1
|
Ramírez-Díaz C, Kolmann MA, Peredo CM, Cruz-Escalona VH, Peña R. Cranial musculature of batoids: A standardized nomenclature. Anat Rec (Hoboken) 2025; 308:163-179. [PMID: 38924302 DOI: 10.1002/ar.25527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Batoids (rays and skates) are cartilaginous fishes whose jaws are not articulated directly to the neurocranium. The only point of contact between them are the hyomandibular cartilages, resulting in a unique mandibular suspension called euhyostyly. Due to this decoupling of the jaws from the skull, muscles play an essential role in modulating mandibular movements during the feeding process, especially during mandibular protrusion. The main objectives of our study were: (1) to examine the mandibular musculature of eight batoid species from different orders in the Batoidea and (2) establish a standardized musclulature terminology for future comparative myological studies in batoids. For each muscle bundle, the general characteristics of each cranial muscle were described and their origin and insertions were identified. The number of muscle bundles differed intraspecifically. On the dorsal surface, we reported the first evidence of the presence of the precranial muscle (PCM) in U. halleri, as well as the ethmoideo-parethmoidalis muscle (ETM) in R. velezi, P. glaugostigma and Z. exasperata; in addition, the insertion of the spiracularis muscle (SP) extended to the ventral surface of the oropharyngeal tract in myliobatiforms. On the ventral surface of the head, both N. entemedor and M. californica exhibited additional muscles in the mandibular area. These muscles were renamed as part of the standardization of mandibular terminology: the depressor mandibularis minor (DMM) in N. entemedor and the adductor mandibulae profundus (AMP) in M. californica. The standardization of terminology is essential for futures studies of the mandibular apparatus in batoids, to facilitate the morphological description of muscles in species without anatomical accounts and for continuity in broader comparative analyses.
Collapse
Affiliation(s)
- C Ramírez-Díaz
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Mexico
| | - M A Kolmann
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - C M Peredo
- Department of Biological Sciences, Miami University, Oxford, Ohio, USA
| | - V H Cruz-Escalona
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Mexico
| | - R Peña
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Mexico
| |
Collapse
|
2
|
Mayerl CJ, Gould FDH, Adjerid K, Edmonds C, German RZ. The Pathway from Anatomy and Physiology to Diagnosis: A Developmental Perspective on Swallowing and Dysphagia. Dysphagia 2023; 38:33-41. [PMID: 35441265 PMCID: PMC9579268 DOI: 10.1007/s00455-022-10449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/04/2022] [Indexed: 01/29/2023]
Abstract
Dysphagia results from diverse and distinct etiologies. The pathway from anatomy and physiology to clinical diagnosis is complex and hierarchical. Our approach in this paper is to show the linkages from the underlying anatomy and physiology to the clinical presentation. In particular, the terms performance, function, behavior, and physiology are often used interchangeably, which we argue is an obstacle to clear discussion of mechanism of pathophysiology. We use examples from pediatric populations to highlight the importance of understanding anatomy and physiology to inform clinical practice. We first discuss the importance of understanding anatomy in the context of physiology and performance. We then use preterm infants and swallow-breathe coordination as examples to explicate the hierarchical nature of physiology and its impact on performance. We also highlight where the holes in our knowledge lie, with the ultimate endpoint of providing a framework that could enhance our ability to design interventions to help patients. Clarifying these terms, and the roles they play in the biology of dysphagia will help both the researchers studying the problems as well as the clinicians applying the results of those studies.
Collapse
Affiliation(s)
- C J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - F D H Gould
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - K Adjerid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - C Edmonds
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - R Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
3
|
Hawkins OH, Ortega-Jimenez VM, Sanford CP. Knifefish turning control and hydrodynamics during forward swimming. J Exp Biol 2022; 225:274541. [PMID: 35217876 DOI: 10.1242/jeb.243498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022]
Abstract
Rapid turning and swimming contribute to ecologically important behaviors in fishes such as predator avoidance, prey capture, mating, and the navigation of complex environments. For riverine species, such as knifefishes, turning behaviors may also be important for navigating locomotive perturbations caused by turbulent flows. Most research on fish maneuvering focuses on fish with traditional fin and body morphologies, which primarily use body bending and the pectoral fins during turning. However, it is uncertain how fishes with uncommon morphologies, are able to achieve sudden and controllable turns. Here we studied the turning performance and the turning hydrodynamics of the Black ghost knifefish (Apteronotus albifrons, N=6) which has an atypical elongated ribbon fin. Fish were filmed while swimming forward at ∼2 BL s-1 and feeding from a fixed feeder (control) and an oscillating feeder (75 Hz) at two different amplitudes. 3D kinematic analysis of the body revealed the highest pitch angles and lowest body bending coefficients occurred during steady swimming. Low pitch angle, high maximum yaw angles and large body bending coefficients were characteristic of small and large turns. Asynchrony in pectoral fin use was low during turning, however ribbon fin wavelength, frequency, and wave speed were greatest during large turns. Digital particle image velocimetry (DPIV) showed larger counter-rotating vortex pairs produced during turning by the ribbon-fin in comparison to vortices rotating in the same direction during steady swimming. Our results highlight the ribbon fin's role in controlled rapid turning through modulation of wavelength, frequency, and wave speed.
Collapse
Affiliation(s)
- Olivia H Hawkins
- Department of Ecology, Evolution and Organismal Biology. Kennesaw State University, Kennesaw, GA, USA.,Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Victor M Ortega-Jimenez
- School of Chemical and Biomolecular Engineering. Georgia Institute of Technology, Atlanta, GA, USA
| | - Chris P Sanford
- Research and Sponsored Programs, California State University, Northridge, CA, USA
| |
Collapse
|
4
|
Schwarz D, Gorb SN, Kovalev A, Konow N, Heiss E. Flexibility of intraoral food processing in the salamandrid newt Triturus carnifex: effects of environment and prey type. J Exp Biol 2020; 223:jeb232868. [PMID: 32968002 DOI: 10.1242/jeb.232868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022]
Abstract
Intraoral food processing mechanisms are known for all major vertebrate groups, but the form and function of systems used to crush, grind or puncture food items can differ substantially between and within groups. Most vertebrates display flexible mechanisms of intraoral food processing with respect to different environmental conditions or food types. It has recently been shown that newts use cyclical loop-motions of the tongue to rasp prey against the palatal dentition. However, it remains unknown whether newts can adjust their food processing behavior in response to different food types or environmental conditions. Newts are interesting models for studying the functional adaptation to different conditions because of their unique and flexible lifestyle: they seasonally change between aquatic and terrestrial habitats, adapt their prey-capture mode to the respective environment, and consume diverse food types with different mechanical properties. Using X-ray high-speed recordings, anatomical investigations, behavioral analyses and mechanical property measurements, we tested the effects of the medium in which feeding occurs (water/air) and the food type (maggot, earthworm, cricket) on the processing behavior in Triturus carnifex We discovered that food processing, by contrast to prey capture, differed only slightly between aquatic and terrestrial habitats. However, newts adjusted the number of processing cycles to different prey types: while maggots were processed extensively, earthworm pieces were barely processed at all. We conclude that, in addition to food mechanical properties, sensory feedback such as smell and taste appear to induce flexible processing responses, while the medium in which feeding occurs appears to have less of an effect.
Collapse
Affiliation(s)
- Daniel Schwarz
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743 Jena, Germany
| | - Stanislav N Gorb
- Zoological Institute, Kiel University, am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Alexander Kovalev
- Zoological Institute, Kiel University, am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts Lowell., 198 Riverside Street, Lowell, MA 01854, USA
| | - Egon Heiss
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743 Jena, Germany
- Ark-Biodiversity, Willdenowstraße 6, 12203 Berlin, Germany
| |
Collapse
|
5
|
Laurence-Chasen JD, Ramsay JB, Brainerd EL. Shearing overbite and asymmetrical jaw motions facilitate food breakdown in a freshwater stingray, Potamotrygon motoro. ACTA ACUST UNITED AC 2019; 222:222/13/jeb197681. [PMID: 31292213 DOI: 10.1242/jeb.197681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/10/2019] [Indexed: 12/19/2022]
Abstract
Many species of fish process their prey with cyclic jaw motions that grossly resemble those seen in mammalian mastication, despite starkly different tooth and jaw morphologies. The degree of similarity between the processing behaviors of these disparate taxa has implications for our understanding of convergence in vertebrate feeding systems. Here, we used XROMM (X-ray reconstruction of moving morphology) to investigate prey processing behavior of Potamotrygon motoro, the ocellate river stingray, which has recently been found to employ asymmetrical, shearing jaw motions to break down its prey. We found that P. motoro modulates its feeding kinematics to produce two distinct types of chew cycles: compressive cycles and overbite cycles. The latter are characterized by over-rotation of the upper jaw relative to the lower jaw, past the expected occlusal limit, and higher levels of bilateral asymmetry as compared with compressive chews. We did not find evidence of the mediolateral shearing motions typical of mammalian mastication, but overbite cycles appear to shear the prey item between the upper and lower toothplates in a propalinal fashion. Additionally, comparison of hyomandibular and jaw motions demonstrates that the angular cartilages decouple jaw displacement from hyomandibular displacement in rostrocaudal and mediolateral directions. The multiple similarities between mammalian mastication and the dynamic processing behavior of P. motoro support the use of sub-family Potamotrygoninae as a model for studying evolutionary convergence of mastication-like processing.
Collapse
Affiliation(s)
- J D Laurence-Chasen
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th St, Chicago, IL 60637, USA .,Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA
| | - Jason B Ramsay
- Biology Department, Westfield State University, 577 Western Avenue, Westfield, MA 01086, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA
| |
Collapse
|
6
|
Gračan R, Zavodnik D, Krstinić P, Dragičević B, Lazar B. Feeding ecology and trophic segregation of two sympatric mesopredatory sharks in the heavily exploited coastal ecosystem of the Adriatic Sea. JOURNAL OF FISH BIOLOGY 2017; 90:167-184. [PMID: 27859232 DOI: 10.1111/jfb.13158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
The ecological roles and trophic interactions of two commercially important mesopredatory shark species, Squalus acanthias and Mustelus punctulatus that co-occur on the continental shelf of the north-central Adriatic Sea were investigated. Both shark species are dietary specialists, with a significant dietary overlap recorded only during the spring season. They showed different patterns of feeding as they grew: S. acanthias extended its trophic niche with an increase in size, while M. punctulatus developed a more specialized diet. These two sharks partition food resources and reduce niche overlap by foraging at different trophic levels. Mustelus punctulatus is a crustacean feeder, specialized in foraging on scavenging malacostracans frequently found along trawl tracks or on discards in the Adriatic fishing zone. Conversely, S. acanthias prefers small pelagic fishes, which are commercially exploited and in decline. The different foraging strategies adopted by these two species suggest that they should be managed separately. Dietary specialization, direct competition with humans for prey and their higher intrinsic vulnerability make S. acanthias particularly susceptible to the effects of anthropogenic perturbations.
Collapse
Affiliation(s)
- R Gračan
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - D Zavodnik
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210, Rovinj, Croatia
| | - P Krstinić
- Public Institution for Managing Protected Nature Areas, Grivica 4, 51000, Rijeka, Croatia
| | - B Dragičević
- Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000, Split, Croatia
| | - B Lazar
- Department of Biodiversity, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
- Marine Science Program, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| |
Collapse
|
7
|
Ding P, Fung GSK, Lin M, Holman SD, German RZ. The effect of bilateral superior laryngeal nerve lesion on swallowing: a novel method to quantitate aspirated volume and pharyngeal threshold in videofluoroscopy. Dysphagia 2014; 30:47-56. [PMID: 25270532 DOI: 10.1007/s00455-014-9572-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/10/2014] [Indexed: 01/06/2023]
Abstract
The purpose was to determine the effect of bilateral superior laryngeal nerve (SLN) lesion on swallowing threshold volume and the occurrence of aspiration, using a novel measurement technique for videofluoroscopic swallowing studies (VFSS) in infant pigs. We used a novel radiographic phantom to assess volume of the milk containing barium from fluoroscopy. The custom made phantom was firstly calibrated by comparing image intensity of the phantom with known cylinder depths. Secondly, known volume pouches of milk in a pig cadaver were compared to volumes calculated with the phantom. Using these standards, we calculated the volume of milk in the valleculae, esophagus and larynx, for 205 feeding sequences from four infant pigs feeding before and after had bilateral SLN lesions. Swallow safety was assessed using the tested and validated IMPAS (Dysphagia 28(2):178-187, 2013). The log-linear correlation between image intensity values from the phantom filled with barium milk and the known phantom cylinder depths was strong (R (2) > 0.95), as was the calculated volumes of the barium milk pouches. The threshold volume of bolus in the valleculae during feeding was significantly larger after bilateral SLN lesion than in control swallows (p < 0.001). The IMPAS score increased in the lesioned swallows relative to the controls, indicating substantially impaired swallowing (p < 0.001). Bilateral SLN lesion dramatically increased the aspiration incidence and the threshold volume of bolus in valleculae. The use of this phantom permits quantification of the aspirated volume of fluid, allowing for more accurate 3D volume estimation from 2D X-ray in VFSS.
Collapse
Affiliation(s)
- Peng Ding
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
8
|
Mulvany S, Motta PJ. Prey capture kinematics in batoids using different prey types: investigating the role of the cephalic lobes. ACTA ACUST UNITED AC 2014; 321:515-30. [PMID: 25074721 DOI: 10.1002/jez.1883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Cephalic lobes are novel structures found in some myliobatid stingrays. While undulatory batoids utilize the pectoral fins for prey capture and locomotion, lobed species partition locomotion to the pectoral fins, utilizing the lobes exclusively for prey capture. We investigated the use of the anterior pectoral fins and cephalic lobes in prey capture in five batoid species. The purpose of this study was to investigate the: (1) prey capture kinematics and use of the cephalic lobes in lobed and lobeless batoids; (2) role of the cephalic lobes in modulating capture behavior based on prey type. It was hypothesized that lobed species would display unique capture behaviors resulting in faster and more successful capture of prey, and display greater modulation in capture behavior. Findings showed that lobed species used only the head region for capture, were faster at pouncing and tenting, but slower at mouth opening. The cephalic lobes were more movable than the anterior pectoral fins of lobeless species. Modulation occurred in all species. Elusive prey increased tent duration for the lobeless species, increased mouth opening duration in the lobed Aetobatus narinari, and were farther away from the mouth than non-elusive prey during biting for all species. All species had few prey escapes. Overall, species with cephalic lobes captured prey faster but did not display increased modulatory ability or feeding success. The cephalic lobes help localize prey capture to the head region, speeding up the prey capture event and maintaining an efficient capture rate despite having less flexible pectoral fins.
Collapse
Affiliation(s)
- Samantha Mulvany
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| | | |
Collapse
|
9
|
Maia A, Wilga CD. Anatomy and muscle activity of the dorsal fins in bamboo sharks and spiny dogfish during turning maneuvers. J Morphol 2013; 274:1288-98. [DOI: 10.1002/jmor.20179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 06/09/2013] [Accepted: 06/18/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Anabela Maia
- Department of Biological Sciences, College of the Environmental and Life Sciences; University of Rhode Island; 120 Flagg Road; Kingston; Rhode Island; 02881-0816
| | - Cheryl D. Wilga
- Department of Biological Sciences, College of the Environmental and Life Sciences; University of Rhode Island; 120 Flagg Road; Kingston; Rhode Island; 02881-0816
| |
Collapse
|
10
|
Function of dorsal fins in bamboo shark during steady swimming. ZOOLOGY 2013; 116:224-31. [DOI: 10.1016/j.zool.2013.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 11/20/2022]
|
11
|
Holliday CM, Gardner NM, Paesani SM, Douthitt M, Ratliff JL. Microanatomy of the Mandibular Symphysis in Lizards: Patterns in Fiber Orientation and Meckel's Cartilage and Their Significance in Cranial Evolution. Anat Rec (Hoboken) 2010; 293:1350-9. [DOI: 10.1002/ar.21180] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|