1
|
Walker J, Zhang J, Liu Y, Xu S, Yu Y, Vickers M, Ouyang W, Tálas J, Dolan L, Nakajima K, Feng X. Extensive N4 cytosine methylation is essential for Marchantia sperm function. Cell 2025:S0092-8674(25)00287-9. [PMID: 40209706 DOI: 10.1016/j.cell.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/30/2024] [Accepted: 03/07/2025] [Indexed: 04/12/2025]
Abstract
N4-methylcytosine (4mC) is an important DNA modification in prokaryotes, but its relevance and even its presence in eukaryotes have been mysterious. Here we show that spermatogenesis in the liverwort Marchantia polymorpha involves two waves of extensive DNA methylation reprogramming. First, 5-methylcytosine (5mC) expands from transposons to the entire genome. Notably, the second wave installs 4mC throughout genic regions, covering over 50% of CG sites in sperm. 4mC requires a methyltransferase (MpDN4MT1a) that is specifically expressed during late spermiogenesis. Deletion of MpDN4MT1a alters the sperm transcriptome, causes sperm swimming and fertility defects, and impairs post-fertilization development. Our results reveal extensive 4mC in a eukaryote, identify a family of eukaryotic methyltransferases, and elucidate the biological functions of 4mC in reproductive development, thereby expanding the repertoire of functional eukaryotic DNA modifications.
Collapse
Affiliation(s)
- James Walker
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Jingyi Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shujuan Xu
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Yiming Yu
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Weizhi Ouyang
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Judit Tálas
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna 1030, Austria
| | - Keiji Nakajima
- Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.
| |
Collapse
|
2
|
Caballero-Campo P, Lira-Albarrán S, Amaral A, Hong C, Shah N, Carles A, Li D, Barrera D, Hernández-Silva G, Ramalho-Santos J, Wang T, Hirst M, Larrea F, Costello J, Rinaudo P, Chirinos M. Integrative Molecular and Functional Analysis of Human Sperm Subpopulations to Identify New Biomarkers of Fertilization Potential. Arch Med Res 2025; 56:103210. [PMID: 40168948 DOI: 10.1016/j.arcmed.2025.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/28/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Human ejaculates are composed of sperm subsets with heterogeneous characteristics. Comparative studies of sperm subpopulations with differences in motility may serve to investigate the functional and molecular features that are crucial for reaching the oocyte and fertilizing. OBJECTIVE To identify functional and molecular markers that characterize sperm subpopulations with high and low motility. MATERIALS AND METHODS Semen samples from 11 donors with proven fertility were processed by density gradient centrifugation to isolate high (F1) and low (F2) motility sperm subpopulations. Besides motility, we evaluated viability, chromatin integrity, mitochondrial membrane potential, capacitation, and acrosomal status. F1 and F2 were subjected to comparative methylome and transcriptome analyses by whole-genome bisulfite sequencing and RNA sequencing, respectively. Further validation of candidate biomarkers at the RNA and protein levels was performed with semen samples from six normozoospermic volunteers using quantitative PCR and Western blotting. RESULTS Spermatozoa from the F1 fractions exhibited higher mitochondrial membrane potential and viability than F2. Comparative methylome and transcriptome analyses of F1 and F2 identified 271 differentially methylated genes and 82 differentially expressed genes. Notably, CEP128 and CSTPP1 were downregulated and differentially methylated in the F2 fraction. Quantitative PCR confirmed the downregulation of these two genes in F2, and the downregulation of CEP128 was further validated at the protein level by Western blotting. CONCLUSION F1 spermatozoa are characterized by elevated mitochondrial membrane potential, viability, and higher expression of CEP128 and CSTPP1. Future studies should evaluate the potential of these functional variables and genes as biomarkers of fertility, either individually or in combination.
Collapse
Affiliation(s)
- Pedro Caballero-Campo
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Fundación Tambre, Madrid, Spain
| | - Saúl Lira-Albarrán
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California School of Medicine, San Francisco, CA, USA
| | - Alexandra Amaral
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Chibo Hong
- Weill Institute for Neurosciences, Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Nakul Shah
- Department of Genetics, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Annaick Carles
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daofeng Li
- Department of Genetics, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - David Barrera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gabriela Hernández-Silva
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Joao Ramalho-Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ting Wang
- Department of Genetics, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Martin Hirst
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Joe Costello
- Weill Institute for Neurosciences, Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Paolo Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California School of Medicine, San Francisco, CA, USA
| | - Mayel Chirinos
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
3
|
Sutovsky P, Zigo M, Tirpak F, Oko R. Paternal contributions to mammalian zygote - Beyond sperm-oocyte fusion. Curr Top Dev Biol 2025; 162:387-446. [PMID: 40180516 DOI: 10.1016/bs.ctdb.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Contrary to a common misconception that the fertilizing spermatozoon acts solely as a vehicle for paternal genome delivery to the zygote, this chapter aims to illustrate how the male gamete makes other essential contributions , including the sperm borne-oocyte activation factors, centrosome components, and components of the sperm proteome and transcriptome that help to lay the foundation for pregnancy establishment and maintenance to term, and the newborn and adult health. Our inquiry starts immediately after sperm plasma membrane fusion with its oocyte counterpart, the oolemma. Parallel to and following sperm incorporation in the egg cytoplasm, some of the sperm structures (perinuclear theca) are dissolved and spent to induce development, others (nucleus, centriole) are transformed into zygotic structures enabling it, and yet others (mitochondrial and fibrous sheath, axonemal microtubules and outer dense fibers) are recycled as to not stand in its way. Noteworthy advances in this research include the identification of several sperm-borne oocyte activating factor candidates, the role of autophagy in the post-fertilization sperm mitochondrion degradation, new insight into zygotic centrosome origins and function, and the contributions of sperm-delivered RNA cargos to early embryo development. In concluding remarks, the unresolved issues, and clinical and biotechnological implications of sperm-vectored paternal inheritance are discussed.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, United States.
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
4
|
Latham KE. Paternal Effects in Mammalian Reproduction: Functional, Environmental, and Clinical Relevance of Sperm Components in Early Embryos and Beyond. Mol Reprod Dev 2025; 92:e70020. [PMID: 40123230 PMCID: PMC11931271 DOI: 10.1002/mrd.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
In addition to widely recognized contributions of the paternal genome, centriole, and oocyte-activation factors, sperm deliver a wide range of macromolecules to the fertilized embryo. The impacts of these factors on the embryo, progeny, and even subsequent generations have become increasingly apparent, along with an understanding of an extensive potential for male health and environmental exposures to exert both immediate and long-term impacts on mammalian reproduction. Available data reveal that sperm factors interact with and regulate the actions of oocyte factors as well as exerting additional direct effects on the early embryo. This review provides a summary of the nature and mechanisms of paternal effects in early mammalian embryos, long-term effects in progeny, susceptibility of sperm components to diverse environmental factors, and potential approaches to mitigate adverse effects of such exposures.
Collapse
Affiliation(s)
- Keith E. Latham
- Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
- Department of Obstetrics, Gynecology and Reproductive BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
5
|
Naveed M, Shen Z, Bao J. Sperm-borne small non-coding RNAs: potential functions and mechanisms as epigenetic carriers. Cell Biosci 2025; 15:5. [PMID: 39825433 PMCID: PMC11740426 DOI: 10.1186/s13578-025-01347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations. However, the exact mechanisms through which these paternally supplied epigenetic carriers operate remain unclear and are under hot debate. This concise review presents the most extensive evidence to date on environmentally-responsive sperm-borne sncRNAs, encompassing brief summary of their origin, dynamics, compartmentalization, characteristics, as well as in-depth elaboration of their functional roles in epigenetic and transgenerational inheritance. Additionally, the review delves into the potential mechanisms by which sperm-delivered sncRNAs may acquire and transmit paternally acquired traits to offspring, modulating zygotic gene expression and influencing early embryonic development.
Collapse
Affiliation(s)
- Muhammad Naveed
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Zhaokang Shen
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Jianqiang Bao
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China.
| |
Collapse
|
6
|
Akhatova A, Jones C, Coward K, Yeste M. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clin Epigenetics 2025; 17:7. [PMID: 39819375 PMCID: PMC11740528 DOI: 10.1186/s13148-025-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Recent studies support the influence of paternal lifestyle and diet before conception on the health of the offspring via epigenetic inheritance through sperm DNA methylation, histone modification, and small non-coding RNA (sncRNA) expression and regulation. Smoking may induce DNA hypermethylation in genes related to anti-oxidation and insulin resistance. Paternal diet and obesity are associated with greater risks of metabolic dysfunction in offspring via epigenetic alterations in the sperm. Metabolic changes, such as high blood glucose levels and increased body weight, are commonly observed in the offspring of fathers subjected to chronic stress, in addition to an enhanced risk of depressive-like behaviour and increased sensitivity to stress in both the F0 and F1 generations. DNA methylation is correlated with alterations in sperm quality and the ability to fertilise oocytes, possibly via a differentially regulated MAKP81IP3 signalling pathway. Paternal exposure to toxic endocrine-disrupting chemicals (EDCs) is also linked to the transgenerational transmission of increased predisposition to disease, infertility, testicular disorders, obesity, and polycystic ovarian syndrome (PCOS) in females through epigenetic changes during gametogenesis. As the success of assisted reproductive technology (ART) is also affected by paternal diet, BMI, and alcohol consumption, its outcomes could be improved by modifying factors that are dependent on male lifestyle choices and environmental factors. This review discusses the importance of epigenetic signatures in sperm-including DNA methylation, histone retention, and sncRNA-for sperm functionality, early embryo development, and offspring health. We also discuss the mechanisms by which paternal lifestyle and environmental factors (obesity, smoking, EDCs, and stress) may impact the sperm epigenome.
Collapse
Affiliation(s)
- Ayazhan Akhatova
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- School of Medicine, Nazarbayev University, Zhanybek-Kerey Khan Street 5/1, 010000, Astana, Kazakhstan
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
7
|
Ozsait-Selcuk B, Bulgurcuoglu-Kuran S, Sever-Kaya D, Coban N, Aktan G, Kadioglu A. Sperm RNA quantity and PRM1, PRM2 , and TH2B transcript levels reflect sperm characteristics and early embryonic development. Asian J Androl 2025; 27:76-83. [PMID: 39187928 PMCID: PMC11784947 DOI: 10.4103/aja202452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 08/28/2024] Open
Abstract
ABSTRACT Spermatozoa have a highly complex RNA profile. Several of these transcripts are suggested as biomarkers for male infertility and contribute to early development. To analyze the differences between sperm RNA quantity and expression of protamine ( PRM1 and PRM2 ) and testis-specific histone 2B ( TH2B ) genes, spermatozoa from 33 patients who enrolled in assisted reproduction treatment (ART) program were analyzed. Sperm RNA of teratozoospermic (T), oligoteratozoospermic (OT), and normozoospermic (N) samples was extracted, and the differences in transcript levels among the study groups were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The correlations of total RNA per spermatozoon and the expression of the transcripts were evaluated in relation to sperm characteristics and preimplantation embryo development. The mean (±standard deviation) RNA amount per spermatozoon was 28.48 (±23.03) femtogram in the overall group and was significantly higher in the OT group than that in N and T groups. Total sperm RNA and gene expression of PRM1 and PRM2 genes were related to preimplantation embryo development and developmental arrest. Specific sperm characteristics were correlated with the expressions of PRM1 , PRM2 , or TH2B genes. We conclude that the sperm RNA amount and composition are important factors and might influence early embryonic development and also differ in different cases of male infertility.
Collapse
Affiliation(s)
- Bilge Ozsait-Selcuk
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Sibel Bulgurcuoglu-Kuran
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Dilek Sever-Kaya
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye
- Clinical Nutrition and Microbiota Research Laboratory, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Neslihan Coban
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Gulsen Aktan
- Division of Andrology, Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Ates Kadioglu
- Division of Andrology, Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| |
Collapse
|
8
|
Lymbery RA, Garcia-Gonzalez F, Evans JP. Silent cells? Potential for context-dependent gene expression in mature sperm. Proc Biol Sci 2025; 292:20241516. [PMID: 39772960 PMCID: PMC11706646 DOI: 10.1098/rspb.2024.1516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Sperm are traditionally viewed as transcriptionally and translationally silent cells. However, observations that components of the cellular machinery of gene expression are maintained in ejaculated sperm are increasingly cited as challenges to this fundamental assumption. Here, we critically evaluate these arguments and present three lines of evidence from both model and non-model systems that collectively raise the question of whether ejaculated sperm may be capable of active gene expression. First, and critical for arguments surrounding the possibility of differential gene expression, we review recent evidence that spermatozoa may retain the capacity to transcribe and translate their genomes. Second, we highlight how sperm cells can exhibit differential transcript quantities across different post-ejaculation environments. Third, we ask whether the accumulating evidence of remarkable phenotypic plasticity in post-ejaculatory sperm phenotypes could be mechanistically underpinned by changes in sperm gene expression. While these lines of evidence are indirect and do not definitively show transcription of sperm genomes, we highlight how emerging technologies may enable us to test this hypothesis explicitly. Our review advocates for progress in this field and highlights several important evolutionary, ecological and practical implications that will probably transcend disciplines to the clinical and applied reproductive sectors.
Collapse
Affiliation(s)
- Rowan A. Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
- Department of Biodiversity, Conservation and Attractions, Kensington, Australia
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
- Doñana Biological Station (EBD-CSIC), Isla de la Cartuja, Sevilla, Spain
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
| |
Collapse
|
9
|
Pozovnikova M, Ivershina A, Stanishevskaya O, Silyukova Y. microRNA as an Important Mediator in the Regulation of Male Gallus gallus domesticus Reproduction: Current State of the Problem. Int J Mol Sci 2024; 26:112. [PMID: 39795968 PMCID: PMC11719732 DOI: 10.3390/ijms26010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
During all periods of male ontogenesis, physiological processes responsible for the correct functioning of reproductive organs and spermatogenesis are under the influence of various factors (neuro-humoral, genetic, and paratypical). Recently, the attention of researchers has increasingly turned to the study of epigenetic factors. In scientific publications, one can increasingly find references to the direct role of microRNAs, small non-coding RNAs involved in post-transcriptional regulation of gene expression, in the processes of development and functioning of reproductive organs. Although the role of microRNAs in the reproduction of mammals, including humans, has been intensively studied, this area of knowledge in birds remains under-researched and limited to single experiments. This is likely due to the unique features of embryogenesis and the structure of the avian reproductive system. This review summarizes the current state of knowledge on the role of microRNAs in avian reproduction. Insight into the molecular basis of spermatogenesis in Gallus gallus domesticus is provided. Data on the functions and mechanisms by which microRNAs influence the processes of growth, development, and formation of rooster germ cells that determine the necessary morphofunctional qualitative characteristics of mature spermatozoa are summarized. Particular attention is paid to miRNA biogenesis as an important step affecting the success of spermatogenesis, as well as the role of miRNAs in avian sex differentiation during early embryogenesis. The modern literature sources systematized in this review, revealing the questions about the role of miRNAs in the reproductive function of birds, create a theoretical basis and define new perspectives and directions for further research in this field.
Collapse
Affiliation(s)
| | | | | | - Yuliya Silyukova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, Saint-Petersburg 196625, Russia; (M.P.); (O.S.)
| |
Collapse
|
10
|
Góngora A, Holt WV, Gosálvez J. Sperm Human Biobanking: An Overview. Arch Med Res 2024; 55:103130. [PMID: 39591884 DOI: 10.1016/j.arcmed.2024.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
The purpose of this article is to analyze in detail the advantages and disadvantages of sperm cryopreservation, focusing on the cellular and molecular changes that occur during these processes. The main issue is the cellular damage caused by ice crystal formation and osmotic imbalance, along with other secondary effects such as sperm motility and viability, as well as the acrosome reaction or oxidative stress. Another important aspect is the examination of how chromatin structure and DNA integrity affect sperm. Biochemical changes affecting enzyme activity and protein stability have also been analyzed. Finally, the article highlights emerging technologies aimed at reducing the damage caused by sperm cryopreservation, as well as the potential benefits of biobanks as an essential resource for addressing male infertility.
Collapse
Affiliation(s)
| | - William V Holt
- Department of Oncology and Metabolism, The Medical School Beech Hill Road, UK
| | - Jaime Gosálvez
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Zhao Z, Yang T, Li F. Sperm RNA code in spermatogenesis and male infertility. Reprod Biomed Online 2024; 49:104375. [PMID: 39481211 DOI: 10.1016/j.rbmo.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 11/02/2024]
Abstract
Spermatozoa are traditionally thought to be transcriptionally inert, but recent studies have revealed the presence of sperm RNA, some of which is derived from the residues of spermatocyte transcription and some from epididymosomes. Paternal sperm RNA can be affected by external factors and further modified at the post-transcriptional level, for example N6-methyladenosine (m6A), thus shaping spermatogenesis and reproductive outcome. This review briefly introduces the origin of sperm RNA and, on this basis, summarizes the current knowledge on RNA modifications and their functional role in spermatogenesis and male infertility. The bottlenecks and knowledge gaps in the current research on RNA modification in male reproduction have also been indicated. Further investigations are needed to elucidate the functional consequences of these modifications, providing new therapeutic and preventive strategies for reproductive health and genetic inheritance.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
12
|
Nadri P, Nadri T, Gholami D, Zahmatkesh A, Hosseini Ghaffari M, Savvulidi Vargova K, Georgijevic Savvulidi F, LaMarre J. Role of miRNAs in assisted reproductive technology. Gene 2024; 927:148703. [PMID: 38885817 DOI: 10.1016/j.gene.2024.148703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Cellular proteins and the mRNAs that encode them are key factors in oocyte and sperm development, and the mechanisms that regulate their translation and degradation play an important role during early embryogenesis. There is abundant evidence that expression of microRNAs (miRNAs) is crucial for embryo development and are highly involved in regulating translation during oocyte and early embryo development. MiRNAs are a group of short (18-24 nucleotides) non-coding RNA molecules that regulate post-transcriptional gene silencing. The miRNAs are secreted outside the cell by embryos during preimplantation embryo development. Understanding regulatory mechanisms involving miRNAs during gametogenesis and embryogenesis will provide insights into molecular pathways active during gamete formation and early embryo development. This review summarizes recent findings regarding multiple roles of miRNAs in molecular signaling, plus their transport during gametogenesis and embryo preimplantation.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Touba Nadri
- Department of Animal Science, College of Agriculture, Urmia University, Urmia, Iran; Department of Animal Science, College of Agriculture, Tehran University, Karaj, Iran.
| | - Dariush Gholami
- Department of Microbial Biotechniligy, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Vaccine Research and Production, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Karin Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filipp Georgijevic Savvulidi
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University, Prague, Kamýcká, Czech Republic
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Canada
| |
Collapse
|
13
|
Abu-Halima M, Fischer U, Al Smadi MA, Ludwig N, Acheli A, Engel A, Abdul-Khaliq H, Meese E. Single Sperm RNA signatures reveal MicroRNA biomarkers for male subfertility. J Assist Reprod Genet 2024; 41:3119-3132. [PMID: 39312032 PMCID: PMC11621271 DOI: 10.1007/s10815-024-03264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 12/06/2024] Open
Abstract
PURPOSE To investigate small RNA profiles in sperm, identify stable miRNA patterns unique to sperm, and assess the behavior of consistently expressed miRNAs in sperm from subfertile men compared to fertile controls. METHODS The small RNA profiles of single sperm from four proven fertile men were analyzed using Small RNA next-generation sequencing (NGS). Subsequently, a specific set of miRNAs was validated using RT-qPCR on additional sperm samples from 65 subfertile men from an infertility clinic and 30 proven fertile men. RESULTS Small RNA sequencing revealed a diverse range of sperm small RNA biotypes, including miRNAs. The mapped read percentage ranged from 22.19% for single sperm to 83.29% for enriched sperm samples used at different RNA concentrations. In single sperm, a smaller proportion of sequences were attributed to piRNAs (2.79%), miRNA (0.94%), tRNA (0.82%), and rRNA (0.47%) compared to enriched sperm samples, where piRNA (41.68%), tRNA (20.31%), miRNA (11.11%), and rRNA (6.54%) were observed. Distinct detection rates and a higher number of detected miRNAs were noted with enriched sperm samples compared to single sperm obtained using either a micromanipulator or microdissection systems. Among the identified miRNAs, 110 were consistently present in all samples. RT-qPCR revealed 15 miRNAs with increased expression and 5 miRNAs with decreased expression in sperm samples from subfertile men compared to proven fertile men. These differentially validated miRNAs were significantly correlated, either positively or negatively, with sperm count, motility, and morphology. CONCLUSION The study extensively examines small RNAs in single sperm, identifying sperm-specific miRNAs that could serve as molecular markers to distinguish between subfertile and fertile men in clinical settings.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany.
- Department of Paediatric Cardiology, Saarland University Hospital, Homburg, Germany.
| | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Mohammad A Al Smadi
- Reproductive Endocrinology and IVF Unit, King Hussein Medical Centre, Amman, Jordan
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Anissa Acheli
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Annika Engel
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Hashim Abdul-Khaliq
- Department of Paediatric Cardiology, Saarland University Hospital, Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
14
|
Delgado-Bermúdez A. Insights into crucial molecules and protein channels involved in pig sperm cryopreservation. Anim Reprod Sci 2024; 269:107547. [PMID: 38981798 DOI: 10.1016/j.anireprosci.2024.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Cryopreservation is the most efficient procedure for long-term preservation of mammalian sperm; however, its use is not currently dominant for boar sperm before its use for artificial insemination. In fact, freezing and thawing have an extensive detrimental effect on sperm function and lead to impaired fertility. The present work summarises the basis of the structural and functional impact of cryopreservation on pig sperm that have been extensively studied in recent decades, as well as the molecular alterations in sperm that are related to this damage. The wide variety of mechanisms underlying the consequences of alterations in expression levels and structural modifications of sperm proteins with diverse functions is detailed. Moreover, the use of cryotolerance biomarkers as predictors of the potential resilience of a sperm sample to the cryopreservation process is also discussed. Regarding the proteins that have been identified to be relevant during the cryopreservation process, they are classified according to the functions they carry out in sperm, including antioxidant function, plasma membrane protection, sperm motility regulation, chromatin structure, metabolism and mitochondrial function, heat-shock response, premature capacitation and sperm-oocyte binding and fusion. Special reference is made to the relevance of sperm membrane channels, as their function is crucial for boar sperm to withstand osmotic shock during cryopreservation. Finally, potential aims for future research on cryodamage and cryotolerance are proposed, which might be crucial to minimise the side-effects of cryopreservation and to make it a more advantageous strategy for boar sperm preservation.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain.
| |
Collapse
|
15
|
Navarrete-López P, Asselstine V, Maroto M, Lombó M, Cánovas Á, Gutiérrez-Adán A. RNA Sequencing of Sperm from Healthy Cattle and Horses Reveals the Presence of a Large Bacterial Population. Curr Issues Mol Biol 2024; 46:10430-10443. [PMID: 39329972 PMCID: PMC11430805 DOI: 10.3390/cimb46090620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
RNA molecules within ejaculated sperm can be characterized through whole-transcriptome sequencing, enabling the identification of pivotal transcripts that may influence reproductive success. However, the profiling of sperm transcriptomes through next-generation sequencing has several limitations impairing the identification of functional transcripts. In this study, we explored the nature of the RNA sequences present in the sperm transcriptome of two livestock species, cattle and horses, using RNA sequencing (RNA-seq) technology. Through processing of transcriptomic data derived from bovine and equine sperm cell preparations, low mapping rates to the reference genomes were observed, mainly attributed to the presence of ribosomal RNA and bacteria in sperm samples, which led to a reduced sequencing depth of RNAs of interest. To explore the presence of bacteria, we aligned the unmapped reads to a complete database of bacterial genomes and identified bacteria-associated transcripts which were characterized. This analysis examines the limitations associated with sperm transcriptome profiling by reporting the nature of the RNA sequences among which bacterial RNA was found. These findings can aid researchers in understanding spermatozoal RNA-seq data and pave the way for the identification of molecular markers of sperm performance.
Collapse
Affiliation(s)
| | - Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - María Maroto
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | - Marta Lombó
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alfonso Gutiérrez-Adán
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
16
|
Jiang S, Wei Y, Li Y, Liu W, Wang Z, Meng X, Zhu Q, Shen L. A comparative cross-platform analysis of cuproptosis-related genes in human nonobstructive azoospermia: An observational study. Medicine (Baltimore) 2024; 103:e39176. [PMID: 39093776 PMCID: PMC11296415 DOI: 10.1097/md.0000000000039176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
This study aimed to identify novel biomarkers associated with cuproptosis in human nonobstructive azoospermia (NOA). We obtained 4 NOA microarray datasets (GSE145467, GSE9210, GSE108886, and GSE45885) from the NCBI Gene Expression Omnibus database and merged them into training set. Another NOA dataset (GSE45887) was used as validation set. Differentially expressed cuproptosis-related genes were identified from training set. Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted. Least absolute shrinkage and selection operator regression and support vector machine-recursive feature elimination were used to identify hub cuproptosis-related genes. We calculated the expression of the hub cuproptosis-related genes in both validation set and patients with NOA. Gene set variation analysis was used to explore their potential biological functions. The risk prediction model was built by logistic regression analysis and was evaluated in the validation set. Finally, we constructed a competing endogenous RNA network. The training set included 29 patents in the control group and 92 in the NOA group, and 10 cuproptosis-related differentially expressed genes were identified. Subsequently, we screened 6 hub cuproptosis-related genes (DBT, GCSH, NFE2L2, NLRP3, PDHA1, and SLC31A1) by least absolute shrinkage and selection operator regression and support vector machine-recursive feature elimination. GCSH, NFE2L2, NLRP3, and SLC31A1 expressed higher in NOA group than in control group (P < .05) in the validation set (4 patients in control and 16 in NOA groups), while the expression levels of GCSH, NFE2L2, NLRP3, PDHA1, and SLC31A1 were higher in NOA group than in control group (P < .05) in our patients (3 patients in control and 4 in NOA groups). The model based on the 6-gene signature showed superior performance with an AUC value of 0.970 in training set, while 1.0 in validation set. Gene set variation analysis revealed a higher enrichment score of "homologous recombination" in the high expression groups of the 6 hub genes. Finally, we constructed a competing endogenous RNA network and found hsa-miR-335-3p and hsa-miR-1-3p were the most frequently related to the 6 hub genes. DBT, GCSH, NFE2L2, NLRP3, PDHA1, and SLC31A1 may serve as predictors of cuproptosis and play important roles in the NOA pathogenesis.
Collapse
Affiliation(s)
- Silin Jiang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongshan Li
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhong Wang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhui Meng
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luming Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Zhang LX, Mao J, Zhou YD, Mao GY, Guo RF, Ge HS, Chen X. Evaluation of microRNA expression profiles in human sperm frozen using permeable cryoprotectant-free droplet vitrification and conventional methods. Asian J Androl 2024; 26:366-376. [PMID: 38738948 PMCID: PMC11280198 DOI: 10.4103/aja202390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/18/2024] [Indexed: 05/14/2024] Open
Abstract
For sperm cryopreservation, the conventional method, which requires glycerol, has been used for a long time. In addition, the permeable cryoprotectant-free vitrification method has been continuously studied. Although the differences of cryopreservation effects between the two methods have being studied, differences in microRNA (miRNA) profiles between them remain unclear. In this study, we investigated the differences in miRNA expression profiles among conventional freezing sperm, droplet vitrification freezing sperm and fresh human sperm. We also analyzed the differences between these methods in terms of differentially expressed miRNAs (DEmiRs) related to early embryonic development and paternal epigenetics. Our results showed no significant differences between the cryopreservation methods in terms of sperm motility ratio, plasma membrane integrity, DNA integrity, mitochondrial membrane potential, acrosome integrity, and ultrastructural damage. However, sperm miRNA-sequencing showed differences between the two methods in terms of the numbers of DEmiRs (28 and 19 with vitrification using a nonpermeable cryoprotectant and the conventional method, respectively) in postthaw and fresh sperm specimens. DEmiRs related to early embryonic development and paternal epigenetics mainly included common DEmiRs between the groups. Our results showed that the differences between conventional freezing and droplet vitrification were minimal in terms of miRNA expression related to embryonic development and epigenetics. Changes in sperm miRNA expression due to freezing are not always detrimental to embryonic development. This study compared differences in miRNA expression profiles before and after cryopreservation between cryopreservation by conventional and vitrification methods. It offers a new perspective to evaluate various methods of sperm cryopreservation.
Collapse
Affiliation(s)
- Li-Xin Zhang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Jing Mao
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Yan-Dong Zhou
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Guang-Yao Mao
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Run-Fa Guo
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Hong-Shan Ge
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Xia Chen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
| |
Collapse
|
18
|
Phillips D, Noble D. Bubbling beyond the barrier: exosomal RNA as a vehicle for soma-germline communication. J Physiol 2024; 602:2547-2563. [PMID: 37936475 DOI: 10.1113/jp284420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
'Weismann's barrier' has restricted theories of heredity to the transmission of genomic variation for the better part of a century. However, the discovery and elucidation of epigenetic mechanisms of gene regulation such as DNA methylation and histone modifications has renewed interest in studies on the inheritance of acquired traits and given them mechanistic plausibility. Although it is now clear that these mechanisms allow many environmentally acquired traits to be transmitted to the offspring, how phenotypic information is communicated from the body to its gametes has remained a mystery. Here, we discuss recent evidence that such communication is mediated by somatic RNAs that travel inside extracellular vesicles to the gametes where they reprogram the offspring epigenome and phenotype. How gametes learn about bodily changes has implications not only for the clinic, but also for evolutionary theory by bringing together intra- and intergenerational mechanisms of phenotypic plasticity and adaptation.
Collapse
Affiliation(s)
- Daniel Phillips
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Denis Noble
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Hamilton M, Russell S, Swanson GM, Krawetz SA, Menezes K, Moskovtsev SI, Librach C. A comprehensive analysis of spermatozoal RNA elements in idiopathic infertile males undergoing fertility treatment. Sci Rep 2024; 14:10316. [PMID: 38705876 PMCID: PMC11070429 DOI: 10.1038/s41598-024-60586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Current approaches to diagnosing male infertility inadequately assess the complexity of the male gamete. Beyond the paternal haploid genome, spermatozoa also deliver coding and non-coding RNAs to the oocyte. While sperm-borne RNAs have demonstrated potential involvement in embryo development, the underlying mechanisms remain unclear. In this study, 47 sperm samples from normozoospermic males undergoing fertility treatment using donor oocytes were sequenced and analyzed to evaluate associations between sperm RNA elements (exon-sized sequences) and blastocyst progression. A total of 366 RNA elements (REs) were significantly associated with blastocyst rate (padj < 0.05), some of which were linked to genes related to critical developmental processes, including mitotic spindle formation and both ectoderm and mesoderm specification. Of note, 27 RE-associated RNAs are predicted targets of our previously reported list of developmentally significant miRNAs. Inverse RE-miRNA expression patterns were consistent with miRNA-mediated down-regulation. This study provides a comprehensive set of REs which differ by the patient's ability to produce blastocysts. This knowledge can be leveraged to improve clinical screening of male infertility and ultimately reduce time to pregnancy.
Collapse
Affiliation(s)
| | | | - Grace M Swanson
- Department of Obstetrics and Gynecology, Center for Molecular Medicine & Genetics, C.S. Mott Center, Wayne State University School of Medicine, Detroit, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Center for Molecular Medicine & Genetics, C.S. Mott Center, Wayne State University School of Medicine, Detroit, USA
| | | | - Sergey I Moskovtsev
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
20
|
Meyer D, Kort J, Chen CH, Zhao H, Yi X, Lai SY, Lu F, Yang WJ, Hsieh IC, Chiang CL, Chen WM, Huang JYJ, Camarillo D, Behr B. Development and evaluation of a usable blastocyst predictive model using the biomechanical properties of human oocytes. PLoS One 2024; 19:e0299602. [PMID: 38696439 PMCID: PMC11065297 DOI: 10.1371/journal.pone.0299602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/13/2024] [Indexed: 05/04/2024] Open
Abstract
PURPOSE The purposes of this study were to determine whether biomechanical properties of mature oocytes could predict usable blastocyst formation better than morphological information or maternal factors, and to demonstrate the safety of the aspiration measurement procedure used to determine the biomechanical properties of oocytes. METHODS A prospective split cohort study was conducted with patients from two IVF clinics who underwent in vitro fertilization. Each patient's oocytes were randomly divided into a measurement group and a control group. The aspiration depth into a micropipette was measured, and the biomechanical properties were derived. Oocyte fertilization, day 3 morphology, and blastocyst development were observed and compared between measured and unmeasured cohorts. A predictive classifier was trained to predict usable blastocyst formation and compared to the predictions of four experienced embryologists. RESULTS 68 patients and their corresponding 1252 oocytes were included in the study. In the safety analyses, there was no significant difference between the cohorts for fertilization, while the day 3 and 5 embryo development were not negatively affected. Four embryologists predicted usable blastocyst development based on oocyte morphology with an average accuracy of 44% while the predictive classifier achieved an accuracy of 71%. Retaining the variables necessary for normal fertilization, only data from successfully fertilized oocytes were used, resulting in a classifier an accuracy of 81%. CONCLUSIONS To date, there is no standard guideline or technique to aid in the selection of oocytes that have a higher likelihood of developing into usable blastocysts, which are chosen for transfer or vitrification. This study provides a comprehensive workflow of extracting biomechanical properties and building a predictive classifier using these properties to predict mature oocytes' developmental potential. The classifier has greater accuracy in predicting the formation of usable blastocysts than the predictions provided by morphological information or maternal factors. The measurement procedure did not negatively affect embryo culture outcomes. While further analysis is necessary, this study shows the potential of using biomechanical properties of oocytes to predict embryo developmental outcomes.
Collapse
Affiliation(s)
- Daniel Meyer
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
| | - Jonathan Kort
- Division of Reproductive Endocrinology and Infertility, Stanford University, Stanford, CA, United States of America
| | - Ching Hung Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Obstetrics and Gynecology, Ton Yen General Hospital, Hsinchu, Taiwan
- Taiwan IVF Group Center for Reproductive Medicine & Infertility, Hsinchu, Taiwan
| | - Huan Zhao
- Department of Reproductive Medicine, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoling Yi
- Department of Reproductive Medicine, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shin-Yu Lai
- Taiwan IVF Group Center for Reproductive Medicine & Infertility, Hsinchu, Taiwan
| | - Farn Lu
- Department of Obstetrics and Gynecology, Ton Yen General Hospital, Hsinchu, Taiwan
- Taiwan IVF Group Center for Reproductive Medicine & Infertility, Hsinchu, Taiwan
| | - Wen Jui Yang
- Department of Obstetrics and Gynecology, Ton Yen General Hospital, Hsinchu, Taiwan
- Taiwan IVF Group Center for Reproductive Medicine & Infertility, Hsinchu, Taiwan
| | - I-Chiao Hsieh
- Department of Data Science, Inti Taiwan, Inc., Zhubei City, Hsinchu, Taiwan
| | - Chung-Li Chiang
- Department of Data Science, Inti Taiwan, Inc., Zhubei City, Hsinchu, Taiwan
| | - Wei-Ming Chen
- Department of Data Science, Inti Taiwan, Inc., Zhubei City, Hsinchu, Taiwan
| | - Jack Yu Jen Huang
- Division of Reproductive Endocrinology and Infertility, Stanford University, Stanford, CA, United States of America
- Department of Obstetrics and Gynecology, Ton Yen General Hospital, Hsinchu, Taiwan
- Taiwan IVF Group Center for Reproductive Medicine & Infertility, Hsinchu, Taiwan
| | - David Camarillo
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
| | - Barry Behr
- Division of Reproductive Endocrinology and Infertility, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
21
|
Tiwari S, Shahat A, Kastelic J, Thakor N, Thundathil J. Optimized total RNA isolation from bovine sperm with enhanced sperm head lysis. Biochem Cell Biol 2024; 102:194-205. [PMID: 37948675 DOI: 10.1139/bcb-2023-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Increasing evidence of sperm RNA's role in fertilization and embryonic development has provided impetus for its isolation and thorough characterization. Sperm are considered tough-to-lyse cells due to the compact condensed DNA in sperm heads. Lack of consensus among bovine sperm RNA isolation protocols introduces experimental variability in transcriptome studies. Here, we describe an optimized method for total RNA isolation from bovine sperm using the TRIzol reagent. This study critically investigated the effects of various lysis conditions on sperm RNA isolation. Sperm suspended in TRIzol were subjected to a combination of mechanical treatments (sonication and passage through a 30G needle and syringe) and chemical treatments (supplementation with reducing agents 1,4-dithiothreitol and tris(2-carboxyethyl) phosphine hydrochloride (TCEP)). Microscopic evaluation of sperm lysis confirmed preferential sperm tail versus sperm head lysis. Interestingly, only TCEP-supplemented TRIzol (both mechanical treatments) had progressive sperm head lysis and consistently yielded total sperm RNA. Furthermore, RNA integrity was confirmed based on the electrophoresis profile and an absence of genomic DNA and somatic cells (e.g., epithelial cells, spermatids, etc.) with RT-qPCR. Our findings highlighted the importance of sperm lysis, specifically of the sperm head using TCEP with mechanical treatment, in total RNA isolation and presented a bovine-specific sperm RNA isolation method to reduce experimental variabilities.
Collapse
Affiliation(s)
- Saurabh Tiwari
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Abdallah Shahat
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - John Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nehal Thakor
- Department of Chemistry & Biochemistry, University of Lethbridge, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, Lethbridge, AB, Canada
| | - Jacob Thundathil
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
22
|
Ali N, Amelkina O, Santymire RM, Koepfli KP, Comizzoli P, Vazquez JM. Semen proteome and transcriptome of the endangered black-footed ferret (Mustela nigripes) show association with the environment and fertility outcome. Sci Rep 2024; 14:7063. [PMID: 38528039 PMCID: PMC10963785 DOI: 10.1038/s41598-024-57096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
The ex situ population of the endangered black-footed ferret (Mustela nigripes) has been experiencing declines in reproductive success over the past 30 years of human-managed care. A potential cause may be environmental-dependent inbreeding depression with diet being one of the contributing factors since ferrets are not fed their natural diet of prairie dogs. Here, we generated and analyzed semen proteome and transcriptome data from both wild and ex situ ferrets maintained on various diets. We identified 1757 proteins across all samples, with 149 proteins unique to the semen of wild ferrets and forming a ribosomal predicted protein-protein interaction cluster. Wild ferrets also differed from ex situ ferrets in their transcriptomic profile, showing enrichment in ribosomal RNA processing and potassium ion transport. Successful fertility outcomes documented for ex situ ferrets showed the strongest association with the semen transcriptome, with enrichment in genes involved in translation initiation and focal adhesion. Fertility also synergized with the effect of diet on differentially expressed transcriptomes, mainly affecting genes enriched in mitochondrial function. Our data and functional networks are important for understanding the causes and mechanisms of declining fertility in the ex situ ferret population and can be used as a resource for future conservation efforts.
Collapse
Affiliation(s)
- Nadya Ali
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA.
| | - Olga Amelkina
- Smithsonian's National Zoo and Conservation Biology Institute, Washington D.C., USA.
| | | | - Klaus-Peter Koepfli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington D.C., USA.
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA.
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington D.C., USA
| | - Juan M Vazquez
- Department of Integrative Biology, University of California, Berkeley, USA.
| |
Collapse
|
23
|
Vigolo V, Gautier C, Ertl R, Aurich C, Falomo ME. Protamine 2 and phospholipase C zeta 1 are possible biomarkers for the diagnosis of male subfertility in frozen-thawed stallion semen. Theriogenology 2024; 215:343-350. [PMID: 38142472 DOI: 10.1016/j.theriogenology.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Subfertility is one of the main issues in horse breeding and the study of mRNAs in sperm might help in elucidating the reasons that lead to this diagnosis. The present study aims at assessing the differences in the expression of 10 potential candidate genes in stallions of different fertility. Frozen-thawed semen of 29 stallions was included. Each sample was classified into two groups according to pregnancy rates (PR) achieved with this semen: "good fertility" (GF; n = 17; PR ≥ 30 %) or "poor fertility" (PF; n = 12; PR <20 %). All stallions underwent a breeding soundness examination (BSE) before semen production and were only included into the semen cryopreservation program when raw semen characteristics at BSE met minimal requirements. Semen was cryopreserved following European Union regulations and all stallions met the respective health requirements. Each sample was assessed for concentration (NucleoCounter SP-100), motility (CASA), membrane functionality (SYBR-14/PI), mitochondrial membrane potential (JC-1), morphology (SpermacStain), acrosome integrity (SpermacStain), membrane integrity (HOS test) and chromatin integrity (Aniline blue). Sperm RNAs were extracted using the Direct-zol RNA Miniprep Kit (Zymo Research) and RT-qPCR was performed for each target gene. ACTB and RPL32 were included as reference genes (RGs) for normalization. For each variable of each group, mean, standard deviation and SEM were calculated. The difference in gene expression levels between the GF and PF group were analyzed using the Mann-Whitney U test and Spearman's rank correlation. Significant results were considered with p < 0.05. Sperm quality parameters did not differ significantly between the two groups except for concentration, that was significantly higher in GF (p = 0.043). In GF a positive correlation was identified for PRM1/PRM2 with r = +0.6, while PRM1/ACR (r = -0.495), PRM2/ZPBP (r = -0.645) and CRISP3/ACR (r = -0.551) were inversely correlated. In PF direct correlations were registered for PRM1/PRM2 (r = +0.629), PRM1/PRM3 (r = +0.657), PRM2/SPA17 (r = +0.685), SPA17/PLCZ1 (r = +0.786) and PRM3/ACR (r = +0.627). In the total sample (GF + PF), positive correlations were detected for PRM1/PRM2 (r = +0.625), PRM1/PRM3 (r = +0.368); PRM2/SPA17 (r = +0.465), SPA17/PLCZ1 (r = +0.637) and PLCZ1/ZAN (r = +0.587). Only two of the genes considered were differentially expressed in the 2 groups: PRM2 and PLCZ1, that were significantly (p < 0.05) overexpressed in the GF group. Stallions frozen-thawed semen with higher expression levels of PRM2 and PLCZ1 are more likely to belong to animals with a good pregnancy rate. Further studies are needed to investigate the role of sperm transcripts in male subfertility in stallions.
Collapse
Affiliation(s)
- Veronica Vigolo
- Department of Animal Medicine, Production and Health (MAPS), Università di Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy; Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Camille Gautier
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Christine Aurich
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Maria Elena Falomo
- Department of Animal Medicine, Production and Health (MAPS), Università di Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
24
|
Dupont C, Stathopoulou MG, Illy PJ, Sermondade N, Levy R, Trabucchi M, Prades M, Haj Hamid R, Berthaut I, Grandjean V. Impact of testicular cancer on sperm small non-coding RNA signature: a pilot study. Epigenetics 2023; 18:2241009. [PMID: 37515809 PMCID: PMC10388827 DOI: 10.1080/15592294.2023.2241009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023] Open
Abstract
Testicular germ cell tumours (TGCTs) are the most common tumours in young adults of European ancestry. The high heritability and the constantly increased incidence, which has doubled over the last 20 years, strongly suggest that both genetic and environmental factors are likely to shape the TGCT susceptibility. While genome-wide association studies have identified loci associated with TGCT susceptibility, the role played by environmental molecular vectors in TGCT susceptibility remains unclear. Evidence shows that sperm non-coding RNAs provide a good vision of the environmental stresses experienced by men. Here, to determine whether TGCT impacts the abundance of specific non-coding RNAs in sperm, small RNA deep sequencing analysis of sperm of 25 men aged between 19 and 42 years, diagnosed with (n = 16) or without (n = 9) TGCT was performed. The primary analysis showed no statistical significance in the sncRNA population between the TGCT and non-TGCT groups. However, when sperm physiological parameters were considered to look for differentially expressed sncRNA, we evidenced 11 differentially expressed sncRNA between patients and control which allow a clear discrimination between control and TGCT samples after Hierarchical Clustering analysis. Together, these findings indicate that sperm small non-coding RNAs abundance may have the potential for diagnosing men with TGCT. However, specific care should be taken regarding sperm physiological parameters of the TGCT patients. Hence, larger studies are needed to confirm our findings and to determine whether such a signature associates with the risks to develop TGCT.
Collapse
Affiliation(s)
- Charlotte Dupont
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon (AP-HP. Sorbonne-Université, Paris, France
| | | | | | - Nathalie Sermondade
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon (AP-HP. Sorbonne-Université, Paris, France
| | - Rachel Levy
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon (AP-HP. Sorbonne-Université, Paris, France
| | | | - Marie Prades
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Rahaf Haj Hamid
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Isabelle Berthaut
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon (AP-HP. Sorbonne-Université, Paris, France
| | | |
Collapse
|
25
|
Dewry RK, Mohanty TK, Nath S, Bhakat M, Yadav HP, Baithalu RK. Comparative RNA isolation methods from fresh ejaculated spermatozoa in Sahiwal cattle ( Bos indicus) and Murrah buffalo ( Bubalus bubalis) bulls for high quality and enhanced RNA yield. Anim Biotechnol 2023; 34:5180-5191. [PMID: 37965764 DOI: 10.1080/10495398.2023.2276713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Sperm mRNA transcriptional profiling can be used to evaluate the fertility of breeding bulls. The aim of the study was to compare the modified RNA isolation methods for higher RNA yield and quality from freshly ejaculated sperm of cattle and buffalo bulls. Ten fresh ejaculates from each Sahiwal (n = 10 bulls × 10 ejaculates) and Murrah bulls (n = 10 bulls x 10 ejaculates) were used for RNA isolation. From the recovered live sperm, total sperm RNA was isolated by conventional methods (TRIzol, Double TRIzol), membrane-based methods combined with TRIzol (RNeasy + TRIzol) with the addition of β-mercaptoethanol (BME) and Kit (RNeasy mini) methods in fresh semen. Among different isolation methods; the membrane-based modified methods combined with TRIzol (RNeasy + TRIzol) with the addition of β-mercaptoethanol (BME) resulted significantly (p < .05) higher total RNA quantity (300-340 ng/µL) and better purity in different concentrations of spermatozoa viz., 30-40 million, 70-80 million and 300-400 million sperm. The study concluded that the inclusion of BME to the combined membrane-based methods with somatic cell lysis buffer solution was best for constant increased yield and purity of RNA isolation from Sahiwal cattle and Murrah buffalo bull sperm.
Collapse
Affiliation(s)
- Raju Kumar Dewry
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Tushar Kumar Mohanty
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Sapna Nath
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Mukesh Bhakat
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Hanuman Prasad Yadav
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Rubina Kumari Baithalu
- Reproductive Biotechnology Laboratory ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| |
Collapse
|
26
|
Olotu O, Ahmedani A, Kotaja N. Small Non-Coding RNAs in Male Reproduction. Semin Reprod Med 2023; 41:213-225. [PMID: 38346711 DOI: 10.1055/s-0044-1779726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Male reproductive functions are strictly regulated in order to maintain sperm production and fertility. All processes are controlled by precise regulation of gene expression, which creates specific gene expression programs for different developmental stages and cell types, and forms the functional basis for the reproductive system. Small non-coding RNAs (sncRNAs) are involved in gene regulation by targeting mRNAs for translational repression and degradation through complementary base pairing to recognize their targets. This review article summarizes the current knowledge on the function of different classes of sncRNAs, in particular microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), during male germ cell differentiation, with the focus on sncRNAs expressed in the germline. Although transcriptionally inactive, mature spermatozoa contain a complex population of sncRNAs, and we also discuss the recently identified role of sperm sncRNAs in the intergenerational transmission of epigenetic information on father's environmental and lifestyle exposures to offspring. Finally, we summarize the current information on the utility of sncRNAs as potential biomarkers of infertility that may aid in the diagnosis and prediction of outcomes of medically assisted reproduction.
Collapse
Affiliation(s)
- Opeyemi Olotu
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ammar Ahmedani
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Noora Kotaja
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Cridland JM, Begun DJ. Male-derived transcripts isolated from the mated female reproductive tract in Drosophila melanogaster. G3 (BETHESDA, MD.) 2023; 13:jkad202. [PMID: 37725947 PMCID: PMC10627254 DOI: 10.1093/g3journal/jkad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
In species with internal fertilization, sperm, and seminal fluid are transferred from male to female during mating. While both sperm and seminal fluid contain various types of molecules, including RNA, the role of most of these molecules in the coordination of fertilization or in other possible functions is poorly understood. In Drosophila, exosomes from the accessory gland, which produces seminal fluid, are transferred to females, but their potential cargoes have not been described. Moreover, while the RNA composition of sperm has been described in several mammalian species, little work on this problem has occurred in Drosophila. Here we use single nucleotide polymorphism differences between males and females from a set of highly inbred lines of D. melanogaster, and transcriptome data from the female reproductive tract, sperm, testis, and accessory gland, to investigate the potential origin, male vs female, RNA molecules isolated from 3 female reproductive tract organs, the seminal receptacle and spermatheca, which store sperm, and the parovaria, which does not. We find that mated females carry male-derived transcripts from many genes, including those that are markers of the accessory gland and known seminal fluid proteins. Our observations also support the idea that intact sperm transcripts can be isolated from the female sperm storage organs.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
28
|
Navarro-Gomezlechon A, Gil Juliá M, Pacheco-Rendón RM, Hervás I, Mossetti L, Rivera-Egea R, Garrido N. Obstetrical and Perinatal Outcomes Are Not Associated with Advanced Paternal Age in IVF or ICSI Pregnancies with Autologous Oocytes. BIOLOGY 2023; 12:1256. [PMID: 37759655 PMCID: PMC10525525 DOI: 10.3390/biology12091256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND In recent years, there has been an evident delay in childbearing and concerns have been raised about whether this increase in age affects reproductive outcomes. This study aimed to evaluate the effect of paternal age on obstetrical and perinatal outcomes in couples undergoing in vitro fertilization or intracytoplasmic sperm injection using autologous sperm and oocytes. METHODS This retrospective study evaluated obstetrical and perinatal outcomes from 14,125 couples that were arbitrarily divided into three groups according to paternal age at conception: ≤30 (n = 1164), 31-40 (n = 11,668) and >40 (n = 1293). Statistics consisted of a descriptive analysis followed by univariate and multivariate models, using the youngest age group as a reference. RESULTS The study showed significantly longer pregnancies for the fathers aged 31-40 compared to ≤30 years. However, there were no significant differences for the type of delivery, gestational diabetes, anaemia, hypertension, delivery threat, premature rupture of membranes, preterm birth, very preterm birth, and the neonate's sex, weight, low birth weight, very low birth weight, length, cranial perimeter, Apgar score and neonatal intensive care unit admission. CONCLUSION Despite our promising results for older fathers, as paternal age was not associated with clinically relevant obstetrical and perinatal outcomes, future well-designed studies are necessary as it has been associated with other important disorders.
Collapse
Affiliation(s)
- Ana Navarro-Gomezlechon
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell, 106, Torre A, 46026 Valencia, Spain; (M.G.J.); (R.M.P.-R.); (N.G.)
| | - María Gil Juliá
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell, 106, Torre A, 46026 Valencia, Spain; (M.G.J.); (R.M.P.-R.); (N.G.)
| | - Rosa María Pacheco-Rendón
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell, 106, Torre A, 46026 Valencia, Spain; (M.G.J.); (R.M.P.-R.); (N.G.)
| | - Irene Hervás
- IVIRMA Global Research Alliance, IVIRMA Roma, Via Federico Calabresi, 11, 00169 Roma, Italy; (I.H.); (L.M.)
| | - Laura Mossetti
- IVIRMA Global Research Alliance, IVIRMA Roma, Via Federico Calabresi, 11, 00169 Roma, Italy; (I.H.); (L.M.)
| | - Rocío Rivera-Egea
- IVIRMA Global Research Alliance, Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Plaza de la Policia Local 3, 46015 Valencia, Spain;
| | - Nicolás Garrido
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell, 106, Torre A, 46026 Valencia, Spain; (M.G.J.); (R.M.P.-R.); (N.G.)
| |
Collapse
|
29
|
Wang X, Li W, Feng X, Li J, Liu GE, Fang L, Yu Y. Harnessing male germline epigenomics for the genetic improvement in cattle. J Anim Sci Biotechnol 2023; 14:76. [PMID: 37277852 PMCID: PMC10242889 DOI: 10.1186/s40104-023-00874-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
Sperm is essential for successful artificial insemination in dairy cattle, and its quality can be influenced by both epigenetic modification and epigenetic inheritance. The bovine germline differentiation is characterized by epigenetic reprogramming, while intergenerational and transgenerational epigenetic inheritance can influence the offspring's development through the transmission of epigenetic features to the offspring via the germline. Therefore, the selection of bulls with superior sperm quality for the production and fertility traits requires a better understanding of the epigenetic mechanism and more accurate identifications of epigenetic biomarkers. We have comprehensively reviewed the current progress in the studies of bovine sperm epigenome in terms of both resources and biological discovery in order to provide perspectives on how to harness this valuable information for genetic improvement in the cattle breeding industry.
Collapse
Affiliation(s)
- Xiao Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Konge Larsen ApS, Kongens Lyngby, 2800, Denmark
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenlong Li
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xia Feng
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianbing Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
30
|
Garrido N, Boitrelle F, Saleh R, Durairajanayagam D, Colpi G, Agarwal A. Sperm epigenetics landscape: correlation with embryo quality, reproductive outcomes and offspring's health. Panminerva Med 2023; 65:166-178. [PMID: 37335245 DOI: 10.23736/s0031-0808.23.04871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Epigenetics refers to how gene expression and function are modulated without modifying the DNA sequence but through subtle molecular changes or interactions with it. As spermatogenesis progresses, male germ cells suffer plenty of epigenetic modifications, resulting in the definitive epigenome of spermatozoa conditioning its functionality, and this process can be altered by several internal and external factors. The paternal epigenome is crucial for sperm function, fertilization, embryo development, and offspring's health, and altered epigenetic states are associated with male infertility with or without altered semen parameters, embryo quality impairment, and worse ART outcomes together with the future offspring's health risks mainly through intergenerational transmission of epigenetic marks. Identifying epigenetic biomarkers may improve male factor diagnosis and the development of targeted therapies, not only to improve fertility but also to allow an early detection of risk and disease prevention in the progeny. While still there is much research to be done, hopefully in the near future, improvements in high-throughput technologies applied to epigenomes will permit our understanding of the underlying epigenetic mechanisms and the development of diagnostics and therapies leading to improved reproductive outcomes. In this review, we discuss the mechanisms of epigenetics in sperm and how epigenetics behave during spermatogenesis. Additionally, we elaborate on the relationship of sperm epigenetics with sperm parameters and male infertility, and highlight the impact of sperm epigenetic alterations on sperm parameters, embryo quality, ART outcomes, miscarriage rates and offspring's health. Furthermore, we provide insights into the future research of epigenetic alterations in male infertility.
Collapse
Affiliation(s)
- Nicolás Garrido
- Global Andrology Forum, Moreland Hills, OH, USA
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Florence Boitrelle
- Global Andrology Forum, Moreland Hills, OH, USA
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Ramadan Saleh
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Damayanthi Durairajanayagam
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Giovanni Colpi
- Global Andrology Forum, Moreland Hills, OH, USA
- Next Fertility Procrea, Lugano, Switzerland
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA -
- American Center for Reproductive Medicine, Cleveland, OH, USA
| |
Collapse
|
31
|
Gan M, Jing Y, Xie Z, Ma J, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Li X, Zhu L, Shen L. Potential Function of Testicular MicroRNAs in Heat-Stress-Induced Spermatogenesis Disorders. Int J Mol Sci 2023; 24:ijms24108809. [PMID: 37240155 DOI: 10.3390/ijms24108809] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatogenesis is temperature-dependent, and the increase in testicular temperature seriously affects mammalian spermatogenesis and semen quality. In this study, the testicular heat stress model of mice was made with a 43 °C water bath for 25 min, and the effects of heat stress on semen quality and spermatogenesis-related regulators were analyzed. On the 7th day after heat stress, testis weight shrank to 68.45% and sperm density dropped to 33.20%. High-throughput sequencing analysis showed that 98 microRNAs (miRNAs) and 369 mRNAs were down-regulated, while 77 miRNAs and 1424 mRNAs were up-regulated after heat stress. Through gene ontology (GO) analysis of differentially expressed genes and miRNA-mRNA co-expression networks, it was found that heat stress may be involved in the regulation of testicular atrophy and spermatogenesis disorders by affecting cell meiosis process and cell cycle. In addition, through functional enrichment analysis, co-expression regulatory network, correlation analysis and in vitro experiment, it was found that miR-143-3p may be a representative potential key regulatory factor affecting spermatogenesis under heat stress. In summary, our results enrich the understanding of miRNAs in testicular heat stress and provide a reference for the prevention and treatment of heat-stress-induced spermatogenesis disorders.
Collapse
Affiliation(s)
- Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunhong Jing
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Xie
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianfeng Ma
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
32
|
Cui L, Fang L, Zhuang L, Shi B, Lin CP, Ye Y. Sperm-borne microRNA-34c regulates maternal mRNA degradation and preimplantation embryonic development in mice. Reprod Biol Endocrinol 2023; 21:40. [PMID: 37101140 PMCID: PMC10131327 DOI: 10.1186/s12958-023-01089-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Studies have shown that sperm-borne microRNAs (miRNAs) are involved in mammalian preimplantation embryonic development. In humans, spermatozoan miR-34c levels are correlated with in vitro fertilization outcomes, such as embryo quality and the clinical pregnancy and live birth rates. In rabbits and cows, miR-34c improves the developmental competence of embryos generated by somatic cell nuclear transfer. However, the mechanisms underlying the regulation of embryonic development by miR-34c remain unknown. METHODS Female C57BL/6 mice (6-8 weeks old) were superovulated, and pronucleated zygotes were collected and microinjected with an miR-34c inhibitor or a negative-control RNA. The embryonic development of the microinjected zygotes was evaluated, and the messenger RNA (mRNA) expression profiles of the embryos at the two-cell, four-cell and blastocyst stages (five embryos per group) were determined by RNA sequencing analysis. Gene expression levels were verified by reverse transcription-quantitative polymerase chain reaction. Cluster analysis and heat map visualization were performed to detect differentially expressed mRNAs. Pathway and process enrichment analyses were performed using ontology resources. Differentially expressed mRNAs were systematically analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins database to determine their biological functions. RESULTS Embryonic developmental potential was significantly reduced in zygotes microinjected with the miR-34c inhibitor compared with those microinjected with a negative-control RNA. Two-cell stage embryos microinjected with an miR-34c inhibitor presented altered transcriptomic profiles, with upregulated expression of maternal miR-34c target mRNAs and classical maternal mRNAs. Differentially expressed transcripts were mainly of genes associated with lipid metabolism and cellular membrane function at the two-cell stage, with cell-cycle phase transition and energy metabolism at the four-cell stage; and with vesicle organization, lipid biosynthetic process and endomembrane system organization at the blastocyst stage. We also showed that genes related to preimplantation embryonic development, including Alkbh4, Sp1, Mapk14, Sin3a, Sdc1 and Laptm4b, were significantly downregulated after microinjection of an miR-34c inhibitor. CONCLUSIONS Sperm-borne miR-34c may regulate preimplantation embryonic development by affecting multiple biological processes, such as maternal mRNA degradation, cellular metabolism, cell proliferation and blastocyst implantation. Our data demonstrate the importance of sperm-derived miRNAs in the development of preimplantation embryos.
Collapse
Affiliation(s)
- Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Li Fang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lili Zhuang
- Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200041, China
| | - Biwei Shi
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
33
|
Mirshahvaladi S, Topraggaleh TR, Bucak MN, Rahimizadeh P, Shahverdi A. Quantitative proteomics of sperm tail in asthenozoospermic patients: exploring the molecular pathways affecting sperm motility. Cell Tissue Res 2023:10.1007/s00441-023-03744-y. [PMID: 36847810 DOI: 10.1007/s00441-023-03744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/23/2023] [Indexed: 02/28/2023]
Abstract
Asthenozoospermia, characterized by low sperm motility, is one of the most common causes of male infertility. While many intrinsic and extrinsic factors are involved in the etiology of asthenozoospermia, the molecular basis of this condition remains unclear. Since sperm motility results from a complex flagellar structure, an in-depth proteomic analysis of the sperm tail can uncover mechanisms underlying asthenozoospermia. This study quantified the proteomic profile of 40 asthenozoospermic sperm tails and 40 controls using TMT-LC-MS/MS. Overall, 2140 proteins were identified and quantified where 156 proteins have not been described earlier in sperm tail. There were 409 differentially expressed proteins (250 upregulated and 159 downregulated) in asthenozoospermia which by far is the highest number reported earlier. Further, bioinformatics analysis revealed several biological processes, including mitochondrial-related energy production, oxidative phosphorylation (OXPHOS), citric acid cycle (CAC), cytoskeleton, stress response, and protein metabolism altered in asthenozoospermic sperm tail samples. Collectively, our findings reveal the importance of mitochondrial energy production and induced stress response as potential mechanisms involved in the loss of sperm motility in asthenozoospermia.
Collapse
Affiliation(s)
- Shahab Mirshahvaladi
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Tohid Rezaei Topraggaleh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mustafa Numan Bucak
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Pegah Rahimizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Division of Experimental Surgery, McGill University, Montreal, QC, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
34
|
Willems M, Devriendt C, Olsen C, Caljon B, Janssen T, Gies I, Vloeberghs V, Tournaye H, Van Saen D, Goossens E. Micro RNA in Semen/Urine from Non-Obstructive Azoospermia Patients as Biomarkers to Predict the Presence of Testicular Spermatozoa and Spermatogonia. Life (Basel) 2023; 13:life13030616. [PMID: 36983773 PMCID: PMC10051987 DOI: 10.3390/life13030616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
About half of testicular sperm extraction (TESE) procedures in men with non-obstructive azoospermia (NOA), including men with Klinefelter syndrome (KS), are unsuccessful. To avoid unnecessary invasive surgery, biomarkers for spermatozoa were studied. In addition, markers for spermatogonia in testis tissue were explored. This study aimed to find biomarkers in the semen and/or urine of NOA patients to predict the presence of spermatogonia in the testis. Differentially expressed miRNAs were identified (1) between samples from patients with and without a positive TESE procedure as well as (2) between TESE-negative patients with and without spermatogonia. A total of thirteen upregulated miRNAs (ten in seminal plasma and three in urine) were found in the TESE-negative/spermatogonia-positive group compared to the TESE-negative/spermatogonia-negative group. These miRNAs could be potential biomarkers for spermatogonia; however, more research is necessary to validate their predictive power.
Collapse
Affiliation(s)
- Margo Willems
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Céline Devriendt
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Catharina Olsen
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore) Platform, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ben Caljon
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore) Platform, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Toon Janssen
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore) Platform, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Inge Gies
- Division of Pediatric Endocrinology, Department of Pediatrics, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Veerle Vloeberghs
- Brussels IVF, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Herman Tournaye
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
- Brussels IVF, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Obstetrics, Gynecology, Perinatology and Reproduction, Institute of Professional Education, Ministry of Health of the Russian Federation, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, b. 2, 119992 Moscow, Russia
| | - Dorien Van Saen
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ellen Goossens
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
35
|
Warr S, Pini T, de Graaf SP, Rickard JP. Molecular insights to the sperm-cervix interaction and the consequences for cryopreserved sperm. Biol Reprod 2023; 108:183-196. [PMID: 36191077 DOI: 10.1093/biolre/ioac188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cryopreserved ram spermatozoa are limited in their capacity to traverse the ovine cervix and achieve fertilization. This altered interaction may be related to modified molecular communication between frozen-thawed ram spermatozoa, seminal plasma, and the female tract. As such, this review aims to identify the biological processes which underpin sperm maturation and transport throughout the female reproductive tract to elucidate factors which may alter this natural process in cryopreserved ram spermatozoa. We also assess critical barriers to ram spermatozoa specific to the ovine cervix and the role of seminal plasma in mitigating these barriers. Transcriptomics is explored as a new approach to understand the sperm-cervix interaction. Recent studies have demonstrated that both spermatozoa and seminal plasma contain a complex profile of coding and non-coding RNAs. These molecular species have clear links with functional fertility, and mounting evidence suggests they may be altered by cryopreservation. Emerging in vitro cell culture models are also investigated as a "next step" in studying this interaction, utilizing transcriptomics to identify subtle changes in female tract gene expression in response to spermatozoa. The application of such models is proposed as an exciting opportunity to investigate the unique challenges faced by cryopreserved spermatozoa traversing the ovine cervix prior to fertilization.
Collapse
Affiliation(s)
- Sophie Warr
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Taylor Pini
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Simon P de Graaf
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Jessica P Rickard
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Singh R, Deb R, Sengar GS, Raja TV, Kumar S, Singh U, Das AK, Alex R, Kumar A, Tyagi S, Pal P, Patil NV. Differentially expressed microRNAs in biochemically characterized Frieswal TM crossbred bull semen. Anim Biotechnol 2023; 34:25-38. [PMID: 34106815 DOI: 10.1080/10495398.2021.1932519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In addition to the transmission of paternal genome, spermatozoa also carry coding as well as noncoding microRNAs (miRNAs) into the female oocyte during the process of biological fertilization. Based on RNA deep sequencing, a total 28 number of differentially expressed miRNAs were cataloged in categorized FrieswalTM crossbred (Holstein Friesian X Sahiwal) bull semen on the basis of conception rate (CR) in field progeny testing program. Validation of selected miRNAs viz. bta-mir-182, bta-let-7b, bta-mir-34c and bta-mir-20a revealed that, superior bull semen having comparatively (p < .05) lower level of all the miRNAs in contrast to inferior bull semen. Additionally, it was illustrated that, bta-mir-20a and bta-mir-34c miRNAs are negatively (p < .01) correlated with seminal plasma catalase (CAT) activity and glutathione peroxidase (GPx) level. Interactome studies identified that bta-mir-140, bta-mir-342, bta-mir-1306 and bta-mir-217 can target few of the important solute carrier (SLC) proteins viz. SLC30A3, SLC39A9, SLC31A1 and SLC38A2, respectively. Interestingly, it was noticed that all the SLCs were significantly (p < .05) expressed at higher level in superior quality bull semen and they are negatively correlated (p < .01) with their corresponding miRNAs as mentioned. This study may reflect the role of miRNAs in regulating few of the candidate genes and thus may influence the bull semen quality traits.
Collapse
Affiliation(s)
- Rani Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rajib Deb
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Gyanendra Singh Sengar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - T V Raja
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Umesh Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - A K Das
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rani Alex
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Amod Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Shrikant Tyagi
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Prasanna Pal
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - N V Patil
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| |
Collapse
|
37
|
Cheung S, Xie P, Rosenwaks Z, Palermo GD. Profiling the male germline genome to unravel its reproductive potential. Fertil Steril 2023; 119:196-206. [PMID: 36379263 PMCID: PMC9898105 DOI: 10.1016/j.fertnstert.2022.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To identify specific germline mutations related to sperm reproductive competence, in couples with unexplained infertility. DESIGN In this retrospective study, couples were divided according to whether they had successful intracytoplasmic sperm injection outcomes (fertile) or not (infertile). Ancillary sperm function tests were performed on ejaculates, and whole exome sequencing was performed on spermatozoal DNA. Sperm aneuploidy and gene mutation profiles were compared between the 2 cohorts as well as according to the specific reasons for reproductive failure. SETTING Center for reproductive medicine at a major academic medical center. PATIENT(S) Thirty-one couples with negative infertility workups and normal semen parameters. INTERVENTION(S) Couples with mutations on fertilization- or embryo development-related genes were subsequently treated by assisted gamete treatment or microfluidics, respectively. MAIN OUTCOME MEASURE(S) Intracytoplasmic sperm injection cycle outcomes including fertilization, clinical pregnancy, and delivery rates. RESULT(S) Sperm aneuploidy was lower in the fertile group (4.0% vs. 8.4%). Spermatozoa from both cohorts displayed mutations associated with sperm-egg fusion (ADAM3A) and acrosomal development (SPACA1), regardless of reproductive outcome. The infertile cohort was then categorized according to the reasons for reproductive failure: absent fertilization, poor early embryo development, implantation failure, or pregnancy loss. Spermatozoa from the fertilization failure subgroup (n = 4) had negligible PLCζ presence (10% ± 9%) and gene mutations (PLCZ1, PIWIL1, ADAM15) indicating a sperm-related oocyte-activating deficiency. These couples were successfully treated by assisted gamete treatment in their subsequent cycles. Spermatozoa from the poor early embryo development subgroup (n = 5) had abnormal centrosomes (45.9% ± 5%), and displayed mutations impacting centrosome integrity (HAUS1) and spindle/microtubular stabilization (KIF4A, XRN1). Microfluidic sperm processing subsequently yielded a term pregnancy. Spermatozoa from the implantation failure subgroup (n = 7) also had abnormal centrosomes (53.1% ± 13%) and carried mutations affecting embryonic implantation (IL9R) and microtubule and centrosomal integrity (MAP1S, SUPT5H, PLK4), whereas those from the pregnancy loss subgroup (n = 5) displayed mutations on genes involved in trophoblast development (NLRP7), cell cycle regulation (MARK4, TRIP13, DAB2IP, KIF1C), and recurrent miscarriage (TP53). CONCLUSION(S) By assessing the sperm genome, we identified specific germline mutations related to various reproductive processes. This information may clarify elusive factors underlying reproductive competence and enhance treatment for couples with unexplained infertility.
Collapse
Affiliation(s)
- Stephanie Cheung
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York
| | - Philip Xie
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
38
|
Andreu-Noguera J, López-Botella A, Sáez-Espinosa P, Gómez-Torres MJ. Epigenetics Role in Spermatozoa Function: Implications in Health and Evolution-An Overview. Life (Basel) 2023; 13:life13020364. [PMID: 36836724 PMCID: PMC9964922 DOI: 10.3390/life13020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The unique properties of spermatozoa are established through the spermatogenesis and maturation processes concurrently with its epigenome. It is known that damage to epigenetic mechanisms can lead to reproductive problems. However, scientific reviews addressing the role of the spermatozoa epigenome during the reproductive process are scarce. Therefore, the aim of this review was to offer a detailed overview of current knowledge in the field of spermatozoa epigenetics and its consequent implications. A full search was performed through three databases by combining five keywords. Inclusion criteria were implemented to grant accessibility, relevance, and concretion. Besides, some articles were manually removed or added to obtain an adequate and complete collection of 485 scientific publications. This compilation was used to conduct the bibliometric analysis and the data review separately. Bibliometric results displayed that spermatozoa epigenetics is an active and growing research area. The bibliographic overview showed that sperm epigenome correlates with the development of its function, explaining the environmental influence on reproductive pathologies or abnormal inheritance. The main conclusions were that the normal performance of sperm is heavily reliant on its epigenetics and that this study area is burgeoning, with the potential ability to provide society with clinical innovations in a short-term period.
Collapse
Affiliation(s)
| | | | - Paula Sáez-Espinosa
- Correspondence: (P.S.-E.); (M.J.G.-T.); Tel.: +34-965-903-319 (P.S.-E.); +34-965-903-878 (M.J.G.-T.)
| | - María José Gómez-Torres
- Correspondence: (P.S.-E.); (M.J.G.-T.); Tel.: +34-965-903-319 (P.S.-E.); +34-965-903-878 (M.J.G.-T.)
| |
Collapse
|
39
|
Conflitti AC, Cicolani G, Buonacquisto A, Pallotti F, Faja F, Bianchini S, Blaconà G, Bruno SM, Linari A, Lucarelli M, Montanino D, Muzii L, Lenzi A, Lombardo F, Paoli D. Sperm DNA Fragmentation and Sperm-Borne miRNAs: Molecular Biomarkers of Embryo Development? Int J Mol Sci 2023; 24:ijms24021007. [PMID: 36674527 PMCID: PMC9864861 DOI: 10.3390/ijms24021007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The evaluation of morpho-functional sperm characteristics alone is not enough to explain infertility or to predict the outcome of Assisted Reproductive Technologies (ART): more sensitive diagnostic tools are needed in clinical practice. The aim of the present study was to analyze Sperm DNA Fragmentation (SDF) and sperm-borne miR-34c-5p and miR-449b-5p levels in men of couples undergoing ART, in order to investigate any correlations with fertilization rate, embryo quality and development. Male partners (n = 106) were recruited. Semen analysis, SDF evaluation and molecular profiling analysis of miR-34c-5p and miR-449b-5p (in 38 subjects) were performed. Sperm DNA Fragmentation evaluation- a positive correlation between SDF post sperm selection and the percentage of low-quality embryos and a negative correlation with viable embryo were found. SDF > 2.9% increased the risk of obtaining a non-viable embryo by almost 4-fold. Sperm miRNAs profile—we found an association with both miRNAs and sperm concentration, while miR-449b-5p is positively associated with SDF. Moreover, the two miRNAs are positively correlated. Higher levels of miR-34c-5p compared to miR-449b-5p increases by 14-fold the probability of obtaining viable embryos. This study shows that SDF, sperm miR-34c-5p, and miR-449b-5p have a promising role as biomarkers of semen quality and ART outcome.
Collapse
Affiliation(s)
- Anna Chiara Conflitti
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Gaia Cicolani
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandra Buonacquisto
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Francesco Pallotti
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Fabiana Faja
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Serena Bianchini
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Giovanna Blaconà
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Sabina Maria Bruno
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Antonella Linari
- Department of Maternal Infantile and Urological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, 00161 Rome, Italy
| | - Diletta Montanino
- Department of Maternal Infantile and Urological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Ludovico Muzii
- Department of Maternal Infantile and Urological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Andrea Lenzi
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Francesco Lombardo
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
40
|
Yuan C, Zhang K, Wang Z, Ma X, Liu H, Zhao J, Lu W, Wang J. Dietary flaxseed oil and vitamin E improve semen quality via propionic acid metabolism. Front Endocrinol (Lausanne) 2023; 14:1139725. [PMID: 37124753 PMCID: PMC10140321 DOI: 10.3389/fendo.2023.1139725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Flaxseed oil (FO) and vitamin E (VE) both have antioxidant effects on sperm. The present study investigated the effects of dietary supplementation with FO and/or VE on semen quality. Methods 16 fertile Simmental bulls were selected and randomly divided into 4 groups (n = 4): the control group (control diet), FO group (control diet containing 24 g/kg FO), VE group (control diet containing 150 mg/kg VE) and FOVE group (control diet containing 150 mg/kg VE and 24 g/kg FO), and the trial lasted 10 weeks. Results The results showed that the addition of FO independently can increase sperm motion parameters, the levels of catalase (CAT), glutathione peroxidase (GSH-Px), testosterone (T) and estradiol (E2), while reduce oxidative stress in seminal plasma (P < 0.05). Supplement of VE independently can increased the motility, motility parameters, CAT and superoxide dismutase (SOD) levels, and reduce oxidative stress in seminal plasma (P < 0.05). There was an interaction effect of FO × VE on motility and reactive oxygen species (ROS), while GSH-Px and ROS were affected by week × VE 2-way interaction, levels of T and E2 were also affected by the dietary FO × week interaction (P < 0.05). The triple interaction effects of FO, VE and week were significant for malondialdehyde (MDA) (P < 0.05). Compared with the control group, sperm from the FOVE group had a significantly higher in vitro fertilization (IVF) rate, and subsequent embryos had increased developmental ability with reduced ROS levels at the eight-cell stage, then increased adenosine triphosphate (ATP) content and gene expression levels of CAT, CDX2, Nanog, and SOD at the blastocyst stage (P < 0.05). Metabolomic and transcriptomic results indicated that dietary supplementation of FO and VE increased the expression of the metabolite aconitic acid, as well as the expression of ABAT and AHDHA genes. Conclusion With in-silico analysis, it can be concluded that the effects of dietary FO and VE on improving semen quality and embryo development may be related to increased aconitic acid via the ABAT and AHDHA genes involved in the propionic acid metabolism pathway.
Collapse
Affiliation(s)
- Chongshan Yuan
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Kaiyan Zhang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhe Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Xin Ma
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongyu Liu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Zhao
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- *Correspondence: Jing Zhao, ; Wenfa Lu, ; Jun Wang,
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- *Correspondence: Jing Zhao, ; Wenfa Lu, ; Jun Wang,
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- *Correspondence: Jing Zhao, ; Wenfa Lu, ; Jun Wang,
| |
Collapse
|
41
|
Nixon B, Schjenken JE, Burke ND, Skerrett-Byrne DA, Hart HM, De Iuliis GN, Martin JH, Lord T, Bromfield EG. New horizons in human sperm selection for assisted reproduction. Front Endocrinol (Lausanne) 2023; 14:1145533. [PMID: 36909306 PMCID: PMC9992892 DOI: 10.3389/fendo.2023.1145533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Male infertility is a commonly encountered pathology that is estimated to be a contributory factor in approximately 50% of couples seeking recourse to assisted reproductive technologies. Upon clinical presentation, such males are commonly subjected to conventional diagnostic andrological practices that rely on descriptive criteria to define their fertility based on the number of morphologically normal, motile spermatozoa encountered within their ejaculate. Despite the virtual ubiquitous adoption of such diagnostic practices, they are not without their limitations and accordingly, there is now increasing awareness of the importance of assessing sperm quality in order to more accurately predict a male's fertility status. This realization raises the important question of which characteristics signify a high-quality, fertilization competent sperm cell. In this review, we reflect on recent advances in our mechanistic understanding of sperm biology and function, which are contributing to a growing armory of innovative approaches to diagnose and treat male infertility. In particular we review progress toward the implementation of precision medicine; the robust clinical adoption of which in the setting of fertility, currently lags well behind that of other fields of medicine. Despite this, research shows that the application of advanced technology platforms such as whole exome sequencing and proteomic analyses hold considerable promise in optimizing outcomes for the management of male infertility by uncovering and expanding our inventory of candidate infertility biomarkers, as well as those associated with recurrent pregnancy loss. Similarly, the development of advanced imaging technologies in tandem with machine learning artificial intelligence are poised to disrupt the fertility care paradigm by advancing our understanding of the molecular and biological causes of infertility to provide novel avenues for future diagnostics and treatments.
Collapse
Affiliation(s)
- Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Brett Nixon,
| | - John E. Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nathan D. Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hanah M. Hart
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jacinta H. Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
42
|
Indriastuti R, Pardede BP, Gunawan A, Ulum MF, Arifiantini RI, Purwantara B. Sperm Transcriptome Analysis Accurately Reveals Male Fertility Potential in Livestock. Animals (Basel) 2022; 12:2955. [PMID: 36359078 PMCID: PMC9657999 DOI: 10.3390/ani12212955] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Nowadays, selection of superior male candidates in livestock as a source of frozen semen based on sperm quality at the cellular level is not considered accurate enough for predicting the potential of male fertility. Sperm transcriptome analysis approaches, such as messenger RNA levels, have been shown to correlate with fertility rates. Using this technology in livestock growth has become the principal method, which can be widely applied to predict male fertility potential in the livestock industry through the analysis of the sperm transcriptome. It provides the gene expression to validate the function of sperm in spermatogenesis, fertilization, and embryo development, as the parameters of male fertility. This review proposes a transcriptomic analysis approach as a high-throughput method to predict the fertility potential of livestock more accurately in the future.
Collapse
Affiliation(s)
- Rhesti Indriastuti
- Reproductive Biology Study Program, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
- Tuah Sakato Technology and Resource Development Center, Department of Animal Husbandry and Animal Health of West Sumatra, Payakumbuh 26229, Indonesia
| | - Berlin Pandapotan Pardede
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Asep Gunawan
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Mokhamad Fakhrul Ulum
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Raden Iis Arifiantini
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Bambang Purwantara
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
43
|
A Comparative Cross-Platform Analysis to Identify Potential Biomarker Genes for Evaluation of Teratozoospermia and Azoospermia. Genes (Basel) 2022; 13:genes13101721. [PMID: 36292606 PMCID: PMC9602071 DOI: 10.3390/genes13101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Male infertility is a global public health concern. Teratozoospermia is a qualitative anomaly of spermatozoa morphology, contributing significantly to male infertility, whereas azoospermia is the complete absence of spermatozoa in the ejaculate. Thus, there is a serious need for unveiling the common origin and/or connection between both of these diseases, if any. This study aims to identify common potential biomarker genes of these two diseases via an in silico approach using a meta-analysis of microarray data. In this study, a differential expression analysis of genes was performed on four publicly available RNA microarray datasets, two each from teratozoospermia (GSE6872 and GSE6967) and azoospermia (GSE145467 and GSE25518). From the analysis, 118 DEGs were found to be common to teratozoospermia and azoospermia, and, interestingly, sperm autoantigenic protein 17 (SPA17) was found to possess the highest fold change value among all the DEGs (9.471), while coiled-coil domain-containing 90B (CCDC90B) and coiled-coil domain-containing 91 (CCDC91) genes were found to be common among three of analyses, i.e., Network Analyst, ExAtlas, and GEO2R. This observation indicates that SPA17, CCDC90B, and CCDC91 genes might have significant roles to play as potential biomarkers for teratozoospermia and azoospermia. Thus, our study opens a new window of research in this area and can provide an important theoretical basis for the diagnosis and treatment of both these diseases.
Collapse
|
44
|
Ashapkin V, Suvorov A, Pilsner JR, Krawetz SA, Sergeyev O. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Hum Reprod Update 2022; 29:24-44. [PMID: 36066418 PMCID: PMC9825272 DOI: 10.1093/humupd/dmac033] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/05/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Modern reproductive behavior in most developed countries is characterized by delayed parenthood. Older gametes are generally less fertile, accumulating and compounding the effects of varied environmental exposures that are modified by lifestyle factors. Clinicians are primarily concerned with advanced maternal age, while the influence of paternal age on fertility, early development and offspring health remains underappreciated. There is a growing trend to use assisted reproductive technologies for couples of advanced reproductive age. Thus, the number of children born from older gametes is increasing. OBJECTIVE AND RATIONALE We review studies reporting age-associated epigenetic changes in mammals and humans in sperm, including DNA methylation, histone modifications and non-coding RNAs. The interplay between environment, fertility, ART and age-related epigenetic signatures is explored. We focus on the association of sperm epigenetics on epigenetic and phenotype events in embryos and offspring. SEARCH METHODS Peer-reviewed original and review articles over the last two decades were selected using PubMed and the Web of Science for this narrative review. Searches were performed by adopting the two groups of main terms. The first group included 'advanced paternal age', 'paternal age', 'postponed fatherhood', 'late fatherhood', 'old fatherhood' and the second group included 'sperm epigenetics', 'sperm', 'semen', 'epigenetic', 'inheritance', 'DNA methylation', 'chromatin', 'non-coding RNA', 'assisted reproduction', 'epigenetic clock'. OUTCOMES Age is a powerful factor in humans and rodent models associated with increased de novo mutations and a modified sperm epigenome. Age affects all known epigenetic mechanisms, including DNA methylation, histone modifications and profiles of small non-coding (snc)RNA. While DNA methylation is the most investigated, there is a controversy about the direction of age-dependent changes in differentially hypo- or hypermethylated regions with advanced age. Successful development of the human sperm epigenetic clock based on cross-sectional data and four different methods for DNA methylation analysis indicates that at least some CpG exhibit a linear relationship between methylation levels and age. Rodent studies show a significant overlap between genes regulated through age-dependent differentially methylated regions and genes targeted by age-dependent sncRNA. Both age-dependent epigenetic mechanisms target gene networks enriched for embryo developmental, neurodevelopmental, growth and metabolic pathways. Thus, age-dependent changes in the sperm epigenome cannot be described as a stochastic accumulation of random epimutations and may be linked with autism spectrum disorders. Chemical and lifestyle exposures and ART techniques may affect the epigenetic aging of sperm. Although most epigenetic modifications are erased in the early mammalian embryo, there is growing evidence that an altered offspring epigenome and phenotype is linked with advanced paternal age due to the father's sperm accumulating epigenetic changes with time. It has been hypothesized that age-induced changes in the sperm epigenome are profound, physiological and dynamic over years, yet stable over days and months, and likely irreversible. WIDER IMPLICATIONS This review raises a concern about delayed fatherhood and age-associated changes in the sperm epigenome that may compromise reproductive health of fathers and transfer altered epigenetic information to subsequent generations. Prospective studies using healthy males that consider confounders are recommended. We suggest a broader discussion focused on regulation of the father's age in natural and ART conceptions is needed. The professional community should be informed and should raise awareness in the population and when counseling older men.
Collapse
Affiliation(s)
| | | | - J Richard Pilsner
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Oleg Sergeyev
- Correspondence address. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Room 322, Moscow 119992, Russia. E-mail: https://orcid.org/0000-0002-5745-3348
| |
Collapse
|
45
|
Bisconti M, Leroy B, Gallagher MT, Senet C, Martinet B, Arcolia V, Wattiez R, Kirkman-Brown JC, Simon JF, Hennebert E. The ribosome inhibitor chloramphenicol induces motility deficits in human spermatozoa: A proteomic approach identifies potentially involved proteins. Front Cell Dev Biol 2022; 10:965076. [PMID: 36120567 PMCID: PMC9478589 DOI: 10.3389/fcell.2022.965076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mature spermatozoa are almost completely devoid of cytoplasm; as such it has long been believed that they do not contain ribosomes and are therefore not capable of synthesising proteins. However, since the 1950s, various studies have shown translational activity within spermatozoa, particularly during their in vitro capacitation. But the type of ribosomes involved (cytoplasmic or mitochondrial) is still debated. Here, we investigate the presence and activity of the two types of ribosomes in mature human spermatozoa. By targeting ribosomal RNAs and proteins, we show that both types of ribosomes are localized in the midpiece as well as in the neck and the base of the head of the spermatozoa. We assessed the impact of cycloheximide (CHX) and chloramphenicol (CP), inhibitors of cytoplasmic and mitochondrial ribosomes, respectively, on different sperm parameters. Neither CHX, nor CP impacted sperm vitality, mitochondrial activity (measured through the ATP content), or capacitation (measured through the content in phosphotyrosines). However, increasing CP concentrations induced a decrease in total and progressive motilities as well as on some kinematic parameters while no effect was observed with CHX. A quantitative proteomic analysis was performed by mass spectrometry in SWATH mode to compare the proteomes of spermatozoa capacitated in the absence or presence of the two ribosome inhibitors. Among the ∼700 proteins identified in the different tested conditions, 3, 3 and 25 proteins presented a modified abundance in the presence of 1 and 2 mg/ml of CHX, and 1 mg/ml of CP, respectively. The observed abundance variations of some CP-down regulated proteins were validated using Multiple-Reaction Monitoring (MRM). Taken together, our results are in favor of an activity of mitochondrial ribosomes. Their inhibition by CP results in a decrease in the abundance of several proteins, at least FUNDC2 and QRICH2, and consequently induces sperm motility deficits.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Coralie Senet
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Martinet
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Vanessa Arcolia
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Jackson C. Kirkman-Brown
- Institute of Metabolism and Systems Research, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Jean-François Simon
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- *Correspondence: Elise Hennebert,
| |
Collapse
|
46
|
Mańkowska A, Gilun P, Zasiadczyk Ł, Sobiech P, Fraser L. Expression of TXNRD1, HSPA4L and ATP1B1 Genes Associated with the Freezability of Boar Sperm. Int J Mol Sci 2022; 23:9320. [PMID: 36012584 PMCID: PMC9409117 DOI: 10.3390/ijms23169320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Cryopreservation is associated with increased oxidative stress, which is responsible for sperm damage. We analyzed the effect of cryopreservation on mRNA and protein expression of thioredoxin reductase 1 (TXNRD1), heat shock protein family A (HSP 70) member 4 like (HSPA4L) and sodium/potassium-transporting ATPase subunit beta-1 (ATP1B1) genes in boar sperm with different freezability. Boars were classified as having good and poor semen freezability (GSF and PSF, respectively), according to the assessment of post-thaw sperm motility. Total RNA was isolated from fresh pre-freeze (PF) and frozen-thawed (FT) sperm from five boars of the GSF and PSF groups, respectively. Quantification of TXNRD1, HSPA4L and ATP1B1 gene expression was performed by RT-qPCR analysis. Proteins extracted from sperm were subjected to Western blotting and SDS-PAGE analyses. Poor freezability ejaculates were characterized by significantly higher relative mRNA expression levels of TXNRD1 and HSPA4L in FT sperm compared with the fresh PF sperm. Furthermore, the relative mRNA expression level of ATP1B1 was significantly higher in the fresh PF sperm of the GSF group. Western blotting analysis revealed significantly higher relative expression of TXNRD1 protein in the fresh PF sperm of the GSF group, while HSPA4L protein expression was markedly increased in FT sperm of the PSF group. Electrophoretic and densitometric analyses revealed a higher number of proteins in the fresh PF and FT sperm of the PSF and GSF groups, respectively. The results of this study indicate that ATP1B1 mRNA expression in the fresh PF sperm is a promising cryotolerance marker, while the variations of TXNRD1 and HSPA4L protein expression in the fresh PF or FT sperm provide useful information that may help to elucidate their biological significance in cryo-damage.
Collapse
Affiliation(s)
- Anna Mańkowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Przemysław Gilun
- Department of Local Physiological Regulations, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Bydgoska 7, 10-243 Olsztyn, Poland
| | - Łukasz Zasiadczyk
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Przemysław Sobiech
- Internal Disease Unit, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Leyland Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
47
|
Joshi M, Andrabi SW, Yadav RK, Sankhwar SN, Gupta G, Rajender S. Qualitative and quantitative assessment of sperm miRNAs identifies hsa-miR-9-3p, hsa-miR-30b-5p and hsa-miR-122-5p as potential biomarkers of male infertility and sperm quality. Reprod Biol Endocrinol 2022; 20:122. [PMID: 35971175 PMCID: PMC9377062 DOI: 10.1186/s12958-022-00990-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In contrast with the preceding stages of the germ cells, spermatozoa are unusually rich in small non-coding RNAs in comparison to the coding RNAs. These small RNAs may have had an essential role in the process of spermatogenesis or may have critical roles in the post-fertilization development. Sporadic efforts have identified a few differentially expressed miRNAs in infertile individuals, which do not replicate in other studies. METHODS In order to identify miRNAs signatures of infertility or poor sperm quality, we compared miRNA differential expression data across nine datasets, followed by their analysis by real-time PCR in a case-control study. This was followed by the validation of potential biomarkers in yet another set of cases and controls. For this, total RNA was isolated from 161 sperm samples. miRNA expression levels in infertile cases and fertile controls were measured using TaqMan real-time PCR. Meta-analyses of two miRNAs (hsa-miR-9-3p and hsa-miR-122-5p) were performed using Comprehensive Meta-Analysis Software (version 2). All statistical analyses were performed with the help of GraphPad Prism Software (version 8). RESULTS Literature search identified seven miRNAs (hsa-let-7a-5p, hsa-miR-9-3p, hsa-miR-22-5p, has-miR-30b-5p, hsa-miR-103-3p, hsa-miR-122-5p and hsa-miR-335-5p) showing consistent dysregulation in infertility across a minimum of four studies. In the discovery phase, six miRNAs showed strong association with infertility with four (hsa-miR-9-3p, hsa-miR-30b-5p, hsa-miR-103-3p and hsa-miR-122-5p) showing consistent differential regulation across all sub-groups. Receiver operating characteristic (ROC) curve analysis showed that the area under curve of > 0.75 was achieved by three (hsa-mir-9-3p, hsa-miR-30b-5p and hsa-miR-122-5p) miRNAs. In the validation phase, these three miRNAs showed consistent association with infertility (hsa-mir-9-3p, hsa-miR-30b-5p, and hsa-miR-122-5p). Meta-analysis on hsa-miR-122-5p showed its significant quantitative association with infertility [Hedge's g = -2.428, p = 0.001 (Random effects)]. CONCLUSIONS Three miRNAs (hsa-miR-9-3p, hsa-miR-30b-5p and hsa-miR-122-5p) have strong linkage with infertility and a high potential as sperm quality biomarkers.
Collapse
Affiliation(s)
- Meghali Joshi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | | | | | | | - Gopal Gupta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
48
|
Guo H, Shen X, Hu H, Zhou P, He T, Xia L, Tan D, Zhang X, Zhang Y. Alteration of RNA modification signature in human sperm correlates with sperm motility. Mol Hum Reprod 2022; 28:gaac031. [PMID: 35959987 PMCID: PMC9422301 DOI: 10.1093/molehr/gaac031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
RNA modifications, which are introduced post-transcriptionally, have recently been assigned pivotal roles in the regulation of spermatogenesis and embryonic development. However, the RNA modification landscape in human sperm is poorly characterized, hampering our understanding about the potential role played by RNA modification in sperm. Through our recently developed high-throughput RNA modification detection platform based on liquid chromatography with tandem mass spectroscopy, we are the first to have characterized the RNA modification signature in human sperm. The RNA modification signature was generated on the basis of 49 samples from participants, including 13 healthy controls, 21 patients with asthenozoospermia (AZS) and 15 patients with teratozoospermia (TZS). In total, we identified 13 types of RNA modification marks on the total RNA in sperm, and 16 types of RNA modification marks on sperm RNA fragments of different sizes. The levels of these RNA modifications on the RNA of patients with AZS or TZS were altered, compared to controls, especially on sperm RNA fragments > 80 nt. A few types of RNA modifications, such as m1G, m5C, m2G and m1A, showed clear co-expression patterns as well as high linear correlations with clinical sperm motility. In conclusion, we characterized the RNA modification signature of human sperm and identified its correlation with sperm motility, providing promising candidates for use in clinical sperm quality assessment and new research insights for exploring the underlying pathological mechanisms in human male infertility syndromes.
Collapse
Affiliation(s)
- Huanping Guo
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xipeng Shen
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hua Hu
- Center for Reproductive & Genetic Medical, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Peng Zhou
- Center for Reproductive & Genetic Medical, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tong He
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Lin Xia
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yunfang Zhang
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
49
|
X chromosome-linked genes in the mature sperm influence semen quality and fertility of breeding bulls. Gene 2022; 839:146727. [PMID: 35835407 DOI: 10.1016/j.gene.2022.146727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
The role of sperm expressed X-linked genes on bull fertility has not been studied in detail. The objective of the present study was to assess the influence of X-linked genes on the sperm functional parameters and field fertility rate in the Holstein Friesian cattle (n = 12) and Murrah buffalo (n = 7) bulls. The enrichment analysis (cattle = 8; buffalo = 8) of the X-linked genes was carried out using retrospective RNA-seq data and mRNA expression levels of functionally relevant genes were validated using the RT-qPCR. The mRNA expression levels of these genes were functionally associated with sperm attributes and field fertility rate. The sperm transcriptome studies revealed that the total number of expressed genes and the transcript content of the X-linked genes in the mature sperm were very low in both species, and only 23.31% of these genes were commonly expressed between them. The transcript pool corresponding to the X-linked genes represents embryonic organ development (p = 0.03) and reproduction (p = 0.02) processes in cattle and buffalo sperm, respectively. The mRNA expression levels of X-linked genes, RPL10 and ZCCHC13 in cattle; AKAP4, TSPAN6, RPL10 and RPS4X in buffalo were significantly (p < 0.05) correlated with sperm kinematics. Importantly, the mRNA expression levels of the genes RPL10 (r = -0.68) and RPS4X (r = 0.81) had a significant correlation with the field fertility rate in cattle and buffalo, respectively. Multivariate regression models and receiver operating curve analysis suggest that the mRNA expression levels of X-linked genes may be useful in predicting bull fertility. The study indicates that sperm-expressed X-linked genes influence semen quality and field fertility rate in both cattle and buffalo.
Collapse
|
50
|
Pang WK, Amjad S, Ryu DY, Adegoke EO, Rahman MS, Park YJ, Pang MG. Establishment of a male fertility prediction model with sperm RNA markers in pigs as a translational animal model. J Anim Sci Biotechnol 2022; 13:84. [PMID: 35794675 PMCID: PMC9261079 DOI: 10.1186/s40104-022-00729-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Male infertility is an important issue that causes low production in the animal industry. To solve the male fertility crisis in the animal industry, the prediction of sperm quality is the most important step. Sperm RNA is the potential marker for male fertility prediction. We hypothesized that the expression of functional genes related to fertilization will be the best target for male fertility prediction markers. To investigate optimum male fertility prediction marker, we compared target genes expression level and a wide range of field data acquired from artificial insemination of boar semen. RESULTS Among the genes related to acrosomal vesicle exocytosis and sperm-oocyte fusion, equatorin (EQTN), zona pellucida sperm-binding protein 4 (ZP4), and sperm acrosome membrane-associated protein 3 exhibited high accuracy (70%, 90%, and 70%, respectively) as markers to evaluate male fertility. Combinations of EQTN-ZP4, ZP4-protein unc-13 homolog B, and ZP4-regulating synaptic membrane exocytosis protein 1 (RIMS1) showed the highest prediction value, and all these markers are involved in the acrosome reaction. CONCLUSION The EQTN-ZP4 model was efficient in clustering the high-fertility group and may be useful for selection of animal that has superior fertility in the livestock industry. Compared to the EQTN-ZP4 model, the ZP4-RIMS1 model was more efficient in clustering the low-fertility group and may be useful in the diagnosis of male infertility in humans and other animals. The appointed translational animal model and established biomarker combination can be widely used in various scientific fields such as biomedical science.
Collapse
Affiliation(s)
- Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Shehreen Amjad
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|