1
|
Robinson CD, Hale MD, Cox CL, John-Alder HB, Cox RM. Effects of Testosterone on Gene Expression Are Concordant between Sexes but Divergent across Species of Sceloporus Lizards. Am Nat 2024; 204:517-532. [PMID: 39486031 DOI: 10.1086/732200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractHormones mediate sexual dimorphism by regulating sex-specific patterns of gene expression, but it is unclear how much of this regulation involves sex-specific hormone levels versus sex-specific transcriptomic responses to the same hormonal signal. Moreover, transcriptomic responses to hormones can evolve, but the extent to which hormonal pleiotropy in gene regulation is conserved across closely related species is not well understood. We addressed these issues by elevating testosterone levels in juvenile females and males of three Sceloporus lizard species before sexual divergence in circulating testosterone and then characterizing transcriptomic responses in the liver. In each species, more genes were responsive to testosterone in males than in females, suggesting that early developmental processes prime sex-specific transcriptomic responses to testosterone later in life. However, overall transcriptomic responses to testosterone were concordant between sexes, with no genes exhibiting sex-by-treatment interactions. By contrast, hundreds of genes exhibited species-by-treatment interactions, particularly when comparing distantly related species with different patterns of sexual dimorphism, suggesting evolutionary lability in gene regulation by testosterone. Collectively, our results indicate that early organizational effects may lead to sex-specific differences in the magnitude, but not the direction, of transcriptomic responses to testosterone and that the hormone-genome interface accrues regulatory changes over evolutionary time.
Collapse
|
2
|
Wang Y, Zhu Y, He L, Yu H, Lin X, Ran J, Xie F. Phenotypic and Transcriptomic Analysis Revealed a Lack of Risk Perception by Native Tadpoles Toward Novel Non-Native Fish. Ecol Evol 2024; 14:e70481. [PMID: 39435436 PMCID: PMC11493475 DOI: 10.1002/ece3.70481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
The introduction of alien species poses a serious threat to native biodiversity, and mountain lake systems in the southwest of China are particularly vulnerable to the introduction of non-native fish. The prey naivety hypothesis states that native species may not be able to recognize novel introduced species due to a lack of common evolutionary background and therefore become easy targets, so the impacts of non-native fish on mountain endemic amphibians need to be urgently assessed. In an ex-situ experiment, we exposed the tadpoles of the Chaochiao Brown Frog (Rana chaochiaoensis), endemic to western China, to kairomones of both native and translocated fish species, and their phenotypic and genetic response patterns were compared. The results revealed significant phenotypic plasticity responses in total length (TOL), tail length (TL), and tail muscle width (TW) of tadpoles induced by native fish kairomone, while tadpoles exposed to translocated fish kairomone exhibited weaker phenotypic changes. At the transcriptional level, the number of differently expressed genes (DEGs) in the native fish treatment was 3.1-fold (liver) and 52.6-fold (tail muscle) higher than in the translocated fish treatment, respectively. There were more unique DEGs in the native fish treatment, primarily enriched in terms and pathways related to stress response, energy metabolism, and muscle development. The study revealed a lack of risk perception by native tadpoles toward novel non-native fish, providing new evidence for the prey naivety hypothesis from both phenotypic and molecular perspectives. Future conservation efforts should prioritize assessing the impacts of non-native fish on alpine and subalpine threatened and narrowly distributed amphibians. Additionally, prevention, early warning, monitoring, and removal of non-native fish should be carried out as soon as possible.
Collapse
Affiliation(s)
- Yuanfei Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- Key Laboratory of Bio‐Resource and Eco‐Environment of the Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yudong Zhu
- Sichuan Liziping National Nature ReserveShimianChina
- Open Laboratory of Shimian Research Center of Giant Panda Small Population Conservation and RejuvenationShimianChina
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan ProvinceShimianChina
| | - Liuyang He
- Sichuan Liziping National Nature ReserveShimianChina
- Open Laboratory of Shimian Research Center of Giant Panda Small Population Conservation and RejuvenationShimianChina
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan ProvinceShimianChina
| | - Haoqi Yu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- Key Laboratory of Bio‐Resource and Eco‐Environment of the Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiuqin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Jianghong Ran
- Key Laboratory of Bio‐Resource and Eco‐Environment of the Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Lincoln JM, Barlowe ML, Rucker HR, Parker MR. Reconsidering reproductive patterns in a model dissociated species, the red-sided garter snake: Sex-specific and seasonal changes in gonadal steroidogenic gene expression. Front Endocrinol (Lausanne) 2023; 14:1135535. [PMID: 36992803 PMCID: PMC10040831 DOI: 10.3389/fendo.2023.1135535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 03/16/2023] Open
Abstract
Sex steroid hormones are powerful regulators of reproductive behavior and physiology in vertebrates, and steroidogenesis has distinct sex- and season-specific patterns ultimately dictated by the expression of key enzymes. Most comparative endocrinology studies, however, focus only on circulating levels of sex steroids to determine their temporal association with life-history events in what are termed associated reproductive patterns. The red-sided garter snake (Thamnophis sirtalis parietalis) is a notable exception; this species exhibits maximal sex behavior decoupled from maximal sex steroid production and gametogenesis in what is termed a dissociated reproductive pattern. And while this is true for male red-sided garter snakes and their production of testosterone, females have maximal estradiol production during peak breeding (spring) but only immediately after mating. Here, we demonstrate that expression of ovarian aromatase (conversion of androgens to estrogens) matches the established seasonal hormone pattern in females. Additionally, steroidogenic gene expression in the ovary is broadly reduced if not suppressed compared to the testis throughout the active year. Bizarrely, male red-sided garter snakes demonstrate an unexplained pattern of steroidogenic gene expression in the testis. StAR (import of cholesterol to steroidogenesis) is maximally expressed in spring, yet Hsd17b3 expression (conversion of androstenedione to testosterone) is highest in summer, with the latter matching the established summer peak in male testosterone. The function of elevated StAR in spring is unknown, but our results suggest a decoupling between maximal StAR expression and testosterone biosynthesis (Hsd17b3 expression). We also purport that the reproductive pattern binary should be reassessed given its lack of fit for many vertebrate species that demonstrate seasonal, mixed patterns of (a)synchrony between circulating sex hormones and reproductive behavior.
Collapse
Affiliation(s)
- Julianna M. Lincoln
- Department of Biology, Harrisonburg, James Madison University, VA, United States
| | - Megan L. Barlowe
- Department of Biology, Harrisonburg, James Madison University, VA, United States
| | - Holly R. Rucker
- Department of Biology, Harrisonburg, James Madison University, VA, United States
- Department of Cellular and Molecular Biology, University of Wisconsin, Madison, WI, United States
| | - M. Rockwell Parker
- Department of Biology, Harrisonburg, James Madison University, VA, United States
- *Correspondence: M. Rockwell Parker,
| |
Collapse
|
4
|
Petrullo L, Delaney D, Boutin S, McAdam AG, Lane JE, Boonstra R, Palme R, Dantzer B. The glucocorticoid response to environmental change is not specific to agents of natural selection in wild red squirrels. Horm Behav 2022; 146:105262. [PMID: 36191397 DOI: 10.1016/j.yhbeh.2022.105262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Evolutionary endocrinology aims to understand how natural selection shapes endocrine systems and the degree to which endocrine systems themselves can induce phenotypic responses to environmental changes. Such responses may be specialized in that they reflect past selection for responsiveness only to those ecological factors that ultimately influence natural selection. Alternatively, endocrine responses may be broad and generalized, allowing organisms to cope with a variety of environmental changes simultaneously. Here, we empirically tested whether the endocrine response of female North American red squirrels (Tamiasciurus hudsonicus) was specialized or generalized. We first quantified the direction and magnitude of natural selection acting on three female life history traits (parturition date, litter size, offspring postnatal growth rate) during 32 years of fluctuations in four potential ecological agents of selection (food availability, conspecific density, predator abundance, and temperature). Only three of the four variables (food, density, and predators) affected patterns of natural selection on female life history traits. We then quantified fecal glucocorticoid metabolites (FGMs) across 7 years and found that all four environmental variables, regardless of their effects on patterns of selection, were associated with glucocorticoid production. Our results provide support for a generalized, rather than specific, glucocorticoid response to environmental change that can integrate across multiple co-occurring environmental stressors.
Collapse
Affiliation(s)
- Lauren Petrullo
- Department of Psychology, University of Michigan, Ann Arbor, MI 48108, USA.
| | - David Delaney
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Andrew G McAdam
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, ON M1C 1A6, Canada
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterina ̈rplatz 1, Vienna 1210, Austria
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48108, USA; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48108, USA
| |
Collapse
|
5
|
Cox RM, Hale MD, Wittman TN, Robinson CD, Cox CL. Evolution of hormone-phenotype couplings and hormone-genome interactions. Horm Behav 2022; 144:105216. [PMID: 35777215 DOI: 10.1016/j.yhbeh.2022.105216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/22/2022]
Abstract
When selection favors a new relationship between a cue and a hormonally mediated response, adaptation can proceed by altering the hormonal signal that is produced or by altering the phenotypic response to the hormonal signal. The field of evolutionary endocrinology has made considerable progress toward understanding the evolution of hormonal signals, but we know much less about the evolution of hormone-phenotype couplings, particularly at the hormone-genome interface. We briefly review and classify the mechanisms through which these hormone-phenotype couplings likely evolve, using androgens and their receptors and genomic response elements to illustrate our view. We then present two empirical studies of hormone-phenotype couplings, one rooted in evolutionary quantitative genetics and another in comparative transcriptomics, each focused on the regulation of sexually dimorphic phenotypes by testosterone (T) in the brown anole lizard (Anolis sagrei). First, we illustrate the potential for hormone-phenotype couplings to evolve by showing that coloration of the dewlap (an ornament used in behavioral displays) exhibits significant heritability in its responsiveness to T, implying that anoles harbor genetic variance in the architecture of hormonal pleiotropy. Second, we combine T manipulations with analyses of the liver transcriptome to ask whether and how statistical methods for characterizing modules of co-expressed genes and in silico techniques for identifying androgen response elements (AREs) can improve our understanding of hormone-genome interactions. We conclude by emphasizing important avenues for future work at the hormone-genome interface, particularly those conducted in a comparative evolutionary framework.
Collapse
Affiliation(s)
- Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | - Matthew D Hale
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Tyler N Wittman
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Christian L Cox
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Biological Sciences, Florida International University, Miami, FL, USA
| |
Collapse
|
6
|
Accustomed to the heat: Temperature and thyroid hormone influences on oogenesis and gonadal steroidogenesis pathways vary among populations of Amargosa pupfish (Cyprinodon nevadensis amargosae). Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111280. [PMID: 35902003 DOI: 10.1016/j.cbpa.2022.111280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Many fish experience diminished reproductive performance under atypically high or prolonged elevations of temperature. Such high temperature inhibition of reproduction comes about in part from altered stimulation of gametogenesis by the hypothalamic-pituitary-gonadal (HPG) endocrine axis. Elevated temperatures have also been shown to affect thyroid hormone (TH) signaling, and altered TH status under high temperatures may impact gametogenesis via crosstalk with HPG axis pathways. Here, we examined effects of temperature and 3'-triiodo-L-thyronine (T3) on pathways for gonadal steroidogenesis and gametogenesis in Amargosa pupfish (Cyprinodon nevadensis amargosae) from two allopatric populations: 1) the Amargosa River - a highly variable temperature habitat, and 2) Tecopa Bore - an invariably warm groundwater-fed marsh. These populations were previously shown to differ in TH signaling profiles both in the wild and under common laboratory conditions. Sexually-mature pupfish from each population were maintained at 24 °C or 34 °C for 88 days, after which a subset of fish was treated with T3 for 18-24 h. In both populations, mRNA abundances for follicle-stimulating hormone receptor and luteinizing hormone receptor were higher in the ovary and testis at 24 °C compared to 34 °C. Females from Tecopa Bore - but not from the Amargosa River - also had greater ovarian transcript abundances for steroidogenic enzymes cytochrome P450 aromatase, 3β-hydroxysteroid dehydrogenase, and 17β-hydroxysteroid dehydrogenase at 24 °C compared to 34 °C, as well as higher liver mRNA levels of vitellogenins and choriogenins at cooler temperature. Transcript abundances for estrogen receptors esr1, esr2a, and esr2b were reduced at 34 °C in Amargosa River females, but not in Tecopa Bore females. T3 augmented gonadal gene transcript levels for steroid acute regulatory protein (StAR) transporter in both sexes and populations. T3 also downregulated liver estrogen receptor mRNAs in females from the warmer Tecopa Bore habitat only, suggesting T3 modulation of liver E2 sensitivity as a possible mechanism whereby temperature-induced changes in TH status may contribute to shifts in thermal sensitivity for oogenesis.
Collapse
|
7
|
A framework to understand the role of biological time in responses to fluctuating climate drivers. Sci Rep 2022; 12:10429. [PMID: 35729311 PMCID: PMC9213464 DOI: 10.1038/s41598-022-13603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
Understanding biological responses to environmental fluctuations (e.g. heatwaves) is a critical goal in ecology. Biological responses (e.g. survival) are usually measured with respect to different time reference frames, i.e. at specific chronological times (e.g. at specific dates) or biological times (e.g. at reproduction). Measuring responses on the biological frame is central to understand how environmental fluctuation modifies fitness and population persistence. We use a framework, based on partial differential equations (PDEs) to explore how responses to the time scale and magnitude of fluctuations in environmental variables (= drivers) depend on the choice of reference frame. The PDEs and simulations enabled us to identify different components, responsible for the phenological and eco-physiological effects of each driver on the response. The PDEs also highlight the conditions when the choice of reference frame affects the sensitivity of the response to a driver and the type of join effect of two drivers (additive or interactive) on the response. Experiments highlighted the importance of studying how environmental fluctuations affect biological time keeping mechanisms, to develop mechanistic models. Our main result, that the effect of the environmental fluctuations on the response depends on the scale used to measure time, applies to both field and laboratory conditions. In addition, our approach, applied to experimental conditions, can helps us quantify how biological time mediates the response of organisms to environmental fluctuations.
Collapse
|
8
|
Keer S, Storch JD, Nguyen S, Prado M, Singh R, Hernandez LP, McMenamin SK. Thyroid hormone shapes craniofacial bones during postembryonic zebrafish development. Evol Dev 2022; 24:61-76. [PMID: 35334153 PMCID: PMC8976723 DOI: 10.1111/ede.12399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023]
Abstract
Changing the shape of craniofacial bones can profoundly alter ecological function, and understanding how developmental conditions sculpt skeletal phenotypes can provide insight into evolutionary adaptations. Thyroid hormone (TH) stimulates metamorphosis and regulates skeletal morphogenesis across vertebrates. To assess the roles of this hormone in sculpting the craniofacial skeleton of a non-metamorphic vertebrate, we tested zebrafish for developmental periods of TH-induced craniofacial shape change. We analyzed shapes of specific bones that function in prey detection, capture and processing. We quantified these elements from late-larval through adult stages under three developmental TH profiles. Under wild-type conditions, each bone progressively grows allometrically into a mature morphology over the course of postembryonic development. In three of the four bones, TH was required to sculpt an adult shape: hypothyroidism inhibited aspects of shape change, and allowed some components of immature shape to be retained into adulthood. Excess developmental TH stimulated aspects of precocious shape change leading to abnormal morphologies in some bones. Skeletal features with functional importance showed high sensitivities to TH, including the transformator process of the tripus, the mandibular symphysis of the lower jaw, the scutiform lamina of the hyomandibula, and the anterior arm of the pharyngeal jaw. In all, we found that TH is necessary for shaping mature morphology of several essential skeletal elements; this requirement is particularly pronounced during larval development. Altered TH titer leads to abnormal morphologies with likely functional consequences, highlighting the potential of TH and downstream pathways as targets for evolutionary change.
Collapse
Affiliation(s)
- Stephanie Keer
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Suite 6000, Washington, DC 20052 USA
| | - Joshua D. Storch
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Suite 6000, Washington, DC 20052 USA
| | - Stacy Nguyen
- Biology Department, Boston College, 140 Commonwealth Ave, Higgins Hall Room 360, Chestnut Hill MA 02467 USA
| | - Mia Prado
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Suite 6000, Washington, DC 20052 USA
| | - Rajendra Singh
- Biology Department, Boston College, 140 Commonwealth Ave, Higgins Hall Room 360, Chestnut Hill MA 02467 USA
| | - L. Patricia Hernandez
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Suite 6000, Washington, DC 20052 USA
| | - Sarah K. McMenamin
- Biology Department, Boston College, 140 Commonwealth Ave, Higgins Hall Room 360, Chestnut Hill MA 02467 USA
- corresponding author: Sarah K. McMenamin:
| |
Collapse
|
9
|
Taff CC, Zimmer C, Ryan TA, van Oordt DC, Aborn DA, Ardia DR, Johnson LS, Rose AP, Vitousek M. Individual variation in natural or manipulated corticosterone does not covary with circulating glucose in a wild bird. J Exp Biol 2022; 225:274518. [DOI: 10.1242/jeb.243262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Animals respond to sudden challenges with a coordinated set of physiological and behavioral responses that enhance the ability to cope with stressors. While general characteristics of the vertebrate stress response are well described, it is not as clear how individual components covary between- or within-individuals. A rapid increase in glucocorticoids coordinates the stress response and one of the primary downstream results is an increase in glucose availability via reduced glucose utilization. Here, we asked whether between- and within-individual variation in corticosterone directly predicted variation in glucose. We collected 2,673 paired glucose and corticosterone measures from 776 tree swallows (Tachycineta bicolor) from four populations spanning the species range. In adults, glucose and corticosterone both increased during a standardized restraint protocol in all four populations. Moreover, in one population experimentally increasing a precursor that stimulates corticosterone release resulted in a further increase in both measures. In contrast, nestlings did not show a robust glucose response to handling or manipulation. Despite this group level variation, there was very little evidence in any population that between-individual variation in corticosterone predicted between-individual variation in glucose regulation. Glucose was moderately repeatable within-individuals, but within-individual variation in glucose and corticosterone were unrelated. Our results highlight the fact that a strong response in one aspect of the coordinated acute stress response (corticosterone) does not necessarily indicate that specific downstream components, such as glucose, will show similarly strong responses. These results have implications for understanding the evolution of integrated stress response systems.
Collapse
Affiliation(s)
- Conor C. Taff
- Department of Ecology & Evolutionary Biology, Cornell University, USA
- Lab of Ornithology, Cornell University, USA
| | - Cedric Zimmer
- Department of Ecology & Evolutionary Biology, Cornell University, USA
- Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, UR 4443, Université Sorbonne Paris Nord, France
| | - Thomas A. Ryan
- Department of Ecology & Evolutionary Biology, Cornell University, USA
| | - David Chang van Oordt
- Department of Ecology & Evolutionary Biology, Cornell University, USA
- Lab of Ornithology, Cornell University, USA
| | - David A. Aborn
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, USA
| | | | | | - Alexandra P. Rose
- Ecology and Evolutionary Biology Department, University of Colorado Boulder, USA
| | - Maren Vitousek
- Department of Ecology & Evolutionary Biology, Cornell University, USA
- Lab of Ornithology, Cornell University, USA
| |
Collapse
|
10
|
Malkoc K, Mentesana L, Casagrande S, Hau M. Quantifying Glucocorticoid Plasticity Using Reaction Norm Approaches: There Still is So Much to Discover! Integr Comp Biol 2021; 62:58-70. [PMID: 34665256 PMCID: PMC9375136 DOI: 10.1093/icb/icab196] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hormones are highly responsive internal signals that help organisms adjust their phenotype to fluctuations in environmental and internal conditions. Our knowledge of the causes and consequences of variation in circulating hormone concentrations has improved greatly in the past. However, this knowledge often comes from population-level studies, which generally tend to make the flawed assumption that all individuals respond in the same way to environmental changes. Here, we advocate that we can vastly expand our understanding of the ecology and evolution of hormonal traits once we acknowledge the existence of individual differences by quantifying hormonal plasticity at the individual level, where selection acts. In this review, we use glucocorticoid (GC) hormones as examples of highly plastic endocrine traits that interact intimately with energy metabolism but also with other organismal traits like behavior and physiology. First, we highlight the insights gained by repeatedly assessing an individual's GC concentrations along a gradient of environmental or internal conditions using a “reaction norm approach.” This study design should be followed by a hierarchical statistical partitioning of the total endocrine variance into the among-individual component (individual differences in average hormone concentrations, i.e., in the intercept of the reaction norm) and the residual (within-individual) component. The latter is ideally further partitioned by estimating more precisely hormonal plasticity (i.e., the slope of the reaction norm), which allows to test whether individuals differ in the degree of hormonal change along the gradient. Second, we critically review the published evidence for GC variation, focusing mostly on among- and within-individual levels, finding only a good handful of studies that used repeated-measures designs and random regression statistics to investigate GC plasticity. These studies indicate that individuals can differ in both the intercept and the slope of their GC reaction norm to a known gradient. Third, we suggest rewarding avenues for future work on hormonal reaction norms, for example to uncover potential costs and trade-offs associated with GC plasticity, to test whether GC plasticity varies when an individual's reaction norm is repeatedly assessed along the same gradient, whether reaction norms in GCs covary with those in other traits like behavior and fitness (generating multivariate plasticity), or to quantify GC reaction norms along multiple external and internal gradients that act simultaneously (leading to multidimensional plasticity). Throughout this review, we emphasize the power that reaction norm approaches offer for resolving unanswered questions in ecological and evolutionary endocrinology.
Collapse
Affiliation(s)
- Kasja Malkoc
- Research Group for Evolutionary Physiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Lucia Mentesana
- Research Group for Evolutionary Physiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Stefania Casagrande
- Research Group for Evolutionary Physiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Michaela Hau
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
11
|
Gabor CR, Kivlin SN, Hua J, Bickford N, Reiskind MOB, Wright TF. Understanding Organismal Capacity to Respond to Anthropogenic Change: Barriers and Solutions. Integr Comp Biol 2021; 61:2132-2144. [PMID: 34279616 DOI: 10.1093/icb/icab162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
Global environmental changes induced by human activities are forcing organisms to respond at an unprecedented pace. At present we have only a limited understanding of why some species possess the capacity to respond to these changes while others do not. We introduce the concept of multidimensional phenospace as an organizing construct to understanding organismal evolutionary responses to environmental change. We then describe five barriers that currently challenge our ability to understand these responses: 1) Understanding the parameters of environmental change and their fitness effects, 2) Mapping and integrating phenotypic and genotypic variation, 3) Understanding whether changes in phenospace are heritable, 4) Predicting consistency of genotype to phenotype patterns across space and time, and 5) Determining which traits should be prioritized to understand organismal response to environmental change. For each we suggest one or more solutions that would help us surmount the barrier and improve our ability to predict, and eventually manipulate, organismal capacity to respond to anthropogenic change. Additionally, we provide examples of target species that could be useful to examine interactions between phenotypic plasticity and adaptive evolution in changing phenospace.
Collapse
Affiliation(s)
- Caitlin R Gabor
- Department of Biology, Population and Conservation Biology Group, Texas State University, San Marcos, TX, 78666, USA.,The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA
| | - Stephanie N Kivlin
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Jessica Hua
- Biological Sciences Department, Binghamton University (SUNY), Binghamton, NY, 13902, USA
| | - Nate Bickford
- Biology Department, Colorado State University Pueblo, Pueblo, CO 81003, USA
| | | | - Timothy F Wright
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
12
|
Wittman TN, Robinson CD, McGlothlin JW, Cox RM. Hormonal pleiotropy structures genetic covariance. Evol Lett 2021; 5:397-407. [PMID: 34367664 PMCID: PMC8327939 DOI: 10.1002/evl3.240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022] Open
Abstract
Quantitative genetic theory proposes that phenotypic evolution is shaped by G, the matrix of genetic variances and covariances among traits. In species with separate sexes, the evolution of sexual dimorphism is also shaped by B, the matrix of between‐sex genetic variances and covariances. Despite considerable focus on estimating these matrices, their underlying biological mechanisms are largely speculative. We experimentally tested the hypothesis that G and B are structured by hormonal pleiotropy, which occurs when one hormone influences multiple phenotypes. Using juvenile brown anole lizards (Anolis sagrei) bred in a paternal half‐sibling design, we elevated the steroid hormone testosterone with slow‐release implants while administering empty implants to siblings as a control. We quantified the effects of this manipulation on the genetic architecture of a suite of sexually dimorphic traits, including body size (males are larger than females) and the area, hue, saturation, and brightness of the dewlap (a colorful ornament that is larger in males than in females). Testosterone masculinized females by increasing body size and dewlap area, hue, and saturation, while reducing dewlap brightness. Control females and males differed significantly in G, but treatment of females with testosterone rendered G statistically indistinguishable from males. Whereas B was characterized by low between‐sex genetic correlations when estimated between control females and males, these same correlations increased significantly when estimated between testosterone females and either control or testosterone males. The full G matrix (including B) for testosterone females and either control or testosterone males was significantly less permissive of sexually dimorphic evolution than was G estimated between control females and males, suggesting that natural sex differences in testosterone help decouple genetic variance between the sexes. Our results confirm that hormonal pleiotropy structures genetic covariance, implying that hormones play an important yet overlooked role in mediating evolutionary responses to selection.
Collapse
Affiliation(s)
- Tyler N Wittman
- Department of Biology University of Virginia Charlottesville Virginia 22904
| | | | - Joel W McGlothlin
- Department of Biological Sciences Virginia Tech Blacksburg Virginia 24061
| | - Robert M Cox
- Department of Biology University of Virginia Charlottesville Virginia 22904
| |
Collapse
|
13
|
Denver RJ. Stress hormones mediate developmental plasticity in vertebrates with complex life cycles. Neurobiol Stress 2021; 14:100301. [PMID: 33614863 PMCID: PMC7879041 DOI: 10.1016/j.ynstr.2021.100301] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
The environment experienced by developing organisms can shape the timing and character of developmental processes, generating different phenotypes from the same genotype, each with different probabilities of survival and performance as adults. Chordates have two basic modes of development, indirect and direct. Species with indirect development, which includes most fishes and amphibians, have a complex life cycle with a free-swimming larva that is typically a growth stage, followed by a metamorphosis into the adult form. Species with direct development, which is an evolutionarily derived developmental mode, develop directly from embryo to the juvenile without an intervening larval stage. Among the best studied species with complex life cycles are the amphibians, especially the anurans (frogs and toads). Amphibian tadpoles are exposed to diverse biotic and abiotic factors in their developmental habitat. They have extensive capacity for developmental plasticity, which can lead to the expression of different, adaptive morphologies as tadpoles (polyphenism), variation in the timing of and size at metamorphosis, and carry-over effects on the phenotype of the juvenile/adult. The neuroendocrine stress axis plays a pivotal role in mediating environmental effects on amphibian development. Before initiating metamorphosis, if tadpoles are exposed to predators they upregulate production of the stress hormone corticosterone (CORT), which acts directly on the tail to cause it to grow, thereby increasing escape performance. When tadpoles reach a minimum body size to initiate metamorphosis they can vary the timing of transformation in relation to growth opportunity or mortality risk in the larval habitat. They do this by modulating the production of thyroid hormone (TH), the primary inducer of metamorphosis, and CORT, which synergizes with TH to promote tissue transformation. Hypophysiotropic neurons that release the stress neurohormone corticotropin-releasing factor (CRF) are activated in response to environmental stress (e.g., pond drying, food restriction, etc.), and CRF accelerates metamorphosis by directly inducing secretion of pituitary thyrotropin and corticotropin, thereby increasing secretion of TH and CORT. Although activation of the neuroendocrine stress axis promotes immediate survival in a deteriorating larval habitat, costs may be incurred such as reduced tadpole growth and size at metamorphosis. Small size at transformation can impair performance of the adult, reducing probability of survival in the terrestrial habitat, or fecundity. Furthermore, elevations in CORT in the tadpole caused by environmental stressors cause long term, stable changes in neuroendocrine function, behavior and physiology of the adult, which can affect fitness. Comparative studies show that the roles of stress hormones in developmental plasticity are conserved across vertebrate taxa including humans.
Collapse
Affiliation(s)
- Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
14
|
Casto KV, Edwards DA. Individual differences in hormonal responsiveness to social encounters: Commentary on Félix et al., 2020 and review of pertinent issues. Horm Behav 2021; 129:104921. [PMID: 33428922 DOI: 10.1016/j.yhbeh.2020.104921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023]
Abstract
The results of a recent study, Félix et al., 2020, give new information about the behavioral and endocrine correlates of individual differences in the potential for androgen response in male cichlid fish. We think the study raises issues that are pertinent to the study of hormones and competition in other species, particularly humans. Focusing mostly on androgen reactivity to social challenge, we emphasize the importance of inter-individual variability in physiology, personality, and motivation in studies of hormone responses to social encounters. Additionally, we give special attention to matters of "repeatability" and the timing of hormone sampling. We conclude with an appreciation of the value of comparative analysis in behavioral endocrinology.
Collapse
|
15
|
Esin EV, Markevich GN, Melnik NO, Kapitanova DV, Shkil FN. Natural toxic impact and thyroid signalling interplay orchestrates riverine adaptive divergence of salmonid fish. J Anim Ecol 2021; 90:1004-1019. [PMID: 33481247 DOI: 10.1111/1365-2656.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
Adaptive radiation in fishes has been actively investigated over the last decades. Along with numerous well-studied cases of lacustrine radiation, some examples of riverine sympatric divergence have been recently discovered. In contrast to the lakes, the riverine conditions do not provide evident stability in the ecological gradients. Consequently, external factors triggering the radiation, as well as developmental mechanisms underpinning it, remain unclear. Herein, we present the comprehensive study of external and internal drivers of the riverine adaptive divergence of the salmonid fish Salvelinus malma. In the Kamchatka River, north-east Asia, this species splits in the reproductively isolated morphs that drastically differ in ecology and morphology: the benthivorous Dolly Varden (DV) and the piscivorous stone charr (SC). To understand why and how these morphs originated, we performed a series of field and experimental work, including common-garden rearing, comparative ontogenetic, physiological and endocrinological analyses, hormonal 'engineering' of phenotypes and acute toxicological tests. We revealed that the type of spawning ground acts as the decisive factor driving the radiation of S. malma. In contrast to DV spawning in the leaf krummholz zone, SC reproduces in the zone of coniferous forest, which litter has a toxic impact on developing fishes. SC enhances resistance to the toxicants via metabolism acceleration provided by the elevated thyroid hormone expenditure. These physiological changes lead to the multiple heterochronies resulting in a specific morphology and ecology of SC. Salvelinus malma represents a notable example of how the thyroid axis contributes to the generation of diverse phenotypic outcomes underlying the riverine sympatric divergence. Our findings, along with the paleoecology data concerning spruce forest distribution during the Pleistocene, provide an opportunity to reconstruct a scenario of S. malma divergence. Taken together, obtained results with the data of the role of thyroid hormones in the ontogeny and diversification of fishes contribute a resource to consider the thyroid axis as a prime director orchestrating the phenotypic plasticity promoting evolutionary diversification under the changing environmental conditions.
Collapse
Affiliation(s)
- Evgeny V Esin
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia.,Kronotsky Nature Biosphere Reserve, Yelizovo, Russia
| | | | - Nikolay O Melnik
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
| | - Daria V Kapitanova
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia.,Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| | - Fedor N Shkil
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia.,Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| |
Collapse
|
16
|
Cantarero A, Andrade P, Carneiro M, Moreno-Borrallo A, Alonso-Alvarez C. Testing the carotenoid-based sexual signalling mechanism by altering CYP2J19 gene expression and colour in a bird species. Proc Biol Sci 2020; 287:20201067. [PMID: 33171089 DOI: 10.1098/rspb.2020.1067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ornaments can evolve to reveal individual quality when their production/maintenance costs make them reliable as 'signals' or if their expression level is intrinsically linked to condition by some unfalsifiable mechanism (indices). The latter has been mostly associated with traits constrained by body size. In red ketocarotenoid-based colorations, that link could, instead, be established with cell respiration at the inner mitochondrial membrane (IMM). The production mechanism could be independent of resource (yellow carotenoids) availability, thus discarding costs linked to allocation trade-offs. A gene coding for a ketolase enzyme (CYP2J19) responsible for converting dietary yellow carotenoids to red ketocarotenoids has recently been described. We treated male zebra finches with an antioxidant designed to penetrate the IMM (mitoTEMPO) and a thyroid hormone (triiodothyronine) with known hypermetabolic effects. Among hormone controls, MitoTEMPO downregulated CYP2J19 in the bill (a red ketocarotenoid-based ornament), supporting the mitochondrial involvement in ketolase function. Both treatments interacted when increasing hormone dosage, indicating that mitochondria and thyroid metabolisms could simultaneously regulate coloration. Moreover, CYP2J19 expression was positively correlated to redness but also to yellow carotenoid levels in the blood. However, treatment effects were not annulated when controlling for blood carotenoid variability, which suggests that costs linked to resource availability could be minor.
Collapse
Affiliation(s)
- Alejandro Cantarero
- Section of Ecology, Department of Biology, University of Turku, Turku 20014, Finland.,Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Pedro Andrade
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Adrián Moreno-Borrallo
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Carlos Alonso-Alvarez
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
17
|
Faraz A, Iglesias Pastrana C, Passantino A, Mustafa AB, Waheed A, Tauqir NA, Nabeel MS. Pregnancy status and thyroid function in semi-intensive-kept Marecha she-camels (Camelus dromedarius): managerial implications. Trop Anim Health Prod 2020; 52:3387-3393. [PMID: 32918162 DOI: 10.1007/s11250-020-02371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Pakistani Marecha dromedaries, a distinctive breed not covered in the empirical data of the literature reviewed existing for thyroidal physiology in camels, are subjected to investigate thyroid function in pregnant multiparous (n = 22) and non-pregnant nor lactating (n = 22) females. The function of the thyroid gland in pubescent she-camels has evoked discrepancies among researchers exploring this topic in different breeds evolving in divergent environments. Despite season, age, sex, reproductive status, health disorders, and stress are reported as potential modulating factors, these research studies failed to find statistically significant results supporting their hypothesis. For the current research, serum samples were obtained twice a week during one month from semi-intensive-kept Marecha she-camels and analyzed for triiodothyronine (T3) and thyroxine (T4) concentrations. Feed ingredients and additives were quality assessed to examine their nutrient profile, with special attention to protein content and exogenous calcium administration. Statistical differences in serum thyroid hormone levels were found between gravid and non-gravid females, being pregnant she-camels the subgroup with higher levels (P < 0.05). The genetic background of such phenotypic variability in thyroid metabolism in camels has to be further addressed to adapt husbandry practices for breed-specific requirements. Meanwhile, local management strategies are susceptible of accurate routines for sustainable farming.
Collapse
Affiliation(s)
- Asim Faraz
- Department of Livestock and Poultry Production, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Annamaria Passantino
- Department of Veterinary Sciences, Università degli Studi di Messina, Messina, Italy
| | - Ayman Balla Mustafa
- Faculty of Nursing and Health Sciences, Department of Therapeutic Nutrition, University of Misurata, Misurata, Libya
| | - Abdul Waheed
- Department of Livestock and Poultry Production, Bahauddin Zakariya University, Multan, Pakistan
| | - Nasir Ali Tauqir
- Department of Animal Science, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Shahid Nabeel
- Department of Livestock and Dairy Development, Camel Breeding and Research Station Rakh Mahni, Bhakkar, Pakistan
| |
Collapse
|
18
|
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
19
|
Matsunami M, Miura T, Kishida O, Michimae H, Nishimura K. Expression of Genes Involved in Offensive and Defensive Phenotype Induction in the Pituitary Gland of the Hokkaido Salamander (Hynobius retardatus). Zoolog Sci 2020; 37:563-574. [DOI: 10.2108/zs190140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/17/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Masatoshi Matsunami
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Toru Miura
- Misaki Marine Biological Station, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Tomakomai, Hokkaido 053-0035, Japan
| | - Hirofumi Michimae
- School of Pharmacy, Department of Clinical Medicine (Biostatistics), Kitasato University, Tokyo 108-8641, Japan
| | - Kinya Nishimura
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
20
|
Physiological Stress Integrates Resistance to Rattlesnake Venom and the Onset of Risky Foraging in California Ground Squirrels. Toxins (Basel) 2020; 12:toxins12100617. [PMID: 32992585 PMCID: PMC7601495 DOI: 10.3390/toxins12100617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Using venom for predation often leads to the evolution of resistance in prey. Understanding individual variation in venom resistance is key to unlocking basic mechanisms by which antagonistic coevolution can sustain variation in traits under selection. For prey, the opposing challenges of predator avoidance and resource acquisition often lead to correlated levels of risk and reward, which in turn can favor suites of integrated morphological, physiological and behavioral traits. We investigate the relationship between risk-sensitive behaviors, physiological resistance to rattlesnake venom, and stress in a population of California ground squirrels. For the same individuals, we quantified foraging decisions in the presence of snake predators, fecal corticosterone metabolites (a measure of “stress”), and blood serum inhibition of venom enzymatic activity (a measure of venom resistance). Individual responses to snakes were repeatable for three measures of risk-sensitive behavior, indicating that some individuals were consistently risk-averse whereas others were risk tolerant. Venom resistance was lower in squirrels with higher glucocorticoid levels and poorer body condition. Whereas resistance failed to predict proximity to and interactions with snake predators, individuals with higher glucocorticoid levels and in lower body condition waited the longest to feed when near a snake. We compared alternative structural equation models to evaluate alternative hypotheses for the relationships among stress, venom resistance, and behavior. We found support for stress as a shared physiological correlate that independently lowers venom resistance and leads to squirrels that wait longer to feed in the presence of a snake, whereas we did not find evidence that resistance directly facilitates latency to forage. Our findings suggest that stress may help less-resistant squirrels avoid a deadly snakebite, but also reduces feeding opportunities. The combined lethal and non-lethal effects of stressors in predator–prey interactions simultaneously impact multiple key traits in this system, making environmental stress a potential contributor to geographic variation in trait expression of toxic predators and resistant prey.
Collapse
|
21
|
Lema SC. Hormones, developmental plasticity, and adaptive evolution: Endocrine flexibility as a catalyst for 'plasticity-first' phenotypic divergence. Mol Cell Endocrinol 2020; 502:110678. [PMID: 31830511 DOI: 10.1016/j.mce.2019.110678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Explaining how populations adapt to environments is among the foremost objectives of evolutionary theory. Over generations, natural selection impels the phenotypic distribution of a population based on individual variation in phenotype and fitness. However, environmental conditions can also shape how individuals develop within their lifetime to influence which phenotypes are expressed in a population. It has been proposed that such environmentally-initiated phenotypic variation - also termed developmental plasticity - may enable adaptive evolution under some scenarios. As dynamic regulators of development and phenotypic expression, hormones are important physiological mediators of developmental plasticity. Patterns of hormone secretion, hormone transport, and the sensitivity of tissues to hormones can each be altered by environmental conditions, and understanding how endocrine regulation shapes phenotypic development in an ecologically-relevant context has much to contribute toward clarifying the role of plasticity in evolutionary adaptation. This article explores how the environmental sensitivity of endocrine regulation may facilitate 'plasticity-first' evolution by generating phenotypic variants that precede adaptation to altered or novel environments. Predictions arising from 'plasticity-first' evolution are examined in the context of thyroid hormone mediation of morphological plasticity in Cyprinodon pupfishes from the Death Valley region of California and Nevada, USA. This clade of extremophile fishes diversified morphologically over the last ~20,000 years, and observations that some populations experienced contemporary phenotypic differentiation under recent habitat change provide evidence that hormone-mediate plasticity preceded genetic assimilation of morphology in one of the region's species: the Devils Hole pupfish, Cyprinodon diabolis. This example illustrates how conceptualizing hormones not only as regulators of homeostasis, but also as developmental intermediaries between environment conditions and phenotypic variation at the individual-, population-, and species-levels can enrich our understanding of endocrine regulation both as a facilitator of phenotypic change under shifting environments, and as important proximate mechanisms that may initiate 'plasticity-first' evolutionary adaptation.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
22
|
Cox RM. Sex steroids as mediators of phenotypic integration, genetic correlations, and evolutionary transitions. Mol Cell Endocrinol 2020; 502:110668. [PMID: 31821857 DOI: 10.1016/j.mce.2019.110668] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
In recent decades, endocrinologists have increasingly adopted evolutionary methods and perspectives to characterize the evolution of the vertebrate endocrine system and leverage it as a model for developing and testing evolutionary theories. This review summarizes recent research on sex steroids (androgens and estrogens) to illustrate three ways in which a detailed understanding of the molecular and cellular architecture of hormonally mediated gene expression can enhance our understanding of general evolutionary principles. By virtue of their massively pleiotropic effects on the expression of genes and phenotypes, sex steroids and their receptors can (1) structure the patterns of phenotypic variance and covariance that are available to natural selection, (2) alter the underlying genetic correlations that determine a population's evolutionary response to selection, and (3) facilitate evolutionary transitions in fitness-related phenotypes via subtle regulatory shifts in underlying tissues and genes. These principles are illustrated by the author's research on testosterone and sexual dimorphism in lizards, and by recent examples drawn from other vertebrate systems. Mechanistically, these examples call attention to the importance of evolutionary changes in (1) androgen- and estrogen-mediated gene expression, (2) androgen and estrogen receptor expression, and (3) the distribution of androgen and estrogen response elements in target genes throughout the genome. A central theme to emerge from this review is that the rapidly increasing availability of genomic and transcriptomic data from non-model organisms places evolutionary endocrinologist in an excellent position to address the hormonal regulation of the key evolutionary interface between genes and phenotypes.
Collapse
Affiliation(s)
- Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
23
|
Ryder TB, Dakin R, Vernasco BJ, Evans BS, Horton BM, Moore IT. Testosterone Modulates Status-Specific Patterns of Cooperation in a Social Network. Am Nat 2020; 195:82-94. [DOI: 10.1086/706236] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Lema SC, Bock SL, Malley MM, Elkins EA. Warming waters beget smaller fish: evidence for reduced size and altered morphology in a desert fish following anthropogenic temperature change. Biol Lett 2019; 15:20190518. [PMID: 31615375 DOI: 10.1098/rsbl.2019.0518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Poikilothermic organisms are predicted to show reduced body sizes as they experience warming environments under a changing global climate. Such a shrinking of size is expected under scenarios where rising temperatures increase cellular reaction rates and basal metabolic energy demands, therein requiring limited energy to be shifted from growth. Here, we provide evidence that the ecological changes associated with warming may not only lead to shrinking body size but also trigger shifts in morphology. We documented 33.4 and 39.0% declines in body mass and 7.2 and 7.6% reductions in length for males and females, respectively, in a wild population of Amargosa pupfish, Cyprinodon nevadensis amargosae, following an abrupt anthropogenically driven temperature increase. That reduction in size was accompanied by the partial or complete loss of paired pelvic fins in approximately 34% of the population, a morphological change concomitant with altered body dimensions including head size and body depth. These observations confirm that increasing temperatures can reduce body size under some ecological scenarios and highlight how human-induced environmental warming may also trigger morphological changes with potential relevance for fitness.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93430, USA
| | - Samantha L Bock
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93430, USA
| | - Morgan M Malley
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93430, USA
| | - Emma A Elkins
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93430, USA
| |
Collapse
|
25
|
Lencer ES, McCune AR. An embryonic staging series up to hatching for Cyprinodon variegatus: An emerging fish model for developmental, evolutionary, and ecological research. J Morphol 2018; 279:1559-1578. [PMID: 30368863 DOI: 10.1002/jmor.20870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 11/08/2022]
Abstract
Using multiple taxa to research development is necessary for making general conclusions about developmental patterns and mechanisms. We present a staging series for Cyprinodon variegatus as a basis for further study of the developmental biology of fishes in the genus Cyprinodon and for comparative work on teleost fishes beyond the standard models. Cyprinodon are small, euryhaline fishes, widely distributed in fresh, brackish, and hypersaline waters of southern and eastern North America. Cyprinodontids are closely related to fundulids, providing a comparative reference point to the embryological model, Fundulus heteroclitus. Ecologists and evolutionary biologists commonly study Cyprinodon, and we have been using Cyprinodon to study skull variation and its genetic basis among closely related species. We divided embryonic development of C. variegatus into 34 morphologically identifiable stages. We reference our staging series to that already defined for a related model species, Oryzias latipes (medaka) that is studied by a large community of researchers. We provide a description of the early chondrogenesis and ossification of skull and caudal fin bones during the latter stages of embryonic development. We show that Cyprinodon are tractable for studying development. Eggs can be obtained easily from breeding pairs and our study provides a staging system to facilitate future developmental studies.
Collapse
Affiliation(s)
- Ezra S Lencer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| |
Collapse
|
26
|
Vitousek MN, Johnson MA, Husak JF. Illuminating Endocrine Evolution: The Power and Potential of Large-Scale Comparative Analyses. Integr Comp Biol 2018; 58:712-719. [DOI: 10.1093/icb/icy098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St. Paul, MN 55105, USA
| |
Collapse
|
27
|
Wingfield JC. Environmental Endocrinology: Insights into the Diversity of Regulatory Mechanisms in Life Cycles. Integr Comp Biol 2018; 58:790-799. [DOI: 10.1093/icb/icy081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
28
|
Taff CC, Schoenle LA, Vitousek MN. The repeatability of glucocorticoids: A review and meta-analysis. Gen Comp Endocrinol 2018; 260:136-145. [PMID: 29355531 DOI: 10.1016/j.ygcen.2018.01.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/27/2017] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
Glucocorticoids are highly conserved hormones that mediate a suite of responses to changing conditions in vertebrates. Recent work has focused on understanding how selection operates on glucocorticoid secretion in natural populations. Because heritability is rarely estimated and difficult to measure in the wild, many studies report within-individual repeatability as an estimate of stable between individual differences in glucocorticoid secretion. We conducted a systematic review and meta-analysis on estimates of within-individual glucocorticoid repeatability to elucidate general patterns of repeatability, and to test for relationships between covariates and estimates of repeatability. To this end, we collected 203 estimates of within-individual glucocorticoid repeatability drawn from 71 separate studies and 55 species. Overall, we found moderate levels of repeatability (0.29). We also found that repeatability varied by sample type. Long-term measures (e.g., fecal and feather samples) and acute stress-induced plasma glucocorticoids had higher repeatability (long-term: 0.44, stress-induced: 0.38), than baseline glucocorticoid levels (0.18). Repeatability also decreased with increasing time between repeated sampling events. Despite significant overall repeatability, there was substantial heterogeneity in estimates from different studies, suggesting that repeatability of glucocorticoid secretion varies substantially across systems and conditions. We discuss the implications of our results for understanding selection on glucocorticoid traits and suggest that continuing work should focus on evaluating the repeatability of within-individual glucocorticoid reaction norms.
Collapse
Affiliation(s)
- Conor C Taff
- Lab of Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, United States.
| | | | - Maren N Vitousek
- Lab of Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, United States
| |
Collapse
|
29
|
Li G, Deng Y, Geng Y, Zhou C, Wang Y, Zhang W, Song Z, Gao L, Yang J. Differentially Expressed microRNAs and Target Genes Associated with Plastic Internode Elongation in Alternanthera philoxeroides in Contrasting Hydrological Habitats. FRONTIERS IN PLANT SCIENCE 2017; 8:2078. [PMID: 29259617 PMCID: PMC5723390 DOI: 10.3389/fpls.2017.02078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/21/2017] [Indexed: 05/10/2023]
Abstract
Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philoxeroides were identified by time course expression profiling using high-throughput sequencing technology. A total of 128 known and 18 novel microRNAs were found to be differentially expressed under contrasting hydrological habitats. The microRNA:mRNA pairs potentially associated with plastic internode elongation were identified by integrative analysis of microRNA and mRNA expression profiles, and were validated by qRT-PCR and 5' RLM-RACE. The results showed that both the universal microRNAs conserved across different plants and the unique microRNAs novelly identified in A. philoxeroides were involved in the responses to varied water regimes. The results also showed that most of the differentially expressed microRNAs were transiently up-/down-regulated at certain time points during the treatments. The fine-scale temporal changes in microRNA expression highlighted the importance of time-series sampling in identifying stress-responsive microRNAs and analyzing their role in stress response/tolerance.
Collapse
Affiliation(s)
- Gengyun Li
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Ying Deng
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Yupeng Geng
- Institute of Ecology and Geobotany, Yunnan University, Kunming, China
| | - Chengchuan Zhou
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Yuguo Wang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Wenju Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Zhiping Song
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Lexuan Gao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Lexuan Gao, Ji Yang,
| | - Ji Yang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Lexuan Gao, Ji Yang,
| |
Collapse
|
30
|
Lema SC, Chow MI, Resner EJ, Westman AA, May D, Dittman AH, Hardy KM. Endocrine and metabolic impacts of warming aquatic habitats: differential responses between recently isolated populations of a eurythermal desert pupfish. CONSERVATION PHYSIOLOGY 2016; 4:cow047. [PMID: 27833749 PMCID: PMC5100229 DOI: 10.1093/conphys/cow047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Temperatures of inland aquatic habitats are increasing with climate change, and understanding how fishes respond physiologically to thermal stress will be crucial for identifying species most susceptible to these changes. Desert fishes may be particularly vulnerable to rising temperatures because many species occupy only a fraction of their historical range and occur in habitats with already high temperatures. Here, we examined endocrine and metabolic responses to elevated temperature in Amargosa pupfish, Cyprinodon nevadensis amargosae. We studied C. n. amargosae from two habitats with distinct thermal conditions: the Amargosa River, which experiences diurnally and seasonally variable temperatures (0.2-40°C); and Tecopa Bore, a spring and marsh fed by hot groundwater (47.5°C) from an artesian borehole. These allopatric populations differ in morphology, and prior evidence suggests that temperature might contribute to these differences via altered thyroid hormone (TH) regulation of morphological development. Here, we document variation in hepatic iodothyronine deiodinase type 2 (dio2) and type 3 (dio3) and TH receptor β (trβ) gene transcript abundance between the Amargosa River and Tecopa Bore wild populations. Fish from these populations acclimated to 24 or 34°C retained differences in hepatic dio2, dio3 and trβ mRNAs and also varied in transcripts encoding the TH membrane transporters monocarboxylate transporter 8 (mct8) and organic anion-transporting protein 1c1 (oatp1c1). Tecopa Bore pupfish also exhibited higher dio2 and trβ mRNA levels in skeletal muscle relative to Amargosa River fish. Muscle citrate synthase activity was lower at 34°C for both populations, whereas lactate dehydrogenase activity and lactate dehydrogenase A-chain (ldhA) transcripts were both higher and 3,5,3'-triiodothryonine responsive in Tecopa Bore pupfish only. These findings reveal that local population variation and thermal experience interact to shape how pupfish respond to elevated temperatures, and point to the need to consider such interactions in management actions for desert fishes under a changing climate.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Michelle I Chow
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Emily J Resner
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Alex A Westman
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Darran May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98112, USA
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
31
|
Endocrine Flexibility: Optimizing Phenotypes in a Dynamic World? Trends Ecol Evol 2016; 31:476-488. [DOI: 10.1016/j.tree.2016.03.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 01/08/2023]
|
32
|
Lencer ES, Riccio ML, McCune AR. Changes in growth rates of oral jaw elements produce evolutionary novelty in bahamian pupfish. J Morphol 2016; 277:935-47. [DOI: 10.1002/jmor.20547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 11/11/2022]
|
33
|
Evolution of Plasticity: Mechanistic Link between Development and Reversible Acclimation. Trends Ecol Evol 2016; 31:237-249. [PMID: 26846962 DOI: 10.1016/j.tree.2016.01.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022]
Abstract
Phenotypic characteristics of animals can change independently from changes in the genetic code. These plastic phenotypic responses are important for population persistence in changing environments. Plasticity can be induced during early development, with persistent effects on adult phenotypes, and it can occur reversibly throughout life (acclimation). These manifestations of plasticity have been viewed as separate processes. Here we argue that developmental conditions not only change mean trait values but also modify the capacity for acclimation. Acclimation counteracts the potentially negative effects of phenotype-environment mismatches resulting from epigenetic modifications during early development. Developmental plasticity is therefore also beneficial when environmental conditions change within generations. Hence, the evolution of reversible acclimation can no longer be viewed as independent from developmental processes.
Collapse
|
34
|
Discovery of latitudinal gradient of triidothyronine concentrations in ectotherms as revealed from a cyprinid fish, the common roach Rutilus rutilus. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Sakamoto T, Nishiyama Y, Ikeda A, Takahashi H, Hyodo S, Kagawa N, Sakamoto H. Neurohypophysial Hormones Regulate Amphibious Behaviour in the Mudskipper Goby. PLoS One 2015; 10:e0134605. [PMID: 26230718 PMCID: PMC4521927 DOI: 10.1371/journal.pone.0134605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/12/2015] [Indexed: 12/15/2022] Open
Abstract
The neurohypophysial hormones, arginine vasotocin and isotocin, regulate both hydromineral balance and social behaviors in fish. In the amphibious mudskipper, Periophthalmus modestus, we previously found arginine-vasotocin-specific regulation of aggressive behavior, including migration of the submissive subordinate into water. This migration also implies the need for adaptation to dehydration. Here, we examined the effects of arginine vasotocin and isotocin administration on the amphibious behavior of individual mudskippers in vivo. The mudskippers remained in the water for an increased period of time after 1-8 h of intracerebroventricular (ICV) injection with 500 pg/g arginine vasotocin or isotocin. The 'frequency of migration' was decreased after ICV injection of arginine vasotocin or isotocin, reflecting a tendency to remain in the water. ICV injections of isotocin receptor antagonist with arginine vasotocin or isotocin inhibited all of these hormonal effects. In animals kept out of water, mRNA expression of brain arginine vasotocin and isotocin precursors increased 3- and 1.5-fold, respectively. Given the relatively wide distribution of arginine vasotocin fibres throughout the mudskipper brain, induction of arginine vasotocin and isotocin under terrestrial conditions may be involved also in the preference for an aquatic habitat as ligands for brain isotocin receptors.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| | - Yudai Nishiyama
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| | - Aoi Ikeda
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| | - Hideya Takahashi
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Nao Kagawa
- Department of Life Science, Faculty of Science and Technology, Kinki University, Higashiosaka, Osaka, 577-8502, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| |
Collapse
|
36
|
Swaddle JP, Francis CD, Barber JR, Cooper CB, Kyba CCM, Dominoni DM, Shannon G, Aschehoug E, Goodwin SE, Kawahara AY, Luther D, Spoelstra K, Voss M, Longcore T. A framework to assess evolutionary responses to anthropogenic light and sound. Trends Ecol Evol 2015; 30:550-60. [PMID: 26169593 DOI: 10.1016/j.tree.2015.06.009] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 10/24/2022]
Abstract
Human activities have caused a near-ubiquitous and evolutionarily-unprecedented increase in environmental sound levels and artificial night lighting. These stimuli reorganize communities by interfering with species-specific perception of time-cues, habitat features, and auditory and visual signals. Rapid evolutionary changes could occur in response to light and noise, given their magnitude, geographical extent, and degree to which they represent unprecedented environmental conditions. We present a framework for investigating anthropogenic light and noise as agents of selection, and as drivers of other evolutionary processes, to influence a range of behavioral and physiological traits such as phenological characters and sensory and signaling systems. In this context, opportunities abound for understanding contemporary and rapid evolution in response to human-caused environmental change.
Collapse
Affiliation(s)
| | | | | | - Caren B Cooper
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| | - Christopher C M Kyba
- Deutsches GeoForschungsZentrum GFZ and Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Potsdam, Germany
| | | | | | | | | | | | | | | | | | - Travis Longcore
- University of Southern California and The Urban Wildlands Group, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Lema SC, Sanders KE, Walti KA. Arginine vasotocin, isotocin and nonapeptide receptor gene expression link to social status and aggression in sex-dependent patterns. J Neuroendocrinol 2015; 27:142-57. [PMID: 25425529 DOI: 10.1111/jne.12239] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/14/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022]
Abstract
Nonapeptide hormones of the vasopressin/oxytocin family regulate social behaviours. In mammals and birds, variation in behaviour also is linked to expression patterns of the V1a-type receptor and the oxytocin/mesotocin receptor in the brain. Genome duplications, however, expand the diversity of nonapeptide receptors in actinopterygian fishes, and two distinct V1a-type receptors (v1a1 and v1a2) for vasotocin, as well as at least two V2-type receptors (v2a and v2b), have been identified in these taxa. The present study investigates how aggression connected to social status relates to the abundance patterns of gene transcripts encoding four vasotocin receptors, an isotocin receptor (itr), pro-vasotocin (proVT) and pro-isotocin (proIT) in the brain of the pupfish Cyprinodon nevadensis amargosae. Sexually-mature pupfish were maintained in mixed-sex social groups and assessed for individual variation in aggressive behaviours. Males in these groups behaved more aggressively than females, and larger fish exhibited higher aggression relative to smaller fish of the same sex. Hypothalamic proVT transcript abundance was elevated in dominant males compared to subordinate males, and correlated positively with individual variation in aggression in both social classes. Transcripts encoding vasotocin receptor v1a1 were at higher levels in the telencephalon and hypothalamus of socially subordinate males than dominant males. Dominant males exhibited elevated hypothalamic v1a2 receptor transcript abundance relative to subordinate males and females, and telencephalic v1a2 mRNA abundance in dominant males was also associated positively with individual aggressiveness. Transcripts in the telencephalon encoding itr were elevated in females relative to males, and both telencephalic proIT and hypothalamic itr transcript abundance varied with female social status. Taken together, these data link hypothalamic proVT expression to aggression and implicate forebrain expression of the V1a-type receptor v1a2 as potentially mediating the effects of vasotocin on behaviour in male fish. These findings also illustrate how associations between social status, aggression and gene expression within the VT and IT nonapeptide systems can be contingent on behavioural context.
Collapse
Affiliation(s)
- S C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | | |
Collapse
|