1
|
Charoensri S, Rege J, Lee C, Marko X, Sherk W, Sholinyan J, Rainey WE, Turcu AF. Human Gonads Do Not Contribute to the Circulating Pool of 11-Oxygenated Androgens. J Clin Endocrinol Metab 2025; 110:1398-1403. [PMID: 38885296 PMCID: PMC12012767 DOI: 10.1210/clinem/dgae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
CONTEXT Androstenedione (A4) and testosterone (T) are produced by both the adrenal glands and the gonads. The adrenal enzyme 11β-hydroxylase (CYP11B1) executes the final step in cortisol synthesis; CYP11B1 also uses A4 and T as substrates, generating 11-hydroxyandrostenedione and 11-hydroxytestosterone, respectively. It has been suggested that CYP11B1 is expressed in the gonads, yet the circulating levels of all 11-oxygenated androgens (11-oxyandrogens) are similar in males and females of reproductive ages, despite enormous differences in T. OBJECTIVE To assess the gonadal contribution to the circulating pool of 11-oxyandrogens. METHODS We used liquid chromatography-tandem mass spectrometry to measure 13 steroids, including traditional and 11-oxyandrogens in: (i) paired gonadal and peripheral vein blood samples obtained during gonadal venograms from 11 patients (7 women), median age 37 (range, 31-51 years); and (ii) 17 women, median age 57 (range, 41-81 years) before and after bilateral salpingo-oophorectomy (BSO). We also compared CYP11B1, 17α-hydroxylase/17,20-lyase (CYP17A1), and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2) mRNA expression in adrenal, ovarian, and testicular tissue. RESULTS A4, T, estradiol, estrone, progesterone, 17α- and 16α-hydroxyprogesterone were all higher in gonadal veins vs periphery (P < .05 for all), while four 11-oxyandrogens were similar between matched gonadal and peripheral vein samples. Equally, in women who underwent BSO, A4 (median [interquartile range]: 59.7 [47.7-67.6] ng/dL vs 32.7 [27.4-47.8] ng/dL, P < .001) and T (24.1 [16.4-32.3] vs 15.5 [13.7-19.0] ng/dL, P < .001) declined, while 11-oxyandrogens remained stable. Gonadal tissue displayed negligible CYP11B1 mRNA. CONCLUSION Despite producing substantial amounts of A4 and T, human gonads are not relevant sources of 11-oxyandrogens.
Collapse
Affiliation(s)
- Suranut Charoensri
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chaelin Lee
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xhorlina Marko
- Division of Vascular and Interventional Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William Sherk
- Division of Vascular and Interventional Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Julieta Sholinyan
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Wen X, Yang M, Zhou K, Huang J, Fan X, Zhang W, Luo J. Transcriptomic and proteomic analyses reveal the common and unique pathway(s) underlying different skin colors of leopard coral grouper (Plectropomus leopardus). J Proteomics 2022; 266:104671. [PMID: 35788407 DOI: 10.1016/j.jprot.2022.104671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
To gain a comprehensive and unbiased molecular understanding of the different skin colors of P. leopardus, we used Illumina HiSeq 2500 and TMT (Tandem Mass Tag) to compare transcription and protein levels between red and black skin of P. leopardus. We identified 797 upregulated and 314 downregulated genes (differentially expressed genes; DEGs) in red (RG) compared with black (BG) skin of P. leopardus. We also identified 377 differentially abundant proteins (DAPs), including 314 upregulated and 63 downregulated proteins. These DEGs and DAPs were significantly enriched in melanin synthesis (e.g., pyrimidine metabolism, Phenylalanine, tyrosine, and tryptophan biosynthesis, melanogenesis, phenylalanine metabolism, and tyrosine metabolism), oxidative phosphorylation (e.g., phosphonate and phosphinate metabolism, and oxidative phosphorylation), energy metabolism (e.g., HIF-1, glycolysis/gluconeogenesis, fatty acid biosynthesis, and fatty acid degradation), and signal transduction (e.g., Wnt, calcium, MAPK, and cGMP-PKG signaling pathways), etc. Further analysis of MAPKs showed that the activation levels of its main members JNK1 and ERK1/2 differed significantly between red and black skin colors. After RNAi was used to interfere with ERK1/2, it was found that the local skin of the tail of P. leopardus would turn black. Combined transcriptome and proteome analysis showed that most DEGs-DAPs in red skin were higher than in black skin (58 were upregulated, 1 was downregulated, and 4 were opposite). These DEGs-DAPs showed that the differences between red and black skin tissues of P. leopardus were related primarily to energy metabolism, signal transduction and cytoskeleton. These findings are not only conducive to understand the skin color regulation mechanism of P. leopardus and other coral reef fish, but also provide an important descriptive to the breeding of color strains. SIGNIFICANCE OF THE STUDY: The skin color of P. leopardus gradually darkens or blackens due to environmental factors such as changes in light intensity and human activities, and this directly affects its ornamental and economic value. In this study, RNAseq and TMT were used to conduct comparative quantitative transcriptomics and proteomics and analyze differences between red and black P. leopardus skin. The results showed that energy metabolism, signal transduction and cytoskeleton were the main metabolic pathways causing their skin color differences. These findings contribute to existing data describing fish skin color, and provide information about protein levels, which are of great significance to a deeper understanding of the skin color regulation mechanism in P. leopardus and other coral reef fishes.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| | - Min Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Kexin Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jie Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Xin Fan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Weiwei Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Walsh HL, Rafferty SD, Gordon SE, Blazer VS. Reproductive health and endocrine disruption in smallmouth bass (Micropterus dolomieu) from the Lake Erie drainage, Pennsylvania, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:3. [PMID: 34862922 PMCID: PMC8643298 DOI: 10.1007/s10661-021-09654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Smallmouth bass Micropterus dolomieu were sampled from three sites within the Lake Erie drainage (Elk Creek, Twentymile Creek, and Misery Bay, an embayment in Presque Isle Bay). Plasma, tissues for histopathological analyses, and liver and testes preserved in RNALater® were sampled from 30 smallmouth bass (of both sexes) at each site. Liver and testes samples were analyzed for transcript abundance with Nanostring nCounter® technology. Evidence of estrogenic endocrine disruption was assessed by the presence and severity of intersex (testicular oocytes; TO) and concentrations of plasma vitellogenin in male fish. Abundance of 17 liver transcripts associated with reproductive function, endocrine activity, and contaminant detoxification pathways and 40 testes transcripts associated with male and female reproductive function, germ cell development, and steroid biosynthesis were also measured. Males with a high rate of TO (87-100%) and plasma vitellogenin were noted at all sites; however, TO severity was greatest at the site with the highest agricultural land cover. Numerous transcripts were differentially regulated among the sites and patterns of transcript abundance were used to better understand potential risk factors for estrogenic endocrine disruption. The results of this study suggest endocrine disruption is prevalent in this region and further research would benefit to identify the types of contaminants that may be associated with the observed biological effects.
Collapse
Affiliation(s)
- Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, 11649 Leetown Road, Kearneysville, WV, 25430, USA.
| | - Sean D Rafferty
- Pennsylvania Sea Grant College Program, The Pennsylvania State University, Tom Ridge Environmental Center, 301 Peninsula Drive, Erie, PA, 16505, USA
| | - Stephanie E Gordon
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, 11649 Leetown Road, Kearneysville, WV, 25430, USA
| | - Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, 11649 Leetown Road, Kearneysville, WV, 25430, USA
| |
Collapse
|
4
|
Timlick L, Peters LE, Wallace SJ, Dettman H, Brown RS, Mason J, Langlois VS, Palace V. Effects of Environmentally Relevant Residual Levels of Diluted Bitumen on Wild Fathead Minnows (Pimephales promelas). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:699-704. [PMID: 33006036 DOI: 10.1007/s00128-020-03008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Transportation of crude oil across North America's boreal ecozone creates the potential for spills in freshwater where less is known about the sensitivity of resident fish than for marine systems. The sensitivity of wild fathead minnows (FHM) to residual concentrations (ppb range) of the water accommodated fraction (WAF) of diluted bitumen (dilbit) was assessed by exposing them for 21 days followed by a 14 days depuration. Target concentrations were well below detection limits for GC-MS, but were estimated by dilution factor (1:100,000 and 1:1,000,000 WAF:water) to contain less than 0.0003 μg/L of polycyclic aromatic compounds. Confinement and handling stress caused by transfer of wild fish into tanks much smaller than their natural range resulted in mortality and lower body condition among all groups, but interactive effects of oil exposures still resulted in females with smaller cortical alveolar oocytes, and males with larger testicular lobe lumen sizes. Additional studies examining the compounded effects of stress and environmentally relevant oil exposures in wild fishes are needed.
Collapse
Affiliation(s)
- Lauren Timlick
- University of Manitoba, Winnipeg, MB, Canada
- International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA), 325-111 Lombard Ave, Winnipeg, MB, R3B 0T4, Canada
| | | | - Sarah J Wallace
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec City, QC, Canada
| | | | | | | | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec City, QC, Canada
| | - Vince Palace
- International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA), 325-111 Lombard Ave, Winnipeg, MB, R3B 0T4, Canada.
| |
Collapse
|
5
|
Ngamniyom A, Sriyapai T, Sriyapai P. Molecular analysis of population and De Novo transcriptome sequencing of Thai medaka, Oryzias minutillus (Teleostei: Adrianichthyidae). Heliyon 2020; 6:e03079. [PMID: 31909257 PMCID: PMC6938829 DOI: 10.1016/j.heliyon.2019.e03079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/13/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Thai medaka (Oryzias minutillus) are alternatively known as Thai rice-fish or dwarf medaka, and they widely inhabit natural freshwater environments in all regions of Thailand. In this study, we aimed to investigate the molecular genetics of the Thai medaka population in Thailand inferred from the mitochondrial control region (D-loop) and the cytochrome c oxidase subunit 1 (coxI) sequences. Furthermore, we examined RNA sequencing (RNA-seq) of adult males and females was performed with next-generation sequencing. Together, the combination of the D-loop and coxI sequences clearly distinguished the Thai medaka populations into 2 groups, such as group 1, which generally included samples from the central, northern, western, and eastern regions of the northeastern region. In this group, the fish populations seem to be a little monophyly in which the first subpopulation comprised the main samples from the northern and central regions. The second subpopulation commonly contained fish from the eastern region and specimens from the southern part of the central region near the Gulf of Thailand. Although these subgroups related to geographical distribution, bootstrap values were low in branch considered significant for both subgroups. Group 2 consisted of almost all samples from the southern population and those from the central and southern part of the northeastern region. Group 2 was found that it was made of samples from the northeastern region and samples from the southern population. A total of 73551 unigenes were identified after gene annotation. Signal transduction was the predominant protein classification among the Thai medaka orthologous groups. A differentially expressed gene (DEG) analysis identified 6 subclusters between both sexes that were composed of 257, 131, 364, 386, 114 and 108 genes. Phototransduction was the most enriched pathway and was highly expressed in males, while viral carcinogenesis, oocyte genesis, and the complement and coagulation cascades were highly expressed in females. Further details of these DEGs are discussed below. These results suggest that Thai medaka may genetically exhibit independent populations in the geographic habitats of Thailand. Moreover, these fish also reveal the genes that are conserved in other organisms and those that may be specific to this species.
Collapse
Affiliation(s)
- Arin Ngamniyom
- Major in Environment, Faculty of Environmental Culture and Eco-tourism, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thayat Sriyapai
- Major in Environment, Faculty of Environmental Culture and Eco-tourism, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Pichapack Sriyapai
- Department of Microbiology, Faculty of Sciences, Srinakharinwirot University, Bangkok, 10110, Thailand
| |
Collapse
|
6
|
Carnevali O, Santangeli S, Forner-Piquer I, Basili D, Maradonna F. Endocrine-disrupting chemicals in aquatic environment: what are the risks for fish gametes? FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1561-1576. [PMID: 29948447 DOI: 10.1007/s10695-018-0507-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Over the past 25 years, extensive research in vertebrate species has identified several genomic pathways altered by exposures to anthropogenic chemicals with hormone-like activity mediated by their interaction with nuclear receptors. In addition, many pollutants have been shown to interfere with non-genomic (non-classical) pathways, but this mechanism of endocrine disruption is still poorly understood. Recently, the number of publications describing the effects of Endocrine disrupting chemicals (EDCs) on fish reproduction, focusing on the deregulation of the hypothalamus-pituitary-gonadal axis as well as on gamete quality, significantly increased. Depending on their ability to mimic endogenous hormones, the may differently affect male or female reproductive physiology. Inhibition of gametogenesis, development of intersex gonads, alteration of the gonadosomatic index, and decreased fertility rate have been largely documented. In males, alterations of sperm density, motility, and fertility have been observed in several wild species. Similar detrimental effects were described in females, including negative outcomes on oocyte growth and maturation plus the occurrence of apoptotic/autophagic processes. These pathways may affect gamete viability considered as one of the major indicators of reproductive endocrine disruption. Pollutants act also at DNA level producing DNA mutations and changes in epigenetic pathways inducing specific mechanisms of toxicity and/or aberrant cellular responses that may affect subsequent generation(s) through the germline. In conclusion, this review summarizes the effects caused by EDC exposure on fish reproduction, focusing on gametogenesis, giving a general overview of the different aspects dealing with this issue, from morphological alteration, deregulation of steroidogenesis, hormonal synthesis, and occurrence of epigenetic process.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy.
| | - Stefania Santangeli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy
| | - Isabel Forner-Piquer
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Danilo Basili
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy.
| |
Collapse
|
7
|
Bertram MG, Saaristo M, Martin JM, Ecker TE, Michelangeli M, Johnstone CP, Wong BBM. Field-realistic exposure to the androgenic endocrine disruptor 17β-trenbolone alters ecologically important behaviours in female fish across multiple contexts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:900-911. [PMID: 30245452 DOI: 10.1016/j.envpol.2018.09.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
The capacity of pharmaceutical pollution to alter behaviour in wildlife is of increasing environmental concern. A major pathway of these pollutants into the environment is the treatment of livestock with hormonal growth promotants (HGPs), which are highly potent veterinary pharmaceuticals that enter aquatic ecosystems via effluent runoff. Hormonal growth promotants are designed to exert biological effects at low doses, can act on physiological pathways that are evolutionarily conserved across taxa, and have been detected in ecosystems worldwide. However, despite being shown to alter key fitness-related processes (e.g., development, reproduction) in various non-target species, relatively little is known about the potential for HGPs to alter ecologically important behaviours, especially across multiple contexts. Here, we investigated the effects of exposure to a field-realistic level of the androgenic HGP metabolite 17β-trenbolone-an endocrine-disrupting chemical that has repeatedly been detected in freshwater systems-on a suite of ecologically important behaviours in wild-caught female eastern mosquitofish (Gambusia holbrooki). First, we found that 17β-trenbolone-exposed fish were more active and exploratory in a novel environment (i.e., maze arena), while boldness (i.e., refuge use) was not significantly affected. Second, when tested for sociability, exposed fish spent less time in close proximity to a shoal of stimulus (i.e., unexposed) conspecific females and were, again, found to be more active. Third, when assayed for foraging behaviour, exposed fish were faster to reach a foraging zone containing prey items (chironomid larvae), quicker to commence feeding, spent more time foraging, and consumed a greater number of prey items, although the effect of exposure on certain foraging behaviours was dependent on fish size. Taken together, these findings highlight the potential for exposure to sub-lethal levels of veterinary pharmaceuticals to alter sensitive behavioural processes in wildlife across multiple contexts, with potential ecological and evolutionary implications for exposed populations.
Collapse
Affiliation(s)
- Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia.
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Tiarne E Ecker
- School of Biological Sciences, Monash University, Victoria, Australia
| | | | | | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
8
|
Ankley GT, Coady KK, Gross M, Holbech H, Levine SL, Maack G, Williams M. A critical review of the environmental occurrence and potential effects in aquatic vertebrates of the potent androgen receptor agonist 17β-trenbolone. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2064-2078. [PMID: 29701261 PMCID: PMC6129983 DOI: 10.1002/etc.4163] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/14/2018] [Accepted: 04/25/2018] [Indexed: 05/25/2023]
Abstract
Trenbolone acetate is widely used in some parts of the world for its desirable anabolic effects on livestock. Several metabolites of the acetate, including 17β-trenbolone, have been detected at low nanograms per liter concentrations in surface waters associated with animal feedlots. The 17β-trenbolone isomer can affect androgen receptor signaling pathways in various vertebrate species at comparatively low concentrations/doses. The present article provides a comprehensive review and synthesis of the existing literature concerning exposure to and biological effects of 17β-trenbolone, with an emphasis on potential risks to aquatic animals. In vitro studies indicate that, although 17β-trenbolone can activate several nuclear hormone receptors, its highest affinity is for the androgen receptor in all vertebrate taxa examined, including fish. Exposure of fish to nanograms per liter water concentrations of 17β-trenbolone can cause changes in endocrine function in the short term, and adverse apical effects in longer exposures during development and reproduction. Impacts on endocrine function typically are indicative of inappropriate androgen receptor signaling, such as changes in sex steroid metabolism, impacts on gonadal stage, and masculinization of females. Exposure of fish to 17β-trenbolone during sexual differentiation in early development can greatly skew sex ratios, whereas adult exposures can adversely impact fertility and fecundity. To fully assess ecosystem-level risks, additional research is warranted to address uncertainties as to the degree/breadth of environmental exposures and potential population-level effects of 17β-trenbolone in sensitive species. Environ Toxicol Chem 2018;37:2064-2078. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Gerald T. Ankley
- US Environmental Protection Agency, Office or Research and Development, Duluth, MN, USA
| | - Katherine K. Coady
- The Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, MI, USA
| | | | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Gerd Maack
- German Environment Agency (UBA), Dessau-Roβlau, Germany
| | | |
Collapse
|
9
|
Lopes C, Malhão F, Guimarães C, Pinheiro I, Gonçalves JF, Castro LFC, Rocha E, Madureira TV. Testosterone-induced modulation of peroxisomal morphology and peroxisome-related gene expression in brown trout (Salmo trutta f. fario) primary hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:30-39. [PMID: 29032351 DOI: 10.1016/j.aquatox.2017.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/17/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Disruption of androgenic signaling has been linked to possible cross-modulation with other hormone-mediated pathways. Therefore, our objective was to explore effects caused by testosterone - T (1, 10 and 50μM) in peroxisomal signaling of brown trout hepatocytes. To study the underlying paths involved, several co-exposure conditions were tested, with flutamide - F (anti-androgen) and ICI 182,780 - ICI (anti-estrogen). Molecular and morphological approaches were both evaluated. Peroxisome proliferator-activated receptor alpha (PPARα), catalase and urate oxidase were the selected targets for gene expression analysis. The vitellogenin A gene was also included as a biomarker of estrogenicity. Peroxisome relative volumes were estimated by immunofluorescence, and transmission electron microscopy was used for qualitative morphological control. The single exposures of T caused a significant down-regulation of urate oxidase (10 and 50μM) and a general up-regulation of vitellogenin. A significant reduction of peroxisome relative volumes and smaller peroxisome profiles were observed at 50μM. Co-administration of T and ICI reversed the morphological modifications and vitellogenin levels. The simultaneous exposure of T and F caused a significant and concentration-dependent diminishing in vitellogenin expression. Together, the findings suggest that in the tested model, T acted via both androgen and estrogen receptors to shape the peroxisomal related targets.
Collapse
Affiliation(s)
- Célia Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - Fernanda Malhão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - Cláudia Guimarães
- Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - Ivone Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - José F Gonçalves
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Department of Aquatic Production, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Faculty of Sciences (FCUP), U.Porto - University of Porto, Department of Biology, Rua do Campo Alegre, P 4169-007, Porto, Portugal
| | - Eduardo Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal.
| | - Tânia V Madureira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| |
Collapse
|
10
|
Da Fonte DF, Martyniuk CJ, Xing L, Pelin A, Corradi N, Hu W, Trudeau VL. Secretoneurin A regulates neurogenic and inflammatory transcriptional networks in goldfish (Carassius auratus) radial glia. Sci Rep 2017; 7:14930. [PMID: 29097753 PMCID: PMC5668316 DOI: 10.1038/s41598-017-14930-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/18/2017] [Indexed: 12/27/2022] Open
Abstract
Radial glial cells (RGCs) are the most abundant macroglia in the teleost brain and have established roles in neurogenesis and neurosteroidogenesis; however, their transcriptome remains uncharacterized, which limits functional understanding of this important cell type. Using cultured goldfish RGCs, RNA sequencing and de novo transcriptome assembly were performed, generating the first reference transcriptome for fish RGCs with 17,620 unique genes identified. These data revealed that RGCs express a diverse repertoire of receptors and signaling molecules, suggesting that RGCs may respond to and synthesize an array of hormones, peptides, cytokines, and growth factors. Building upon neuroanatomical data and studies investigating direct neuronal regulation of RGC physiology, differential gene expression analysis was conducted to identify transcriptional networks that are responsive to the conserved secretogranin II-derived neuropeptide secretoneurin A (SNa). Pathway analysis of the transcriptome indicated that cellular processes related to the central nervous system (e.g., neurogenesis, synaptic plasticity, glial cell development) and immune functions (e.g., immune system activation, leukocyte function, macrophage response) were preferentially modulated by SNa. These data reveal an array of new functions that are proposed to be critical to neuronal-glial interactions through the mediator SNa.
Collapse
Affiliation(s)
- Dillon F Da Fonte
- Department of Biology, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Lei Xing
- Department of Biology, University of Ottawa, Ontario, K1N 6N5, Canada.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Adrian Pelin
- Department of Biology, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
11
|
Lee SLJ, Horsfield JA, Black MA, Rutherford K, Fisher A, Gemmell NJ. Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development. BMC Genomics 2017; 18:557. [PMID: 28738802 PMCID: PMC5523153 DOI: 10.1186/s12864-017-3915-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sex hormones play important roles in teleost ovarian and testicular development. In zebrafish, ovarian differentiation appears to be dictated by an oocyte-derived signal via Cyp19a1a aromatase-mediated estrogen production. Androgens and aromatase inhibitors can induce female-to-male sex reversal, however, the mechanisms underlying gonadal masculinisation are poorly understood. We used histological analyses together with RNA sequencing to characterise zebrafish gonadal transcriptomes and investigate the effects of 17α-methyltestosterone on gonadal differentiation. RESULTS At a morphological level, 17α-methyltestosterone (MT) masculinised gonads and accelerated spermatogenesis, and these changes were paralleled in masculinisation and de-feminisation of gonadal transcriptomes. MT treatment upregulated expression of genes involved in male sex determination and differentiation (amh, dmrt1, gsdf and wt1a) and those involved in 11-oxygenated androgen production (cyp11c1 and hsd11b2). It also repressed expression of ovarian development and folliculogenesis genes (bmp15, gdf9, figla, zp2.1 and zp3b). Furthermore, MT treatment altered epigenetic modification of histones in zebrafish gonads. Contrary to expectations, higher levels of cyp19a1a or foxl2 expression in control ovaries compared to MT-treated testes and control testes were not statistically significant during early gonad development (40 dpf). CONCLUSION Our study suggests that both androgen production and aromatase inhibition are important for androgen-induced gonadal masculinisation and natural testicular differentiation in zebrafish.
Collapse
Affiliation(s)
| | - Julia A. Horsfield
- Department of Pathology, University of Otago, Dunedin, Otago New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, Otago New Zealand
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, Otago New Zealand
| | - Amanda Fisher
- Department of Pathology, University of Otago, Dunedin, Otago New Zealand
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, Dunedin, Otago New Zealand
| |
Collapse
|
12
|
Marjan P, Bragg LM, MacLatchy DL, Servos MR, Martyniuk CJ. How Does Reference Site Selection Influence Interpretation of Omics Data?: Evaluating Liver Transcriptome Responses in Male Rainbow Darter (Etheostoma caeruleum) across an Urban Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6470-6479. [PMID: 28489360 DOI: 10.1021/acs.est.7b00894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Studies quantifying the influence of reference site selection on transcriptomic profiles in aquatic organisms exposed to complex mixtures are lacking in the literature, despite the significant implications of such research for the interpretation of omics data sets. We measured hepatic transcriptomic responses in fish across an urban environment in the central Grand River watershed (Ontario, Canada). Adult male rainbow darter (RBD) (Etheostoma caeruleum) were collected from nine sites at varying distances from two major municipal wastewater treatment plants (MWWTPs) (Waterloo, Kitchener), including three upstream reference sites. The transcriptomic response in RBD was independently compared with that of fish from each of the three reference sites. Data collected in fish downstream of the Waterloo MWWTP (poorest effluent quality) suggested that ∼15.5% of the transcriptome response was influenced by reference site selection. In contrast, at sites where the impact of MWWTPs was less-pronounced and fish showed less of a transcriptome response, reference site selection had a greater influence (i.e., ∼56.9% of transcripts were different depending on the site used). This study highlights the importance of conducting transcriptomics studies that leverage more than one reference site, and it broadens our understanding of the molecular responses in fish in dynamic natural environments.
Collapse
Affiliation(s)
- Patricija Marjan
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Deborah L MacLatchy
- Department of Biology, Wilfrid Laurier University , 75 University Avenue West, N2L 3C5 Waterloo, Ontario, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Cristopher J Martyniuk
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, University of Florida , 2187 Mowry Road, Building 471, PO Box 110885, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
Davis JM, Ekman DR, Skelton DM, LaLone CA, Ankley GT, Cavallin JE, Villeneuve DL, Collette TW. Metabolomics for informing adverse outcome pathways: Androgen receptor activation and the pharmaceutical spironolactone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:103-115. [PMID: 28129603 PMCID: PMC6145081 DOI: 10.1016/j.aquatox.2017.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 05/03/2023]
Abstract
One objective in developing adverse outcome pathways (AOPs) is to connect biological changes that are relevant to risk assessors (i.e., fecundity) to molecular and cellular-level alterations that might be detectable at earlier stages of a chemical exposure. Here, we examined biochemical responses of fathead minnows (Pimephales promelas) to inform an AOP relevant to spironolactone's activation of the androgen receptor, as well as explore other biological impacts possibly unrelated to this receptor. Liquid chromatography with high resolution mass spectrometry (LC-MS) was used to measure changes in endogenous polar metabolites in livers of male and female fish that were exposed to five water concentrations of spironolactone (0, 0.05, 0.5, 5, or 50μgL-1) for 21days. Metabolite profiles were affected at the two highest concentrations (5 and 50μgL-1), but not in the lower-level exposures, which agreed with earlier reported results of reduced female fecundity and plasma vitellogenin (VTG) levels. We then applied partial least squares regression to assess whether metabolite alterations covaried with changes in fecundity, VTG gene expression and protein concentrations, and plasma 17β-estradiol and testosterone concentrations. Metabolite profiles significantly covaried with all measured endpoints in females, but only with plasma testosterone in males. Fecundity reductions occurred in parallel with changes in metabolites important in osmoregulation (e.g., betaine), membrane transport (e.g., l-carnitine), and biosynthesis of carnitine (e.g., methionine) and VTG (e.g., glutamate). Based on a network analysis program (i.e., mummichog), spironolactone also affected amino acid, tryptophan, and fatty acid metabolism. Thus, by identifying possible key events related to changes in biochemical pathways, this approach built upon an established AOP describing spironolactone's androgenic properties and highlighted broader implications potentially unrelated to androgen receptor activation, which could form a basis for the development of an AOP network.
Collapse
Affiliation(s)
- J M Davis
- U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605, USA.
| | - D R Ekman
- U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605, USA.
| | - D M Skelton
- U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605, USA
| | - C A LaLone
- U.S. EPA, National Health and Environmental Effects Research Laboratory, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - G T Ankley
- U.S. EPA, National Health and Environmental Effects Research Laboratory, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - J E Cavallin
- U.S. EPA, National Health and Environmental Effects Research Laboratory, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - D L Villeneuve
- U.S. EPA, National Health and Environmental Effects Research Laboratory, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - T W Collette
- U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605, USA
| |
Collapse
|
14
|
Voisin AS, Fellous A, Earley RL, Silvestre F. Delayed impacts of developmental exposure to 17-α-ethinylestradiol in the self-fertilizing fish Kryptolebias marmoratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:247-257. [PMID: 27750118 DOI: 10.1016/j.aquatox.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/22/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
17-α-ethinylestradiol (EE2) is one of the most potent endocrine disrupting compounds found in the aquatic environments, and is known to strongly alter fish reproduction and fitness. While the effects of direct exposure to EE2 are well studied in adults, there is an increasing need to assess the impacts of exposure during early life stages. Sensitivity to pollutants during this critical window can potentially affect the phenotype later in life or in subsequent generations. This study investigated phenotypic outcome of early-life exposure to 17-α-ethinylestradiol during development and in adults of the mangrove rivulus, Kryptolebias marmoratus. Being one of the only two known self-fertilizing hermaphroditic vertebrates, this fish makes it possible to work with genetically identical individuals. Therefore, using rivulus makes it possible to examine, explicitly, the phenotypic effects of environmental variance while eliminating the effects of genetic variance. Genetically identical rivulus were exposed for the first 28days post hatching (dph) to 0, 4 or 120ng/L of EE2, and then were reared in uncontaminated water until 168dph. Growth, egg laying and steroid hormone levels (estradiol, cortisol, 11-ketotestosterone, testosterone) were measured throughout development. Exposed fish showed a reduction in standard length directly after exposure (28dph), which was more pronounced in the 120ng/L group. This was followed by compensatory growth when reared in clean water: all fish recovered a similar size as controls by 91dph. There was no difference in the age at maturity and the proportions of mature, non-mature and male individuals at 168dph. At 4ng/L, fish layed significantly fewer eggs than controls, while, surprisingly, reproduction was not affected at 120ng/L. Despite a decrease in fecundity at 4ng/L, there were no changes in hormones levels at the lower concentration. In addition, there were no significant differences among treatments immediately after exposure. However, 120ng/L exposed fish exhibited significantly higher levels of testosterone at 91 and 168dph and 11-ketotestosterone at 168dph, up to 140days after exposure. These results indicate that early-life exposure to EE2 had both immediate and delayed impacts on the adult's phenotype. While fish growth was impaired during exposure, compensatory growth, reduced fecundity and modification of the endocrine status were observed after exposure ceased.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Alexandre Fellous
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL, 35487, USA.
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| |
Collapse
|
15
|
Toxicogenomic applications of Chinese rare minnow (Gobiocypris rarus) in aquatic toxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:174-180. [DOI: 10.1016/j.cbd.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022]
|
16
|
Martyniuk CJ, Doperalski NJ, Feswick A, Prucha MS, Kroll KJ, Barber DS, Denslow ND. Transcriptional networks associated with the immune system are disrupted by organochlorine pesticides in largemouth bass (Micropterus salmoides) ovary. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:405-416. [PMID: 27391359 DOI: 10.1016/j.aquatox.2016.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
Largemouth bass (Micropterus salmoides) inhabiting Lake Apopka, Florida are exposed to high levels of persistent organochlorine pesticides (OCPs) and dietary uptake is a significant route of exposure for these apex predators. The objectives of this study were to determine the dietary effects of two organochlorine pesticides (p, p'-dichlorodiphenyldichloroethylene; p, p' DDE and methoxychlor; MXC) on the reproductive axis of largemouth bass. Reproductive bass (late vitellogenesis) were fed one of the following diets: control pellets, 125ppm p, p'-DDE, or 10ppm MXC (mg/kg) for 84days. Due to the fact that both p,p' DDE and MXC have anti-androgenic properties, the anti-androgenic pharmaceutical flutamide was fed to a fourth group of largemouth bass (750ppm). Following a 3 month exposure, fish incorporated p,p' DDE and MXC into both muscle and ovary tissue, with the ovary incorporating 3 times more organochlorine pesticides compared to muscle. Endpoints assessed were those related to reproduction due to previous studies demonstrating that these pesticides impact the reproductive axis and we hypothesized that a dietary exposure would result in impaired reproduction. However, oocyte distribution, gonadosomatic index, plasma vitellogenin, and plasma sex steroids (17β-estradiol, E2 and testosterone, T) were not different between control animals and contaminant-fed largemouth bass. Moreover, neither p, p' DDE nor MXC affected E2 or T production in ex vivo oocyte cultures from chemical-fed largemouth bass. However, both pesticides did interfere with the normal upregulation of androgen receptor that is observed in response to human chorionic gonadotropin in ex vivo cultures, an observation that may be related to their anti-androgenic properties. Transcriptomics profiling in the ovary revealed that gene networks related to cell processes such as leukocyte cell adhesion, ossification, platelet function and inhibition, xenobiotic metabolism, fibrinolysis, and thermoregulation were altered by p, p' DDE, MXC, and flutamide. Interestingly, immune-related gene networks were suppressed by all three chemicals. The data suggest that p, p' DDE and flutamide affected more genes in common with each other than either chemical with MXC, consistent with studies suggesting that p, p' DDE is a more potent anti-androgen than MXC. These data demonstrate that reproductive health was not affected by these specific dietary treatments, but rather the immune system, which may be a significant target of organochlorine pesticides. The interaction between the reproductive and immune systems should be considered in future studies on these legacy and persistent pesticides.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology and Genetics Institute, University of Florida, Gainesville, FL 32611 USA.
| | - Nicholas J Doperalski
- Department of Physiological Sciences and Center for Environmental and Human Toxicology and Genetics Institute, University of Florida, Gainesville, FL 32611 USA
| | - April Feswick
- Department of Physiological Sciences and Center for Environmental and Human Toxicology and Genetics Institute, University of Florida, Gainesville, FL 32611 USA
| | - Melinda S Prucha
- Department of Physiological Sciences and Center for Environmental and Human Toxicology and Genetics Institute, University of Florida, Gainesville, FL 32611 USA
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology and Genetics Institute, University of Florida, Gainesville, FL 32611 USA
| | - David S Barber
- Department of Physiological Sciences and Center for Environmental and Human Toxicology and Genetics Institute, University of Florida, Gainesville, FL 32611 USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology and Genetics Institute, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
17
|
Matsushita S, Suzuki K, Ogino Y, Hino S, Sato T, Suyama M, Matsumoto T, Omori A, Inoue S, Yamada G. Androgen Regulates Mafb Expression Through its 3'UTR During Mouse Urethral Masculinization. Endocrinology 2016; 157:844-57. [PMID: 26636186 DOI: 10.1210/en.2015-1586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
External genitalia are prominent organs showing hormone-dependent sexual differentiation. Androgen is an essential regulator of masculinization of the genital tubercle, which is the anlage of external genitalia. We have previously shown that v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) is an androgen-inducible regulator of embryonic urethral masculinization in mice. However, it remains unclear how androgen regulates Mafb expression. The current study suggests that the Mafb 3' untranslated region (UTR) is an essential region for its regulation by androgen. We identified 2 functional androgen response elements (AREs) in Mafb 3'UTR. Androgen receptor is bound to such AREs in 3'UTR during urethral masculinization. In addition to 3'UTR, Mafb 5'UTR also showed androgen responsiveness. Moreover, we also demonstrated that β-catenin, one of genital tubercle masculinization factors, may be an additional regulator of Mafb expression during urethral masculinization. This study provides insights to elucidate mechanisms of gene regulation through AREs present in Mafb 3'UTR for a better understanding of the processes of urethral masculinization.
Collapse
Affiliation(s)
- Shoko Matsushita
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yukiko Ogino
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shinjiro Hino
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsuya Sato
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mikita Suyama
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Matsumoto
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Akiko Omori
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Satoshi Inoue
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Gen Yamada
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
18
|
Ornostay A, Marr J, Loughery JR, Martyniuk CJ. Transcriptional networks associated with 5-alpha-dihydrotestosterone in the fathead minnow (Pimephales promelas) ovary. Gen Comp Endocrinol 2016; 225:23-32. [PMID: 26344943 DOI: 10.1016/j.ygcen.2015.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022]
Abstract
Androgens play a significant role in regulating oogenesis in teleost fishes. The androgen dihydrotestosterone (DHT) is a potent non-aromatizable androgen involved in sexual differentiation in mammals; however, its actions are not well understood in teleost fish. To better characterize the physiological role of DHT in the fathead minnow (FHM) ovary on a temporal scale, in vitro assays for 17β-estradiol (E2) production were conducted in parallel with microarray analysis. Ovarian explants were incubated at different concentrations of DHT (10(-6), 10(-7), and 10(-8)M DHT) in three separate experiments conducted at 6, 9, and 12h. DHT treatment resulted in a rapid and consistent increase in E2 production from the ovary at all three time points. Therefore, DHT may act to shift the balance of metabolites in the steroidogenic pathway within the ovary. Major biological themes affected by DHT in the ovary in one or more of the time points included those related to blood (e.g. vasodilation, blood vessel contraction, clotting), lipids (e.g. lipid storage, cholesterol metabolism, lipid degradation) and reproduction (e.g. hormone and steroid metabolism). Gene networks related to immune responses and calcium signaling were also affected by DHT, suggesting that this androgen may play a role in regulating these processes in the ovary. This study detected no change in mRNA levels of steroidogenic enzymes (cyp19a1, star, 11βhsd, 17βhsd, srd5a isoforms), suggesting that the observed increase in E2 production is likely more dependent on the pre-existing gene or protein complement in the ovary rather than the de novo expression of transcripts. This study increases knowledge regarding the roles of DHT and androgens in general in the teleost ovary and identifies molecular signaling pathways that may be associated with increased E2 production.
Collapse
Affiliation(s)
- Anna Ornostay
- Department of Biology and Canadian Rivers Institute, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Joshua Marr
- Department of Biology and Canadian Rivers Institute, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Jennifer R Loughery
- Department of Biology and Canadian Rivers Institute, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Christopher J Martyniuk
- Department of Biology and Canadian Rivers Institute, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada; Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
19
|
Tokarz J, Möller G, Hrabě de Angelis M, Adamski J. Steroids in teleost fishes: A functional point of view. Steroids 2015; 103:123-44. [PMID: 26102270 DOI: 10.1016/j.steroids.2015.06.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 01/23/2023]
Abstract
Steroid hormones are involved in the regulation of a variety of processes like embryonic development, sex differentiation, metabolism, immune responses, circadian rhythms, stress response, and reproduction in vertebrates. Teleost fishes and humans show a remarkable conservation in many developmental and physiological aspects, including the endocrine system in general and the steroid hormone related processes in particular. This review provides an overview of the current knowledge about steroid hormone biosynthesis and the steroid hormone receptors in teleost fishes and compares the findings to the human system. The impact of the duplicated genome in teleost fishes on steroid hormone biosynthesis and perception is addressed. Additionally, important processes in fish physiology regulated by steroid hormones, which are most dissimilar to humans, are described. We also give a short overview on the influence of anthropogenic endocrine disrupting compounds on steroid hormone signaling and the resulting adverse physiological effects for teleost fishes. By this approach, we show that the steroidogenesis, hormone receptors, and function of the steroid hormones are reasonably well understood when summarizing the available data of all teleost species analyzed to date. However, on the level of a single species or a certain fish-specific aspect of physiology, further research is needed.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
20
|
Simmons DBD, Benskin JP, Cosgrove JR, Duncker BP, Ekman DR, Martyniuk CJ, Sherry JP. Omics for aquatic ecotoxicology: control of extraneous variability to enhance the analysis of environmental effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1693-1704. [PMID: 25827364 DOI: 10.1002/etc.3002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/09/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
There are multiple sources of biological and technical variation in a typical ecotoxicology study that may not be revealed by traditional endpoints but that become apparent in an omics dataset. As researchers increasingly apply omics technologies to environmental studies, it will be necessary to understand and control the main source(s) of variability to facilitate meaningful interpretation of such data. For instance, can variability in omics studies be addressed by changing the approach to study design and data analysis? Are there statistical methods that can be employed to correctly interpret omics data and make use of unattributed, inherent variability? The present study presents a review of experimental design and statistical considerations applicable to the use of omics methods in systems toxicology studies. In addition to highlighting potential sources that contribute to experimental variability, this review suggests strategies with which to reduce and/or control such variability so as to improve reliability, reproducibility, and ultimately the application of omics data for systems toxicology.
Collapse
Affiliation(s)
- Denina B D Simmons
- Emerging Methods Section, Aquatic Contaminants Research Division, Water Science & Technology Directorate, Environment Canada, Ontario, Canada
| | | | | | | | - Drew R Ekman
- Ecosystems Research Division, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Athens, Georgia, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - James P Sherry
- Emerging Methods Section, Aquatic Contaminants Research Division, Water Science & Technology Directorate, Environment Canada, Ontario, Canada
| |
Collapse
|
21
|
Effects of 17 α-methyltestosterone on transcriptome, gonadal histology and sex steroid hormones in rare minnow Gobiocypris rarus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 15:20-7. [PMID: 26070167 DOI: 10.1016/j.cbd.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 11/23/2022]
Abstract
The 17α-methyltestosterone (MT), a synthetic androgen, is known for its interference effects on the endocrine system. Aiming to investigate the transcriptome profiling of gonads induced by MT and to understand the molecular mechanism by which MT causes adverse effects in fish, transcriptome profiling of gonads, gonadal histology and the sex steroid hormones in response to MT were analyzed in Gobiocypris rarus. Eight libraries, 4 from the ovary and 4 from the testis, were constructed and sequenced and then a total number of clean reads per sample ranging from 7.03 to 9.99 million were obtained. In females, a total of 191 transcripts were differentially regulated by MT, consisting of 102 up-regulated transcripts and 89 down-regulated transcripts. In males, 268 differentially expressed genes with 108 up-regulated and 160 down-regulated were detected upon MT exposure. Testosterone serves as the major sex steroid hormone content in G. rarus of both sexes. The concentrations of 17β-estradiol, testosterone and 11-ketotestosterone were significantly increased in females and decreased in males after MT exposure. Interestingly, MT caused a decreased number of vitellogenic oocytes in the ovary and spermatozoa in the testis. After MT exposure, four differentially expressed genes (ndufa4, slc1a3a, caskin-2 and rpt3) were found in G. rarus of both sexes. Overall, we suggest that MT seemed to affect genes involved in pathways related to physiological processes in the gonads of G. rarus. These processes include the electron transfer of Complex IV, endothelial cell activation, axon growth and guidance, and proteasome assembly and glutamate transport metabolic.
Collapse
|
22
|
Rutherford R, Lister A, Hewitt LM, MacLatchy D. Effects of model aromatizable (17α-methyltestosterone) and non-aromatizable (5α-dihydrotestosterone) androgens on the adult mummichog (Fundulus heteroclitus) in a short-term reproductive endocrine bioassay. Comp Biochem Physiol C Toxicol Pharmacol 2015; 170:8-18. [PMID: 25634815 DOI: 10.1016/j.cbpc.2015.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
Androgens originating from pulp mill processing, sewage treatment facilities and agricultural activities have the potential for discharge into aquatic receiving environments. To assess androgen effects on reproductive endocrine status in fish in estuarine environments, male and female adult northern mummichog (Fundulus heteroclitus macrolepidotus) were exposed to an aromatizable androgen (17α-methyltestosterone; MT) and a non-aromatizable androgen (5α-dihydrotestosterone; DHT) in a short-term reproductive endocrine bioassay. Fish were nominally exposed to 10 μg/L or 100 μg/L DHT, or 0.1 μg/L or 1 μg/L MT for 14 days during gonadal recrudescence. Actual concentrations of androgens, as measured by enzyme immunoassay (EIA), were 10-49% of nominal MT 0.1, 3-6% of nominal MT 1, 5-10% of nominal DHT 10 and 3-25% of nominal DHT 100. Female mummichog were impacted to a greater degree by androgen exposure, with increased plasma testosterone (T) at 100 μg/L DHT, depressed plasma 17β-estradiol (E2) at both DHT concentrations and at 1 μg/L MT, as well as depressed in vitro E2 at both MT concentrations and 100 μg/L DHT. Males had depressed plasma T in the 10 μg/L DHT treatment and depressed in vitro 11-ketotestosterone production for both MT concentrations and 10 μg/L DHT. Ovarian aromatase gene expression was induced in females exposed to 1 μg/L MT. DHT at 100 μg/L increased hepatic vitellogenin-1 (VTG1) expression in males and depressed VTG1 expression in females. The range of responses between sexes and among species provides evidence for modes of actions and potential impacts of androgens in aquatic receiving environments.
Collapse
Affiliation(s)
- Robert Rutherford
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada.
| | - Andrea Lister
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - L Mark Hewitt
- National Water Research Institute, Environment Canada, Burlington, ON L7R 4A6, Canada
| | - Deborah MacLatchy
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
23
|
Uren Webster TM, Perry MH, Santos EM. The herbicide linuron inhibits cholesterol biosynthesis and induces cellular stress responses in brown trout. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3110-3118. [PMID: 25633873 DOI: 10.1021/es505498u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The herbicide linuron is used worldwide, and has been detected in surface waters as well as in food and drinking water. Toxicological studies have reported that linuron acts as an antiandrogen in vitro and in vivo and disrupts mammalian male reproductive function. However, global mechanisms of linuron toxicity are poorly documented. We used RNA-seq to characterize the hepatic transcriptional response of mature male brown trout exposed for 4 days to 1.7, 15.3, and 225.9 μg/L linuron. We identified a striking decrease in the expression of transcripts encoding the majority of enzymes forming the cholesterol biosynthesis pathway. We also measured a very significant decrease in total hepatic cholesterol in fish exposed to 225.9 μg/L linuron and a negative correlation between total cholesterol and linuron treatment concentration. We hypothesize that inhibition of cholesterol biosynthesis may result from the disruption of androgen signaling by linuron. Additionally, there was increased expression of a number of transcripts involved in cellular stress responses, including cyp1a (up to 560-fold), molecular chaperones, and antioxidant enzymes. We found some evidence of similar patterns of transcriptional change in fish exposed to an environmentally relevant concentration of linuron, and further research should investigate the potential for adverse effects to occur following chronic environmental exposure.
Collapse
Affiliation(s)
- Tamsyn M Uren Webster
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter , Exeter EX4 4QD, United Kingdom
| | | | | |
Collapse
|
24
|
Groh KJ, Suter MJF. Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:1-12. [PMID: 25498419 DOI: 10.1016/j.aquatox.2014.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action. We suggest that the results of any differential proteomics experiment performed with zebrafish should be interpreted keeping in mind the list of the most frequent responders that we have identified. Similar reservations should apply to any other species where proteome responses are analyzed by global proteomics methods. Careful consideration of the reliability and significance of observed changes is necessary in order not to over-interpret the experimental results and to prevent the proliferation of false positive linkages between the chemical and the cellular functions it perturbs. We further discuss the implications of the identified "top lists" of frequently responding proteins and protein families, and suggest further directions for proteomics research in ecotoxicology. Apart from improving the proteome coverage, further research should focus on defining the significance of the observed stress response patterns for organism phenotypes and on searching for common upstream regulators that can be targeted by specific assays.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, 8093 Zürich, Switzerland.
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| |
Collapse
|
25
|
Bahamonde PA, McMaster ME, Servos MR, Martyniuk CJ, Munkittrick KR. Molecular pathways associated with the intersex condition in rainbow darter (Etheostoma caeruleum) following exposures to municipal wastewater in the Grand River basin, ON, Canada. Part B. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:302-316. [PMID: 25542366 DOI: 10.1016/j.aquatox.2014.11.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Rainbow darter (Etheostoma caeruleum; RBD) is a small benthic fish found in North America. This species is sensitive to sewage effluent, and intersex is found in up to 80% of males in near-field areas in the Grand River, Ontario, Canada. To learn more about the molecular signaling cascades associated with intersex, a developed customized oligonucleotide microarray (4×180 K) using next generation sequencing was developed to characterize the transcriptome in the gonad of male and female RBD. Gene expression profiling was performed in males and females from both a reference site and a polluted site. Males with and without intersex condition from the areas closest to effluent outfalls were compared to males and females from a reference site. Microarray analysis revealed that there was increased mRNA abundance for genes associated with oogenesis in intersex males (i.e. the presence of eggs within the testis), and a decrease in mRNA abundance for genes associated with spermatid development. In females exposed to effluent, cell processes related with hatching and ovulation were down-regulated, and genes involved in immune responses were increased in abundance. In the non-intersex males exposed to effluent, cell processes such as sperm cell adhesion were decreased at the transcript level relative to males from the reference site. Microarray analysis revealed that heat shock proteins (HSP) were significantly increased in non-intersex males exposed to effluent; however, HSPs were not differentially expressed in intersex males exposed to the effluent. Genes involved in sex differentiation (sox9, foxl2 and dmrt1) and reproduction (esr1, esrb, ar, vtg, cyp19a1 and cyp11a) were measured in males, females, and intersex individuals. Consistent with the intersex condition, many transcripts showed an intermediate expression level in intersex males when compared to phenotypic males and females. This study improves our knowledge regarding the molecular pathways that underlie the intersex condition and develops a suite of qPCR bioassays in RBD that are able to discriminate pollutant-exposed males without intersex from those males with intersex. Part A of this study reports on the effects of municipal wastewater effluents (MWWEs) on RBD in the Grand River and demonstrates that there are disruptions in higher level endpoints that include altered steroid levels. Here we develop a new tool for assessing and monitoring the intersex condition in RBD in polluted natural environments and begin to characterize gene networks that are associated with the condition.
Collapse
Affiliation(s)
- P A Bahamonde
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB, Canada E2L 4L5.
| | - M E McMaster
- Emerging Methods Branch, Aquatic Contaminant Research Division, Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada L7R 4A6
| | - M R Servos
- Canadian Rivers Institute and University of Waterloo, Department of Biology, Waterloo, ON, Canada N2L 3G1
| | - C J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB, Canada E2L 4L5
| | - K R Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB, Canada E2L 4L5
| |
Collapse
|
26
|
Martyniuk CJ, Bissegger S, Langlois VS. Reprint of "Current perspectives on the androgen 5 alpha-dihydrotestosterone (DHT) and 5 alpha-reductases in teleost fishes and amphibians". Gen Comp Endocrinol 2014; 203:10-20. [PMID: 24954687 DOI: 10.1016/j.ygcen.2014.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The androgen 5 alpha-dihydrotestosterone (DHT) is a steroidogenic metabolite that has received little attention in non-mammalian species. DHT is produced by the reduction of the double-bond of testosterone by a group of enzymes called 5 alpha-reductases of which there can be multiple isoforms (i.e., srd5a1, srd5a2, and srd5a3). Data from amphibians suggest that the expression of the srd5a genes occurs in early development, and continues until adulthood; however insufficient data exist in fish species, where DHT is thought to be relatively biologically inactive. Here, we demonstrate that fathead minnow (FHM; Pimephales promelas) developing embryos and adults express srd5a enzyme isoforms. During FHM embryogenesis, both srd5a1 and srd5a3 mRNA levels were significantly correlated in expression levels while srd5a2 showed a more unique pattern of expression. In adult FHMs, males had significantly higher levels of srd5a2 in the liver and gonad compared to females. In the male and female liver, transcript levels for srd5a2 were more abundant compared to srd5a1 and srd5a3, suggesting a prominent role for srd5a2 in this tissue. Interestingly, the ovary expressed higher mRNA levels of srd5a3 than the testis. Thus, data suggest that srd5a isoforms can show sexually dimorphic expression patterns in fish. We also conducted a literature review of the biological effects observed in embryonic and adult fish and amphibians after treatments with DHT and DHT-related compounds. Treatments with DHT in teleost fishes and amphibians have resulted in unexpected biological responses that are characteristic of both androgens and anti-androgens. For example, in fish DHT can induce vitellogenin in vitro from male and female hepatocytes and can increase 17β-estradiol production from the teleost ovary. We propose, that to generate further understanding of the roles of DHT in non-mammals, studies are needed that (1) address how DHT is synthesized within tissues of fish and amphibians; (2) examine the full range of biological responses to endogenous DHT, and its interactions with other signaling pathways; and (3) investigate how DHT production varies with reproductive stage. Lastly, we suggest that the Srd5a enzymes can be targets of endocrine disruptors in fish and frogs, which may result in disruptions in the estrogen:androgen balance in aquatic organisms.
Collapse
Affiliation(s)
| | - Sonja Bissegger
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| | - Valérie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| |
Collapse
|
27
|
Feswick A, Ings JS, Doyle MA, Bosker T, Munkittrick KR, Martyniuk CJ. Transcriptomics profiling and steroid production in mummichog (Fundulus heteroclitus) testes after treatment with 5α-dihydrotestosterone. Gen Comp Endocrinol 2014; 203:106-19. [PMID: 24447443 DOI: 10.1016/j.ygcen.2014.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 01/08/2023]
Abstract
5α-Dihydrotestosterone (DHT) is a potent androgen in mammals with multiple roles; however the physiological actions of DHT in male fishes are not well known. To address this knowledge gap, male mummichog (Fundulus heteroclitus) were continuously exposed to 0, 5, and 50 μg/L DHT for 21 days. Following exposure, testes were separated for histology, ex vivo incubation to measure steroidogenic capacity, and gene expression analyses (real-time PCR and microarray). DHT significantly decreased ex vivo 11-ketotestosterone (11KT) production in males exposed to 50 μg/L DHT but not 5 μg/L DHT, and DHT exposure did not affect ex vivo testosterone production. Histological examination revealed that the amount of interlobular and connective tissue present in the testes was increased in the 50 μg/L DHT treatment. Despite reductions in the production of 11KT, DHT did not affect the expression of targeted genes in the steroidogenic pathway such as steroidogenic acute regulatory protein (star), P450 side chain cleavage (cyp11a1) and 11β-hydroxysteroid dehydrogenase (hsd11b3). Microarray analysis in the testes of individuals from control and 50 μg/L DHT revealed that males exposed to 50 μg/L DHT showed regulated transcriptional sub-networks that were related to immunity, regulation of blood flow, lipids and xenobiotic clearance, suggesting that DHT may be involved in the physiological regulation of these processes in the fish testes. A second objective of this study was to determine the feasibility of measuring mRNA levels in tissues used for ex vivo steroid production by comparing RNA integrity and transcript levels in testes of both immediately flash frozen tissue and incubated tissue. There was no significant difference in RNA quality between the two time points, indicating RNA integrity can remain intact for at least 18 h in ex vivo assays, thereby providing a viable option for researchers assessing multi-level biological reproductive endpoints when limited tissue is available. While the gene expression levels of actb, efla, rps12, rps18, star, and hsd11b3 remained unchanged, esr2a (esrba), esr2b (esrbb) and cyp11a1 were significantly lower in incubated tissue compared to flash frozen tissue. Therefore caution must be used as the steady-state levels of select genes may change over time. This study improves our understanding of DHT action in the teleostean testis and generates new hypotheses regarding cell processes that are regulated by this underexplored and potent androgen.
Collapse
Affiliation(s)
- A Feswick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - J S Ings
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - M A Doyle
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - T Bosker
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - K R Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - C J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
28
|
Bissegger S, Martyniuk CJ, Langlois VS. Transcriptomic profiling in Silurana tropicalis testes exposed to finasteride. Gen Comp Endocrinol 2014; 203:137-45. [PMID: 24530632 DOI: 10.1016/j.ygcen.2014.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 01/14/2023]
Abstract
Investigations of endocrine disrupting chemicals found in aquatic ecosystems with estrogenic and androgenic modes of action have increased over the past two decades due to a surge of evidence of adverse effects in wildlife. Chemicals that disrupt androgen signalling and steroidogenesis can result in an imbalanced conversion of testosterone (T) into 17β-estradiol (E2) and other androgens such as 5α-dihydrotestosterone (5α-DHT). Therefore, a better understanding of how chemicals perturb these pathways is warranted. In this study, the brain, liver, and testes of Silurana tropicalis were exposed ex vivo to the human drug finasteride, a potent steroid 5α-reductase inhibitor and a model compound to study the inhibition of the conversion of T into 5α-DHT. These experiments were conducted (1) to determine organ specific changes in sex steroid production after treatment, and (2) to elucidate the transcriptomic response to finasteride in testicular tissue. Enzyme-linked immunosorbent assays were used to measure hormone levels in media following finasteride incubation for 6 h. Finasteride significantly increased T levels in the media of liver and testis tissue, but did not induce any changes in E2 and 5α-DHT production. Gene expression analysis was performed in frog testes and data revealed that finasteride treatment significantly altered 1,434 gene probes. Gene networks associated with male reproduction such as meiosis, hormone biosynthesis, sperm entry, gonadotropin releasing hormone were affected by finasteride exposure as well as other pathways such as oxysterol synthesis, apoptosis, and epigenetic regulation. For example, this study suggests that the mode of action by which finasteride induces cellular damage in testicular tissue as reported by others, is via oxidative stress in testes. This data also suggests that 5-reductase inhibition disrupts the expression of genes related to reproduction. It is proposed that androgen-disrupting chemicals may mediate their action via 5-reductases and that the effects of environmental pollutants are not limited to the androgen receptor signalling.
Collapse
Affiliation(s)
- Sonja Bissegger
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada.
| | - Christopher J Martyniuk
- Department of Biology and the Canadian River Institute, University of New Brunswick, NB, Canada.
| | - Valérie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada.
| |
Collapse
|
29
|
Liang X, Martyniuk CJ, Cheng G, Zha J, Wang Z. Pyruvate carboxylase as a sensitive protein biomarker for exogenous steroid chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 189:184-193. [PMID: 24681510 DOI: 10.1016/j.envpol.2014.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Assessing protein responses to endocrine disrupting chemicals is critical for understanding the mechanisms of chemical action and for the assessment of hazards. In this study, the response of the liver proteome of male rare minnows (Gobiocypris rarus) treated with 17β-estradiol (E2) and females treated with 17α-methyltestosterone (MT) were analyzed. A total of 23 and 24 proteins were identified with differential expression in response to E2 and MT, respectively. Pyruvate carboxylase (PC) was the only common differentially expressed protein in both males and females after E2- and MT-treatments. The mRNA as well as the protein levels of PC were significantly down-regulated compared with that of the controls (p < 0.05). Our results suggest that endocrine disruptors interfere with genes and proteins of the TCA cycle and PC may be a sensitive biomarker of exposure to exogenous steroid chemicals in the liver of fish.
Collapse
Affiliation(s)
- Xuefang Liang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Christopher J Martyniuk
- Canadian Rivers Institute, Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Gang Cheng
- Key Lab for Biotechnology of National Commission for Nationalities, College of Life Science, South Central University for Nationalities, Wuhan 430074, China
| | - Jinmiao Zha
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| |
Collapse
|
30
|
Beckett EM, Astapova O, Steckler TL, Veiga-Lopez A, Padmanabhan V. Developmental programing: impact of testosterone on placental differentiation. Reproduction 2014; 148:199-209. [PMID: 24840528 DOI: 10.1530/rep-14-0055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gestational testosterone treatment causes maternal hyperinsulinemia, intrauterine growth retardation (IUGR), low birth weight, and adult reproductive and metabolic dysfunctions. Sheep models of IUGR demonstrate placental insufficiency as an underlying cause of IUGR. Placental compromise is probably the cause of fetal growth retardation in gestational testosterone-treated sheep. This study tested whether testosterone excess compromises placental differentiation by its androgenic action and/or via altered insulin sensitivity. A comparative approach of studying gestational testosterone (aromatizable androgen) against dihydrotestosterone (non-aromatizable androgen) or testosterone plus androgen antagonist, flutamide, was used to determine whether the effects of testosterone on placental differentiation were programed by its androgenic actions. Co-treatment of testosterone with the insulin sensitizer, rosiglitazone, was used to establish whether the effects of gestational testosterone on placentome differentiation involved compromised insulin sensitivity. Parallel cohorts of pregnant females were maintained for lambing and the birth weight of their offspring was recorded. Placental studies were conducted on days 65, 90, or 140 of gestation. Results indicated that i) gestational testosterone treatment advances placental differentiation, evident as early as day 65 of gestation, and culminates in low birth weight, ii) placental advancement is facilitated at least in part by androgenic actions of testosterone and is not a function of disrupted insulin homeostasis, and iii) placental advancement, while helping to increase placental efficiency, was insufficient to prevent IUGR and low-birth-weight female offspring. Findings from this study may be of relevance to women with polycystic ovary syndrome, whose reproductive and metabolic phenotype is captured by the gestational testosterone-treated offspring.
Collapse
Affiliation(s)
- E M Beckett
- Department of Pediatrics and the Reproductive Sciences ProgramUniversity of Michigan, 300 North Ingalls Building, Room 1138 SW, Ann Arbor, Michigan 48109-5404, USA
| | - O Astapova
- Department of Pediatrics and the Reproductive Sciences ProgramUniversity of Michigan, 300 North Ingalls Building, Room 1138 SW, Ann Arbor, Michigan 48109-5404, USA
| | - T L Steckler
- Department of Pediatrics and the Reproductive Sciences ProgramUniversity of Michigan, 300 North Ingalls Building, Room 1138 SW, Ann Arbor, Michigan 48109-5404, USA
| | - A Veiga-Lopez
- Department of Pediatrics and the Reproductive Sciences ProgramUniversity of Michigan, 300 North Ingalls Building, Room 1138 SW, Ann Arbor, Michigan 48109-5404, USA
| | - V Padmanabhan
- Department of Pediatrics and the Reproductive Sciences ProgramUniversity of Michigan, 300 North Ingalls Building, Room 1138 SW, Ann Arbor, Michigan 48109-5404, USA
| |
Collapse
|
31
|
Mennigen JA, Martyniuk CJ, Seiliez I, Panserat S, Skiba-Cassy S. Metabolic consequences of microRNA-122 inhibition in rainbow trout, Oncorhynchus mykiss. BMC Genomics 2014; 15:70. [PMID: 24467738 PMCID: PMC3914182 DOI: 10.1186/1471-2164-15-70] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/22/2014] [Indexed: 01/31/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small regulatory molecules which post-transcriptionally regulate mRNA stability and translation. Several microRNAs have received attention due to their role as key metabolic regulators. In spite of the high evolutionary conservation of several miRNAs, the role of miRNAs in lower taxa of vertebrates has not been studied with regard to metabolism. The liver-specific and highly abundant miRNA-122 is one of the most widely studied miRNA in mammals, where it has been implicated in the control of hepatic lipid metabolism. Following our identification of acute postprandial, nutritional and endocrine regulation of hepatic miRNA-122 isomiRNA expression in rainbow trout, we used complementary in silico and in vivo approaches to study the role of miRNA-122 in rainbow trout metabolism. We hypothesized that the role of miRNA-122 in regulating lipid metabolism in rainbow trout is conserved to that in mammals and that modulation of miRNA-122 function would result in altered lipid homeostasis and secondarily altered glucose homeostasis, since lipogenesis has been suggested to act as glucose sink in trout. Results Our results show that miRNA-122 was functionally inhibited in vivo in the liver. Postprandial glucose concentrations increased significantly in rainbow trout injected with a miRNA-122 inhibitor, and this effect correlated with decreases in hepatic FAS protein abundance, indicative of altered lipogenic potential. Additionally, miRNA-122 inhibition resulted in a 20% decrease in plasma cholesterol concentration, an effect associated with increased expression of genes involved in cholesterol degradation and excretion. Conclusions Overall evidence suggests that miRNA-122 may have evolved in early vertebrates to support liver-specific metabolic functions. Nevertheless, our data also indicate that metabolic consequences of miRNA-122 inhibition may differ quantitatively between vertebrate species and that distinct direct molecular targets of miRNA-122 may mediate metabolic effects between vertebrate species, indicating that miRNA-122 - mRNA target relationships may have undergone species-specific evolutionary changes.
Collapse
Affiliation(s)
| | | | | | | | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France.
| |
Collapse
|
32
|
Ornostay A, Cowie AM, Hindle M, Baker CJ, Martyniuk CJ. Classifying chemical mode of action using gene networks and machine learning: A case study with the herbicide linuron. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:263-74. [DOI: 10.1016/j.cbd.2013.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/25/2022]
|
33
|
Martyniuk CJ, Bissegger S, Langlois VS. Current perspectives on the androgen 5 alpha-dihydrotestosterone (DHT) and 5 alpha-reductases in teleost fishes and amphibians. Gen Comp Endocrinol 2013; 194:264-74. [PMID: 24095809 DOI: 10.1016/j.ygcen.2013.09.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 11/29/2022]
Abstract
The androgen 5 alpha-dihydrotestosterone (DHT) is a steroidogenic metabolite that has received little attention in non-mammalian species. DHT is produced by the reduction of the double-bond of testosterone by a group of enzymes called 5 alpha-reductases of which there can be multiple isoforms (i.e., srd5a1, srd5a2, and srd5a3). Data from amphibians suggest that the expression of the srd5a genes occurs in early development, and continues until adulthood; however insufficient data exist in fish species, where DHT is thought to be relatively biologically inactive. Here, we demonstrate that fathead minnow (FHM; Pimephales promelas) developing embryos and adults express srd5a enzyme isoforms. During FHM embryogenesis, both srd5a1 and srd5a3 mRNA levels were significantly correlated in expression levels while srd5a2 showed a more unique pattern of expression. In adult FHMs, males had significantly higher levels of srd5a2 in the liver and gonad compared to females. In the male and female liver, transcript levels for srd5a2 were more abundant compared to srd5a1 and srd5a3, suggesting a prominent role for srd5a2 in this tissue. Interestingly, the ovary expressed higher mRNA levels of srd5a3 than the testis. Thus, data suggest that srd5a isoforms can show sexually dimorphic expression patterns in fish. We also conducted a literature review of the biological effects observed in embryonic and adult fish and amphibians after treatments with DHT and DHT-related compounds. Treatments with DHT in teleost fishes and amphibians have resulted in unexpected biological responses that are characteristic of both androgens and anti-androgens. For example, in fish DHT can induce vitellogenin in vitro from male and female hepatocytes and can increase 17β-estradiol production from the teleost ovary. We propose, that to generate further understanding of the roles of DHT in non-mammals, studies are needed that (1) address how DHT is synthesized within tissues of fish and amphibians; (2) examine the full range of biological responses to endogenous DHT, and its interactions with other signaling pathways; and (3) investigate how DHT production varies with reproductive stage. Lastly, we suggest that the Srd5a enzymes can be targets of endocrine disruptors in fish and frogs, which may result in disruptions in the estrogen:androgen balance in aquatic organisms.
Collapse
|
34
|
Tokarz J, Möller G, de Angelis MH, Adamski J. Zebrafish and steroids: what do we know and what do we need to know? J Steroid Biochem Mol Biol 2013; 137:165-73. [PMID: 23376612 DOI: 10.1016/j.jsbmb.2013.01.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/26/2012] [Accepted: 01/01/2013] [Indexed: 01/23/2023]
Abstract
Zebrafish, Danio rerio, has long been used as a model organism in developmental biology. Nowadays, due to their advantages compared to other model animals, the fish gain popularity and are also increasingly used in endocrinology. This review focuses on an important aspect of endocrinology in zebrafish by summarizing the progress in steroid hormone related research. We present the state of the art of research on steroidogenesis, the action of steroid hormones, and steroid catabolism and cover the incremental usage of zebrafish as a test animal in endocrine disruption research. By this approach, we demonstrate that some aspects of steroid hormone research are well characterized (e.g., expression patterns of the genes involved), while other aspects such as functional analyses of enzymes, steroid hormone elimination, or the impact of steroid hormones on embryonic development or sex differentiation have not been extensively studied and are poorly understood. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
35
|
Gene expression networks underlying ovarian development in wild largemouth bass (Micropterus salmoides). PLoS One 2013; 8:e59093. [PMID: 23527095 PMCID: PMC3604104 DOI: 10.1371/journal.pone.0059093] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 02/12/2013] [Indexed: 01/12/2023] Open
Abstract
Background Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Methods Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Results Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. Conclusions This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation.
Collapse
|
36
|
Langlois VS, Martyniuk CJ. Genome wide analysis of Silurana (Xenopus) tropicalis development reveals dynamic expression using network enrichment analysis. Mech Dev 2013; 130:304-22. [PMID: 23295496 DOI: 10.1016/j.mod.2012.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/30/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
Abstract
Development involves precise timing of gene expression and coordinated pathways for organogenesis and morphogenesis. Functional and sub-network enrichment analysis provides an integrated approach for identifying networks underlying development. The objectives of this study were to characterize early gene regulatory networks over Silurana tropicalis development from NF stage 2 to 46 using a custom Agilent 4×44K microarray. There were >8000 unique gene probes that were differentially expressed between Nieuwkoop-Faber (NF) stage 2 and stage 16, and >2000 gene probes differentially expressed between NF 34 and 46. Gene ontology revealed that genes involved in nucleosome assembly, cell division, pattern specification, neurotransmission, and general metabolism were increasingly regulated throughout development, consistent with active development. Sub-network enrichment analysis revealed that processes such as membrane hyperpolarisation, retinoic acid, cholesterol, and dopamine metabolic gene networks were activated/inhibited over time. This study identifies RNA transcripts that are potentially maternally inherited in an anuran species, provides evidence that the expression of genes involved in retinoic acid receptor signaling may increase prior to those involved in thyroid receptor signaling, and characterizes novel gene expression networks preceding organogenesis which increases understanding of the spatiotemporal embryonic development in frogs.
Collapse
Affiliation(s)
- Valérie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4.
| | | |
Collapse
|
37
|
Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. SENSORS 2012; 12:12741-71. [PMID: 23112741 PMCID: PMC3478868 DOI: 10.3390/s120912741] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 11/21/2022]
Abstract
Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s). The promising concept of “adverse outcome pathways (AOP)” links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.
Collapse
|
38
|
Tomanek L. Introduction to the Symposium "Comparative Proteomics of Environmental and Pollution Stress". Integr Comp Biol 2012; 52:622-5. [DOI: 10.1093/icb/ics116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
39
|
Dowd WW. Challenges for Biological Interpretation of Environmental Proteomics Data in Non-model Organisms. Integr Comp Biol 2012; 52:705-20. [DOI: 10.1093/icb/ics093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|