1
|
Cabrera A, Mason E, Mullins LP, Sadarangani M. Antimicrobial resistance and vaccines in Enterobacteriaceae including extraintestinal pathogenic Escherichia coli and Klebsiella pneumoniae. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:34. [PMID: 40295787 PMCID: PMC12037890 DOI: 10.1038/s44259-025-00100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Antimicrobial-resistant Enterobacteriaceae are increasingly a clinical challenge. In particular, extraintestinal pathogenic Escherichia coli and Klebsiella pneumoniae threaten public health. Vaccination presents a long-term strategy to reduce both drug-susceptible and resistant infections while maintaining current clinical therapies. The review aims to emphasize the need for vaccines targeting extraintestinal pathogenic E. coli and K. pneumoniae by providing an overview of disease burden, antimicrobial resistance, therapeutics, and vaccine development.
Collapse
Affiliation(s)
- Adriana Cabrera
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Emily Mason
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Liam P Mullins
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Qiu L, Chirman D, Clark JR, Xing Y, Hernandez Santos H, Vaughan EE, Maresso AW. Vaccines against extraintestinal pathogenic Escherichia coli (ExPEC): progress and challenges. Gut Microbes 2024; 16:2359691. [PMID: 38825856 PMCID: PMC11152113 DOI: 10.1080/19490976.2024.2359691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Dylan Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Haroldo Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
van der Put RM, Metz B, Pieters RJ. Carriers and Antigens: New Developments in Glycoconjugate Vaccines. Vaccines (Basel) 2023; 11:vaccines11020219. [PMID: 36851097 PMCID: PMC9962112 DOI: 10.3390/vaccines11020219] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Glycoconjugate vaccines have proven their worth in the protection and prevention of infectious diseases. The introduction of the Haemophilus influenzae type b vaccine is the prime example, followed by other glycoconjugate vaccines. Glycoconjugate vaccines consist of two components: the carrier protein and the carbohydrate antigen. Current carrier proteins are tetanus toxoid, diphtheria toxoid, CRM197, Haemophilus protein D and the outer membrane protein complex of serogroup B meningococcus. Carbohydrate antigens have been produced mainly by extraction and purification from the original host. However, current efforts show great advances in the development of synthetically produced oligosaccharides and bioconjugation. This review evaluates the advances of glycoconjugate vaccines in the last five years. We focus on developments regarding both new carriers and antigens. Innovative developments regarding carriers are outer membrane vesicles, glycoengineered proteins, new carrier proteins, virus-like particles, protein nanocages and peptides. With regard to conjugated antigens, we describe recent developments in the field of antimicrobial resistance (AMR) and ESKAPE pathogens.
Collapse
Affiliation(s)
- Robert M.F. van der Put
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
- Correspondence:
| | - Bernard Metz
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
4
|
Nicolardi S, Danuser R, Dotz V, Domínguez-Vega E, Al Kaabi A, Beurret M, Anish C, Wuhrer M. Glycan and Protein Analysis of Glycoengineered Bacterial E. coli Vaccines by MALDI-in-Source Decay FT-ICR Mass Spectrometry. Anal Chem 2022; 94:4979-4987. [PMID: 35293727 PMCID: PMC8969423 DOI: 10.1021/acs.analchem.1c04690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 01/28/2023]
Abstract
Bacterial glycoconjugate vaccines have a major role in preventing microbial infections. Immunogenic bacterial glycans, such as O-antigen polysaccharides, can be recombinantly expressed and combined with specific carrier proteins to produce effective vaccines. O-Antigen polysaccharides are typically polydisperse, and carrier proteins can have multiple glycosylation sites. Consequently, recombinant glycoconjugate vaccines have a high structural heterogeneity, making their characterization challenging. Since development and quality control processes rely on such characterization, novel strategies are needed for faster and informative analysis. Here, we present a novel approach employing minimal sample preparation and ultrahigh-resolution mass spectrometry analysis for protein terminal sequencing and characterization of the oligosaccharide repeat units of bacterial glycoconjugate vaccines. Three glycoconjugate vaccine candidates, obtained from the bioconjugation of the O-antigen polysaccharides from E. coli serotypes O2, O6A, and O25B with the genetically detoxified exotoxin A from Pseudomonas aeruginosa, were analyzed by MALDI-in-source decay (ISD) FT-ICR MS. Protein and glycan ISD fragment ions were selectively detected using 1,5-diaminonaphtalene and a 2,5-dihydroxybenzoic acid/2-hydroxy-5-methoxybenzoic acid mixture (super-DHB) as a MALDI matrix, respectively. The analysis of protein fragments required the absence of salts in the samples, while the presence of salt was key for the detection of sodiated glycan fragments. MS/MS analysis of O-antigen ISD fragments allowed for the detection of specific repeat unit signatures. The developed strategy requires minute sample amounts, avoids the use of chemical derivatizations, and comes with minimal hands-on time allowing for fast corroboration of key structural features of bacterial glycoconjugate vaccines during early- and late-stage development.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Renzo Danuser
- Janssen
Vaccines AG (Branch of Cilag GmbH International), Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | - Viktoria Dotz
- Bacterial
Vaccine Discovery & Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ali Al Kaabi
- Janssen
Vaccines AG (Branch of Cilag GmbH International), Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | - Michel Beurret
- Bacterial
Vaccine Discovery & Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Chakkumkal Anish
- Bacterial
Vaccine Discovery & Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
5
|
Antonelli G, Cappelli L, Cinelli P, Cuffaro R, Manca B, Nicchi S, Tondi S, Vezzani G, Viviani V, Delany I, Scarselli M, Schiavetti F. Strategies to Tackle Antimicrobial Resistance: The Example of Escherichia coli and Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:4943. [PMID: 34066555 PMCID: PMC8125385 DOI: 10.3390/ijms22094943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon called antimicrobial resistance (AMR). Nowadays, AMR represents a critical health threat, for which new medical interventions are urgently needed. By 2050, it is estimated that the leading cause of death will be through untreatable AMR pathogens. Although antibiotics remain a first-line treatment, non-antibiotic therapies such as prophylactic vaccines and therapeutic monoclonal antibodies (mAbs) are increasingly interesting alternatives to limit the spread of such antibiotic resistant microorganisms. For the discovery of new vaccines and mAbs, the search for effective antigens that are able to raise protective immune responses is a challenging undertaking. In this context, outer membrane vesicles (OMV) represent a promising approach, as they recapitulate the complete antigen repertoire that occurs on the surface of Gram-negative bacteria. In this review, we present Escherichia coli and Pseudomonas aeruginosa as specific examples of key AMR threats caused by Gram-negative bacteria and we discuss the current status of mAbs and vaccine approaches under development as well as how knowledge on OMV could benefit antigen discovery strategies.
Collapse
Affiliation(s)
- Giada Antonelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Luigia Cappelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Paolo Cinelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Cuffaro
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Benedetta Manca
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Sonia Nicchi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Serena Tondi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Viola Viviani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Isabel Delany
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Maria Scarselli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Francesca Schiavetti
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| |
Collapse
|
6
|
Poolman JT, Anderson AS. Escherichia coliandStaphylococcus aureus: leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations. Expert Rev Vaccines 2018; 17:607-618. [DOI: 10.1080/14760584.2018.1488590] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jan T. Poolman
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention, Leiden, The Netherlands
| | | |
Collapse
|
7
|
Huttner A, Gambillara V. The development and early clinical testing of the ExPEC4V conjugate vaccine against uropathogenic Escherichia coli. Clin Microbiol Infect 2018; 24:1046-1050. [PMID: 29803843 DOI: 10.1016/j.cmi.2018.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
OBJECTIVES In this 'how it was done' narrative review, we provide a description of, and context for, the early development of a conjugate vaccine targeting extra-intestinal, pathogenic Escherichia coli (ExPEC), from its creation in the laboratory to its testing in a large, first-in-human phase Ib trial. SOURCES We searched the Pubmed database for previous attempts to develop vaccines against ExPEC, and we provide data from laboratory and trial databases established during the development of ExPEC4V, the tetravalent conjugate vaccine candidate. CONTENT Earlier attempts at ExPEC vaccines had mixed success: whole-cell or cell-lysate preparations have limited effectiveness, and though an early conjugate vaccine was immunogenic in animal models, its development stalled before extensive clinical testing could occur. The development of the current conjugate vaccine candidate, ExPEC4V, began at a population level, with an epidemiological survey to determine the most common E. coli serotypes causing urinary tract infections (UTI) in Switzerland, Germany and the USA. The O antigens of the four most prevalent serotypes were selected for inclusion in ExPEC4V. After its creation in the laboratory by means of an in vivo bioconjugation process engineered to occur within E. coli cells, ExPEC4V underwent toxicity and immunogenicity testing in animal models. It then underwent safety and immunogenicity testing in a first-in-human, phase Ib multicentre trial, whose population of healthy women with a history of recurrent UTI allowed for an additional, preliminary assessment of the candidate's clinical efficacy. IMPLICATIONS Laboratory development and early phase I testing were successful, as the vaccine candidate emerged with strong safety and immunogenicity profiles. The clinical trial was ultimately underpowered to detect a significant reduction in vaccine-specific E. coli UTI, though it showed a significant decrease in the incidence of UTI caused by E. coli of any serotype. We discuss the findings, including the lessons learned.
Collapse
Affiliation(s)
- A Huttner
- Division of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - V Gambillara
- LimmaTech Biologics AG, Schlieren ZH, Switzerland
| |
Collapse
|
8
|
Abstract
Escherichia coli has a complex and versatile nature and continuously evolves from non-virulent isolates to highly pathogenic strains causing severe diseases and outbreaks. Broadly protective vaccines against pathogenic E. coli are not available and the rising in both, multi-drug resistant and hypervirulent isolates, raise concern for healthcare and require continuous efforts in epidemiologic surveillance and disease monitoring. The evolving knowledge on E. coli pathogenesis mechanisms and on the mediated immune response following infection or vaccination, together with advances in the "omics" technologies, is opening new perspectives toward the design and development of effective and innovative E. coli vaccines.
Collapse
|
9
|
Bröker M, Berti F, Schneider J, Vojtek I. Polysaccharide conjugate vaccine protein carriers as a "neglected valency" - Potential and limitations. Vaccine 2017; 35:3286-3294. [PMID: 28487056 DOI: 10.1016/j.vaccine.2017.04.078] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 12/01/2022]
Abstract
The development of vaccines against polysaccharide-encapsulated pathogens (e.g. Haemophilus influenzae type b, pneumococci, meningococci) is challenging because polysaccharides do not elicit a strong and long-lasting immune response (i.e. T-cell independent). This can be overcome by conjugating the polysaccharide to a protein carrier (e.g. tetanus toxoid, cross-reacting material 197 [CRM]), which vastly improves the immune response and induces memory to the polysaccharide (T-cell dependent). Although it is well documented that protein carriers additionally induce an immune response against themselves, this potential "additional valency" has so far not been recognized. The only exception is for the protein D carrier (derived from non-typeable Haemophilus influenzae [NTHi]) used in a pneumococcal conjugate vaccine, which may have a beneficial impact on NTHi acute otitis media. In this review, we describe the immunogenicity of various protein carriers and discuss their potential dual function: as providers of T-cell helper epitopes and as protective antigens. If this "additional valency" could be proven to be protective, it may be possible to consider its potential effect on the number of required immunizations. We also describe the potential for positive or negative interference between conjugate vaccines using the same protein carriers, the resulting desire for novel carriers, and information on potential new carriers. The range of conjugate vaccines is ever expanding, with different carriers and methods of conjugation. We propose that new conjugate vaccine trials should assess immunogenicity to both the polysaccharide and carrier. Ultimately, this so-far "neglected valency" could be an exploitable characteristic of polysaccharide conjugate vaccines.
Collapse
Affiliation(s)
- Michael Bröker
- GSK Vaccines GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany.
| | | | - Joerg Schneider
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | - Ivo Vojtek
- GSK Vaccines, Avenue Fleming 20, 1300 Wavre, Belgium.
| |
Collapse
|
10
|
Huttner A, Hatz C, van den Dobbelsteen G, Abbanat D, Hornacek A, Frölich R, Dreyer AM, Martin P, Davies T, Fae K, van den Nieuwenhof I, Thoelen S, de Vallière S, Kuhn A, Bernasconi E, Viereck V, Kavvadias T, Kling K, Ryu G, Hülder T, Gröger S, Scheiner D, Alaimo C, Harbarth S, Poolman J, Fonck VG. Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. THE LANCET. INFECTIOUS DISEASES 2017; 17:528-537. [PMID: 28238601 DOI: 10.1016/s1473-3099(17)30108-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 01/27/2023]
Abstract
BACKGROUND Escherichia coli infections are increasing worldwide in community and hospital settings. The E coli O-antigen is a promising vaccine target. We aimed to assess the safety and immunogenicity of a bioconjugate vaccine containing the O-antigens of four E coli serotypes (ExPEC4V). METHODS In this multicentre phase 1b, first-in-human, single-blind, placebo-controlled trial, we randomly assigned (1:1) healthy adult women with a history of recurrent urinary tract infection (UTI) to receive a single injection of either intramuscular ExPEC4V or placebo. The primary outcome was the incidence of adverse events among vaccine and placebo recipients throughout the study. Secondary outcomes included immunogenicity and antibody functionality, and the incidence of UTIs caused by E coli vaccine serotypes in each group. This study is registered with ClinicalTrials.gov, number NCT02289794. FINDINGS Between Jan 20, 2014, and Aug 27, 2014, 93 women received target-dose ExPEC4V and 95 received placebo. The vaccine was well tolerated: no vaccine-related serious adverse events occurred. Overall, 56 (60%) target-dose vaccines and 47 (49%) placebo recipients experienced at least one adverse event that was possibly, probably, or certainly related to injection. Vaccination induced significant IgG responses for all serotypes: at day 30 compared with baseline, O1A titres were 4·6 times higher, O2 titres were 9·4 times higher, O6A titres were 4·9 times higher, and O25B titres were 5·9 times higher (overall p<0·0001). Immune responses persisted at 270 days but were lower than those at 30 days. Opsonophagocytic killing activity showed antibody functionality. No reduction in the incidence of UTIs with 103 or more colony-forming units per mL of vaccine-serotype E coli was noted in the vaccine compared with the placebo group (0·149 mean episodes vs 0·146 mean episodes; p=0·522). In post-hoc exploratory analyses of UTIs with higher bacterial counts (≥105 colony-forming units per mL), the number of vaccine serotype UTIs did not differ significantly between groups (0·046 mean episodes in the vaccine group vs 0·110 mean episodes in the placebo group; p=0·074). However, significantly fewer UTIs caused by E coli of any serotype were noted in the vaccine group compared with the placebo group (0·207 mean episodes vs 0·463 mean episodes; p=0·002). INTERPRETATION This tetravalent E coli bioconjugate vaccine candidate was well tolerated and elicited functional antibody responses against all vaccine serotypes. Phase 2 studies have been initiated to confirm these findings. FUNDING GlycoVaxyn, Janssen Vaccines.
Collapse
Affiliation(s)
- Angela Huttner
- Infection Control Program, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - Christoph Hatz
- Epidemiology, Biostatistics and Prevention Institute, Zurich University, Zurich, Switzerland; Swiss Tropical and Public Health Institute, Basel University, Basel, Switzerland
| | | | | | | | | | | | | | - Todd Davies
- Janssen Research and Development, Raritan, NJ, USA
| | - Kellen Fae
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention, Leiden, Netherlands
| | - Ingrid van den Nieuwenhof
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention, Leiden, Netherlands
| | - Stefan Thoelen
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention, Leiden, Netherlands
| | - Serge de Vallière
- Policlinique Médicale Universitaire and Service of Infectious Diseases, University Hospital Lausanne, Lausanne, Switzerland
| | - Anette Kuhn
- Universitätsklinik für Frauenheilkunde, University Hospital Bern, Bern, Switzerland
| | | | - Volker Viereck
- Blasen-und Beckenbodenzentrum, Kantonsspital Frauenfeld, Frauenfeld, Switzerland
| | | | - Kerstin Kling
- Swiss Tropical and Public Health Institute, Basel University, Basel, Switzerland
| | - Gloria Ryu
- Frauenklinik, Kantonsspital Aarau, Aarau, Switzerland
| | - Tanja Hülder
- Frauenklinik, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Sabine Gröger
- Neue Frauenklinik, Luzerner Kantonsspital, Lucerne, Switzerland
| | - David Scheiner
- Department of Gynecology, University Hospital Zurich, Zurich, Switzerland
| | | | - Stephan Harbarth
- Infection Control Program, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Jan Poolman
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention, Leiden, Netherlands
| | | |
Collapse
|
11
|
Flanagan M, Battisti G, Michael J. Oral administration of Escherichia coli in enteric coated microparticles induces serum antibodies against lipopolysaccharide antigens. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199600300606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heat-killed Escherichia coli O55:B5 were encapsulated in microcapsules coated with a pH-sensitive enteric coating (methacrylic acid copolymer). Oral immunization of C57BI/6 x DBA/2 (BDF1) mice with encapsulated bacteria resulted in a humoral immune response directed against bacterial lipopolysaccharide (LPS). This response was greatly boosted by a second series of immunization and differed both quantitatively and qualitatively from that induced by intraperitoneal immunization with non-encapsulated heat-killed bacteria. The anti-LPS response following oral immunization was comprised almost exclusively of IgG1 subclass antibodies and was highly specific for the LPS of the immunizing bacteria. The anti-LPS response following intraperitoneal immunization consisted mainly of IgM and IgG2a antibodies which were crossreactive with several bacterial strains. Our results demonstrate that whole killed bacteria, encapsulated by an enteric coating and administered orally, effectively induces an antibody response to LPS in mice which shows a typical memory response following secondary challenge.
Collapse
Affiliation(s)
- M.P. Flanagan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - G. Battisti
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - J.G. Michael
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA,
| |
Collapse
|
12
|
van den Dobbelsteen GPJM, Faé KC, Serroyen J, van den Nieuwenhof IM, Braun M, Haeuptle MA, Sirena D, Schneider J, Alaimo C, Lipowsky G, Gambillara-Fonck V, Wacker M, Poolman JT. Immunogenicity and safety of a tetravalent E. coli O-antigen bioconjugate vaccine in animal models. Vaccine 2016; 34:4152-4160. [PMID: 27395567 DOI: 10.1016/j.vaccine.2016.06.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/10/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Extra-intestinal pathogenic Escherichia coli (ExPEC) are major human pathogens; however, no protective vaccine is currently available. We assessed in animal models the immunogenicity and safety of a 4-valent E. coli conjugate vaccine (ExPEC-4V, serotypes O1, O2, O6 and O25 conjugated to Exotoxin A from Pseudomonas aeruginosa (EPA)) produced using a novel in vivo bioconjugation method. METHODS Three doses of ExPEC-4V (with or without aluminum hydroxide) were administered to rabbits (2μg or 20μg per O-antigen, subcutaneously), mice (0.2μg or 2μg per O-antigen, subcutaneously) and rats (0.4μg or 4μg per O-antigen, intramuscularly). Antibody persistence and boostability were evaluated in rats using O6-EPA monovalent conjugate (0.4μg O-antigen/dose, intramuscularly). Toxicity was assessed in rats (16μg total polysaccharide, intramuscularly). Serum IgG and IgM antibodies were measured by ELISA. RESULTS Robust antigen-specific IgG responses were observed in all animal models, with increased responses in rabbits when administered with adjuvant. O antigen-specific antibody responses persisted up to 168days post-priming. Booster immunization induced a rapid recall response. Toxicity of ExPEC-4V when administered to rats was considered to be at the no observed adverse effect level. CONCLUSIONS ExPEC-4V conjugate vaccine showed good immunogenicity and tolerability in animal models supporting progression to clinical evaluation.
Collapse
Affiliation(s)
- Germie P J M van den Dobbelsteen
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention B.V. (former Crucell Holland B.V.), Part of the Janssen Pharmaceutical Companies of Johnson and Johnson, Archimedesweg 4-6, 2333CN Leiden, The Netherlands.
| | - Kellen C Faé
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention B.V. (former Crucell Holland B.V.), Part of the Janssen Pharmaceutical Companies of Johnson and Johnson, Archimedesweg 4-6, 2333CN Leiden, The Netherlands.
| | - Jan Serroyen
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention B.V. (former Crucell Holland B.V.), Part of the Janssen Pharmaceutical Companies of Johnson and Johnson, Archimedesweg 4-6, 2333CN Leiden, The Netherlands.
| | - Ingrid M van den Nieuwenhof
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention B.V. (former Crucell Holland B.V.), Part of the Janssen Pharmaceutical Companies of Johnson and Johnson, Archimedesweg 4-6, 2333CN Leiden, The Netherlands.
| | - Martin Braun
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | - Micha A Haeuptle
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland; Current address: Molecular Partners AG, Wagistrasse 14, 8952 Zürich-Schlieren, Switzerland.
| | - Dominique Sirena
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | - Joerg Schneider
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | - Cristina Alaimo
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | - Gerd Lipowsky
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | | | - Michael Wacker
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland; Current address: Wacker Biotech Consulting, Obere Hönggerstrasse 9a, 8103 Unterengstringen, Switzerland.
| | - Jan T Poolman
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention B.V. (former Crucell Holland B.V.), Part of the Janssen Pharmaceutical Companies of Johnson and Johnson, Archimedesweg 4-6, 2333CN Leiden, The Netherlands.
| |
Collapse
|
13
|
Poolman JT, Wacker M. Extraintestinal Pathogenic Escherichia coli, a Common Human Pathogen: Challenges for Vaccine Development and Progress in the Field. J Infect Dis 2015; 213:6-13. [PMID: 26333944 PMCID: PMC4676548 DOI: 10.1093/infdis/jiv429] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/17/2015] [Indexed: 01/15/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is the most common gram-negative bacterial pathogen in humans. ExPEC causes the vast majority of urinary tract infections (UTIs), is a leading cause of adult bacteremia, and is the second most common cause of neonatal meningitis. Increasing multidrug resistance among ExPEC strains constitutes a major obstacle to treatment and is implicated in increasing numbers of hospitalizations and deaths and increasing healthcare costs associated with ExPEC infections. An effective vaccine against ExPEC infection is urgently needed. The O antigen, a component of the surface lipopolysaccharide, has been identified as a promising vaccine target. With the availability of a novel bioconjugation technology it is expected that multivalent O antigen conjugate vaccines can be produced at industrial scale. Clinical proof of concept of a 4-valent O antigen conjugate vaccine is ongoing. An ExPEC vaccine effective against strains that are associated with major diseases and resistant to multiple drugs could be routinely delivered to individuals at risk of developing severe E. coli infection, such as elderly people, individuals undergoing abdominal surgery and prostatic biopsy procedures, and persons at risk of recurrent and/or complicated UTI.
Collapse
Affiliation(s)
- Jan T Poolman
- Bacterial Vaccine Discovery and Early Development, Janssen, Leiden, The Netherlands
| | | |
Collapse
|
14
|
Abstract
Glycoconjugate vaccines, in which a cell surface carbohydrate from a micro-organism is covalently attached to an appropriate carrier protein are proving to be the most effective means to generate protective immune responses to prevent a wide range of diseases. The technology appears to be generic and applicable to a wide range of pathogens, as long as antibodies against surface carbohydrates help protect against infection. Three such vaccines, against Haemophilus influenzae type b, Neisseria meningitidis Group C and seven serotypes of Streptococcus pneumoniae, have already been licensed and many others are in development. This article discusses the rationale for the development and use of glycoconjugate vaccines, the mechanisms by which they elicit T cell-dependent immune responses and the implications of this for vaccine development, the role of physicochemical methods in the characterisation and quality control of these vaccines, and the novel products which are under development.
Collapse
Affiliation(s)
- Christopher Jones
- Laboratory for Molecular Structure, National Institute for Biological Standards and Control, Herts, UK.
| |
Collapse
|
15
|
Rubinstein A, Mizrachi Y, Pettoello-Mantovani M, Lenz J, Liu GQ, Rubinstein Y, Goldstein H, Yust I, Burke M, Vardinon N, Spirer Z, Cryz SJ. Immunologic responses of HIV-1-infected study subjects to immunization with a mixture of peptide protein derivative-V3 loop peptide conjugates. J Acquir Immune Defic Syndr 1999; 22:467-76. [PMID: 10961608 DOI: 10.1097/00126334-199912150-00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
V3 loop peptide sequences from several HIV-1 strains were covalently linked to purified protein derivative (PPD) of Mycobacterium tuberculosis. A mixture of PPD conjugates of V3 loop peptides from six different strains of HIV-1 induced a stronger antibody response than a single V3 peptide-conjugate administered to guinea pigs and humans. Sera from animals immunized with a PPD-six peptide-PPD conjugate neutralized multiple primary-isolate strains of HIV-1. Potent immune responses were noted only when animals were primed with bacillus Calmette-Guerin (BCG), PPD was covalently bound to the peptides, and PPD was used as the carrier protein. Based on these animal studies, an immunogen consisting of PPD-conjugated V3 loop peptides from five HIV-1 strains was tested in 7 HIV-1 seropositive PPD skin test positive study subjects. Vaccinees exhibited over time a uniform increase in neutralizing antibodies for both laboratory adapted and primary isolates of HIV-1, including strains from multiple clades. In 3 patients with baseline viral loads between 8000 and 12,000 RNA copies/ml, the viral load declined in 2 patients to <400 copies/ml and in 1 patient to 1200 copies/ml without concurrent administration of highly active antiretroviral therapy (HAART).
Collapse
Affiliation(s)
- A Rubinstein
- Department of Pediatrics, Center for AIDS Research, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Immunologic Responses of HIV-1–Infected Study Subjects to Immunization With a Mixture of Peptide Protein Derivative–V3 Loop Peptide Conjugates. J Acquir Immune Defic Syndr 1999. [DOI: 10.1097/00042560-199912150-00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Robin G, Keisari Y, Slepon R, Ashkenazi S, Cohen D. Quantitative analysis of IgG class and subclass and IgA serum response to Shigella sonnei and Shigella flexneri 2a polysaccharides following vaccination with Shigella conjugate vaccines. Vaccine 1999; 17:3109-15. [PMID: 10462247 DOI: 10.1016/s0264-410x(99)00136-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
It has been recently reported that a conjugate vaccine composed of the O-specific polysaccharide of S. sonnei bound to Pseudomonas aeruginosa recombinant exoprotein A (rEPA) conferred 74% protection against S. sonnei shigellosis. In the present study affinity purified Shigella antibodies were used as standards to quantify and characterize the serum antibody response to vaccination with Shigella sonnei or Shigella flexneri 2a polysaccharide conjugated to rEPA. The geometric mean concentrations of antibodies at the pre-vaccination stage were 3.8 microg/ml for IgG anti-S. sonnei LPS and 11.26 microg/ml for IgG anti-S. flexneri 2a LPS. Vaccination with S. sonnei-rEPA and S. flexneri 2a-rEPA induced the production of specific IgG antibodies to levels of 115.8 microg/ml and 126.5 microg/ml, respectively. The levels of specific antibodies above the pre-vaccination values persisted for at least 2 years. The IgG response to S. flexneri 2a-rEPA conjugate was almost entirely represented by the IgG2 subclass. The concentration of IgG1 anti-S. sonnei LPS was significantly higher than that of IgG2 14 days after vaccination with the homologous conjugate, but decreased to similar levels to those of IgG2 6, 12 and 24 months after immunization. Since the only difference between the S. sonnei and S. flexneri 2a conjugates lies in the different polysaccharides of the two Shigella serogroups (the protein rEPA, is identical in both cases), it follows that the different pattern of IgG subclass response is a result of the different structures of the two O-polysaccharides of S. sonnei and S. flexneri 2a.
Collapse
Affiliation(s)
- G Robin
- Israel Defence Force, Medical Corps.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Lipopolysaccharides (LPS) are indispensable structural components of the Gram-negative bacterial outer membrane and are major determinants of virulence in pathogenic species. In the infected host LPS is better known as endotoxin where it acts as a potent stimulator of the inflammatory response. This article reviews the methods for the production and measurement of anti-LPS antibodies, and then describes the uses to which these methods have been employed. Antibodies to LPS (either monoclonal or polyclonal) may be used directly as immunotherapeutic agents for the treatment of Gram-negative sepsis or endotoxaemia, or as probes for the diagnosis and epidemiological investigation of Gram-negative bacterial infections. Antibodies are useful tools for investigation of the chemical structure of LPS, its expression on bacteria and to study the role of LPS in pathogenic mechanisms. The detection and quantitation of anti-LPS antibodies has formed the basis of classical and more recent serological studies of major bacterial infections.
Collapse
Affiliation(s)
- I R Poxton
- Department of Medical Microbiology, University of Edinburgh Medical School, Scotland, UK
| |
Collapse
|
19
|
Cryz SJ, Goldstein H, Pettoello-Mantovani M, Kim A, Fürer E, Que JU, Hasler T, Rubinstein A. Human immunodeficiency virus-1 principal neutralizing domain peptide-toxin A conjugate vaccine. Vaccine 1995; 13:67-71. [PMID: 7762281 DOI: 10.1016/0264-410x(95)80013-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To enhance the potential efficacy of peptide-based vaccines for human immunodeficiency virus-1 (HIV-1), a principal neutralizing domain (PND) peptide (KRIHIGPGRAFYT) (HIV-1MN) was covalently coupled to Pseudomonas aeruginosa toxin A (TA). Immunization of guinea-pigs with this conjugate vaccine, in the absence of an adjuvant, engendered a high-affinity antibody response to the homologous HIV-1MN PND peptide and to analogous peptides from variant strains of HIV-1. A substantial proportion of such antibodies was directed to the conserved GPGRAF motif. Anti-PND peptide antibodies were capable of neutralizing the homologous strain, HIV-1MN, in addition to two heterologous (RF, IIIB) variants, as determined either by inhibition of syncytia formation or by suppression of p24 antigen production in cultured cells. Therefore, the method of conjugation used preserved critical neutralizing epitopes expressed by the PND peptide. Monovalent or polyvalent PND-TA conjugates, which meet all safety criteria for human use, are a promising approach towards the development of an acquired immunodeficiency syndrome (AIDS) vaccine.
Collapse
Affiliation(s)
- S J Cryz
- Swiss Serum and Vaccine Institute, Berne
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cryz SJ, Goldstein H, Fürer E, Que JU, Hasler T, Althaus B, Rubinstein A. Prospects for prevention of vertical transmission of human immunodeficiency virus by immunization. Ann N Y Acad Sci 1993; 693:194-201. [PMID: 8267263 DOI: 10.1111/j.1749-6632.1993.tb26268.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- S J Cryz
- Swiss Serum and Vaccine Institute, Berne
| | | | | | | | | | | | | |
Collapse
|
21
|
Schiff DE, Wass CA, Cryz SJ, Cross AS, Kim KS. Estimation of protective levels of anti-O-specific lipopolysaccharide immunoglobulin G antibody against experimental Escherichia coli infection. Infect Immun 1993; 61:975-80. [PMID: 7679376 PMCID: PMC302828 DOI: 10.1128/iai.61.3.975-980.1993] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Serum obtained after immunization with an O18 polysaccharide-toxin A conjugate vaccine was evaluated for the estimation of protective levels of anti-O-specific lipopolysaccharide (LPS) immunoglobulin G (IgG) antibody against bacteremia and death caused by a homologous serotype of Escherichia coli K1 strains. Passive transfer of rabbit serum conferred significant protection from a lethal E. coli infection in a neonatal rat model. The overall incidence of bacteremia and mortality was 4% in rat pups receiving undiluted postvaccination serum, while that in control animals was 100% (P < 0.001). The overall incidences of bacteremia were 5 and 72% for animals with serum anti-O18 LPS IgG concentrations of > 1.0 and < 1.0 microgram/ml, respectively, while the overall incidences of mortality for animals with serum anti-O18 LPS IgG levels of > 1.0 and < 1.0 microgram/ml were 0 and 72%, respectively (P < 0.001). Protection against E. coli infection was also demonstrated with human anti-O18 polysaccharide IgG. None of the animals with human anti-O18 LPS IgG levels of > 1 microgram/ml had bacteremia after bacterial challenge, whereas all animals with bacteremia at 18 h had levels of < 1 microgram/ml. These findings suggest that serum anti-O18 LPS IgG concentrations of > 1.0 microgram/ml may provide protection against bacteremia and death caused by a homologous E. coli K1 infection.
Collapse
Affiliation(s)
- D E Schiff
- Childrens Hospital Los Angeles, California 90027
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- D C Powers
- Geriatric Research Education and Clinical Center, Saint Louis VA Medical Center, Missouri
| |
Collapse
|