1
|
Ruskie EL, Zakas C. Assortative mating and mate-choice contributes to the maintenance of a developmental dimorphism in Streblospio benedicti. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:424-430. [PMID: 37158462 PMCID: PMC10525012 DOI: 10.1002/jez.b.23196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Assortative mating, where individuals non-randomly mate with respect to phenotype or genotype, can occur when preferences between potential mates have evolved. When such mate preferences occur in a population it can drive evolutionary and phenotypic divergence. But the extent to which assortative mating, mate preference, and development are evolutionarily linked remains unclear. Here we use Streblospio benedicti, a marine annelid with a rare developmental dimorphism, to investigate if mate-choice could contribute to developmental evolution. For S. benedicti two types of ecologically and phenotypically similar adults persist in natural populations, but they give rise to distinctly different offspring with alternative life-histories. This dimorphism persists despite the absence of post-zygotic reproductive barriers, where crosses between the developmental types can produce phenotypically intermediate offspring. How this life-history strategy evolved remains unknown, but assortative mating is a typical first step in evolutionary divergence. Here we investigate if female mate-choice is occurring in this species. We find that mate preferences could be contributing to the maintenance of alternative developmental and life-history strategies.
Collapse
Affiliation(s)
- Erika L. Ruskie
- North Carolina State University, Department of Biological Sciences, Raleigh, North Carolina, 27607
| | - Christina Zakas
- North Carolina State University, Department of Biological Sciences, Raleigh, North Carolina, 27607
| |
Collapse
|
2
|
Zakas C. Streblospio benedicti: A genetic model for understanding the evolution of development and life-history. Curr Top Dev Biol 2022; 147:497-521. [PMID: 35337460 DOI: 10.1016/bs.ctdb.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investigating developmental evolution usually requires comparing differences across related species to infer how phenotypic change results from embryological modifications. However, when comparing organisms from different environments, ecologies, and evolutionary histories there can be many confounding factors to finding a genetic basis for developmental differences. In the marine annelid Streblospio benedicti, there are two distinct types of offspring with independent developmental pathways that converge on the same adult phenotype. To my knowledge, S. benedicti is the only known species that has heritable (additive) genetic variation in developmental traits that results in alternative life-history strategies. Females produce either hundreds of small, swimming and feeding larvae, or dozens of large, nonfeeding larvae. The larvae differ in their morphology, ecology, and dispersal potential. This developmental dimorphism makes S. benedicti a unique and useful model for understanding how genetic changes result in developmental modifications that ultimately lead to overall life-history differences. Because the offspring phenotypes of S. benedicti are heritable, we can use forward genetics within a single evolutionary lineage to disentangle how development evolves, and which genes and regulatory mechanisms are involved.
Collapse
Affiliation(s)
- Christina Zakas
- North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
3
|
Fassio G, Bouchet P, Oliverio M, Strong EE. Re-evaluating the case for poecilogony in the gastropod Planaxis sulcatus (Cerithioidea, Planaxidae). BMC Ecol Evol 2022; 22:13. [PMID: 35130841 PMCID: PMC8822645 DOI: 10.1186/s12862-022-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Planaxis sulcatus has been touted as a textbook example of poecilogony, with members of this wide-ranging Indo-Pacific marine gastropod said to produce free-swimming veligers as well as brooded juveniles. A recent paper by Wiggering et al. (BMC Evol Biol 20:76, 2020) assessed a mitochondrial gene phylogeny based on partial COI and 16S rRNA sequences for 31 individuals supplemented by observations from the brood pouch of 64 mostly unsequenced individuals. ABGD and bGYMC supported three reciprocally monophyletic clades, with two distributed in the Indo-Pacific, and one restricted to the northern Indian Ocean and Red Sea. Given an apparent lack of correlation between clade membership and morphological differentiation or mode of development, the reported 3.08% maximum K2P model-corrected genetic divergence in COI among all specimens was concluded to represent population structuring. Hence, the hypothesis that phylogenetic structure is evidence of cryptic species was rejected and P. sulcatus was concluded to represent a case of geographic poecilogony. Results Our goal was to reassess the case for poecilogony in Planaxis sulcatus with a larger molecular dataset and expanded geographic coverage. We sequenced an additional 55 individuals and included published and unpublished sequence data from other sources, including from Wiggering et al. Our dataset comprised 108 individuals (88 COI, 81 16S rRNA) and included nine countries unrepresented in the previous study. The expanded molecular dataset yielded a maximum K2P model-corrected genetic divergence among all sequenced specimens of 12.09%. The value of 3.08% erroneously reported by Wiggering et al. is the prior maximal distance value that yields a single-species partition in ABGD, and not the maximum K2P intraspecific divergence that can be calculated for the dataset. The bGMYC analysis recognized between two and six subdivisions, while the best-scoring ASAP partitions recognized two, four, or five subdivisions, not all of which were robustly supported in Bayesian and maximum likelihood phylogenetic analyses of the concatenated and single gene datasets. These hypotheses yielded maximum intra-clade genetic distances in COI of 2.56–6.19%, which are more consistent with hypothesized species-level thresholds for marine caenogastropods. Conclusions Based on our analyses of a more comprehensive dataset, we conclude that the evidence marshalled by Wiggering et al. in support of Planaxis sulcatus comprising a single widespread, highly variable species with geographic poecilogony is unconvincing and requires further investigation in an integrative taxonomic framework. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01961-7.
Collapse
|
4
|
Caplins SA. Plasticity and artificial selection for developmental mode in a poecilogonous sea slug. Ecol Evol 2021; 11:14217-14230. [PMID: 34707850 PMCID: PMC8525145 DOI: 10.1002/ece3.8136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/12/2022] Open
Abstract
The contribution of phenotypically plastic traits to evolution depends on the degree of environmental influence on the target of selection (the phenotype) as well as the underlying genetic structure of the trait and plastic response. Likewise, maternal effects can help or hinder evolution through affects to the response to selection. The sacoglossan sea slug Alderia willowi exhibits intraspecific variation for developmental mode (= poecilogony) that is environmentally modulated with populations producing more yolk-feeding (lecithotrophic) larvae during the summer, and more planktonic-feeding (planktotrophic) larvae in the winter. I found significant family-level variation in the reaction norms between 17 maternal families of A. willowi when reared in a split-brood design in low (16 ppt) versus high (32 ppt) salinity, conditions which mimic seasonal variation in salinity of natural populations. I documented a significant response to selection for lecithotrophic larvae in high and low salinity. The slope of the reaction norm was maintained following one generation of selection for lecithotrophy. When the maternal environment was controlled in the laboratory, I found significant maternal effects, which reduced the response to selection. These results suggest there is standing genetic variation for egg-mass type in A. willowi, but the ability of selection to act on that variation may depend on the environment in which the phenotype is expressed in preceding generations.
Collapse
|
5
|
David AA. Climate Change and Shell-Boring Polychaetes (Annelida: Spionidae): Current State of Knowledge and the Need for More Experimental Research. THE BIOLOGICAL BULLETIN 2021; 241:4-15. [PMID: 34436967 DOI: 10.1086/714989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractAnthropogenic climate change is considered to be one of the greatest threats facing marine biodiversity. The vast majority of experimental work investigating the effects of climate change stressors on marine organisms has focused on calcifying organisms, such as corals and molluscs, where cross-generational phenotypic changes can be easily quantified. Bivalves in particular have been the subject of numerous climate change studies, in part because of their economic value in the aquaculture industry and their important roles as ecosystem engineers. However, there has been little to no work investigating the effects of these stressors on the symbionts associated with these bivalves, specifically, their shell-boring polychaete parasites. This is important to understand because climate change may shift the synergistic relationship between parasite and host based on the individual responses of each. If such a shift favors proliferation of the polychaete, it may very well facilitate extinction of host bivalve populations. In this review I will (i) provide an overview of research completed thus far on the effects of climate change stressors on shell-boring polychaetes, (ii) discuss the technical challenges of studying these parasites in the laboratory, and (iii) propose a standardized framework for carrying out future in vitro and in vivo climate change experiments on shell-boring polychaetes.
Collapse
|
6
|
Figueroa Á, Brante A, Cárdenas L. RNA-Seq reveals divergent gene expression between larvae with contrasting trophic modes in the poecilogonous polychaete Boccardia wellingtonensis. Sci Rep 2021; 11:14997. [PMID: 34294855 PMCID: PMC8298564 DOI: 10.1038/s41598-021-94646-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
The polychaete Boccardia wellingtonensis is a poecilogonous species that produces different larval types. Females may lay Type I capsules, in which only planktotrophic larvae are present, or Type III capsules that contain planktotrophic and adelphophagic larvae as well as nurse eggs. While planktotrophic larvae do not feed during encapsulation, adelphophagic larvae develop by feeding on nurse eggs and on other larvae inside the capsules and hatch at the juvenile stage. Previous works have not found differences in the morphology between the two larval types; thus, the factors explaining contrasting feeding abilities in larvae of this species are still unknown. In this paper, we use a transcriptomic approach to study the cellular and genetic mechanisms underlying the different larval trophic modes of B. wellingtonensis. By using approximately 624 million high-quality reads, we assemble the de novo transcriptome with 133,314 contigs, coding 32,390 putative proteins. We identify 5221 genes that are up-regulated in larval stages compared to their expression in adult individuals. The genetic expression profile differed between larval trophic modes, with genes involved in lipid metabolism and chaetogenesis over expressed in planktotrophic larvae. In contrast, up-regulated genes in adelphophagic larvae were associated with DNA replication and mRNA synthesis.
Collapse
Affiliation(s)
- Álvaro Figueroa
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.
| | - Antonio Brante
- Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables, Universidad Católica de la Ssma, Concepción, Concepción, Chile
- Departamento Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Leyla Cárdenas
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap-IDEAL, Valdivia, Chile
| |
Collapse
|
7
|
Wiggering B, Neiber MT, Gebauer K, Glaubrecht M. One species, two developmental modes: a case of geographic poecilogony in marine gastropods. BMC Evol Biol 2020; 20:76. [PMID: 32591013 PMCID: PMC7318368 DOI: 10.1186/s12862-020-01644-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022] Open
Abstract
Background Poecilogony, the presence of two developmental modes in the same animal species, is a rare phenomenon. Few cases of poecilogony have been suggested for marine invertebrates including molluscs and even less stood extensive testing, mostly revealing a species pair with differing developmental modes. We studied a textbook example of poecilogony in the viviparous snail Planaxis sulcatus (Gastropoda: Planaxidae), for the first time throughout its entire distribution range. Results In the Western Indian Ocean and Red Sea this intertidal species is observed to have large, shelled juveniles, whereas in the Indo-West Pacific planktotrophic veliger larvae are released from a subhaemocoelic brood pouch. We uncovered a shift in developmental modes across its range: from west to east successively earlier developmental stages are released. Furthermore, genetic data based on mitochondrial DNA suggests to recognize P. sulcatus as a single species rather than a group of cryptic species. A reconstruction of the ancestral area of P. sulcatus based on molecular data outlines the Western Indian Ocean and the Indo-West Pacific as area of origin. Conclusion The findings supporting Planaxis sulcatus as a single widespread species and the geographical shift from one reproductive mode to another suggest for this species to truly represent a case of geographic poecilogony, i.e. differing developmental modes between populations of the same species. Furthermore, the results of our ancestral range estimation imply the release of planktotrophic larvae as the ancestral developmental mode.
Collapse
Affiliation(s)
- Benedikt Wiggering
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Marco T Neiber
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Katharina Gebauer
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Matthias Glaubrecht
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
8
|
Russini V, Giannuzzi-Savelli R, Pusateri F, Prkic J, Fassio G, Modica MV, Oliverio M. Candidate cases of poecilogony in Neogastropoda: implications for the systematics of the genus Raphitoma Bellardi, 1847. INVERTEBR SYST 2020. [DOI: 10.1071/is19039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Poecilogony is the intraspecific variation in developmental mode, with larvae of different types produced by the same individual, population or species. It is very rare among marine invertebrates, and in gastropods has long been described only in a few opisthobranchs. The physiological and regulatory mechanisms underlying larval evolutionary transitions, such as loss of planktotrophy that occurred repeatedly in many caenogastropod lineages, are still largely unknown. We have studied the inter- v. intraspecific variation in larval development in the north-east Atlantic neogastropod genus Raphitoma Bellardi, 1847, starting with an iterative taxonomy approach: 17 morphology-based Preliminary Species Hypotheses were tested against a COI molecular-distance-based method (ABGD), and the retained species hypotheses were eventually inspected for reciprocal monophyly on a multilocus dataset. We subsequently performed an ancestral state reconstruction on an ultrametric tree of the 10 Final Species Hypotheses, time-calibrated by fossils, revealing that the interspecific changes were planktotrophy > lecithotrophy, and all have occurred in the Pleistocene, after 2.5 million years ago. This is suggestive of a major role played by Pleistocene Mediterranean oceanographic conditions – enhanced oligotrophy, unpredictable availability of water column resources – likely to favour loss of planktotrophy. Within this group of species, which has diversified after the Miocene, we identified one pair of sibling species differing in their larval development, Raphitoma cordieri (Payraudeau, 1826) and R. horrida (Monterosato, 1884). However, we also identified two Final Species Hypotheses, each comprising individuals with both larval developmental types. Our working hypothesis is that they correspond to one or two poecilogonous species. If confirmed by other nuclear markers, this would be the first documentation of poecilogony in the Neogastropoda, and the second in the whole Caenogastropoda. Although sibling species with different developmental strategies may offer good models to study some evolutionary aspects, poecilogonous taxa are optimally suited for identifying regulatory and developmental mechanisms underlying evolutionary transitions.
Collapse
|
9
|
Jossart Q, Sands CJ, Sewell MA. Dwarf brooder versus giant broadcaster: combining genetic and reproductive data to unravel cryptic diversity in an Antarctic brittle star. Heredity (Edinb) 2019; 123:622-633. [PMID: 31073238 PMCID: PMC6972741 DOI: 10.1038/s41437-019-0228-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
Poecilogony, or multiple developmental modes in a single species, is exceedingly rare. Several species described as poecilogenous were later demonstrated to be multiple (cryptic) species with a different developmental mode. The Southern Ocean is known to harbor a high proportion of brooders (Thorson's Rule) but with an increasing number of counter examples over recent years. Here we evaluated poecilogony vs. crypticism in the brittle star Astrotoma agassizii across the Southern Ocean. This species was initially described from South America as a brooder before some pelagic stages were identified in Antarctica. Reproductive and mitochondrial data were combined to unravel geographic and genetic variation of developmental modes. Our results indicate that A. agassizii is composed of seven well-supported and deeply divergent clades (I: Antarctica and South Georgia; II: South Georgia and Sub-Antarctic locations including Kerguelen, Patagonian shelf, and New Zealand; III-VI-VII: Patagonian shelf, IV-V: South Georgia). Two of these clades demonstrated strong size dimorphism when in sympatry and can be linked to differing developmental modes (Clade V: dwarf brooder vs. Clade I: giant broadcaster). Based on their restricted geographic distributions and on previous studies, it is likely that Clades III-VI-VII are brooders. Clade II is composed of different morphological species, A. agassizii and A. drachi, the latter originally used as the outgroup. By integrating morphology, reproductive, and molecular data we conclude that the variation identified in A. agassizii is best described as crypticism rather than poecilogony.
Collapse
Affiliation(s)
- Quentin Jossart
- University of Auckland, Auckland, New Zealand.
- British Antarctic Survey, Cambridge, UK.
- Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
10
|
Caswell H, de Vries C, Hartemink N, Roth G, van Daalen SF. Age × stage-classified demographic analysis: a comprehensive approach. ECOL MONOGR 2018; 88:560-584. [PMID: 30555177 PMCID: PMC6283253 DOI: 10.1002/ecm.1306] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 02/23/2018] [Accepted: 03/21/2018] [Indexed: 11/08/2022]
Abstract
This paper presents a comprehensive theory for the demographic analysis of populations in which individuals are classified by both age and stage. The earliest demographic models were age classified. Ecologists adopted methods developed by human demographers and used life tables to quantify survivorship and fertility of cohorts and the growth rates and structures of populations. Later, motivated by studies of plants and insects, matrix population models structured by size or stage were developed. The theory of these models has been extended to cover all the aspects of age-classified demography and more. It is a natural development to consider populations classified by both age and stage. A steady trickle of results has appeared since the 1960s, analyzing one or another aspect of age × stage-classified populations, in both ecology and human demography. Here, we use the vec-permutation formulation of multistate matrix population models to incorporate age- and stage-specific vital rates into demographic analysis. We present cohort results for the life table functions (survivorship, mortality, and fertility), the dynamics of intra-cohort selection, the statistics of longevity, the joint distribution of age and stage at death, and the statistics of life disparity. Combining transitions and fertility yields a complete set of population dynamic results, including population growth rates and structures, net reproductive rate, the statistics of lifetime reproduction, and measures of generation time. We present a complete analysis of a hypothetical model species, inspired by poecilogonous marine invertebrates that produce two kinds of larval offspring. Given the joint effects of age and stage, many familiar demographic results become multidimensional, so calculations of marginal and mixture distributions are an important tool. From an age-classified point of view, stage structure is a form of unobserved heterogeneity. From a stage-classified point of view, age structure is unobserved heterogeneity. In an age × stage-classified model, variance in demographic outcomes can be partitioned into contributions from both sources. Because these models are formulated as matrices, they are amenable to a complete sensitivity analysis. As more detailed and longer longitudinal studies are developed, age × stage-classified demography will become more common and more important.
Collapse
Affiliation(s)
- Hal Caswell
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Charlotte de Vries
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Nienke Hartemink
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Gregory Roth
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Silke F. van Daalen
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
11
|
Strathmann RR, Strathmann MF, Hadfield MG. Brood Reduction, Not Poecilogony, in a Vermetid Gastropod with Two Developmental Outcomes within Egg Capsules. THE BIOLOGICAL BULLETIN 2018; 235:12-23. [PMID: 30160999 DOI: 10.1086/699324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A small vermetid gastropod broods capsules containing nurse eggs and embryos that develop into small veligers. A few of these veligers continue development and growth while nurse eggs and developmentally arrested sibling veligers disappear. Survivors hatch as crawling pediveligers and juveniles. None of the veligers, if removed from capsules, swim in a directed way or withdraw into their shells, indicating that even the developing veligers are unsuited for extracapsular life until they can crawl. The shells of arrested veligers decalcify while their siblings grow. Few of the developmentally arrested veligers that were isolated from siblings and fed algal cells resumed detectable growth. Nurse eggs rather than cannibalism provide most of the food, but full growth of developing veligers depends on limited sharing; arrest of some siblings is a necessary adjunct of the nurse-egg feeding. Here, two developmental outcomes for larvae produced by developmental arrest of some (often termed poecilogony) serves instead as a means of brood reduction. Brood reduction is often attributed to family conflicts resulting from genetic differences. Another hypothesis is that a mother who cannot accurately sort numbers of nurse eggs and developing eggs into capsules could rely on brood reduction to adjust food for her offspring. At the extreme, an entirely random packaging would produce a binomial distribution of embryos in capsules, a very uneven distribution of food per embryo, and some capsules with no embryos. Males have yet to be found in this species, but even if reproduction is asexual, selection could still favor brood reduction.
Collapse
|
12
|
Thonig A, Banta GT, Hansen BW, Knott KE. Seasonal genetic variation associated with population dynamics of a poecilogonous polychaete worm. Ecol Evol 2017; 7:10005-10017. [PMID: 29238532 PMCID: PMC5723597 DOI: 10.1002/ece3.3518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/05/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Poecilogonous species show variation in developmental mode, with larvae that differ both morphologically and ecologically. The spionid polychaete Pygospio elegans shows variation in developmental mode not only between populations, but also seasonally within populations. We investigated the consequences of this developmental polymorphism on the spatial and seasonal genetic structure of P. elegans at four sites in the Danish Isefjord-Roskilde-Fjord estuary at six time points, from March 2014 until February 2015. We found genetic differentiation between our sampling sites as well as seasonal differentiation at two of the sites. The seasonal genetic shift correlated with the appearance of new size cohorts in the populations. Additionally, we found that the genetic composition of reproductive individuals did not always reflect the genetic composition of the entire sample, indicating that variance in reproductive success among individuals is a likely explanation for the patterns of chaotic genetic patchiness observed during this and previous studies. The heterogeneous, unpredictable character of the estuary might maintain poecilogony in P. elegans as a bet-hedging strategy in the Isefjord-Roskilde-Fjord complex in comparison with other sites where P. elegans are expected to be fixed to a certain mode of development.
Collapse
Affiliation(s)
- Anne Thonig
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
- Department of Biological & Environmental ScienceUniversity of JyvaskylaUniversity of JyvaskylaFinland
| | - Gary Thomas Banta
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| | | | - K. Emily Knott
- Department of Biological & Environmental ScienceUniversity of JyvaskylaUniversity of JyvaskylaFinland
| |
Collapse
|
13
|
Heikkinen LK, Kesäniemi JE, Knott KE. De novo transcriptome assembly and developmental mode specific gene expression of Pygospio elegans. Evol Dev 2017; 19:205-217. [PMID: 28869352 DOI: 10.1111/ede.12230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Species with multiple different larval developmental modes are interesting models for the study of mechanisms underlying developmental mode transitions and life history evolution. Pygospio elegans, a small, tube-dwelling polychaete worm commonly found in estuarine and marine habitats around the northern hemisphere, is one species with variable developmental modes. To provide new genomic resources for studying P. elegans and to address the differences in gene expression between individuals producing offspring with different larval developmental modes, we performed whole transcriptome Illumina RNA sequencing of adult worms from two populations and prepared a de novo assembly of the P. elegans transcriptome. The transcriptome comprises 66,233 unigenes, of which 33,807 contain predicted coding sequences, 26,448 have at least one functional annotation, and 3,076 are classified as putative long non-coding RNAs. We found more than 8,000 unigenes significantly differentially expressed between adult worms from populations producing either planktonic or benthic larvae. This comprehensive transcriptome resource for P. elegans adds to the available genomic data for annelids and can be used to uncover mechanisms allowing developmental variation in this and potentially other marine invertebrate species.
Collapse
Affiliation(s)
- Liisa K Heikkinen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jenni E Kesäniemi
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - K Emily Knott
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
14
|
Montgomery EM, Hamel JF, Mercier A. Patterns and Drivers of Egg Pigment Intensity and Colour Diversity in the Ocean: A Meta-Analysis of Phylum Echinodermata. ADVANCES IN MARINE BIOLOGY 2016; 76:41-104. [PMID: 28065296 DOI: 10.1016/bs.amb.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Egg pigmentation is proposed to serve numerous ecological, physiological, and adaptive functions in egg-laying animals. Despite the predominance and taxonomic diversity of egg layers, syntheses reviewing the putative functions and drivers of egg pigmentation have been relatively narrow in scope, centring almost exclusively on birds. Nonvertebrate and aquatic species are essentially overlooked, yet many of them produce maternally provisioned eggs in strikingly varied colours, from pale yellow to bright red or green. We explore the ways in which these colour patterns correlate with behavioural, morphological, geographic and phylogenetic variables in extant classes of Echinodermata, a phylum that has close phylogenetic ties with chordates and representatives in nearly all marine environments. Results of multivariate analyses show that intensely pigmented eggs are characteristic of pelagic or external development whereas pale eggs are commonly brooded internally. Of the five egg colours catalogued, orange and yellow are the most common. Yellow eggs are a primitive character, associated with all types of development (predominant in internal brooders), whereas green eggs are always pelagic, occur in the most derived orders of each class and are restricted to the Indo-Pacific Ocean. Orange eggs are geographically ubiquitous and may represent a 'universal' egg pigment that functions well under a diversity of environmental conditions. Finally, green occurs chiefly in the classes Holothuroidea and Ophiuroidea, orange in Asteroidea, yellow in Echinoidea, and brown in Holothuroidea. By examining an unprecedented combination of egg colours/intensities and reproductive strategies, this phylum-wide study sheds new light on the role and drivers of egg pigmentation, drawing parallels with theories developed from the study of more derived vertebrate taxa. The primary use of pigments (of any colour) to protect externally developing eggs from oxidative damage and predation is supported by the comparatively pale colour of equally large, internally brooded eggs. Secondarily, geographic location drives the evolution of egg colour diversity, presumably through the selection of better-adapted, more costly pigments in response to ecological pressure.
Collapse
Affiliation(s)
| | - J-F Hamel
- Society for Exploration and Valuing of the Environment (SEVE), Portugal Cove-St. Phillips, NL, Canada
| | - A Mercier
- Memorial University, St. John's, NL, Canada
| |
Collapse
|
15
|
David AA, Matthee CA, Loveday BR, Simon CA. Predicting the Dispersal Potential of an Invasive Polychaete Pest along a Complex Coastal Biome. Integr Comp Biol 2016; 56:600-10. [PMID: 27126982 DOI: 10.1093/icb/icw011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Boccardia proboscidea is a recently introduced polychaete in South Africa where it is a notorious pest of commercially reared abalone. Populations were originally restricted to abalone farms but a recent exodus into the wild at some localities has raised conservation concerns due to the species' invasive status in other parts of the world. Here, we assessed the dispersal potential of B. proboscidea by using a population genetic and oceanographic modeling approach. Since the worm is in its incipient stages of a potential invasion, we used the closely related Polydora hoplura as a proxy due its similar reproductive strategy and its status as a pest of commercially reared oysters in the country. Populations of P. hoplura were sampled from seven different localities and a section of the mtDNA gene, Cyt b and the intron ATPSa was amplified. A high resolution model of the coastal waters around southern Africa was constructed using the Regional Ocean Modeling System. Larvae were represented by passive drifters that were deployed at specific points along the coast and dispersal was quantified after a 12-month integration period. Our results showed discordance between the genetic and modeling data. There was low genetic structure (Φ = 0.04 for both markers) and no geographic patterning of mtDNA and nDNA haplotypes. However, the dispersal model found limited connectivity around Cape Point-a major phylogeographic barrier on the southern African coast. This discordance was attributed to anthropogenic movement of larvae and adult worms due to vectors such as aquaculture and shipping. As such, we hypothesized that cryptic dispersal could be overestimating genetic connectivity. Though wild populations of B. proboscidea could become isolated due to the Cape Point barrier, anthropogenic movement may play the critical role in facilitating the dispersal and spread of this species on the southern African coast.
Collapse
Affiliation(s)
- Andrew A David
- *Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7601, South Africa Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Conrad A Matthee
- *Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7601, South Africa
| | | | - Carol A Simon
- *Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7601, South Africa
| |
Collapse
|
16
|
Kesäniemi JE, Heikkinen L, Knott KE. DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans. PLoS One 2016; 11:e0151863. [PMID: 27008314 PMCID: PMC4805255 DOI: 10.1371/journal.pone.0151863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/04/2016] [Indexed: 01/24/2023] Open
Abstract
Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females during oogenesis in this species. We demonstrate that intragenic CpG site DNA methylation and many relevant genes necessary for DNA methylation occur in P. elegans. Methylation-sensitive AFLP analysis showed that gravid females with offspring differing in larval developmental mode have significantly different methylation profiles and that the females with benthic larvae and non-reproductive females from the same location also differ in their epigenetic profiles. Analysis of CpG sites in transcriptome data supported our findings of DNA methylation in this species and showed that CpG observed/expected ratios differ among females gravid with embryos destined to different developmental modes. The differences in CpG site DNA methylation patterns seen among the samples suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species.
Collapse
Affiliation(s)
- Jenni E. Kesäniemi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| | - Liisa Heikkinen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - K. Emily Knott
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
17
|
Burgess SC, Baskett ML, Grosberg RK, Morgan SG, Strathmann RR. When is dispersal for dispersal? Unifying marine and terrestrial perspectives. Biol Rev Camb Philos Soc 2015; 91:867-82. [DOI: 10.1111/brv.12198] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Scott C. Burgess
- Department of Biological Science; Florida State University; 319 Stadium Drive Tallahassee FL 32308 U.S.A
| | - Marissa L. Baskett
- Department of Environmental Science and Policy; University of California; One Shields Ave Davis CA 95616 U.S.A
| | - Richard K. Grosberg
- Department of Evolution and Ecology; University of California; One Shields Ave Davis CA 95616 U.S.A
| | - Steven G. Morgan
- Bodega Marine Laboratory; University of California; 2099 Westside Rd Davis CA 94923 U.S.A
| | - Richard R. Strathmann
- Friday Harbor Laboratories; University of Washington; 620 University Rd Friday Harbor WA 98250 U.S.A
| |
Collapse
|
18
|
Kesäniemi JE, Mustonen M, Boström C, Hansen BW, Knott KE. Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity. BMC Evol Biol 2014; 14:12. [PMID: 24447386 PMCID: PMC3905951 DOI: 10.1186/1471-2148-14-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
Background Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. Results In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. Conclusions In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist.
Collapse
Affiliation(s)
- Jenni E Kesäniemi
- Department of Biological and Environmental Science, University of Jyväskylä, P,O, Box 35, Jyväskylä FI-40014, Finland.
| | | | | | | | | |
Collapse
|