1
|
Heredia M, Charrout M, Klomberg RCW, Aardoom MA, Jongsma MME, Kemos P, Hulleman-van Haaften DH, Tuk B, van Berkel LA, Bley Folly B, Calado B, Nugteren S, Simons-Oosterhuis Y, Doukas M, Sanders MA, van Beek G, Ruemmele FM, Croft NM, Mahfouz A, Reinders MJT, Escher JC, de Ridder L, Samsom JN. Combined plasma protein and memory T cell profiling discern IBD-patient-immunotypes related to intestinal disease and treatment outcomes. Mucosal Immunol 2025; 18:76-89. [PMID: 39332767 DOI: 10.1016/j.mucimm.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Inflammatory bowel disease (IBD) chronicity results from memory T helper cell (Tmem) reactivation. Identifying patient-specific immunotypes is crucial for tailored treatment. We conducted a comprehensive study integrating circulating immune proteins and circulating Tmem, with intestinal tissue histology and mRNA analysis, in therapy-naïve pediatric IBD (Crohn's disease, CD: n = 62; ulcerative colitis, UC: n = 20; age-matched controls n = 43), and after 10-12 weeks' induction therapy. At diagnosis, plasma protein profiles unveiled two UC and three CD clusters with distinct disease courses. UC patients displayed unchanged circulating Tmem, while CD exhibited increased frequencies of gut-homing ex-Th17, known for high IFN-γ production. UC#2 had elevated Th17/neutrophil-pathway-related proteins and severe disease, with higher endoscopic and histological damage and Th17/neutrophil infiltration. Although both UC#1 and UC#2 responded to therapy, UC#2 required earlier immunomodulation. CD#3 had lower plasma protein concentrations, especially IFN-γ pathway proteins, fewer gut-homing ex-Th17 and clinically milder disease, confirmed by intestinal gene expression. CD#1 and CD#2 had comparably high Th1-related immune profiles, but CD#1 exhibited higher concentrations of proteins previously associated with poorer prognosis. Both CD clusters responded to induction therapy, with similar one-year outcomes. This study highlights feasibility of discriminating patient-specific immunotypes in IBD, advancing our understanding of immune pathogenesis, needed for tailored treatment strategies.
Collapse
Affiliation(s)
- Maud Heredia
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mohammed Charrout
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Renz C W Klomberg
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Martine A Aardoom
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maria M E Jongsma
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Polychronis Kemos
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Danielle H Hulleman-van Haaften
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bastiaan Tuk
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lisette A van Berkel
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brenda Bley Folly
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Beatriz Calado
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandrine Nugteren
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ytje Simons-Oosterhuis
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gregory van Beek
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank M Ruemmele
- Department of Pediatric Gastroenterology, Necker-Enfants Malades University Hospital, Institut Imagine, AP-HP, Université Paris Cité, Paris, France
| | - Nicholas M Croft
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Ahmed Mahfouz
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Lissy de Ridder
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Dezfouli MA, Rashidi SK, Yazdanfar N, Khalili H, Goudarzi M, Saadi A, Kiani Deh Kiani A. The emerging roles of neuroactive components produced by gut microbiota. Mol Biol Rep 2024; 52:1. [PMID: 39570444 DOI: 10.1007/s11033-024-10097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND As a multifunctional ecosystem, the human digestive system contains a complex network of microorganisms, collectively known as gut microbiota. This consortium composed of more than 1013 microorganisms and Firmicutes and Bacteroidetes are the dominant microbes. Gut microbiota is increasingly recognized for its critical role in physiological processes beyond digestion. Gut microbiota participates in a symbiotic relationship with the host and takes advantage of intestinal nutrients and mutually participates in the digestion of complex carbohydrates and maintaining intestinal functions. METHOD AND RESULT We reviewed the neuroactive components produced by gut microbiota. Interestingly, microbiota plays a crucial role in regulating the activity of the intestinal lymphatic system, regulation of the intestinal epithelial barrier, and maintaining the tolerance to food immunostimulating molecules. The gut-brain axis is a two-way communication pathway that links the gut microbiota to the central nervous system (CNS) and importantly is involved in neurodevelopment, cognition, emotion and synaptic transmissions. The connections between gut microbiota and CNS are via endocrine system, immune system and vagus nerve. CONCLUSION The gut microbiota produces common neurotransmitters and neuromodulators of the nervous system. These compounds play a role in neuronal functions, immune system regulation, gastrointestinal homeostasis, permeability of the blood brain barrier and other physiological processes. This review investigates the essential aspects of the neurotransmitters and neuromodulators produced by gut microbiota and their implications in health and disease.
Collapse
Affiliation(s)
- Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Khalil Rashidi
- Department of Medical Biotechnology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nada Yazdanfar
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Khalili
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Saadi
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Kiani Deh Kiani
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Riggott C, Ford AC, Gracie DJ. Review article: The role of the gut-brain axis in inflammatory bowel disease and its therapeutic implications. Aliment Pharmacol Ther 2024; 60:1200-1214. [PMID: 39367676 DOI: 10.1111/apt.18192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Treatments targeting the gut-brain axis (GBA) are effective at reducing symptom burden in irritable bowel syndrome (IBS). The prevalence of common mental disorders and IBS-type symptom reporting is significantly higher in inflammatory bowel disease (IBD) than would be expected, suggesting potential GBA effects in this setting. Manipulation of the GBA may offer novel treatment strategies in selected patients with IBD. We present a narrative review of the bi-directional effects of the GBA in IBD and explore the potential for GBA-targeted therapies in this setting. METHODS We searched MEDLINE, EMBASE, EMBASE Classic, PsychINFO, and the Cochrane Central Register of Controlled Trials for relevant articles published by March 2024. RESULTS The bi-directional relationship between psychological well-being and adverse longitudinal disease activity outcomes, and the high prevalence of IBS-type symptom reporting highlight the presence of GBA-mediated effects in IBD. Treatments targeting gut-brain interactions including brain-gut behavioural treatments, neuromodulators, and dietary interventions appear to be useful adjunctive treatments in a subset of patients. CONCLUSIONS Psychological morbidity is prevalent in patients with IBD. The relationship between longitudinal disease activity outcomes, IBS-type symptom reporting, and poor psychological health is mediated via the GBA. Proactive management of psychological health should be integrated into routine care. Further clinical trials of GBA-targeted therapies, conducted in selected groups of patients with co-existent common mental disorders, or those who report IBS-type symptoms, are required to inform effective integrated models of care in the future.
Collapse
Affiliation(s)
- Christy Riggott
- Leeds Gastroenterology Institute, St. James's University Hospital, Leeds, UK
| | - Alexander C Ford
- Leeds Gastroenterology Institute, St. James's University Hospital, Leeds, UK
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - David J Gracie
- Leeds Gastroenterology Institute, St. James's University Hospital, Leeds, UK
| |
Collapse
|
4
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Su L, Song G, Zhou T, Tian H, Xin H, Zou X, Xu Y, Jin X, Gui S, Lu X. Colon-targeted oral nanoliposomes loaded with psoralen alleviate DSS-induced ulcerative colitis. Biomater Sci 2024; 12:3212-3228. [PMID: 38757193 DOI: 10.1039/d4bm00321g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Oral administration, while convenient, but complex often faces challenges due to the complexity of the digestive environment. In this study, we developed a nanoliposome (NLP) encapsulating psoralen (P) and coated it with chitosan (CH) and pectin (PT) to formulate PT/CH-P-NLPs. PT/CH-P-NLPs exhibit good biocompatibility, superior to liposomes loaded with psoralen and free psoralen alone. After oral administration, PT/CH-P-NLPs remain stable in the stomach and small intestine, followed by a burst release of psoralen after reaching the slightly alkaline and gut microbiota-rich colon segment. In the DSS-induced ulcerative colitis of mice, PT/CH-P-NLPs showed significant effects on reducing inflammation, mitigating oxidative stress, protecting the integrity of the colon mucosal barrier, and modulating the gut microbiota. In conclusion, the designed nanoliposomes demonstrated the effective application of psoralen in treating ulcerative colitis.
Collapse
Affiliation(s)
- Liqian Su
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Gaoqing Song
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Tao Zhou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Hongmei Tian
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Hui Xin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotechnology Products, National Institutes for Food and Drug Control, Beijing 102629, People's Republic of China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
| |
Collapse
|
6
|
Garrett S, Zhang Y, Xia Y, Sun J. Intestinal Epithelial Axin1 Deficiency Protects Against Colitis via Altered Gut Microbiota. ENGINEERING (BEIJING, CHINA) 2024; 35:241-256. [PMID: 38911180 PMCID: PMC11192507 DOI: 10.1016/j.eng.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Intestinal homeostasis is maintained by specialized host cells and the gut microbiota. Wnt/β-catenin signaling is essential for gastrointestinal development and homeostasis, and its dysregulation has been implicated in inflammation and colorectal cancer. Axin1 negatively regulates activated Wnt/β-catenin signaling, but little is known regarding its role in regulating host-microbial interactions in health and disease. Here, we aim to demonstrate that intestinal Axin1 determines gut homeostasis and host response to inflammation. Axin1 expression was analyzed in human inflammatory bowel disease datasets. To explore the effects and mechanism of intestinal Axin1 in regulating intestinal homeostasis and colitis, we generated new mouse models with Axin1 conditional knockout in intestinal epithelial cell (IEC; Axin1 ΔIEC) and Paneth cell (PC; Axin1 ΔPC) to compare with control (Axin1 LoxP; LoxP: locus of X-over, P1) mice. We found increased Axin1 expression in the colonic epithelium of human inflammatory bowel disease (IBD). Axin1 ΔIEC mice exhibited altered goblet cell spatial distribution, PC morphology, reduced lysozyme expression, and enriched Akkermansia muciniphila (A. muciniphila). The absence of intestinal epithelial and PC Axin1 decreased susceptibility to dextran sulfate sodium (DSS)-induced colitis in vivo. Axin1 ΔIEC and Axin1 ΔPC mice became more susceptible to DSS-colitis after cohousing with control mice. Treatment with A. muciniphila reduced DSS-colitis severity. Antibiotic treatment did not change the IEC proliferation in the Axin1 Loxp mice. However, the intestinal proliferative cells in Axin1 ΔIEC mice with antibiotic treatment were reduced compared with those in Axin1 ΔIEC mice without treatment. These data suggest non-colitogenic effects driven by the gut microbiome. In conclusion, we found that the loss of intestinal Axin1 protects against colitis, likely driven by epithelial Axin1 and Axin1-associated A. muciniphila. Our study demonstrates a novel role of Axin1 in mediating intestinal homeostasis and the microbiota. Further mechanistic studies using specific Axin1 mutations elucidating how Axin1 modulates the microbiome and host inflammatory response will provide new therapeutic strategies for human IBD.
Collapse
Affiliation(s)
- Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Garrett S, Asada MC, Sun J. Axin1's mystique in manipulating microbiome amidst colitis. Gut Microbes 2023; 15:2286674. [PMID: 38010886 PMCID: PMC10730173 DOI: 10.1080/19490976.2023.2286674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Classically, Axin1 is considered a regulator of Wnt/β-catenin signaling. However, Axin1's roles in host-microbial interactions have been unknown. Our recent study has demonstrated that deletion of intestinal epithelial Axin1 in epithelial cells and Paneth cells protects the host against colitis by enhancing Akkermansia muciniphila. Loss of intestinal epithelial or Paneth cell Axin1 results in increased Wnt/β-catenin signaling, proliferation, and cell migration. This is associated with morphologically altered goblet and Paneth cells, including increased Muc2 and decreased lysozyme. Axin1 deletion specifically enriched Akkermansia muciniphila. Akkermansia muciniphila in Axin1 knockout mice is the driver of protection against DSS-induced inflammation. Here, we feature several significant conceptual changes, such as differences between Axin1 and Axin2, Axin1 in innate immunity and microbial homeostasis, and Axin1 reduction of Akkermansia muciniphila. We discuss an important trend in the field related to Paneth cells and tissue-specific Axin1 manipulation of microbiome in health and inflammation.
Collapse
Affiliation(s)
- Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Monica C. Asada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
- UIC Cancer Center, University of Illinois Chicago, Chicago, IL, USA
- Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
8
|
Yazici D, Cagan E, Tan G, Li M, Do E, Kucukkase OC, Simsek A, Kizmaz MA, Bozkurt T, Aydin T, Heider A, Rückert B, Brüggen MC, Dhir R, O'Mahony L, Akdis M, Nadeau KC, Budak F, Akdis CA, Ogulur I. Disrupted epithelial permeability as a predictor of severe COVID-19 development. Allergy 2023; 78:2644-2658. [PMID: 37422701 DOI: 10.1111/all.15800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND An impaired epithelial barrier integrity in the gastrointestinal tract is important to the pathogenesis of many inflammatory diseases. Accordingly, we assessed the potential of biomarkers of epithelial barrier dysfunction as predictive of severe COVID-19. METHODS Levels of bacterial DNA and zonulin family peptides (ZFP) as markers of bacterial translocation and intestinal permeability and a total of 180 immune and inflammatory proteins were analyzed from the sera of 328 COVID-19 patients and 49 healthy controls. RESULTS Significantly high levels of circulating bacterial DNA were detected in severe COVID-19 cases. In mild COVID-19 cases, serum bacterial DNA levels were significantly lower than in healthy controls suggesting epithelial barrier tightness as a predictor of a mild disease course. COVID-19 patients were characterized by significantly elevated levels of circulating ZFP. We identified 36 proteins as potential early biomarkers of COVID-19, and six of them (AREG, AXIN1, CLEC4C, CXCL10, CXCL11, and TRANCE) correlated strongly with bacterial translocation and can be used to predict and discriminate severe cases from healthy controls and mild cases (area under the curve (AUC): 1 and 0.88, respectively). Proteomic analysis of the serum of 21 patients with moderate disease at admission which progressed to severe disease revealed 10 proteins associated with disease progression and mortality (AUC: 0.88), including CLEC7A, EIF4EBP1, TRANCE, CXCL10, HGF, KRT19, LAMP3, CKAP4, CXADR, and ITGB6. CONCLUSION Our results demonstrate that biomarkers of intact or defective epithelial barriers are associated with disease severity and can provide early information on the prediction at the time of hospital admission.
Collapse
Affiliation(s)
- Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Eren Cagan
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
- Department of Pediatric Infectious Diseases, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Evan Do
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Ozan C Kucukkase
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Abdurrahman Simsek
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Muhammed Ali Kizmaz
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Tugce Bozkurt
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Tamer Aydin
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Anja Heider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Raja Dhir
- SEED Inc. Co., Los Angeles, California, USA
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Ferah Budak
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
9
|
Chen L, Li X, Gu Q. Chimonanthus salicifolius extract alleviates DSS-induced colitis and regulates gut microbiota in mice. Food Sci Nutr 2023; 11:3019-3030. [PMID: 37324926 PMCID: PMC10261787 DOI: 10.1002/fsn3.3282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 09/20/2023] Open
Abstract
Ulcerative colitis is a chronic and recurrent gastrointestinal intestinal disease accompanied by inflammatory disorders, immunologic inadequacy, and intestinal flora dysbiosis, and current therapeutic pharmaceuticals have limited side effects. In this study, we revealed the extraction method of Chimonanthus salicifolius, analyzed the main component, compared the effect of its extract, Lactobacillus, and conventional drugs with different properties on DSS (dextran sodium sulfate)-induced colitis, and indicated extract regulatory properties of inestinal flora. A colitis model was established on experimental design, and BALB/c mice (male, 7 weeks old) were randomly assigned to five groups (n = 10): control, DSS model, Chimonanthus salicifolius extract (CSE), Lactobacillus rhamnosus GG (LGG), and 5-aminosalicylic acid (5-ASA) groups. The three treatments could alleviate the symptoms and remit inflammation induced by DSS, in which CSE and LGG groups could both decrease the proinflammatory cytokine IL-6, IL-8, and TNF-α levels and increase anti-inflammatory cytokines IL-10 and TGF-β. The CSE intervention significantly promoted the higher production of butyric acid than LGG and 5-ASA groups (p < .05) after DSS challenge. Analysis of intestinal flora showed that CSE administration remarkably decreased the relative abundance of pathogenic bacteria Heliobacteriaceae and Peptococcaceae and exhibited higher abundance of Lactobacillaceae and Bifidobacterium than LGG in intestinal tract of mice (p < .05). These findings indicated that Chimonanthus salicifolius extract may have been beneficial for preventing and treating colitis.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang UniversityZhejiang Business CollegeHangzhouChina
- Research and develop departmentZhejiang Tact Artiste Biotechnology Group Co. LtdHangzhouChina
| | - Xin Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang UniversityZhejiang Business CollegeHangzhouChina
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang UniversityZhejiang Business CollegeHangzhouChina
| |
Collapse
|
10
|
Inflammatory Blood Signature Related to Common Psychological Comorbidity in Chronic Pain. Biomedicines 2023; 11:biomedicines11030713. [PMID: 36979692 PMCID: PMC10045222 DOI: 10.3390/biomedicines11030713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Chronic pain is characterized by high psychological comorbidity, and diagnoses are symptom-based due to a lack of clear pathophysiological factors and valid biomarkers. We investigate if inflammatory blood biomarker signatures are associated with pain intensity and psychological comorbidity in a mixed chronic pain population. Eighty-one patients (72% women) with chronic pain (>6 months) were included. Patient reported outcomes were collected, and blood was analyzed with the Proseek Multiplex Olink Inflammation Panel (Bioscience Uppsala, Uppsala, Sweden), resulting in 77 inflammatory markers included for multivariate data analysis. Three subgroups of chronic pain patients were identified using an unsupervised principal component analysis. No difference between the subgroups was seen in pain intensity, but differences were seen in mental health and inflammatory profiles. Ten inflammatory proteins were significantly associated with anxiety and depression (using the Generalized Anxiety Disorder 7-item scale (GAD-7) and the Patient Health Questionnaire (PHQ-9): STAMBP, SIRT2, AXIN1, CASP-8, ADA, IL-7, CD40, CXCL1, CXCL5, and CD244. No markers were related to pain intensity. Fifteen proteins could differentiate between patients with moderate/high (GAD-7/PHQ-9 > 10) or mild/no (GAD-7/PHQ-9 < 10) psychological comorbidity. This study further contributes to the increasing knowledge of the importance of inflammation in chronic pain conditions and indicates that specific inflammatory proteins may be related to psychological comorbidity.
Collapse
|
11
|
Chen J, Zhou Y, Sun Y, Yuan S, Kalla R, Sun J, Zhao J, Wang L, Chen X, Zhou X, Dai S, Zhang Y, Ho GT, Xia D, Cao Q, Liu Z, Larsson SC, Wang X, Ding K, Halfvarson J, Li X, Theodoratou E, Satsangi J. Bi-directional Mendelian randomization analysis provides evidence for the causal involvement of dysregulation of CXCL9, CCL11 and CASP8 in the pathogenesis of ulcerative colitis. J Crohns Colitis 2022; 17:777-785. [PMID: 36576886 PMCID: PMC10155748 DOI: 10.1093/ecco-jcc/jjac191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Systemic inflammation is well-recognized to be associated with ulcerative colitis (UC), but whether these effects are causal or consequential remains unclear. We aimed to define potential causal relationship of cytokine dysregulation with different tiers of evidence. METHODS We firstly synthesized serum proteomic profiling data from two multi-centered observational studies, in which a panel of systemic inflammatory proteins was analyzed to examine their associations with UC risk. To further dissect observed associations, we then performed a bidirectional two-sample Mendelian randomization (TSMR) analysis from both forward and reverse directions using five genome-wide association study (GWAS) summary level data for serum proteomic profiles and the largest GWAS of 28,738 European-ancestry individuals for UC risk. RESULTS Pooled analysis of serum proteomic data identified 14 proteins to be associated with the risk of UC. Forward MR analysis using only cis-acting protein quantitative trait loci (cis-pQTLs) or trans-pQTLs further validated causal associations of two chemokines and the increased risk of UC: C-X-C motif chemokine ligand 9 (CXCL9) (OR, 1.45, 95% CI, 1.08-1.95, P=.012) and C-C motif chemokine ligand 11 (CCL11) (OR, 1.14, 95%CI: 1.09-1.18, P=3.89×10 -10). Using both cis- and trans-acting pQTLs, an association of caspase-8 (CASP8) (OR, 1.04, 95% CI, 1.03-1.05, P= 7.63×10 -19) was additionally identified. Reverse MR did not find any influence of genetic predisposition to UC on any of these three inflammation proteins. CONCLUSIONS Pre-existing elevated levels of CXCL9, CCL11 and CASP8 may play a role in the pathogenesis of UC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yajing Zhou
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhao Sun
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Yuan
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rahul Kalla
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Jing Sun
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijuan Wang
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Zhou
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siqi Dai
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Gwo-Tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Dajing Xia
- Department of Toxicology of School of Public Health, & Center of Immunology & Infection, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Zhanju Liu
- Center for IBD Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
12
|
Fan W, Fang X, Hu C, Fei G, Xiao Q, Li Y, Li X, Wood JD, Zhang X. Multiple rather than specific autoantibodies were identified in irritable bowel syndrome with HuProt™ proteome microarray. Front Physiol 2022; 13:1010069. [PMID: 36262261 PMCID: PMC9573966 DOI: 10.3389/fphys.2022.1010069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Immune activation and several autoantibodies might be involved in the pathophysiology of irritable bowel syndrome (IBS). We aimed to identify serum biomarkers for IBS by HuProt™ microarray. IBS patients met Rome III criteria were enrolled. Control groups included healthy controls (HCs) and disease controls (DCs). In stage I, we profiled sera from IBS and control groups with HuProt™ microarrays. Based on significant different proteins in stage I, IBS focused microarrays were constructed and validated in a larger cohort in stage II, then decision tree models were generated to establish a combination of biomarkers. In stage III, 4 purified proteins were verified by ELISA. Finally, we analyzed the correlation of autoantibodies with symptoms. In stage I, we identified 47 significant different proteins including 8 autoantibodies of IgG, 2 of IgA between IBS and HCs; 13 autoantibodies of IgG, 13 of IgA between IBS and DCs. In stage II, we found the positive rates of 14 IgG and IgA autoantibodies in IBS were significantly higher than HCs. Five autoantibodies of IgG and 7 IgA were comprehensively involved in differentiating IBS and HCs with the sensitivity and specificity to diagnose IBS as 40%–46.7% and 79.4%–86.3%. The median optical density value of ELAVL4 (IgG) and PIGP (IgA) were significantly higher in IBS than HCs. Parts of autoantibodies above were related to IBS symptoms. We found a combination of autoantibodies to differentiate IBS with HCs, but no specific autoantibodies could serve as serum biomarkers for IBS.
Collapse
Affiliation(s)
- Wenjuan Fan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiucai Fang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiucai Fang,
| | - Chaojun Hu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guijun Fei
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiyun Xiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Rheumatology and Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqing Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jackie D. Wood
- Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Abstract
LINKED CONTENTThis article is linked to Fairbrass et al papers. To view these articles, visit https://doi.org/10.1111/apt.17193 and https://doi.org/10.1111/apt.17215
Collapse
Affiliation(s)
- Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Svensson A, Roth B, Kronvall L, Ohlsson B. TSH receptor antibodies (TRAb) - A potential new biomarker for endometriosis. Eur J Obstet Gynecol Reprod Biol 2022; 278:115-121. [PMID: 36152376 DOI: 10.1016/j.ejogrb.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The prevalence of several autoimmune diseases, including thyroid dysfunction, has been reported to be increased in patients with endometriosis. Upregulated thyroid stimulation hormone (TSH) receptors in ectopic endometrium and elevated serum titers of TSH receptor antibodies (TRAb) IgG in endometriosis patients indicates an overlap in pathophysiology. However, cross-reactivity with other antibodies must be excluded. The objective of this study was to compare the expression of autoantibodies in women with endometriosis and two control groups to evaluate the potential of TRAb IgG as a diagnostic marker for endometriosis. STUDY DESIGN This cross-sectional study was carried out in 172 women with surgically confirmed endometriosis and two control groups consisting of 50 healthy blood donors and 114 women from Malmö Offspring Study consisting of people from the general population. Serum levels of thyroid hormones, TSH and TRAb autoantibodies, AXIN1, and autoantibodies against follicle stimulating hormone (FSH), human chorionic gonadotropin (hCG), luteinizing hormone (LH), and their receptors, were analyzed. The patients answered a questionnaire and estimated their gastrointestinal symptoms using the Visual Analogue Scale for Irritable Bowel Syndrome. RESULTS Of the endometriosis patients, 29.1 % had TRAb IgG above the present detection limit of ≥ 1.0 IE/L compared to 2.6 % of the controls from MOS (p < 0.001) and 94.5 % had levels of TRAb over the previous detection limit ≥ 0.3 IE/L compared to 7.9 % of the controls (p < 0.001). Titers of both TRAb IgG and IgM were increased in patients compared to controls from MOS and blood donors, respectively (p < 0.001). There was no increase of autoantibodies against FSH, FSH receptor (FSHR), hCG, LH, LH receptor (LHR) or TSH compared to the blood donor controls. TRAb titers did not correlate with age, disease duration, AXIN1, TSH, thyroid hormones or gastrointestinal symptoms. CONCLUSION TRAb IgG and IgM are slightly elevated in patients with endometriosis with no cross-reactivity with other autoantibodies. The results indicate that TRAb is truly elevated and thereby has the potential to be used to support the diagnosing of endometriosis.
Collapse
Affiliation(s)
- Agnes Svensson
- Department of Internal Medicine, Skåne University Hospital, Lund University, Jan Waldenströms street 15, floor 5, 205 02 Malmö, Sweden.
| | - Bodil Roth
- Department of Internal Medicine, Skåne University Hospital, Lund University, Jan Waldenströms street 15, floor 5, 205 02 Malmö, Sweden.
| | - Linnea Kronvall
- Department of Internal Medicine, Skåne University Hospital, Lund University, Jan Waldenströms street 15, floor 5, 205 02 Malmö, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, Lund University, Jan Waldenströms street 15, floor 5, 205 02 Malmö, Sweden.
| |
Collapse
|
15
|
Ueland HO, Ueland GÅ, Løvås K, Breivk LE, Thrane AS, Meling Stokland AE, Rødahl E, Husebye ES. Novel inflammatory biomarkers in thyroid eye disease. Eur J Endocrinol 2022; 187:293-300. [PMID: 35675127 PMCID: PMC9723260 DOI: 10.1530/eje-22-0247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE The aim of this study is to identify biochemical inflammatory markers predicting the presence or risk of developing thyroid eye disease (TED) in patients with Graves' disease (GD). METHODS Patients with GD (n = 100, 77 females) were included from the National Norwegian Registry of Organ-Specific Diseases. Serum samples were analysed for 92 different inflammatory biomarkers using the proximity extension assay. Biomarker levels were compared between groups of patients with and without TED and healthy subjects (HS) (n = 120). RESULTS TED was found in 36 of 100 GD patients. Significant (P < 0.05) differences in the levels of 52 inflammatory biomarkers were found when GD patients and HS were compared (42 elevated and 10 decreased). Out of the 42 elevated biomarkers, a significantly higher serum level of interleukin-6 (IL6) (P = 0.022) and macrophage colony-stimulating factor (CSF1) (P = 0.015) were found in patients with TED compared to patients without TED. Patients with severe TED also had significantly elevated levels of Fms-related tyrosine kinase 3 ligand (FLT3LG) (P = 0.009). Furthermore, fibroblast growth factor 21 (FGF21) was significantly increased (P = 0.008) in patients with GD who had no signs of TED at baseline but developed TED later. CONCLUSION We demonstrate an immunologic fingerprint of GD, as serum levels of several inflammation-related proteins were elevated, while others were decreased. Distinctly increased levels of IL6, CSF1, FLT3LG, and FGF21 were observed in TED, suggesting that these inflammatory proteins could be important in the pathogenesis, and therefore potential new biomarkers for clinical use.
Collapse
Affiliation(s)
- Hans Olav Ueland
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
- Correspondence should be addressed to H O Ueland;
| | - Grethe Åstrøm Ueland
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Correspondence should be addressed to H O Ueland;
| | - Kristian Løvås
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lars Ertesvåg Breivk
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | | | | | - Eyvind Rødahl
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eystein Sverre Husebye
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Wiley JW, Higgins GA, Hong S. Chronic psychological stress alters gene expression in rat colon epithelial cells promoting chromatin remodeling, barrier dysfunction and inflammation. PeerJ 2022; 10:e13287. [PMID: 35509963 PMCID: PMC9059753 DOI: 10.7717/peerj.13287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Chronic stress is commonly associated with enhanced abdominal pain (visceral hypersensitivity), but the cellular mechanisms underlying how chronic stress induces visceral hypersensitivity are poorly understood. In this study, we examined changes in gene expression in colon epithelial cells from a rat model using RNA-sequencing to examine stress-induced changes to the transcriptome. Following chronic stress, the most significantly up-regulated genes included Atg16l1, Coq10b, Dcaf13, Nat2, Ptbp2, Rras2, Spink4 and down-regulated genes including Abat, Cited2, Cnnm2, Dab2ip, Plekhm1, Scd2, and Tab2. The primary altered biological processes revealed by network enrichment analysis were inflammation/immune response, tissue morphogenesis and development, and nucleosome/chromatin assembly. The most significantly down-regulated process was the digestive system development/function, whereas the most significantly up-regulated processes were inflammatory response, organismal injury, and chromatin remodeling mediated by H3K9 methylation. Furthermore, a subpopulation of stressed rats demonstrated very significantly altered gene expression and transcript isoforms, enriched for the differential expression of genes involved in the inflammatory response, including upregulation of cytokine and chemokine receptor gene expression coupled with downregulation of epithelial adherens and tight junction mRNAs. In summary, these findings support that chronic stress is associated with increased levels of cytokines and chemokines, their downstream signaling pathways coupled to dysregulation of intestinal cell development and function. Epigenetic regulation of chromatin remodeling likely plays a prominent role in this process. Results also suggest that super enhancers play a primary role in chronic stress-associated intestinal barrier dysfunction.
Collapse
Affiliation(s)
- John W. Wiley
- Department of Internal Medicine, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| | - Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| | - Shuangsong Hong
- Department of Internal Medicine, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| |
Collapse
|
17
|
Roth B, Myllyvainio J, D’Amato M, Larsson E, Ohlsson B. A Starch- and Sucrose-Reduced Diet in Irritable Bowel Syndrome Leads to Lower Circulating Levels of PAI-1 and Visfatin: A Randomized Controlled Study. Nutrients 2022; 14:nu14091688. [PMID: 35565656 PMCID: PMC9101041 DOI: 10.3390/nu14091688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is characterized by gastrointestinal symptoms. Overweight and increased risk of metabolic syndromes/diabetes are observed in IBS, conditions associated with plasminogen activator inhibitor-1 (PAI-1) and visfatin. The aim of this study was to measure blood levels of AXIN1, cholecystokinin (CCK), enkephalin, ghrelin, neuropeptide Y (NPY), PAI-1, and visfatin before and after a 4-week intervention with a starch- and sucrose-reduced diet (SSRD). A total of 105 IBS patients were randomized to either SSRD (n = 80) or ordinary diet (n = 25). Questionnaires were completed, and blood was analyzed for AXIN1 and hormones. AXIN1 (p = 0.001) and active ghrelin levels (p = 0.025) were lower in IBS than in healthy volunteers at baseline, whereas CCK and enkephalin levels were higher (p < 0.001). In the intervention group, total IBS-symptom severity score (IBS-SSS), specific gastrointestinal symptoms, psychological well-being, and the influence of intestinal symptoms on daily life were improved during the study, and weight decreased (p < 0.001 for all), whereas only constipation (p = 0.045) and bloating (p = 0.001) were improved in the control group. PAI-1 levels tended to be decreased in the intervention group (p = 0.066), with a difference in the decrease between groups (p = 0.022). Visfatin levels were decreased in the intervention group (p = 0.007). There were few correlations between hormonal levels and symptoms. Thus, this diet not only improves IBS symptoms but also seems to have a general health-promoting effect.
Collapse
Affiliation(s)
- Bodil Roth
- Department of Internal Medicine, Skåne University Hospital, SE-20502 Malmö, Sweden;
- Department of Clinical Sciences, Lund University, SE-22100 Lund, Sweden; (J.M.); (E.L.)
| | - Julia Myllyvainio
- Department of Clinical Sciences, Lund University, SE-22100 Lund, Sweden; (J.M.); (E.L.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE—BRTA, 48160 Derio, Spain; or
- Ikerbasque, Basque Foundation for Science, 48080 Bilbao, Spain
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Ewa Larsson
- Department of Clinical Sciences, Lund University, SE-22100 Lund, Sweden; (J.M.); (E.L.)
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, SE-20502 Malmö, Sweden;
- Department of Clinical Sciences, Lund University, SE-22100 Lund, Sweden; (J.M.); (E.L.)
- Correspondence:
| |
Collapse
|
18
|
Milovac I, Vidović V, Ramić J, Lojo-Kadrić N, Hadžić M, Mavija Z, Vidović S, Pojskić L. Identification of gene candidates associated with Irritable bowel syndrome. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-39890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background/Aim: Irritable bowel syndrome (IBS) belongs to the gastrointestinal disorders characterised by abdominal discomfort and pain, altered constipation, diarrhoea and stomach distension. The aim was to assess relationship between the selected genetic polymorphisms with IBS, their combined genotype effect as well as to assess a difference in the distribution of allele and genotype frequencies of selected loci between case and control group. Methods: This was a prospective study which included 29 participants, 20 individuals diagnosed with IBS based on Rome III criteria and 9 healthy individuals. The study analysed the selected genetic polymorphisms as possible risk factors for IBS according to the model of the case-control study. Genotyping was performed for FKBP5, DRD2 and DAT polymorphisms qualified as risk factors for IBS in previous researches. Results: The results revealed a significant association between DAT polymorphism with IBS, both, at the allelic level (p = 0.006) and genotype level (p = 0.031). Individuals with 434 allelic variant in the genotype have six time higher probability for developing IBS, in comparison to the individuals without this allelic variant. The statistical association between other analysed polymorphism and IBS was not reached. The analysis of combined effects of selected polymorphisms revealed no association with IBS, except FKBP5 and DAT which result was at the level of statistical significance (p = 0.05). Conclusion: Further analysis which would include DAT polymorphism with larger sample size, as well as other genes involved in dopamine neurotransmitter system would be of great interest to define closer conclusion of IBS aetiology.
Collapse
|
19
|
Qu H, Sundberg E, Aulin C, Neog M, Palmblad K, Horne AC, Granath F, Ek A, Melén E, Olsson M, Harris HE. Immunoprofiling of active and inactive systemic juvenile idiopathic arthritis reveals distinct biomarkers: a single-center study. Pediatr Rheumatol Online J 2021; 19:173. [PMID: 34963488 PMCID: PMC8713412 DOI: 10.1186/s12969-021-00660-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to perform an immunoprofiling of systemic juvenile idiopathic arthritis (sJIA) in order to define biomarkers of clinical use as well as reveal new immune mechanisms. METHODS Immunoprofiling of plasma samples from a clinically well-described cohort consisting of 21 sJIA patients as well as 60 age and sex matched healthy controls, was performed by a highly sensitive proteomic immunoassay. Based on the biomarkers being significantly up- or down-regulated in cross-sectional and paired analysis, related canonical pathways and cellular functions were explored by Ingenuity Pathway Analysis (IPA). RESULTS The well-studied sJIA biomarkers, IL6, IL18 and S100A12, were confirmed to be increased during active sJIA as compared to healthy controls. IL18 was the only factor found to be increased during inactive sJIA as compared to healthy controls. Novel factors, including CASP8, CCL23, CD6, CXCL1, CXCL11, CXCL5, EIF4EBP1, KITLG, MMP1, OSM, SIRT2, SULT1A1 and TNFSF11, were found to be differentially expressed in active and/or inactive sJIA and healthy controls. No significant pathway activation could be predicted based on the limited factor input to the IPA. High Mobility Group Box 1 (HMGB1), a damage associated molecular pattern being involved in a series of inflammatory diseases, was determined to be higher in active sJIA than inactive sJIA. CONCLUSIONS We could identify a novel set of biomarkers distinguishing active sJIA from inactive sJIA or healthy controls. Our findings enable a better understanding of the immune mechanisms active in sJIA and aid the development of future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Heshuang Qu
- grid.4714.60000 0004 1937 0626Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Division of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Sundberg
- grid.24381.3c0000 0000 9241 5705Unit of Pediatric Rheumatology, Karolinska University Hospital, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Aulin
- grid.4714.60000 0004 1937 0626Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Division of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Manoj Neog
- grid.4714.60000 0004 1937 0626Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Division of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Palmblad
- grid.24381.3c0000 0000 9241 5705Unit of Pediatric Rheumatology, Karolinska University Hospital, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Anna Carin Horne
- grid.24381.3c0000 0000 9241 5705Unit of Pediatric Rheumatology, Karolinska University Hospital, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Granath
- grid.4714.60000 0004 1937 0626Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Ek
- Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Erik Melén
- grid.416452.0Sachs Children’s Hospital, Stockholm, Sweden ,Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Mia Olsson
- grid.4714.60000 0004 1937 0626Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Division of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Erlandsson Harris
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden. .,Division of Rheumatology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Pérez de Arce E, Quera R, Quigley EMM. The Dilemma of Persistent Irritable Bowel Syndrome Symptoms in Patients with Quiescent Inflammatory Bowel Disease. Gastroenterol Clin North Am 2021; 50:689-711. [PMID: 34304795 DOI: 10.1016/j.gtc.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome and inflammatory bowel disease differ in their natural evolution, etiopathogenesis, diagnostic criteria, and therapeutic approach. However, recent evidence has suggested some similarities in mechanisms underlying symptom development and progression. There is a relevant role for alterations in the microbiome-brain-gut axis in both diseases. The presence of irritable bowel syndrome symptoms in patients with quiescent inflammatory bowel disease is common in clinical practice. To determine the cause of irritable bowel syndrome symptoms in patients with quiescent inflammatory bowel disease is a clinical challenge. This review aims to illustrate possible causes and solutions for these patients.
Collapse
Affiliation(s)
- Edith Pérez de Arce
- Department of Medicine, Division of Gastroenterology, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, Independencia, Región Metropolitana, Santiago, Chile
| | - Rodrigo Quera
- Division of Gastroenterology, Inflammatory Bowel Disease Program, Clínica Universidad de los Andes, Estoril 450, Las Condes, Región Metropolitana, Santiago, Chile
| | - Eamonn M M Quigley
- Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital, Weill Cornell Medical College, Houston, TX, USA.
| |
Collapse
|
21
|
Swedik S, Madola A, Levine A. IL-17C in human mucosal immunity: More than just a middle child. Cytokine 2021; 146:155641. [PMID: 34293699 DOI: 10.1016/j.cyto.2021.155641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-17C (IL-17C) is an understudied member of the IL-17 family of cytokines. Its synthesis is induced by both cytokines and pathogenic stimuli in a variety of cell types, most often expressed at mucosal and barrier surfaces. IL-17C expression is dysregulated in a variety of autoinflammatory and autoimmune diseases including inflammatory bowel disease, psoriasis, and atopic dermatitis, yet it is protective against bacterial infections of the gut, skin, and lungs. In this review we highlight studies on IL-17C regulation and its function at human mucosal surfaces. Understanding the relationship between IL-17C and autoinflammatory and autoimmune diseases of the mucosa and defining the beneficial and pathogenic functions of the cytokine in inflammatory responses are the first steps in determining the potential for IL-17C as a therapeutic target.
Collapse
Affiliation(s)
- Stephanie Swedik
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States
| | - Abson Madola
- Department of Biology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States
| | - Alan Levine
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States; Departments of Pathology, Pharmacology, Medicine, and Pediatrics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States.
| |
Collapse
|
22
|
Effects of olives and their constituents on the expression of ulcerative colitis: a systematic review of randomised controlled trials. Br J Nutr 2021; 127:1153-1171. [PMID: 34100354 DOI: 10.1017/s0007114521001999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extra virgin olive oil is often associated with anti-inflammatory and antioxidant properties. Its effects on inflammatory conditions such as ulcerative colitis (UC), however, have yet to be defined. As such, we aimed to conduct a systematic review and meta-analysis of studies investigating olive-based interventions in UC. A comprehensive database search for randomised controlled trials was performed between 9 July 2018 and 16 August 2018. Studies identified from search alerts were included up to 22 June 2020. Both individuals living with UC at any disease stage and murine models of UC were included in this review. No human trials meeting the eligibility criteria were identified, while nineteen animal studies comprised 849 murine models of UC were included in this review. Pooling of the data could not be performed due to heterogeneous outcomes; however, general trends favouring olive-based interventions were identified. Milder disease expression including weight maintenance, reduced rectal bleeding and well-formed stools favouring olive-based interventions was statistically significant in 16/19 studies, with moderate-to-large effect sizes (-0·66 (95 % CI -1·56, 0·24) to -12·70 (95 % CI -16·8, -8·7)). Olive-based interventions did not prevent the development of colitis-like pathologies in any study. In conclusion, effects of olive-based interventions on murine models of UC appear promising, with milder disease outcomes favouring the intervention in most trials and effect sizes suggesting potential clinical relevance. However, the lack of published randomised controlled human trials warrants further investigation to determine if these effects would translate to individuals living with UC.
Collapse
|
23
|
Pérez de Arce E, Quera R, Beltrán CJ, Madrid AM, Nos P. Irritable Bowel Syndrome in Inflammatory Bowel Disease. Synergy in alterations of the gut-brain axis? GASTROENTEROLOGIA Y HEPATOLOGIA 2021; 45:66-76. [PMID: 34023477 DOI: 10.1016/j.gastrohep.2021.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
The presence of digestive symptoms associated with irritable bowel syndrome (IBS) in patients with inflammatory bowel disease (IBD) in remission is a topic of growing interest. Although there is heterogeneity in clinical studies regarding the use of IBD remission criteria and the diagnosis of IBS, the available data indicate that the IBD-IBS overlap would affect up to one third of patients in remission, and they agree on the finding of a negative impact on the mental health and quality of life of the individuals who suffer from it. The pathophysiological bases that would explain this potential overlap are not completely elucidated; however, an alteration in the gut-brain axis associated with an increase in intestinal permeability, neuroimmune activation and dysbiosis would be common to both conditions. The hypothesis of a new clinical entity or syndrome of "Irritable Inflammatory Bowel Disease" or "Post-inflammatory IBS" is the subject of intense investigation. The clinical approach is based on certifying the remission of IBD activity and ruling out other non-inflammatory causes of potentially treatable persistent functional digestive symptoms. In the case of symptoms associated with IBS and in the absence of sufficient evidence, comprehensive and personalized management of the clinical picture (dietary, pharmacological and psychotherapeutic measures) should be carried out, similar to a genuine IBS.
Collapse
Affiliation(s)
- Edith Pérez de Arce
- Departamento de Medicina Interna, Servicio de Gastroenterología, Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Rodrigo Quera
- Programa Enfermedad Inflamatoria Intestinal, Departamento de Gastroenterología, Clínica Universidad de los Andes, Santiago, Chile
| | - Caroll J Beltrán
- Laboratorio de Inmuno-gastroenterología, Servicio de Gastroenterología, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ana María Madrid
- Departamento de Medicina Interna, Servicio de Gastroenterología, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Pilar Nos
- Unidad de Enfermedad Inflamatoria Intestinal, Servicio de Medicina Digestiva, Hospital Universitari i Politècnic La Fe, Valencia, España
| |
Collapse
|
24
|
The overlap between irritable bowel syndrome and organic gastrointestinal diseases. Lancet Gastroenterol Hepatol 2021; 6:139-148. [DOI: 10.1016/s2468-1253(20)30212-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
|
25
|
Nasef NA, Mehta S. Role of Inflammation in Pathophysiology of Colonic Disease: An Update. Int J Mol Sci 2020; 21:E4748. [PMID: 32635383 PMCID: PMC7370289 DOI: 10.3390/ijms21134748] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Diseases of the colon are a big health burden in both men and women worldwide ranging from acute infection to cancer. Environmental and genetic factors influence disease onset and outcome in multiple colonic pathologies. The importance of inflammation in the onset, progression and outcome of multiple colonic pathologies is gaining more traction as the evidence from recent research is considered. In this review, we provide an update on the literature to understand how genetics, diet, and the gut microbiota influence the crosstalk between immune and non‑immune cells resulting in inflammation observed in multiple colonic pathologies. Specifically, we focus on four colonic diseases two of which have a more established association with inflammation (inflammatory bowel disease and colorectal cancer) while the other two have a less understood relationship with inflammation (diverticular disease and irritable bowel syndrome).
Collapse
Affiliation(s)
- Noha Ahmed Nasef
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Sunali Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
26
|
Oxidative Phosphorylation Dysfunction Modifies the Cell Secretome. Int J Mol Sci 2020; 21:ijms21093374. [PMID: 32397676 PMCID: PMC7246988 DOI: 10.3390/ijms21093374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/29/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial oxidative phosphorylation disorders are extremely heterogeneous conditions. Their clinical and genetic variability makes the identification of reliable and specific biomarkers very challenging. Until now, only a few studies have focused on the effect of a defective oxidative phosphorylation functioning on the cell’s secretome, although it could be a promising approach for the identification and pre-selection of potential circulating biomarkers for mitochondrial diseases. Here, we review the insights obtained from secretome studies with regard to oxidative phosphorylation dysfunction, and the biomarkers that appear, so far, to be promising to identify mitochondrial diseases. We propose two new biomarkers to be taken into account in future diagnostic trials.
Collapse
|