1
|
Luo M, Zhou R, Tang B, Liu H, Chen B, Liu N, Mo Y, Zhang P, Lee YL, Ip JD, Wing-Ho Chu A, Chan WM, Man HO, Chen Y, To KKW, Yuen KY, Dang S, Chen Z. Ultrapotent class I neutralizing antibodies post Omicron breakthrough infection overcome broad SARS-CoV-2 escape variants. EBioMedicine 2024; 108:105354. [PMID: 39341153 PMCID: PMC11470419 DOI: 10.1016/j.ebiom.2024.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The spread of emerging SARS-CoV-2 immune escape sublineages, especially JN.1 and KP.2, has resulted in new waves of COVID-19 globally. The evolving memory B cell responses elicited by the parental Omicron variants to subvariants with substantial antigenic drift remain incompletely investigated. METHODS Using the single B cell antibody cloning technology, we isolated single memory B cells, delineated the B cell receptor repertoire and conducted the pseudovirus-based assay for recovered neutralizing antibodies (NAb) screening. We analyzed the cryo-EM structures of top broadly NAbs (bnAbs) and evaluated their in vivo efficacy (golden Syrian hamster model). FINDINGS By investigating the evolution of human B cell immunity, we discovered a new panel of bnAbs arising from vaccinees after Omicron BA.2/BA.5 breakthrough infections. Two lead bnAbs neutralized major Omicron subvariants including JN.1 and KP.2 with IC50 values less than 10 ng/mL, representing ultrapotent receptor binding domain (RBD)-specific class I bnAbs. They belonged to the IGHV3-53/3-66 clonotypes instead of evolving from the pre-existing vaccine-induced IGHV1-58/IGKV3-20 bnAb ZCB11. Despite sequence diversity, they targeted previously unrecognized, highly conserved conformational epitopes in the receptor binding motif (RBM) for ultrapotent ACE2 blockade. The lead bnAb ZCP3B4 not only protected the lungs of hamsters intranasally challenged with BA.5.2, BQ.1.1 and XBB.1.5 but also prevented their contact transmission. INTERPRETATION Our findings demonstrated that class I bnAbs have evolved an ultrapotent mode of action protecting against highly transmissible and broad Omicron escape variants, and their epitopes are potential targets for novel bnAbs and vaccine development. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Mengxiao Luo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Bingjie Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Hang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Bohao Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yufei Mo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Pengfei Zhang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Ye Lim Lee
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jonathan Daniel Ip
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Allen Wing-Ho Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Wan-Mui Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Hiu-On Man
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yuting Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China; HKUST-Shenzhen Research Institute, Nanshan, Shenzhen, 518057, People's Republic of China.
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
2
|
Lidenge SJ, Yalcin D, Bennett SJ, Ngalamika O, Kweyamba BB, Mwita CJ, Tso FY, Mwaiselage J, West JT, Wood C. Viral Epitope Scanning Reveals Correlation between Seasonal HCoVs and SARS-CoV-2 Antibody Responses among Cancer and Non-Cancer Patients. Viruses 2024; 16:448. [PMID: 38543814 PMCID: PMC10975915 DOI: 10.3390/v16030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 04/01/2024] Open
Abstract
Seasonal coronaviruses (HCoVs) are known to contribute to cross-reactive antibody (Ab) responses against SARS-CoV-2. While these responses are predictable due to the high homology between SARS-CoV-2 and other CoVs, the impact of these responses on susceptibility to SARS-CoV-2 infection in cancer patients is unclear. To investigate the influence of prior HCoV infection on anti-SARS-CoV-2 Ab responses among COVID-19 asymptomatic individuals with cancer and controls without cancers, we utilized the VirScan technology in which phage immunoprecipitation and sequencing (PhIP-seq) of longitudinal plasma samples was performed to investigate high-resolution (i.e., epitope level) humoral CoV responses. Despite testing positive for anti-SARS-CoV-2 Ab in the plasma, a majority of the participants were asymptomatic for COVID-19 with no prior history of COVID-19 diagnosis. Although the magnitudes of the anti-SARS-CoV-2 Ab responses were lower in individuals with Kaposi sarcoma (KS) compared to non-KS cancer individuals and those without cancer, the HCoV Ab repertoire was similar between individuals with and without cancer independent of age, sex, HIV status, and chemotherapy. The magnitudes of the anti-spike HCoV responses showed a strong positive association with those of the anti-SARS-CoV-2 spike in cancer patients, and only a weak association in non-cancer patients, suggesting that prior infection with HCoVs might play a role in limiting SARS-CoV-2 infection and COVID-19 disease severity.
Collapse
Affiliation(s)
- Salum J. Lidenge
- Department of Clinical Research, Training, and Consultancy, Ocean Road Cancer Institute, Dar es Salaam P.O. Box 3592, Tanzania; (S.J.L.); (B.B.K.); (J.M.)
- Department of Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania
| | - Dicle Yalcin
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.Y.); (S.J.B.); (F.Y.T.); (J.T.W.)
| | - Sydney J. Bennett
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.Y.); (S.J.B.); (F.Y.T.); (J.T.W.)
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, USA
| | - Owen Ngalamika
- Dermatology and Venereology Division, University Teaching Hospital, University of Zambia School of Medicine, Lusaka P.O. Box 50001, Zambia;
| | - Brenda B. Kweyamba
- Department of Clinical Research, Training, and Consultancy, Ocean Road Cancer Institute, Dar es Salaam P.O. Box 3592, Tanzania; (S.J.L.); (B.B.K.); (J.M.)
| | - Chacha J. Mwita
- Department of Clinical Research, Training, and Consultancy, Ocean Road Cancer Institute, Dar es Salaam P.O. Box 3592, Tanzania; (S.J.L.); (B.B.K.); (J.M.)
| | - For Yue Tso
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.Y.); (S.J.B.); (F.Y.T.); (J.T.W.)
| | - Julius Mwaiselage
- Department of Clinical Research, Training, and Consultancy, Ocean Road Cancer Institute, Dar es Salaam P.O. Box 3592, Tanzania; (S.J.L.); (B.B.K.); (J.M.)
- Department of Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania
| | - John T. West
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.Y.); (S.J.B.); (F.Y.T.); (J.T.W.)
| | - Charles Wood
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.Y.); (S.J.B.); (F.Y.T.); (J.T.W.)
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, USA
| |
Collapse
|
3
|
Franchini M, Focosi D. Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review. Life (Basel) 2024; 14:214. [PMID: 38398723 PMCID: PMC10890293 DOI: 10.3390/life14020214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Since late 2019, the new SARS-CoV-2 virus belonging to the Coronaviridae family has been responsible for COVID-19 pandemic, a severe acute respiratory syndrome. Several antiviral therapies, mostly derived from previous epidemics, were initially repurposed to fight this not rarely life-threatening respiratory illness. Among them, however, the only specific antibody-based therapy available against SARS-CoV-2 infection during the first year of the pandemic was represented by COVID-19 convalescent plasma (CCP). CCP, collected from recovered individuals, contains high levels of polyclonal antibodies of different subclasses able to neutralize SARS-CoV-2 infection. Tens of randomized controlled trials have been conducted during the last three years of the pandemic to evaluate the safety and the clinical efficacy of CCP in both hospitalized and ambulatory COVID-19 patients, whose main results will be summarized in this narrative review. In addition, we will present the current knowledge on the development of anti-SARS-CoV-2 hyperimmune polyclonal immunoglobulins.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| |
Collapse
|
4
|
Solodkov PP, Najakshin AM, Chikaev NA, Kulemzin SV, Mechetina LV, Baranov KO, Guselnikov SV, Gorchakov AA, Belovezhets TN, Chikaev AN, Volkova OY, Markhaev AG, Kononova YV, Alekseev AY, Gulyaeva MA, Shestopalov AM, Taranin AV. Serial Llama Immunization with Various SARS-CoV-2 RBD Variants Induces Broad Spectrum Virus-Neutralizing Nanobodies. Vaccines (Basel) 2024; 12:129. [PMID: 38400113 PMCID: PMC10891761 DOI: 10.3390/vaccines12020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The emergence of SARS-CoV-2 mutant variants has posed a significant challenge to both the prevention and treatment of COVID-19 with anti-coronaviral neutralizing antibodies. The latest viral variants demonstrate pronounced resistance to the vast majority of human monoclonal antibodies raised against the ancestral Wuhan variant. Less is known about the susceptibility of the evolved virus to camelid nanobodies developed at the start of the pandemic. In this study, we compared nanobody repertoires raised in the same llama after immunization with Wuhan's RBD variant and after subsequent serial immunization with a variety of RBD variants, including that of SARS-CoV-1. We show that initial immunization induced highly potent nanobodies, which efficiently protected Syrian hamsters from infection with the ancestral Wuhan virus. These nanobodies, however, mostly lacked the activity against SARS-CoV-2 omicron-pseudotyped viruses. In contrast, serial immunization with different RBD variants resulted in the generation of nanobodies demonstrating a higher degree of somatic mutagenesis and a broad range of neutralization. Four nanobodies recognizing distinct epitopes were shown to potently neutralize a spectrum of omicron variants, including those of the XBB sublineage. Our data show that nanobodies broadly neutralizing SARS-CoV-2 variants may be readily induced by a serial variant RBD immunization.
Collapse
Affiliation(s)
- Pavel P. Solodkov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Alexander M. Najakshin
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Nikolai A. Chikaev
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Sergey V. Kulemzin
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Ludmila V. Mechetina
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Konstantin O. Baranov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Sergey V. Guselnikov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Andrey A. Gorchakov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Tatyana N. Belovezhets
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Anton N. Chikaev
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Olga Y. Volkova
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Alexander G. Markhaev
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
| | - Yulia V. Kononova
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
| | - Alexander Y. Alekseev
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina A. Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander M. Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander V. Taranin
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| |
Collapse
|
5
|
Zhang Y, Wang D, Xiang Q, Hu X, Zhang Y, Wu L, Zhang Z, Wang Y, Zhao J, McCormick PJ, Fu J, Fu Y, Zhang J, Jiang H, Li J. A potent neutralizing nanobody targeting a unique epitope on the receptor-binding domain of SARS-CoV-2 spike protein. Virology 2024; 589:109925. [PMID: 37984151 DOI: 10.1016/j.virol.2023.109925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
SARS-CoV-2 and its variants continue to threaten public health. Nanobodies that block the attachment of the RBD to host cell angiotensin-converting enzyme 2 (ACE2) represent promising drug candidates. In this study, we reported the identification and structural biological characterization of a nanobody from a RBD-immunized alpaca. The nanobody, termed as 2S-1-19, shows outstanding neutralizing activity against both pseudotyped and authentic SARS-CoV-2 viruses. The crystal structure of 2S-1-19 bound to SARS-CoV-2 RBD reveals an epitope that overlaps with the binding site for ACE2. We also showed that 2S-1-19 reserves promising, though compromised, neutralizing activity against the Delta variant and that the trivalent form of 2S-1-19 remarkably increases its neutralizing capacity. Despite this, neither the monomeric or trimeric 2S-1-19 could neutralize the Omicron BA.1.1 variant, possibility due to the E484A and Q493K mutations found within this virus variant. These data provide insights into immune evasion caused by SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yuting Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, China
| | - Dan Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co., Ltd, Shenzhen, 518118, China
| | - Lijie Wu
- IHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China; Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China; Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, 510320, China; Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Peter J McCormick
- William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jinheng Fu
- Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, 330047, China.
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, China.
| | - Haihai Jiang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, China.
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
6
|
Zhou B, Zhou R, Chan JFW, Zeng J, Zhang Q, Yuan S, Liu L, Robinot R, Shan S, Liu N, Ge J, Kwong HYH, Zhou D, Xu H, Chan CCS, Poon VKM, Chu H, Yue M, Kwan KY, Chan CY, Chan CCY, Chik KKH, Du Z, Au KK, Huang H, Man HO, Cao J, Li C, Wang Z, Zhou J, Song Y, Yeung ML, To KKW, Ho DD, Chakrabarti LA, Wang X, Zhang L, Yuen KY, Chen Z. SARS-CoV-2 hijacks neutralizing dimeric IgA for nasal infection and injury in Syrian hamsters 1. Emerg Microbes Infect 2023; 12:2245921. [PMID: 37542391 PMCID: PMC10444022 DOI: 10.1080/22221751.2023.2245921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023]
Abstract
Prevention of robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) requires in vivo evaluation of IgA neutralizing antibodies. Here, we report the efficacy of receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1, B8-dIgA2 and TH335-dIgA1 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparable neutralization potency against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viral loads in lungs significantly, prophylactic intranasal B8-dIgA unexpectedly led to high amount of infectious viruses and extended damage in NT compared to controls. Mechanistically, B8-dIgA failed to inhibit SARS-CoV-2 cell-to-cell transmission, but was hijacked by the virus through dendritic cell-mediated trans-infection of NT epithelia leading to robust nasal infection. Cryo-EM further revealed B8 as a class II antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Neutralizing dIgA, therefore, may engage an unexpected mode of SARS-CoV-2 nasal infection and injury.
Collapse
Affiliation(s)
- Biao Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Hainan-Medical University – The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, and Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People’s Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jianwei Zeng
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Qi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Shuofeng Yuan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Li Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Rémy Robinot
- Control of Chronic Viral Infections Group, Virus & Immunity Unit, Institute Pasteur, Paris, France; CNRS UMR, Paris, France
| | - Sisi Shan
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Jiwan Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Hugo Yat-Hei Kwong
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Dongyan Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chris Chung-Sing Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Ming Yue
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ka-Yi Kwan
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chun-Yin Chan
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chris Chun-Yiu Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Kenn Ka-Heng Chik
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhenglong Du
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ka-Kit Au
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Haode Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Hiu-On Man
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jianli Cao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Cun Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ziyi Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Jie Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Youqiang Song
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Man-Lung Yeung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lisa A. Chakrabarti
- Control of Chronic Viral Infections Group, Virus & Immunity Unit, Institute Pasteur, Paris, France; CNRS UMR, Paris, France
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Linqi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Hainan-Medical University – The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, and Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People’s Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
7
|
Ling KM, Dougan M. Monoclonal antibodies for the treatment of COVID-19 infection in children. Expert Rev Anti Infect Ther 2022; 20:1529-1535. [PMID: 36225144 DOI: 10.1080/14787210.2022.2134117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) have been authorized for the treatment of COVID-19 in pediatric populations, however, there is a lack of evidence for their use in these populations. AREAS COVERED We outline the evidence of mAbs for COVID-19, discuss their use in the treatment of COVID-19 infection for pediatric patients, and consider alternative treatment options and challenges to COVID-19 drug approvals. EXPERT OPINION Limited evidence exists for the safety and efficacy of mAbs to treat COVID-19 in children as new variants emerge. In rare pediatric outpatient settings, such as profound immunodeficiency or severe pulmonary disease, the benefits of antiviral treatment for COVID-19 likely outweigh the relatively small risks. However, for the great majority of pediatric patients, mAb treatment is likely not indicated. Small molecule antiviral therapies are another potential treatment for COVID-19 in children in an outpatient setting, though neither mAb nor small molecule antiviral treatments have significant supporting evidence in children and developing a strong evidence base for these decisions will be challenging if not impractical. Ultimately, these decisions are likely to be made at the level of individual cases using expert opinion as the primary guiding principle.
Collapse
Affiliation(s)
- Kelly M Ling
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Dougan
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Barth S, Naran K. TIM-3: a tumor-associated antigen beyond checkpoint inhibition? IMMUNOTHERAPY ADVANCES 2022; 2:ltac021. [PMID: 36406467 PMCID: PMC9669666 DOI: 10.1093/immadv/ltac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Immune checkpoint inhibitors are one of the most remarkable immunomodulatory therapies of current times. Sabatolimab is a high-affinity, humanized anti-TIM-3 monoclonal antibody currently in development for patients with myeloproliferative disorders, including acute myeloid leukemia and myelodysplastic syndromes. By targeting TIM-3, a receptor expressed on various immune effector cells as well as myeloid cells, multiple mechanisms of action that are distinct from canonical immune checkpoint inhibitors are in play - (i) blockade of TIM-3 and its ligands PtdSer/galectin-9, (ii) modulation of leukemic cell self-renewal as well as (iii) antibody-dependent phagocytosis of TIM-3-expressing leukemic cells. Novel immunotherapies such as sabatolimab which enhance the antitumor immune response on converging fronts represent the promise of a continuously replenished armoury for the treatment of cancer.
Collapse
Affiliation(s)
- Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Krupa Naran
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|