel genes that may contribute to the photostimulated resumption of ovarian activity.
Collapse
Affiliation(s)
- Kathleen Leon
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| | - Suzanne S Fei
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Kelly A Young
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA
| |
Collapse
|
49
|
Carrageta DF, Bernardino RL, Alves MG, Oliveira PF. CFTR regulation of aquaporin-mediated water transport. VITAMINS AND HORMONES 2020; 112:163-177. [PMID: 32061340 DOI: 10.1016/bs.vh.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel responsible for the direct transport of bicarbonate and chloride. CFTR-dependent ionic transport is crucial for pH regulation and fluid homeodynamics among epithelial surfaces. Particularly, CFTR performs an essential role in the male reproductive tract, which requires a tight regulation of water and electrolytes in order to produce healthy spermatozoa. The absence or malfunction of CFTR results in cystic fibrosis, the most common lethal disease among Caucasians, that is characterized by an impaired fluid and ionic homeostasis in the whole organism. Due to the wide expression and importance of CFTR, the male reproductive tract is highly affected by cystic fibrosis, resulting in male infertility. Although CFTR is not permeable to water, this protein acts as a regulator of other protein channels, such as aquaporins. In fact, CFTR acts as a molecular partner of aquaporins in epithelial cells, regulating fluid homeodynamics. Herein, up-to-date data concerning the regulation of aquaporin-mediated water transport by CFTR will be discussed, highlighting the role of both channels in the male reproductive tract.
Collapse
Affiliation(s)
- David F Carrageta
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Raquel L Bernardino
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
50
|
Expression of Selected Connexin and Aquaporin Genes and Real-Time Proliferation of Porcine Endometrial Luminal Epithelial Cells in Primary Culture Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7120375. [PMID: 32090109 PMCID: PMC7017571 DOI: 10.1155/2020/7120375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/29/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022]
Abstract
Luminal epithelial cells are the first embryonic-maternal contact site undergoing very specific changes associated with reproductive processes. Cells prepare for embryo development by increasing their volume, with the help of aquaporins that provide a transcellular path of rapid water movement during the secretion and absorption of fluids, as well as connexins enabling the flow of inorganic ions and small molecules. In this work, we have examined how AQPs and Cx's behave in luminal epithelium primary cell culture. Cells obtained from porcine specimen during slaughter were primarily in vitro cultured for 7 days. Their proliferation patterns were then analyzed using RTCA, with the expression of genes of interest evaluated with the use of immunofluorescence and RT-qPCR. The results of these changes of gene of interest expression were analyzed on each of the seven days of the porcine luminal primary cell culture. Our study showed that the significant changes were noted in the case of Cx43, whose level of protein expression and distribution increases after 120 hours of culture, when the cells enter the lag phase, and maintains an upward trend until the end of the culture. We noted an increase in AQP4, AQP7, AQP8, and AQP11 levels throughout the entire culture period, while the largest differences in expression were found in AQP3, AQP4, and AQP10. The obtained results could become a point of reference for further in vivo and clinical research. Experiments conducted with these proteins showed that they influence the endometrial fluid content during the oestrous cycle and participate in the process of angiogenesis, which intensifies during endometrial development.
Collapse
|