1
|
Hulme C, Gunnarsson R, Merenstein D, Barrett B, Ieven M, Ebell MH. How likely is it that a virus or bacteria is causing a patient's symptoms? A new approach to interpret the outcome from multi-pathogen PCR. Infect Dis (Lond) 2025; 57:535-541. [PMID: 39864052 DOI: 10.1080/23744235.2025.2456902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Whether a detected virus or bacteria is a pathogen that may require treatment, or is merely a commensal 'passenger', remains confusing for many infections. This confusion is likely to increase with the wider use of multi-pathogen PCR. OBJECTIVES To propose a new statistical procedure to analyse and present data from case-control studies clarifying the probability of causality. METHODS We conducted a case-control study in US outpatient settings that enrolled patients aged 18 to 75 years with acute lower respiratory tract infection and controls without respiratory symptoms. Patients underwent multi-pathogen PCR testing. The positive etiologic predictive value was calculated to estimate the probability that each potential pathogen was the cause of symptoms. The outcome was illustrated using a modified forest plot and by classifying pathogens into five categories clarifying the probability for causality. RESULTS We enrolled 618 adult cases and 497 asymptomatic controls. The modified forest plot and the classification of risk for causality aimed to facilitate understanding. Pathogens likely to be causative when present included influenza A and B, SARS-CoV-2, rhinovirus, and parainfluenza viruses, while Staphylococcus aureus is almost always commensal. Broad confidence intervals for the positive etiologic predictive value made it difficult to draw conclusions for potential pathogens with low prevalence. CONCLUSION This pilot study shows that the proposed statistical approach is likely to be practical for analysing larger case-control studies or for a meta-analysis of multiple studies. This method may help when interpreting the results from multi-pathogen PCR.
Collapse
Affiliation(s)
- Cassie Hulme
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA
| | - Ronny Gunnarsson
- Department of General Practice, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Research, Education, Development & Innovation, Primary Health Care, Region Västra Götaland, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Dan Merenstein
- Department of Family Medicine, Georgetown University, Washington, DC, USA
| | - Bruce Barrett
- Department of Family Medicine and Community Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Margareta Ieven
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Mark H Ebell
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Borralho J, Handem S, Lança J, Ferreira B, Candeias C, Henriques AO, Hiller NL, Valente C, Sá-Leão R. Inhibition of pneumococcal growth and biofilm formation by human isolates of Streptococcus mitis and Streptococcus oralis. Appl Environ Microbiol 2025; 91:e0133624. [PMID: 40008876 PMCID: PMC11921387 DOI: 10.1128/aem.01336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
In a world facing the unprecedented threat of antibiotic-resistant bacteria, targeted approaches to control colonization and prevent disease caused by common pathobionts offer a promising solution. Streptococcus pneumoniae (pneumococcus) is a leading cause of infections worldwide, affecting both children and adults despite available antimicrobials and vaccines. Colonization, which occurs in the form of a biofilm in the upper respiratory tract, is frequent and a prerequisite for disease and transmission. The use of live bacterial strains as biotherapeutics for infectious diseases is actively being explored. Here, we investigated the potential of commensal streptococci to control S. pneumoniae. Screening of over 300 human isolates led to the identification of seven strains (one Streptococcus oralis and six Streptococcus mitis, designated A22 to G22) with inhibitory activity against S. pneumoniae of multiple serotypes and genotypes. Characterization of A22 to G22 cell-free supernatants indicated the involvement of secreted proteins or peptides in the inhibitory effect of all S. mitis isolates. Genome analyses revealed the presence of 64 bacteriocin loci, encoding 70 putative bacteriocins, several of which are novel and absent or rare in over 7,000 publicly available pneumococcal genomes. Deletion mutants indicated that bacteriocins partially or completely explained the anti-pneumococcal activity of the commensal strains. Importantly, strains A22 to G22 were further able to prevent and disrupt pneumococcal biofilms, a proxy for nasopharyngeal colonization. These results highlight the intricacy of the interactions among nasopharyngeal colonizers and support the potential of strains A22 to G22 to be used as live biotherapeutics, alone or in combination, to control S. pneumoniae colonization. IMPORTANCE Streptococcus pneumoniae (pneumococcus) infections remain a major public health issue despite the use of vaccines and antibiotics. Pneumococci asymptomatically colonize the human upper respiratory tract, a niche shared with several commensal Streptococcus species. Competition for space and nutrients among species sharing the same niche is well documented and tends to be more intense among closely related species. Based on this rationale, a screening of several commensal streptococci isolated from the human upper respiratory tract led to the identification of strains of Streptococcus mitis and Streptococcus oralis capable of inhibiting most pneumococcal strains, across diverse serotypes and genotypes. This inhibition was partially or wholly linked to the expression of novel bacteriocins. The selected S. mitis and S. oralis strains significantly disrupted pneumococcal biofilms, indicating a potential for using commensals as biotherapeutics to control pneumococcal colonization, a key step in preventing disease and transmission.
Collapse
Affiliation(s)
- João Borralho
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara Handem
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João Lança
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bárbara Ferreira
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Candeias
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O. Henriques
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carina Valente
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
3
|
Olivella-Gomez J, Lozada J, Serrano-Mayorga CC, Méndez-Castillo L, Acosta-González A, Viñán Garcés AE, Bustos IG, Ibáñez-Prada ED, Fuentes YV, Crispin AM, Garcia-Garcia EY, Santana E, Josa DF, Pulido Saenz J, Rodíguez-Castaño GP, Rodríguez Orjuela JA, Jaimes D, Tettelin H, Orihuela CJ, Reyes LF. The relation of nasopharyngeal colonization by Streptococcus pneumoniae in comorbid adults with unfavorable outcomes in a low-middle income country. PLoS One 2025; 20:e0318320. [PMID: 39937814 PMCID: PMC11819510 DOI: 10.1371/journal.pone.0318320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
PURPOSE Streptococcus pneumoniae (Spn) is the primary bacterial cause of lower respiratory tract infections (LRTI) globally, particularly impacting older adults and children. While Spn colonization in children is linked to LRTI, its prevalence, and consequences in adults with comorbidities remain uncertain. This study aims to provide novel data in that regard. METHODS This prospective study of outpatient adults with chronic diseases was conducted in Colombia. Data on demographics, vaccination, and clinical history was collected in a RedCap database. Nasopharyngeal aspirate samples were examined for Spn colonization using traditional cultures and quantitative-real time polymerase chain reaction (q-rtPCR). Patients were followed for 18 months, with colonization prevalence calculated and factors influencing colonization and its impact on clinical outcomes analyzed through logistic regressions. RESULTS 810 patients were enrolled, with 10.1% (82/810) identified as colonized. The mean (SD) age was 62 years (±15), and 48.6% (394/810) were female. Major comorbidities included hypertension (52.2% [423/810]), cardiac conditions (31.1% [252/810]), and chronic kidney disease (17.4% [141/810]). Among all, 31.6% (256/810) received the influenza vaccine in the previous year, and 10.7% (87/810) received anti-Spn vaccines. Chronic kidney disease (OR 95% CI; 2.48 [1.01-6.15], p = 0.04) and chronic cardiac diseases (OR 95% CI; 1.62 [0.99-2.66], p = 0.05) were independently associated with Spn colonization. However, colonization was not associated with the development of LRTI (OR 95%CI; 0.64 [0.14-2.79], p = 0.55) or unfavorable outcomes (OR 95% CI;1.17 [0.14-2.79], p = 0.54) during follow-up. CONCLUSIONS Chronic kidney and cardiac diseases are independently associated with Spn colonization. However, Spn colonization was not associated with LRTI/unfavorable outcomes in adult patients with chronic comorbidities in our cohort.
Collapse
Affiliation(s)
- Juan Olivella-Gomez
- School of Medicine, Universidad de La Sabana, Chía, Colombia
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Julián Lozada
- School of Medicine, Universidad de La Sabana, Chía, Colombia
- Clínica Universidad de La Sabana, Chía, Colombia
- Biosciences PhD, Engineering Faculty, Universidad de La Sabana, Chía, Colombia
| | - Cristian C. Serrano-Mayorga
- School of Medicine, Universidad de La Sabana, Chía, Colombia
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Clínica Universidad de La Sabana, Chía, Colombia
- Biosciences PhD, Engineering Faculty, Universidad de La Sabana, Chía, Colombia
| | | | - Alejandro Acosta-González
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Grupo de Investigación en Bioprospección (G.I.B.P.), Faculty of Engineering, Universidad de La Sabana, Chía, Colombia
| | - André Emilio Viñán Garcés
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Clínica Universidad de La Sabana, Chía, Colombia
| | - Ingrid G. Bustos
- School of Medicine, Universidad de La Sabana, Chía, Colombia
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Biosciences PhD, Engineering Faculty, Universidad de La Sabana, Chía, Colombia
| | - Elsa D. Ibáñez-Prada
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Clínica Universidad de La Sabana, Chía, Colombia
| | - Yuli V. Fuentes
- School of Medicine, Universidad de La Sabana, Chía, Colombia
| | - Ana M. Crispin
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | | | | | - Diego F. Josa
- School of Medicine, Universidad de La Sabana, Chía, Colombia
- Fundación Clínica Shaio, Department of Clinical Laboratory and Pathology, Molecular Biology - Microbiology Area Bogotá, Bogotá, Colombia
| | | | - Gina Paola Rodíguez-Castaño
- Grupo de Investigación en Bioprospección (G.I.B.P.), Faculty of Engineering, Universidad de La Sabana, Chía, Colombia
| | | | - Diego Jaimes
- School of Medicine, Universidad de La Sabana, Chía, Colombia
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Carlos J. Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Luis Felipe Reyes
- School of Medicine, Universidad de La Sabana, Chía, Colombia
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Clínica Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
El Safadi D, Hitchins L, Howard A, Aley P, Bowman J, Bertran M, Collins A, Colin-Jones R, Elterish F, Fry NK, Gordon SS, Gould K, Hinds J, Horn E, Hyder-Wright A, Kandasamy R, Ladhani S, Litt D, Mitsi E, Murphy A, Pollard AJ, Plested E, Pojar S, Ratcliffe H, Robertson MC, Robinson H, Snape MD, Solórzano C, Voysey M, Begier E, Catusse J, Lahuerta M, Theilacker C, Gessner BD, Tiley KS, Ferreira DM. Pneumococcal Carriage and Disease in Adults in England, 2011-2019: The Importance of Adults as a Reservoir for Pneumococcus in Communities. J Infect Dis 2025; 231:e17-e27. [PMID: 39013016 PMCID: PMC11793058 DOI: 10.1093/infdis/jiae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Pneumococcal carriage in healthy adults and its relationship to invasive pneumococcal disease (IPD) is not well understood. METHODS Nasal wash samples from adults without close contact with young children (Liverpool, UK), 2011-2019, were cultured, and culture-negative samples tested by polymerase chain reaction (PCR). Pneumococcal carriage in adults 18-44 years was compared with carriage among pneumococcal conjugate vaccine-vaccinated children aged 13-48 months (nasopharyngeal swabs, Thames Valley, UK) and national IPD data, 2014-2019. Age group-specific serotype invasiveness was calculated and used with national IPD data to estimate carriage serotype distributions for ≥65 years. RESULTS Overall, 98 isolates (97 carriers) were identified (3 solely by PCR) from 1631 ≥18 years adults (standardized carriage prevalence 6.4%). Despite different carriage and IPD serotype distributions between adults and children, serotype invasiveness was highly correlated (R = 0.9). Serotypes 3, 37, and 8 represented a higher proportion of adult carriage than expected. Predicted carriage serotype distributions for ≥65 years aligned closest with the young adult carriage serotype distribution. CONCLUSIONS Nasal wash technique is highly sensitive. For some serotypes carried by adults aged ≥65 years, other adults may be an important reservoir for transmission. Age groups such as older children should also be considered.
Collapse
Affiliation(s)
- Dima El Safadi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | - Lisa Hitchins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | - Parvinder Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- National Institute for Health and Care Research, Oxford Biomedical Research Centre
| | - Jaclyn Bowman
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Marta Bertran
- Immunisations and Vaccine Preventable Diseases, UK Health Security Agency, London
| | - Andrea Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | | | - Filora Elterish
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Norman K Fry
- Immunisations and Vaccine Preventable Diseases, UK Health Security Agency, London
| | - Stephen S Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | - Kate Gould
- Institute for Infection and Immunity, St George's University, London
- BUGS Bioscience, London Bioscience Innovation Centre
| | - Jason Hinds
- Institute for Infection and Immunity, St George's University, London
- BUGS Bioscience, London Bioscience Innovation Centre
| | - Emilie Horn
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | | | - Rama Kandasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Shamez Ladhani
- Immunisations and Vaccine Preventable Diseases, UK Health Security Agency, London
| | - David Litt
- Immunisations and Vaccine Preventable Diseases, UK Health Security Agency, London
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Annabel Murphy
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Emma Plested
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- National Institute for Health and Care Research, Oxford Biomedical Research Centre
- National Institute for Health Research Clinical Research Network, Thames Valley and South Midlands, Oxford
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | - Helen Ratcliffe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Maria C Robertson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- National Institute for Health and Care Research, Oxford Biomedical Research Centre
- National Institute for Health Research Clinical Research Network, Thames Valley and South Midlands, Oxford
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- National Institute for Health and Care Research, Oxford Biomedical Research Centre
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | | | - Julie Catusse
- Pfizer Vaccines, Pfizer Inc, Collegeville, Pennsylvania
| | | | | | | | - Karen S Tiley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
| |
Collapse
|
5
|
Waghela P, Davis R, Campbell M, Datta R, Hislop MS, Vega NJ, Wurst L, Yolda-Carr D, Couch L, Hernandez M, Grant LR, Alexander-Parrish R, Arguedas A, Gessner BD, Martinello RA, Weinberger DM, Wyllie AL. Detection of Pneumococcal Carriage in Asymptomatic Healthcare Workers. Open Forum Infect Dis 2025; 12:ofaf008. [PMID: 39917332 PMCID: PMC11800483 DOI: 10.1093/ofid/ofaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/05/2025] [Indexed: 02/09/2025] Open
Abstract
Background Healthcare workers are at increased risk of exposure to respiratory pathogens including Streptococcus pneumoniae (pneumococcus). While little asymptomatic carriage has been reported in young-to-middle-aged adults, this may be due to nonsensitive diagnostic methods. The aim of the current study was to investigate the rates of pneumococcal carriage in a large cohort of healthcare workers, using saliva as a respiratory specimen. Methods We evaluated pneumococcal carriage in convenience samples of saliva, self-collected from asymptomatic healthcare workers (Connecticut, USA) who were testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from 30 March to 11 June 2020. DNA extracted from the culture-enriched saliva was later tested using quantitative polymerase chain reaction for piaB, lytA, and serotype. Saliva samples were considered positive for pneumococcus when the piaB cycle threshold value was <40. Results Study participants were 22-74 years old (mean age, 38.5 years), 75% female, 75% white, and with occupations including registered nurses (48%), medical doctors (23%), and patient care assistants (5%). Overall, 138 of 1241 samples (11%) from 86 of 392 individuals (21%) tested piaB positive at some point during the 4-month study period, with 28 (33%) colonized individuals positive at multiple time points. Carriers reflected the overall study population. No significant demographic characteristics were associated with detection of pneumococcus. Colonized individuals primarily carried serotypes 19F (25.6%) and 3 (12.8%). Conclusions During a period of mandatory masking, we identified a cumulative pneumococcal carriage prevalence of 21% among healthcare workers. This study highlights that healthcare workers may act as unrecognized reservoirs of pneumococcus in the population. Despite long-standing pediatric immunization programs, vaccine-targeted serotypes continue to be prevalent among the adult population.
Collapse
Affiliation(s)
- Pari Waghela
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Raechel Davis
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Melissa Campbell
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Rupak Datta
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maikel S Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Noel J Vega
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Loren Wurst
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Devyn Yolda-Carr
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Luke Couch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Michael Hernandez
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Lindsay R Grant
- Global Respiratory Vaccines, Pfizer, Inc., Collegeville, Pennsylvania, USA
| | | | - Adriano Arguedas
- Global Respiratory Vaccines, Pfizer, Inc., Collegeville, Pennsylvania, USA
| | - Bradford D Gessner
- Global Respiratory Vaccines, Pfizer, Inc., Collegeville, Pennsylvania, USA
| | - Richard A Martinello
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Amodio E, Tramuto F, De Francisci V, Genovese D, Guzzetta V, Pisciotta V, Santino A, Randazzo G, Trapani G, Vella G, Vitale F. Pneumococcal carriage in a large Sicilian sample population: impact on the current epidemiological scenario and implications for future vaccination strategies. Front Cell Infect Microbiol 2024; 14:1467320. [PMID: 39687546 PMCID: PMC11647007 DOI: 10.3389/fcimb.2024.1467320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/08/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Streptococcus pneumoniae is a prevalent and virulent global pathogen, with colonization being considered a precondition for pneumococcal disease. Understanding colonization is critical for gaining insights into transmission dynamics and developing effective interventions. This study aimed to determine the prevalence of nasopharyngeal colonization and serotype distribution in the Sicilian population. Methods Observational study randomly selecting samples belonging to Sicilian individuals whose nasopharyngeal swabs were collected between February 1, 2020, and December 31, 2022. Pneumococcal colonization was determined using PCR for the pneumococcal autolysin (LytA) gene, and positive samples were serotyped. Results The study sample consisted of 1,196 individuals, with 17.4% testing positive for the LytA gene. Pneumococcal colonization rates fell from birth to 24 years, with a peak in 0-4-year-olds (aOR=6.9; p<0.001). Colonization was higher in colder months, particularly in December (aOR=2.9, p<0.05) and February (aOR=4, p<0.05). Serotypes 22F and 24ABF exhibited strong colonization and an invasive pneumococcal disease (IPD) risk, whereas serotypes 4, 6AB, 9VA, and 13 had high colonization but a low IPD risk. Serotypes 3 and 8 exhibited considerable IPD risk but low colonization. Conclusion Our findings provide insights into pneumococcal colonization mechanisms, influencing serotype prevalence, colonization risk variables, and serotype comparisons for colonization and pathogenicity propensity.
Collapse
Affiliation(s)
- Emanuele Amodio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “P. Giaccone”, University of Palermo, Palermo, Italy
| | - Fabio Tramuto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “P. Giaccone”, University of Palermo, Palermo, Italy
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, Palermo, Italy
| | - Valerio De Francisci
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “P. Giaccone”, University of Palermo, Palermo, Italy
| | - Dario Genovese
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “P. Giaccone”, University of Palermo, Palermo, Italy
| | - Valeria Guzzetta
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, Palermo, Italy
| | - Vincenzo Pisciotta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “P. Giaccone”, University of Palermo, Palermo, Italy
| | - Arianna Santino
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, Palermo, Italy
| | - Giulia Randazzo
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, Palermo, Italy
| | - Giulio Trapani
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “P. Giaccone”, University of Palermo, Palermo, Italy
| | - Giuseppe Vella
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “P. Giaccone”, University of Palermo, Palermo, Italy
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “P. Giaccone”, University of Palermo, Palermo, Italy
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, Palermo, Italy
| |
Collapse
|
7
|
Lewnard JA, Hong V, Grant LR, Ackerson BK, Bruxvoort KJ, Pomichowski M, Arguedas A, Cané A, Jodar L, Gessner BD, Tartof SY. Association of Pneumococcal Conjugate Vaccination With Severe Acute Respiratory Syndrome Coronavirus 2 Infection Among Older Adult Recipients of Coronavirus Disease 2019 Vaccines: A Longitudinal Cohort Study. J Infect Dis 2024; 230:e1082-e1091. [PMID: 39101606 PMCID: PMC11566223 DOI: 10.1093/infdis/jiae387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Pneumococcal carriage is associated with increased acquisition and duration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among adults. While pneumococcal conjugate vaccines (PCVs) prevent carriage of vaccine-serotype pneumococci, their potential impact on coronavirus disease 2019 (COVID-19)-related outcomes remains poorly understood in populations with prevalent immunity against SARS-CoV-2. METHODS We undertook a retrospective cohort study of adults aged ≥65 years in the Kaiser Permanente Southern California healthcare system who had received ≥2 COVID-19 vaccine doses, comparing risk of SARS-CoV-2 infection between 1 January 2021 and 31 December 2022 among recipients and nonrecipients of 13-valent PCV (PCV13) employing multiple strategies to mitigate bias from differential test-seeking behavior. RESULTS The ajusted hazard ratio of confirmed SARS-CoV-2 infection comparing PCV13 recipients to nonrecipients was 0.92 (95% confidence interval [CI], .90-.95), corresponding to prevention of 3.9 (95% CI, 2.6-5.3) infections per 100 person-years. Following receipt of 2, 3, and ≥4 COVID-19 vaccine doses, aHRs (95% CI) were 0.85 (.81-.89), 0.94 (.90-.97), and 0.99 (.93-1.04), respectively. The aHR (95% CI) for persons who had not received COVID-19 vaccination in the preceding 6 months was 0.90 (.86-.93), versus 0.94 (.91-.98) within 6 months after COVID-19 vaccination. Similarly, aHRs (95% CI) were 0.92 (.89-.94) for persons without history of documented SARS-CoV-2 infection, versus 1.00 (.90-1.12) for persons with documented prior infection. CONCLUSIONS Among older adults who had received ≥2 COVID-19 vaccine doses, PCV13 was associated with modest protection against SARS-CoV-2 infection. Protective effects of PCV13 were greater among individuals expected to have weaker immune protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Center for Computational Biology, School of Public Health
- College of Statistics, Data Science, and Society
- Augmented Graduate Group in Computational Precision Health, University of California, Berkeley
| | - Vennis Hong
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | | | - Bradley K Ackerson
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | - Katia J Bruxvoort
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham
| | - Magdalena Pomichowski
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | | | | | - Luis Jodar
- Pfizer Vaccines, Collegeville, Pennsylvania
| | | | - Sara Y Tartof
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| |
Collapse
|
8
|
Lansbury L, McKeever TM, Lawrence H, Pick H, Baskaran V, Edwards-Pritchard RC, Ashton D, Rodrigo C, Daniel P, Litt D, Eletu S, Parmar H, Sheppard CL, Ladhani S, Trotter C, Lim WS. Carriage of Streptococcus pneumoniae in adults hospitalised with community-acquired pneumonia. J Infect 2024; 89:106277. [PMID: 39306250 DOI: 10.1016/j.jinf.2024.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES We aimed to determine the prevalence of and risk factors for nasopharyngeal and oral pneumococcal carriage in adults with community-acquired pneumonia (CAP), and the relationship between carried and disease-causing serotypes. METHODS Between 2016 and 2018, nasopharyngeal swabs, oral-fluid, and urine were collected from hospitalised adults recruited into a prospective cohort study of CAP. Pneumococcal carriage was detected by semi-quantitative real-time PCR of direct and culture-enriched nasopharyngeal swabs and culture-enriched oral-fluid. LytA and piaB positive/indeterminate samples underwent semi-quantitative serotype/serogroup-specific real-time-PCR. Serotypes in urine were identified using a 24-valent serotype-specific urinary-antigen assay. RESULTS We included 465 CAP patients. Nasopharyngeal carriage was detected in 34/103 (33.0%) swabbed pneumococcal pneumonia patients and oral carriage in 18/155 (12%) of sampled pneumococcal pneumonia patients. Concordance between nasopharyngeal/urine serotypes and oral/urine serotypes was 70.6% and 50% respectively. Serotypes 3 (26%, 22.2%), 8 (19.7%, 19.4%), non-typeable (11.6%, 13.9%) and 19A/F (7.5%, 8.3%) were most prevalent in urine and nasopharyngeal swabs respectively, with non-typeable (35%) and 15A/F (17%) most prevalent in oral-fluid. Pneumococcal carriage was significantly associated with pneumococcal pneumonia (nasopharyngeal adjusted odds ratio [aOR] 8.1, 95% confidence interval [CI] 3.8-17.2; oral aOR 5.5, 95% CI 2.1-13.3). All-cause CAP patients ≥65 years had lower odds of nasopharyngeal carriage (aOR 0.47, 95% CI 0.24-0.91) and current smokers had higher odds of oral carriage (aOR 2.69, 95% CI 1.10-6.60). CONCLUSIONS The association between nasopharyngeal carriage and pneumococcal CAP was strong. Adult carriage and disease from serotypes 8 and 19A may support direct protection of adults with PCV vaccines.
Collapse
Affiliation(s)
- Louise Lansbury
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK.
| | - Tricia M McKeever
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Hannah Lawrence
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Harry Pick
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Vadsala Baskaran
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Rochelle C Edwards-Pritchard
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Deborah Ashton
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Chamira Rodrigo
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Priya Daniel
- Respiratory Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK; Immunisation and Vaccine Preventable Diseases, UK Health Security Agency, Colindale, UK
| | - Seyi Eletu
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK
| | - Hanshi Parmar
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK
| | - Carmen L Sheppard
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK
| | - Shamez Ladhani
- Immunisation and Vaccine Preventable Diseases, UK Health Security Agency, Colindale, UK
| | - Caroline Trotter
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Wei Shen Lim
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK; Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
9
|
Mitsi E, Nikolaou E, Goncalves A, Blizard A, Hill H, Farrar M, Hyder-Wright A, Akeju O, Hamilton J, Howard A, Elterish F, Solorzano C, Robinson R, Reiné J, Collins AM, Gordon SB, Moxon RE, Weiser JN, Bogaert D, Ferreira DM. RSV and rhinovirus increase pneumococcal carriage acquisition and density, whereas nasal inflammation is associated with bacterial shedding. Cell Host Microbe 2024; 32:1608-1620.e4. [PMID: 39181126 DOI: 10.1016/j.chom.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Epidemiological studies report the impact of co-infection with pneumococcus and respiratory viruses upon disease rates and outcomes, but their effect on pneumococcal carriage acquisition and bacterial load is scarcely described. Here, we assess this by combining natural viral infection with controlled human pneumococcal infection in 581 healthy adults screened for upper respiratory tract viral infection before intranasal pneumococcal challenge. Across all adults, respiratory syncytial virus (RSV) and rhinovirus asymptomatic infection confer a substantial increase in secondary infection with pneumococcus. RSV also has a major impact on pneumococcal density up to 9 days post challenge. We also study rates and kinetics of bacterial shedding through the nose and oral route in a subset. High levels of pneumococcal colonization density and nasal inflammation are strongly correlated with increased odds of nasal shedding as opposed to cough shedding. Protection against respiratory viral infections and control of pneumococcal density may contribute to preventing pneumococcal disease and reducing bacterial spread.
Collapse
Affiliation(s)
- Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Elissavet Nikolaou
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Andre Goncalves
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Annie Blizard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Helen Hill
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Madlen Farrar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Angela Hyder-Wright
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Oluwasefunmi Akeju
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Josh Hamilton
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ashleigh Howard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Filora Elterish
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Carla Solorzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ryan Robinson
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jesus Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Andrea M Collins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Stephen B Gordon
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Malawi Liverpool Wellcome-Trust Programme, Queen Elizabeth Central Hospital Campus, P.O. Box 30096, Blantyre, Malawi
| | - Richard E Moxon
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Debby Bogaert
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, the Netherlands
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| |
Collapse
|
10
|
Parker AM, Jackson N, Awasthi S, Kim H, Alwan T, Wyllie AL, Kogut K, Holland N, Mora AM, Eskenazi B, Riley LW, Lewnard JA. Upper respiratory Streptococcus pneumoniae colonization among working-age adults with prevalent exposure to overcrowding. Microbiol Spectr 2024; 12:e0087924. [PMID: 39012111 PMCID: PMC11302326 DOI: 10.1128/spectrum.00879-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
Most pneumococcal disease occurs among infants and older adults and is thought to be driven by the transmission of Streptococcus pneumoniae from young children to these vulnerable age groups. However, pneumococcal disease outbreaks also affect non-elderly adults living or working in congregate, close-contact settings. Little is known about pneumococcal carriage in such populations. From July to November 2020, we collected saliva from low-income adult farmworkers in Monterey County, California, and tested for pneumococcal carriage following culture enrichment via quantitative PCR assays targeting the pneumococcal lytA and piaB genes. Participants were considered to carry pneumococci if lytA and piaB cycle threshold values were both below 40. Among 1,283 participants enrolled in our study, 117 (9.1%) carried pneumococci. Carriers tended more often than non-carriers to be exposed to children aged <5 years [odds ratio (OR) = 1.45 (0.95-2.20)] and overcrowding [OR = 1.48 (0.96-2.30) and 2.84 (1.20-6.73), respectively, for participants in households with >2-4 and >4 persons per bedroom vs ≤2 persons per bedroom]. Household overcrowding remained associated with increased risk of carriage among participants not exposed to children aged <5 years [OR = 2.05 (1.18-3.59) for participants living in households with >2 vs ≤2 persons per bedroom]. Exposure to children aged <5 years and overcrowding were each associated with increased pneumococcal density among carriers [piaB cT difference of 2.04 (0.36-3.73) and 2.44 (0.80-4.11), respectively]. While exposure to young children was a predictor of pneumococcal carriage, associations of overcrowding with increased prevalence and density of carriage in households without young children suggest that transmission also occurs among adults in close-contact settings.IMPORTANCEAlthough infants and older adults are the groups most commonly affected by pneumococcal disease, outbreaks are known to occur among healthy, working-age populations exposed to overcrowding, including miners, shipyard workers, military recruits, and prisoners. Carriage of Streptococcus pneumoniae is the precursor to pneumococcal disease, and its relation to overcrowding in adult populations is poorly understood. We used molecular methods to characterize pneumococcal carriage in culture-enriched saliva samples from low-income adult farmworkers in Monterey County, CA. While exposure to children in the household was an important risk factor for pneumococcal carriage, living in an overcrowded household without young children was an independent predictor of carriage as well. Moreover, participants exposed to children or overcrowding carried pneumococci at higher density than those without such exposures, suggesting recent transmission. Our findings suggest that, in addition to transmission from young children, pneumococcal transmission may occur independently among adults in overcrowded settings.
Collapse
Affiliation(s)
- Anna M. Parker
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Nicole Jackson
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Shevya Awasthi
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Hanna Kim
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Tess Alwan
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Katherine Kogut
- Center for Environmental Research & Community Health, School of Public Health, University of California, Berkeley, California, USA
| | - Nina Holland
- Center for Environmental Research & Community Health, School of Public Health, University of California, Berkeley, California, USA
| | - Ana M. Mora
- Center for Environmental Research & Community Health, School of Public Health, University of California, Berkeley, California, USA
| | - Brenda Eskenazi
- Center for Environmental Research & Community Health, School of Public Health, University of California, Berkeley, California, USA
| | - Lee W. Riley
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Joseph A. Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, USA
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
- Center for Computational Biology, College of Engineering, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Lozada J, Gómez JO, Serrano-Mayorga CC, Viñán Garcés AE, Enciso V, Mendez-Castillo L, Acosta-González A, Bustos IG, Fuentes YV, Ibáñez-Prada ED, Crispin AM, Delgado-Cañaveral MC, Morales Celis LM, Jaimes D, Turner P, Reyes LF. Streptococcus pneumoniae as a colonizing agent of the Nasopharynx - Oropharynx in adults: A systematic review and meta-analysis. Vaccine 2024; 42:2747-2757. [PMID: 38514352 DOI: 10.1016/j.vaccine.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Streptococcus pneumoniae (Spn) is a commensal pathogen that usually colonizes the upper respiratory tract of children. Likewise, Spn colonization has been considered a critical factor in the development of pneumococcal invasive disease. However, Spn prevalence in adults remains unclear. This study performs a systematic review and meta-analysis to explore the prevalence of Spn Nasopharynx - Oropharynx Colonization (NOC) in adults. METHODS A Systematic review of scientific databases was utilized to identify eligible studies that follow strict selection criteria. Subsequently, a meta-analysis was conducted to establish NOC prevalence in adults (≥18 years old). The heterogeneity and sensitivity analyses were assessed using the microorganism identification technique, sample type, and age subgroups. RESULTS Initial selection includes 69 studies, with 37 selected for the meta-analysis, involving 23,724 individuals. The overall prevalence (95 % CI) of Spn NOC among adults was 6 % (5-9). The subgroup analysis revealed that young adults (YA), 18-64 years old, had a prevalence of 10 %, whereas older adults (OA), ≥65 years old, had a prevalence of 2 %. The identification of Spn NOC may vary depending on the method of diagnosis used. High heterogeneity (I2 > 90 %) was observed but diminished to 70 % when the analysis was restricted to oropharyngeal swabs as an identification method. Furthermore, heterogeneity decreased to 58 % when exclusively employing traditional culture as the identification method. CONCLUSIONS This study found a low prevalence of Spn NOC in adults. Notably, the prevalence of Spn NOC was higher in younger adults than in older adults. It is essential to highlight a significant heterogeneity among studies, which indicates there is no standardized method of Spn NOC identification.
Collapse
Affiliation(s)
- Julián Lozada
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Juan Olivella Gómez
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Cristian C Serrano-Mayorga
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - André Emilio Viñán Garcés
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Valeria Enciso
- School of Medicine, Universidad de La Sabana, Chía, Colombia
| | | | - Alejandro Acosta-González
- Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Ingrid G Bustos
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Yuli V Fuentes
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia
| | - Elsa D Ibáñez-Prada
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Ana M Crispin
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | | | | | - Diego Jaimes
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia
| | - Paul Turner
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luis Felipe Reyes
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Laxton CS, Peno C, Hahn AM, Allicock OM, Perniciaro S, Wyllie AL. The potential of saliva as an accessible and sensitive sample type for the detection of respiratory pathogens and host immunity. THE LANCET. MICROBE 2023; 4:e837-e850. [PMID: 37516121 DOI: 10.1016/s2666-5247(23)00135-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 07/31/2023]
Abstract
Despite its prominence in early scientific records, the usefulness of saliva as a respiratory specimen has been de-emphasised over the past century. However, due to its low cost and reliance on specific supply chains and the non-invasive nature of its collection, its benefits over swab-based specimens are again becoming increasingly recognised. These benefits were highlighted over the course of the COVID-19 pandemic, where saliva emerged as a more practical, clinically non-inferior sample type for the detection of SARS-CoV-2 and saw numerous saliva-based diagnostic tests approved for clinical use. Looking forward, as saliva uniquely contains both respiratory secretions and immunological components, it has potentially wide applications, ranging from clinical diagnostics to post-vaccine disease burden and immunity surveillance. This Personal View seeks to summarise the existing evidence for the use of saliva in detecting respiratory pathogens, beyond SARS-CoV-2, as well as detailing methodological factors that can influence sample quality and thus, clinical utility.
Collapse
Affiliation(s)
- Claire S Laxton
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chikondi Peno
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Stephanie Perniciaro
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
13
|
Paulo AC, Lança J, Almeida ST, Hilty M, Sá-Leão R. The upper respiratory tract microbiota of healthy adults is affected by Streptococcus pneumoniae carriage, smoking habits, and contact with children. MICROBIOME 2023; 11:199. [PMID: 37658443 PMCID: PMC10474643 DOI: 10.1186/s40168-023-01640-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND The microbiota of the upper respiratory tract is increasingly recognized as a gatekeeper of respiratory health. Despite this, the microbiota of healthy adults remains understudied. To address this gap, we investigated the composition of the nasopharyngeal and oropharyngeal microbiota of healthy adults, focusing on the effect of Streptococcus pneumoniae carriage, smoking habits, and contact with children. RESULTS Differential abundance analysis indicated that the microbiota of the oropharynx was significantly different from that of the nasopharynx (P < 0.001) and highly discriminated by a balance between the classes Negativicutes and Bacilli (AUC of 0.979). Moreover, the oropharynx was associated with a more homogeneous microbiota across individuals, with just two vs. five clusters identified in the nasopharynx. We observed a shift in the nasopharyngeal microbiota of carriers vs. noncarriers with an increased relative abundance of Streptococcus, which summed up to 30% vs. 10% in noncarriers and was not mirrored in the oropharynx. The oropharyngeal microbiota of smokers had a lower diversity than the microbiota of nonsmokers, while no differences were observed in the nasopharyngeal microbiota. In particular, the microbiota of smokers, compared with nonsmokers, was enriched (on average 16-fold) in potential pathogenic taxa involved in periodontal diseases of the genera Bacillus and Burkholderia previously identified in metagenomic studies of cigarettes. The microbiota of adults with contact with children resembled the microbiota of children. Specifically, the nasopharyngeal microbiota of these adults had, on average, an eightfold increase in relative abundance in Streptococcus sp., Moraxella catarrhalis, and Haemophilus influenzae, pathobionts known to colonize the children's upper respiratory tract, and a fourfold decrease in Staphylococcus aureus and Staphylococcus lugdunensis. CONCLUSIONS Our study showed that, in adults, the presence of S. pneumoniae in the nasopharynx is associated with a shift in the microbiota and dominance of the Streptococcus genus. Furthermore, we observed that smoking habits are associated with an increase in bacterial genera commonly linked to periodontal diseases. Interestingly, our research also revealed that adults who have regular contact with children have a microbiota enriched in pathobionts frequently carried by children. These findings collectively contribute to a deeper understanding of how various factors influence the upper respiratory tract microbiota in adults. Video Abstract.
Collapse
Affiliation(s)
- A Cristina Paulo
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - João Lança
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sónia T Almeida
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Markus Hilty
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Raquel Sá-Leão
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
14
|
Hislop MS, Allicock OM, Thammavongsa DA, Mbodj S, Nelson A, Shaw AC, Weinberger DM, Wyllie AL. High Levels of Detection of Nonpneumococcal Species of Streptococcus in Saliva from Adults in the United States. Microbiol Spectr 2023; 11:e0520722. [PMID: 37067447 PMCID: PMC10269540 DOI: 10.1128/spectrum.05207-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
While the sensitivity of detection of pneumococcal carriage can be improved by testing respiratory tract samples with quantitative PCR (qPCR), concerns have been raised regarding the specificity of this approach. We therefore investigated the reliability of the widely used lytA qPCR assay when applied to saliva samples from older adults in relation to a more specific qPCR assay (piaB). During the autumn/winter seasons of 2018/2019 and 2019/2020, saliva was collected at multiple time points from 103 healthy adults aged 21 to 39 (n = 34) and >64 (n = 69) years (n = 344 total samples). Following culture enrichment, extracted DNA was tested using qPCR for piaB and lytA. By sequencing the variable region of rpsB (S2 typing), we identified the species of bacteria isolated from samples testing lytA-positive only. While 30 of 344 (8.7%) saliva samples (16.5% individuals) tested qPCR-positive for both piaB and lytA, 52 (15.1%) samples tested lytA-positive only. No samples tested piaB-positive only. Through extensive reculture attempts of the lytA-positive samples collected in 2018/2019, we isolated 23 strains (in 8 samples from 5 individuals) that were also qPCR-positive for only lytA. Sequencing determined that Streptococcus mitis and Streptococcus infantis were predominantly responsible for this lytA-positive qPCR signal. We identified a comparatively large proportion of samples generating positive signals with the widely used lytA qPCR and identified nonpneumococcal Streptococcus species responsible for this signal. This highlights the importance of testing for the presence of multiple gene targets in tandem for reliable and specific detection of pneumococcus in polymicrobial respiratory tract samples. IMPORTANCE Testing saliva samples with quantitative PCR (qPCR) improves the sensitivity of detection of pneumococcal carriage. The qPCR assay targeting lytA, the gene encoding the major pneumococcal autolysin, has become widely accepted for the identification of pneumococcus and is even considered the "gold standard" by many. However, when applying this approach to investigate the prevalence of pneumococcal carriage in adults in New Haven, CT, USA, we identified nonpneumococcal Streptococcus spp. that generate positive signals in this widely used assay. By testing also for piaB (encoding the iron acquisition ABC transporter lipoprotein, PiaB), our findings demonstrate the importance of testing for the presence of multiple gene targets in tandem for reliable molecular detection of pneumococcus in respiratory tract samples; targeting only lytA may lead to an overestimation of true carriage rates.
Collapse
Affiliation(s)
- Maikel S. Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Orchid M. Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Darani A. Thammavongsa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Sidiya Mbodj
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Allison Nelson
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Albert C. Shaw
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel M. Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Wyllie AL, Mbodj S, Thammavongsa DA, Hislop MS, Yolda-Carr D, Waghela P, Nakahata M, Stahlfeld AE, Vega NJ, York A, Allicock OM, Wilkins G, Ouyang A, Siqueiros L, Strong Y, Anastasio K, Alexander-Parrish R, Arguedas A, Gessner BD, Weinberger DM. Persistence of Pneumococcal Carriage among Older Adults in the Community despite COVID-19 Mitigation Measures. Microbiol Spectr 2023; 11:e0487922. [PMID: 37036377 PMCID: PMC10269788 DOI: 10.1128/spectrum.04879-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
Reported rates of invasive pneumococcal disease were markedly lower than normal during the 2020/2021 winter in the Northern Hemisphere, the first year after the start of the COVID-19 pandemic. However, little is known about rates of carriage of pneumococcus among adults during this period. Between October 2020-August 2021, couples in the Greater New Haven Area, USA, were enrolled if both individuals were aged 60 years and above and did not have any individuals under the age of 60 years living in the household. Saliva samples and questionnaires regarding social activities and contacts and medical history were obtained every 2 weeks for a period of 10 weeks. Following culture-enrichment, extracted DNA was tested using qPCR for pneumococcus-specific sequences piaB and lytA. Individuals were considered positive for pneumococcal carriage when Ct values for piaB were ≤40. Results. We collected 567 saliva samples from 95 individuals (47 household pairs and 1 singleton). Of those, 7.1% of samples tested positive for pneumococcus, representing 22/95 (23.2%) individuals and 16/48 (33.3%) households. Study participants attended few social events during this period. However, many participants continued to have regular contact with children. Individuals who had regular contact with preschool and school-aged children (i.e., 2 to 9 year olds) had a higher prevalence of carriage (15.9% versus 5.4%). Despite COVID-19-related disruptions, a large proportion of older adults continued to carry pneumococcus. Prevalence was particularly high among those who had contact with school-aged children, but carriage was not limited to this group. IMPORTANCE Carriage of Streptococcus pneumoniae (pneumococcus) in the upper respiratory tract is considered a prerequisite to invasive pneumococcal disease. During the first year of the COVID-19 pandemic, markedly lower rates of invasive pneumococcal disease were reported worldwide. Despite this, by testing saliva samples with PCR, we found that older adults continued to carry pneumococcus at pre-pandemic levels. Importantly, this study was conducted during a period when transmission mitigation measures related to the COVID-19 pandemic were in place. However, our observations are in line with reports from Israel and Belgium where carriage was also found to persist in children. In line with this, we observed that carriage prevalence was particularly high among the older adults in our study who maintained contact with school-aged children.
Collapse
Affiliation(s)
- Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Sidiya Mbodj
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Darani A. Thammavongsa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Maikel S. Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Devyn Yolda-Carr
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Pari Waghela
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Maura Nakahata
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne E. Stahlfeld
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Noel J. Vega
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anna York
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Orchid M. Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Geisa Wilkins
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Andrea Ouyang
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Laura Siqueiros
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Yvette Strong
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Kelly Anastasio
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | | | - Adriano Arguedas
- Medical and Scientific Affairs, Pfizer Inc, Collegeville, Pennsylvania, USA
| | | | - Daniel M. Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Dunne EM, Nunes MC, Slack MPE, Theilacker C, Gessner BD. Effects of pneumococcal conjugate vaccines on reducing the risk of respiratory disease associated with coronavirus infection. Pneumonia (Nathan) 2023; 15:10. [PMID: 37226198 DOI: 10.1186/s41479-023-00112-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/30/2023] [Indexed: 05/26/2023] Open
Abstract
Pneumococcal conjugate vaccines (PCVs) provide protection against vaccine-type pneumococcal disease in both children and adults. Growing evidence suggests that PCVs also reduce pneumonia and lower respiratory tract infections (LRTIs) more broadly, including protecting against viral-associated respiratory diseases. In this short narrative review, we highlight clinical studies investigating whether PCVs might have a role in reducing coronavirus disease, both those caused by endemic human coronaviruses (HCoVs) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). These studies include two randomized controlled trials assessing HCoV-associated pneumonia, one each in children and older adults, and two observational studies of PCV13 effectiveness against HCoV-associated LRTI and COVID-19 in adults. We discuss possible mechanisms for PCV protection including preventing viral pneumococcal co-infections and the possibility that pneumococci in the upper respiratory tract might modify the host immune response to SARS-CoV-2. Lastly, we identify knowledge gaps and further questions on the potential role of PCVs during the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Marta C Nunes
- Center of Excellence in Respiratory Pathogens, Hospices Civils de Lyon and Centre International de Recherche en Infectiologie (CIRI) Inserm U1111, CNRS UMR5308, ENS de Lyon, Université Claude Bernard, Lyon 1, Lyon, France
- South African Medical Research Council, Vaccines & Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary P E Slack
- School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | | |
Collapse
|
17
|
Teixeira R, Kossyvaki V, Galvez P, Méndez C. Pneumococcal Serotype Evolution and Burden in European Adults in the Last Decade: A Systematic Review. Microorganisms 2023; 11:1376. [PMID: 37374878 DOI: 10.3390/microorganisms11061376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Pneumococcal disease is a major cause of morbidity/mortality worldwide, and vaccination is an important measure in its prevention. Despite European children being vaccinated with pneumococcal conjugate vaccines (PCVs), pneumococcal infections are still a major cause of morbidity/mortality in adults with risk conditions and their vaccination might be an important prevention strategy. New PCVs have been approved, but information is lacking on their potential impact in European adults. In our review, we searched PubMed, MEDLINE, and Embase for studies on the additional PCV20 serotypes (concerning incidence, prevalence, disease severity, lethality, and antimicrobial resistance) in European adults, between January 2010 and April 2022, having included 118 articles and data from 33 countries. We found that these serotypes have become more prevalent in both invasive and non-invasive pneumococcal disease (IPD and NIPD), representing a significant proportion of cases (serotypes 8, 12F, 22F) and more serious disease and/or lethality (10A, 11A, 15B, 22F), showing antimicrobial resistance (11A, 15B, 33F), and/or affecting more vulnerable individuals such as the elderly, immunocompromised patients, and those with comorbidities (8, 10A, 11A, 15B, 22F). The relevance of pneumococcal adult carriers (11A, 15B, 22F, and 8) was also identified. Altogether, our data showed an increase in the additional PCV20 serotypes' prevalence, accounting for a proportion of approximately 60% of all pneumococcal isolates in IPD in European adults since 2018/2019. Data suggest that adults, as older and/or more vulnerable patients, would benefit from vaccination with higher-coverage PCVs, and that PCV20 may address an unmet medical need.
Collapse
Affiliation(s)
- Rita Teixeira
- Vaccines and Antivirals Department, Pfizer Portugal, 1300-477 Lisbon, Portugal
| | | | - Paulina Galvez
- Vaccines and Antivirals Department, Pfizer Spain, 28108 Madrid, Spain
| | - Cristina Méndez
- Vaccines and Antivirals Department, Pfizer Spain, 28108 Madrid, Spain
| |
Collapse
|
18
|
Miellet WR, Almeida ST, Trzciński K, Sá-Leão R. Streptococcus pneumoniae carriage studies in adults: Importance, challenges, and key issues to consider when using quantitative PCR-based approaches. Front Microbiol 2023; 14:1122276. [PMID: 36910231 PMCID: PMC9994646 DOI: 10.3389/fmicb.2023.1122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Streptococcus pneumoniae causes significant morbidity and mortality among older adults. Detection of pneumococcal carriage is an accepted endpoint in pneumococcal conjugate vaccine studies. However, low sensitivity of culture-based approaches and nasopharyngeal samples have hampered adult S. pneumoniae carriage studies in the past. In contrast, detection of adult S. pneumoniae carriers with qPCR-based approaches can achieve high sensitivity and specificity and qPCR-based testing of oral samples improves accuracy of adult carriage detection. In this Viewpoint we outline a strategy for accurate qPCR-based testing. We recommend a dual-target approach for S. pneumoniae qPCR detection as no genetic target is universally present among or solely unique to it. Furthermore, we advise the evaluation of concordance among quantified qPCR targets to improve the accuracy of S. pneumoniae testing and qPCR-based serotyping. We do not recommend omission of qPCR-based oral sample testing as it will likely result in an underestimation of true adult carrier rates.
Collapse
Affiliation(s)
- Willem R Miellet
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sónia T Almeida
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
19
|
Miellet WR, van Veldhuizen J, Litt D, Mariman R, Wijmenga-Monsuur AJ, Nieuwenhuijsen T, Christopher J, Thombre R, Eletu S, Bosch T, Rots NY, van Houten MA, Miller E, Fry NK, Sanders EAM, Trzciński K. A spitting image: molecular diagnostics applied to saliva enhance detection of Streptococcus pneumoniae and pneumococcal serotype carriage. Front Microbiol 2023; 14:1156695. [PMID: 37138599 PMCID: PMC10149683 DOI: 10.3389/fmicb.2023.1156695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Background Despite strong historical records on the accuracy of saliva testing, oral fluids are considered poorly suited for pneumococcal carriage detection. We evaluated an approach for carriage surveillance and vaccine studies that increases the sensitivity and specificity of pneumococcus and pneumococcal serotype detection in saliva samples. Methods Quantitative PCR (qPCR)-based methods were applied to detect pneumococcus and pneumococcal serotypes in 971 saliva samples collected from 653 toddlers and 318 adults. Results were compared with culture-based and qPCR-based detection in nasopharyngeal samples collected from children and in nasopharyngeal and oropharyngeal samples collected from adults. Optimal C q cut-offs for positivity in qPCRs were determined via receiver operating characteristic curve analysis and accuracy of different approaches was assessed using a composite reference for pneumococcal and for serotype carriage based on isolation of live pneumococcus from the person or positivity of saliva samples determined with qPCR. To evaluate the inter-laboratory reproducibility of the method, 229 culture-enriched samples were tested independently in the second center. Results In total, 51.5% of saliva samples from children and 31.8% of saliva samples from adults were positive for pneumococcus. Detection of pneumococcus by qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to diagnostic culture of nasopharyngeal samples in children (Cohen's κ: 0.69-0.79 vs. 0.61-0.73) and in adults (κ: 0.84-0.95 vs. 0.04-0.33) and culture of oropharyngeal samples in adults (κ: 0.84-0.95 vs. -0.12-0.19). Similarly, detection of serotypes with qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to nasopharyngeal culture in children (κ: 0.73-0.82 vs. 0.61-0.73) and adults (κ: 0.90-0.96 vs. 0.00-0.30) and oropharyngeal culture in adults (κ: 0.90-0.96 vs. -0.13 to 0.30). However, results of qPCRs targeting serotype 4, 5, and 17F and serogroups 9, 12, and 35 were excluded due to assays' lack of specificity. We observed excellent quantitative agreement for qPCR-based detection of pneumococcus between laboratories. After exclusion of serotype/serogroup-specific assays with insufficient specificity, moderate agreement (κ 0.68, 95% CI 0.58-0.77) was observed. Conclusion Molecular testing of culture-enriched saliva samples improves the sensitivity of overall surveillance of pneumococcal carriage in children and adults, but limitations of qPCR-based approaches for pneumococcal serotypes carriage detection should be considered.
Collapse
Affiliation(s)
- Willem R. Miellet
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Willem R. Miellet,
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Rob Mariman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alienke J. Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Tessa Nieuwenhuijsen
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jennifer Christopher
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Rebecca Thombre
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Seyi Eletu
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Elizabeth Miller
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Norman K. Fry
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
- Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, United Kingdom
| | - Elisabeth A. M. Sanders
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Krzysztof Trzciński,
| |
Collapse
|
20
|
Pneumococcal carriage in adults aged 50 years and older in outpatient health care facility during pandemic COVID-19 in Novi Sad, Serbia. PLoS One 2022; 17:e0274674. [PMID: 36223392 PMCID: PMC9555667 DOI: 10.1371/journal.pone.0274674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022] Open
Abstract
Background Data related to carriage of Streptococcus pneumoniae (Spn) and antimicrobial resistance patterns in middle-aged and older adults are limited. We assessed the carriage of Spn, and its antibiotic resistance patterns, among participants ≥50 years of age living in the city of Novi Sad during the second year of COVID-19 pandemic. Methods Analysis of prospectively collected data among participants with or without symptoms of upper respiratory tract infection who visited their elected physicians in the Primary Health Care Centre of Novi Sad (outpatient facility) was conducted from May 18, 2021 to December 7, 2021. Both nasopharyngeal (NP) and oropharyngeal (OP) samples from each participant were collected. Results A total of 1042 samples from 521 study subjects (1 NP and 1 OP sample from each person) were collected. Sixteen samples from the same number of persons (3.1%, 95% confidence interval: 1.76%-4.94%) were culture positive for the presence of Spn. Overall, the median age of study participants was 71 years (range, 50–93 years; 90th percentile, 77 years), and most (197/521, 37.8%) of them were 70–79 years of age. A majority of the study subjects were: females (324/521; 62.2%), sampled during May and June 2021 (376/521, 72.2%), those who did not have contact with children aged 0–10 years in the family (403/521; 77.4%), without smokers in the household (443/521; 85.0%), and those who did not receive vaccine against Spn (519/521; 99.6%). Out of 16 Spn positive samples, for six participants, Spn carriage serotypes were obtained and there were four vaccine (6A, 11A, 15B, and 18C) serotypes, and two (6C and 35F) non-vaccine serotypes. Remaining 10 (62.50%) samples were non-typeable isolates of pneumococci. Among four vaccine serotypes, two (6A and 18C) were represented in PCV13, and 18C along with the other two (11A and 15B) in PPSV23 vaccine. The highest level of resistance of Spn isolates was observed for erythromycin, (10 or 62.50%), and tetracycline, (7 or 43.75%), one isolate showed resistance to penicillin, ampicillin, and amoxicillin/amoxicillin-clavulanic acid, while none of them were resistant to ceftriaxone, trimethoprim/sulfamethoxazole and levofloxacin. There were three multi-drug resistant isolates; one was identified as 6C (non-vaccine serotype), and two other were non-typeable isolates of Spn. Conclusions In this first study conducted in Serbia on Spn carriage in adults ≥50 years of age, we found low prevalence of Spn carriage and identified 6 serotypes of Spn, four of which were represented in vaccines. These results may support future Spn colonization studies among middle-aged and older adults.
Collapse
|
21
|
Parker AM, Jackson N, Awasthi S, Kim H, Alwan T, Wyllie AL, Baldwin AB, Brennick NB, Moehle EA, Giannikopoulos P, Kogut K, Holland N, Mora-Wyrobek A, Eskenazi B, Riley LW, Lewnard JA. Association of upper respiratory Streptococcus pneumoniae colonization with SARS-CoV-2 infection among adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.04.22280709. [PMID: 36238718 PMCID: PMC9558443 DOI: 10.1101/2022.10.04.22280709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Background Streptococcus pneumoniae interacts with numerous viral respiratory pathogens in the upper airway. It is unclear whether similar interactions occur with SARS-CoV-2. Methods We collected saliva specimens from working-age adults receiving SARS-CoV-2 molecular testing at outpatient clinics and via mobile community-outreach testing between July and November 2020 in Monterey County, California. Following bacterial culture enrichment, we tested for pneumococci by quantitative polymerase chain reaction (qPCR) targeting the lytA and piaB genes, and measured associations with SARS-CoV-2 infection via conditional logistic regression. Results Analyses included 1,278 participants, with 564 enrolled in clinics and 714 enrolled through outreach-based testing. Prevalence of pneumococcal carriage was 9.2% (117/1,278) among all participants (11.2% [63/564] clinic-based testing; 7.6% [54/714] outreach testing). Prevalence of SARS-CoV-2 infection was 27.4% (32/117) among pneumococcal carriers and 9.6% (112/1,161) among non-carriers (adjusted odds ratio [aOR]: 2.73; 95% confidence interval: 1.58-4.69). Associations between SARS-CoV-2 infection and pneumococcal carriage were enhanced in the clinic-based sample (aOR=4.01 [2.08-7.75]) and among symptomatic participants (aOR=3.38 [1.35-8.40]), when compared to findings within the outreach-based sample and among asymptomatic participants. Adjusted odds of SARS-CoV-2 co-infection increased 1.24 (1.00-1.55)-fold for each 1-unit decrease in piaB qPCR C T value among pneumococcal carriers. Last, pneumococcal carriage modified the association of SARS-CoV-2 infection with recent exposure to a suspected COVID-19 case (aOR=7.64 [1.91-30.7] and 3.29 [1.94-5.59]) among pneumococcal carriers and non-carriers, respectively). Conclusions Associations of pneumococcal carriage detection and density with SARS-CoV-2 suggest a synergistic relationship in the upper airway. Longitudinal studies are needed to determine interaction mechanisms between pneumococci and SARS-CoV-2. Key points In an adult ambulatory and community sample, SARS-CoV-2 infection was more prevalent among pneumococcal carriers than non-carriers.Associations between pneumococcal carriage and SARS-CoV-2 infection were strongest among adults reporting acute symptoms and receiving SARS-CoV-2 testing in a clinical setting.
Collapse
|
22
|
Turner P, Sá-Leão R, Greenhill A, Leach A, Satzke C. World Health Organization (WHO) Standard Methods for Pneumococcal Carriage Studies. Clin Infect Dis 2022; 75:924-925. [PMID: 35314867 PMCID: PMC9477444 DOI: 10.1093/cid/ciac221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Raquel Sá-Leão
- Molecular Microbiology of Human Pathogens Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Andrew Greenhill
- Life Sciences, School of Science, Psychology and Sport, Federation University, Churchill, Australia
| | - Amanda Leach
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Catherine Satzke
- Translational Microbiology Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Diniz MO, Mitsi E, Swadling L, Rylance J, Johnson M, Goldblatt D, Ferreira D, Maini MK. Airway-resident T cells from unexposed individuals cross-recognize SARS-CoV-2. Nat Immunol 2022; 23:1324-1329. [PMID: 36038709 PMCID: PMC9477726 DOI: 10.1038/s41590-022-01292-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
T cells can contribute to clearance of respiratory viruses that cause acute-resolving infections such as SARS-CoV-2, helping to provide long-lived protection against disease. Recent studies have suggested an additional role for T cells in resisting overt infection: pre-existing cross-reactive responses were preferentially enriched in healthcare workers who had abortive infections1, and in household contacts protected from infection2. We hypothesize that such early viral control would require pre-existing cross-reactive memory T cells already resident at the site of infection; such airway-resident responses have been shown to be critical for mediating protection after intranasal vaccination in a murine model of SARS-CoV3. Bronchoalveolar lavage samples from the lower respiratory tract of healthy donors obtained before the COVID-19 pandemic revealed airway-resident, SARS-CoV-2-cross-reactive T cells, which correlated with the strength of human seasonal coronavirus immunity. We therefore demonstrate the potential to harness functional airway-resident SARS-CoV-2-reactive T cells in next-generation mucosal vaccines.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Elena Mitsi
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leo Swadling
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Jamie Rylance
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Daniela Ferreira
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK.
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK.
| |
Collapse
|
24
|
Liatsikos K, Hyder-Wright A, Pojar S, Chen T, Wang D, Davies K, Myerscough C, Reine J, Robinson RE, Urban B, Mitsi E, Solorzano C, Gordon SB, Quinn A, Pan K, Anderson AS, Theilacker C, Begier E, Gessner BD, Collins A, Ferreira DM. Protocol for a phase IV double-blind randomised controlled trial to investigate the effect of the 13-valent pneumococcal conjugate vaccine and the 23-valent pneumococcal polysaccharide vaccine on pneumococcal colonisation using the experimental human pneumococcal challenge model in healthy adults (PREVENTING PNEUMO 2). BMJ Open 2022; 12:e062109. [PMID: 35798520 PMCID: PMC9263934 DOI: 10.1136/bmjopen-2022-062109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/30/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Despite widely available vaccinations, Streptococcus pneumoniae (SPN) remains a major cause of morbidity and mortality worldwide, causing community-acquired pneumonia, meningitis, otitis media, sinusitis and bacteraemia. Here, we summarise an ethically approved protocol for a double-blind, randomised controlled trial investigating the effect of the 13-valent pneumococcal conjugate vaccine (PCV13) and the 23-valent pneumococcal polysaccharide vaccine (PPV23) on pneumococcal nasopharyngeal colonisation acquisition, density and duration using experimental human pneumococcal challenge (EHPC). METHODS AND ANALYSIS Healthy adult participants aged 18-50 years will be randomised to receive PCV13, PPV23 or placebo and then undergo one or two EHPCs involving intranasal administration of SPN at 1-month post-vaccination with serotype 3 (SPN3) and 6 months with serotype 6B (SPN6B). Participants randomised to PCV13 and placebo will also be randomised to one of two clinically relevant SPN3 strains from distinct lineages within clonal complex 180, clades Ia and II, creating five study groups. Following inoculation, participants will be seen on days 2, 7, 14 and 23. During the follow-up period, we will monitor safety, colonisation status, density and duration, immune responses and antigenuria. The primary outcome of the study is comparing the rate of SPN3 acquisition between the vaccinated (PCV13 or PPV23) and unvaccinated (placebo) groups as defined by classical culture. Density and duration of colonisation, comparison of acquisition rates using molecular methods and evaluation of the above measurements for individual SPN3 clades and SPN6B form the secondary objectives. Furthermore, we will explore the immune responses associated with these vaccines, their effect on colonisation and the relationship between colonisation and urinary pneumococcal antigen detection. ETHICS AND DISSEMINATION The study is approved by the NHS Research and Ethics Committee (Reference: 20/NW/0097) and by the Medicines and Healthcare products Regulatory Agency (Reference: CTA 25753/0001/001-0001). Findings will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ISRCTN15728847, NCT04974294.
Collapse
Affiliation(s)
| | - Angela Hyder-Wright
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Respiratory Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Sherin Pojar
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tao Chen
- Global Health Trials Unit, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Duolao Wang
- Global Health Trials Unit, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kelly Davies
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Jesus Reine
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ryan E Robinson
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Respiratory Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Britta Urban
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elena Mitsi
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solorzano
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen B Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Liverpool School of Tropical Medicine, Blantyre, Malawi
| | - Angela Quinn
- Pfizer Vaccines, Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Kaijie Pan
- Pfizer Vaccines, Pfizer Inc, Collegeville, Pennsylvania, USA
| | | | | | | | | | - Andrea Collins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Respiratory Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | | |
Collapse
|
25
|
Steurer LM, Hetzmannseder M, Willinger B, Starzengruber P, Mikula-Pratschke C, Kormann-Klement A, Weber M, Berger A, Grill A. Streptococcus pneumoniae colonization in health care professionals at a tertiary university pediatric hospital. Eur J Clin Microbiol Infect Dis 2022; 41:971-976. [PMID: 35469365 PMCID: PMC9135860 DOI: 10.1007/s10096-022-04446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae is a commensal of the human upper respiratory tract. In certain cases, it can lead to serious invasive infections peaking in very young children and the elderly. Especially young children are frequent carriers and are thus regarded as the reservoir for horizontal transmission of pneumococci. This is the first study evaluating pneumococcal colonization patterns in healthcare professionals working in a tertiary care pediatric hospital, including carriage prevalence, serotype distribution, and risk factors for carriage. One oropharyngeal and one nasal swab per individual were directly plated onto appropriate agar plates and conventional culture was used for bacterial identification. Pneumococcal isolates underwent serotyping using Neufeld's Quellung reaction with type-specific antisera. Additional nasal and oropharyngeal swabs were taken for qPCR analysis targeting lytA. In total, 437 individuals were enrolled. S. pneumoniae was isolated in 4.8% (21/437) of the study cohort using conventional culture and in 20.1% (88/437) of subjects using qPCR. Independent risk factors for pneumococcal carriage were living in the same household with children under 8 years of age and being aged 36-45 years with a carriage prevalence reaching 11.6% (vs. 2.9%, p = 0.002) and 6.7% (vs. 4.3%, p = 0.029), respectively. The most common serotypes were 6C and 3. A total of 71.4% (15/21) of the detected serotypes are not included in any currently available pneumococcal vaccine; 28.6% (6/21) of the carried serotypes are included in the PCV13 vaccine. We found a relevant amount of pneumococcal carriage bearing the potential risk of horizontal in-hospital transmission.
Collapse
Affiliation(s)
- Lisa-Maria Steurer
- Comprehensive Center for Pediatrics, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währingergürtel 18-20, Vienna, 1090, Austria.
| | - Mathias Hetzmannseder
- Comprehensive Center for Pediatrics, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währingergürtel 18-20, Vienna, 1090, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Starzengruber
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Claudia Mikula-Pratschke
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Andrea Kormann-Klement
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Comprehensive Center for Pediatrics, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währingergürtel 18-20, Vienna, 1090, Austria
| | - Agnes Grill
- Comprehensive Center for Pediatrics, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währingergürtel 18-20, Vienna, 1090, Austria
| |
Collapse
|
26
|
Chaguza C, Yang M, Jacques LC, Bentley SD, Kadioglu A. Serotype 1 pneumococcus: epidemiology, genomics, and disease mechanisms. Trends Microbiol 2022; 30:581-592. [PMID: 34949516 PMCID: PMC7613904 DOI: 10.1016/j.tim.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae (the 'pneumococcus') is a significant cause of morbidity and mortality worldwide, causing life-threatening diseases such as pneumonia, bacteraemia, and meningitis, with an annual death burden of over one million. Discovered over a century ago, pneumococcal serotype 1 (S1) is a significant cause of these life-threatening diseases. Our understanding of the epidemiology and biology of pneumococcal S1 has significantly improved over the past two decades, informing the development of preventative and surveillance strategies. However, many questions remain unanswered. Here, we review the current state of knowledge of pneumococcal S1, with a special emphasis on clinical epidemiology, genomics, and disease mechanisms.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Darwin College, University of Cambridge, Silver Street, Cambridge, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK; NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, UK.
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK
| | - Laura C Jacques
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK.
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK; Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK
| |
Collapse
|
27
|
Evidence for the intermediate disturbance hypothesis and exponential decay in replacement in Streptococcus pneumoniae following use of conjugate vaccines. Sci Rep 2022; 12:7510. [PMID: 35525872 PMCID: PMC9079081 DOI: 10.1038/s41598-022-11279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
Understanding how pneumococci respond to pneumococcal conjugate vaccines (PCVs) is crucial to predict the impact of upcoming higher-valency vaccines. However, stages in pneumococcal community succession following disturbance are poorly understood as long-time series on carriage are scarce and mostly evaluated at end-point measurements. We used a 20-year cross-sectional dataset of pneumococci carried by Portuguese children, and methods from community ecology, to study community assembly and diversity following use of PCV7 and PCV13. Two successional stages were detected upon introduction of each PCV: one in which non-vaccine serotypes increased in abundance, fitted by a broken-stick model, and a second in which the community returned to the original structure, fitted by a geometric series, but with different serotype profile and a drop in richness as great as 24%. A peak in diversity was observed for levels of intermediate vaccine uptake (30–40%) in agreement with the intermediate disturbance hypothesis. Serotype replacement was fitted by an exponential decay model (R2 = 80%, P < 0.001). The half-life for replacement was 8 years for PCV7 and 10 years for PCV13. The structure of the pneumococcal community is resilient to vaccine pressure. The increasing loss of diversity, however, suggests it could eventually reach a threshold beyond which it may no longer recover.
Collapse
|
28
|
Miellet WR, van Veldhuizen J, Litt D, Mariman R, Wijmenga-Monsuur AJ, Badoux P, Nieuwenhuijsen T, Thombre R, Mayet S, Eletu S, Sheppard C, van Houten MA, Rots NY, Miller E, Fry NK, Sanders EAM, Trzciński K. It Takes Two to Tango: Combining Conventional Culture With Molecular Diagnostics Enhances Accuracy of Streptococcus pneumoniae Detection and Pneumococcal Serogroup/Serotype Determination in Carriage. Front Microbiol 2022; 13:859736. [PMID: 35509314 PMCID: PMC9060910 DOI: 10.3389/fmicb.2022.859736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background The specificity of molecular methods for the detection of Streptococcus pneumoniae carriage is under debate. We propose a procedure for carriage surveillance and vaccine impact studies that increases the accuracy of molecular detection of live pneumococci in polymicrobial respiratory samples. Methods Culture and qPCR methods were applied to detect pneumococcus and pneumococcal serotypes in 1,549 nasopharyngeal samples collected in the Netherlands (n = 972) and England (n = 577) from 946 toddlers and 603 adults, and in paired oropharyngeal samples collected exclusively from 319 Dutch adults. Samples with no live pneumococci isolated at primary diagnostic culture yet generating signal specific for pneumococcus in qPCRs were re-examined with a second, qPCR-guided culture. Optimal Cq cut-offs for positivity in qPCRs were determined via receiver operating characteristic (ROC) curve analysis using isolation of live pneumococci from the primary and qPCR-guided cultures as reference. Results Detection of pneumococcus and pneumococcal serotypes with qPCRs in cultured (culture-enriched) nasopharyngeal samples exhibited near-perfect agreement with conventional culture (Cohen's kappa: 0.95). Molecular methods displayed increased sensitivity of detection for multiple serotype carriage, and implementation of qPCR-guided culturing significantly increased the proportion of nasopharyngeal and oropharyngeal samples from which live pneumococcus was recovered (p < 0.0001). For paired nasopharyngeal and oropharyngeal samples from adults none of the methods applied to a single sample type exhibited good agreement with results for primary and qPCR-guided nasopharyngeal and oropharyngeal cultures combined (Cohens kappa; 0.13-0.55). However, molecular detection of pneumococcus displayed increased sensitivity with culture-enriched oropharyngeal samples when compared with either nasopharyngeal or oropharyngeal primary cultures (p < 0.05). Conclusion The accuracy of pneumococcal carriage surveillance can be greatly improved by complementing conventional culture with qPCR and vice versa, by using results of conventional and qPCR-guided cultures to interpret qPCR data. The specificity of molecular methods for the detection of live pneumococci can be enhanced by incorporating statistical procedures based on ROC curve analysis. The procedure we propose for future carriage surveillance and vaccine impact studies improves detection of pneumococcal carriage in adults in particular and enhances the specificity of serotype carriage detection.
Collapse
Affiliation(s)
- Willem R. Miellet
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - David Litt
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
| | - Rob Mariman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alienke J. Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Paul Badoux
- Regional Laboratory of Public Health (Streeklab) Haarlem, Haarlem, Netherlands
| | - Tessa Nieuwenhuijsen
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - Rebecca Thombre
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
| | - Sanaa Mayet
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
| | - Seyi Eletu
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
| | - Carmen Sheppard
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
| | | | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Elizabeth Miller
- Immunisation and Countermeasures Division, Public Health England (PHE) – National Infection Service, London, United Kingdom
| | - Norman K. Fry
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU), Public Health England – National Infection Service, London, United Kingdom
- Immunisation and Countermeasures Division, Public Health England (PHE) – National Infection Service, London, United Kingdom
| | - Elisabeth A. M. Sanders
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| |
Collapse
|
29
|
Induction of Susceptibility to Disseminated Infection with IgA1 Protease-Producing Encapsulated Pathogens Streptococcus pneumoniae, Haemophilus influenzae Type b, and Neisseria meningitidis. mBio 2022; 13:e0055022. [PMID: 35420467 PMCID: PMC9239265 DOI: 10.1128/mbio.00550-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the principal causes of bacterial meningitis. It is unexplained why only occasional individuals develop invasive infection, while the vast majority remain healthy and develop immunity when encountering these pathogens. A capsular polysaccharide and an IgA1 protease are common to these pathogens. We tested the hypothesis that patients are primed to susceptibility to invasive infection by other bacteria that express the same capsular polysaccharide but no IgA1 protease. Thereby, the subsequently colonizing pathogen may protect its surface with IgA1 protease-generated Fab fragments of IgA1 devoid of Fc-mediated effector functions. Military recruits who remained healthy when acquiring meningococci showed a significant response of inhibitory antibodies against the IgA1 protease of the colonizing clone concurrent with serum antibodies against its capsular polysaccharide. At hospitalization, 70.8% of meningitis patients carried fecal bacteria cross-reactive with the capsule of the actual pathogen, in contrast to 6% of controls (P < 0.0001). These were Escherichia coli K100, K1, and K92 in patients with infection caused by H. influenzae type b and N. meningitidis groups B and C, respectively. This concurred with a significant IgA1 response to the capsule but not to the IgA1 protease of the pathogen. The demonstrated multitude of relationships between capsular types and distinct IgA1 proteases in pneumococci suggests an alternative route of immunological priming associated with recombining bacteria. The findings support the model and offer an explanation for the rare occurrence of invasive diseases in spite of the comprehensive occurrence of the pathogens.
Collapse
|
30
|
Moreno-García E, Puerta-Alcalde P, Letona L, Meira F, Dueñas G, Chumbita M, Garcia-Pouton N, Monzó P, Lopera C, Serra L, Cardozo C, Hernandez-Meneses M, Rico V, Bodro M, Morata L, Fernandez-Pittol M, Grafia I, Castro P, Mensa J, Martínez JA, Sanjuan G, Marcos MA, Soriano A, Garcia-Vidal C. Bacterial co-infection at hospital admission in patients with COVID-19. Int J Infect Dis 2022; 118:197-202. [PMID: 35257905 PMCID: PMC8896874 DOI: 10.1016/j.ijid.2022.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives We described the current incidence and risk factors of bacterial co-infection in hospitalized patients with COVID-19. Methods Observational cohort study was performed at the Hospital Clinic of Barcelona (February 2020–February 2021). All patients with COVID-19 who were admitted for >48 hours with microbiological sample collection and procalcitonin (PCT) determination within the first 48 hours were included. Results A total of 1125 consecutive adults met inclusion criteria. Co-infections were microbiologically documented in 102 (9.1%) patients. Most frequent microorganisms were Streptococcus pneumoniae (79%), Staphylococcus aureus (6.8%), and Haemophilus influenzae (6.8%). Test positivity was 1% (8/803) for blood cultures, 10.1% (79/780) for pneumococcal urinary antigen test, and 11.4% (15/132) for sputum culture. Patients with PCT higher than 0.2, 0.5, 1, and 2 ng/mL had significantly more co-infections than those with lower levels (p=0.017, p=0.031, p<0.001, and p<0.001, respectively). In multivariate analysis, oxygen saturation ≤94% (OR 2.47, CI 1.57–3.86), ferritin levels <338 ng/mL (OR 2.63, CI 1.69–4.07), and PCT higher than 0.2 ng/mL (OR 1.74, CI 1.11–2.72) were independent risk factors for co-infection at hospital admission owing to COVID-19. Conclusions Bacterial co-infection in patients hospitalized for COVID-19 is relatively common. However, clinicians could spare antibiotics in patients with PCT values <0.2, especially with high ferritin values and oxygen saturation >94%.
Collapse
Affiliation(s)
- Estela Moreno-García
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Puerta-Alcalde
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain.
| | - Laura Letona
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Fernanda Meira
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Gerard Dueñas
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Mariana Chumbita
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Nicole Garcia-Pouton
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Patricia Monzó
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Lopera
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Laia Serra
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Celia Cardozo
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Marta Hernandez-Meneses
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Verónica Rico
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Marta Bodro
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Laura Morata
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | | | - Ignacio Grafia
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Castro
- Medical Intensive Care Unit, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Josep Mensa
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - José Antonio Martínez
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Sanjuan
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Mª Angeles Marcos
- Microbiology Department, Hospital Clinic, University of Barcelona, ISGLOBAL, Barcelona, Spain
| | - Alex Soriano
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Carolina Garcia-Vidal
- Infectious Diseases Department, Hospital Clinic of Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain; Microbiology Department, Hospital Clinic, University of Barcelona, ISGLOBAL, Barcelona, Spain.; Medical Intensive Care Unit, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain..
| |
Collapse
|
31
|
Abstract
Severe pneumonia is associated with high mortality (short and long term), as well as pulmonary and extrapulmonary complications. Appropriate diagnosis and early initiation of adequate antimicrobial treatment for severe pneumonia are crucial in improving survival among critically ill patients. Identifying the underlying causative pathogen is also critical for antimicrobial stewardship. However, establishing an etiological diagnosis is challenging in most patients, especially in those with chronic underlying disease; those who received previous antibiotic treatment; and those treated with mechanical ventilation. Furthermore, as antimicrobial therapy must be empiric, national and international guidelines recommend initial antimicrobial treatment according to the location's epidemiology; for patients admitted to the intensive care unit, specific recommendations on disease management are available. Adherence to pneumonia guidelines is associated with better outcomes in severe pneumonia. Yet, the continuing and necessary research on severe pneumonia is expansive, inviting different perspectives on host immunological responses, assessment of illness severity, microbial causes, risk factors for multidrug resistant pathogens, diagnostic tests, and therapeutic options.
Collapse
Affiliation(s)
- Catia Cillóniz
- Department of pneumology, Hospital Clinic of Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centers in Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Antoni Torres
- Department of pneumology, Hospital Clinic of Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centers in Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Michael S Niederman
- Weill Cornell Medical College, Department of Pulmonary Critical Care Medicine, New York, NY, USA
| |
Collapse
|
32
|
Absence of methicillin-resistant Staphylococcus aureus colonization among immunocompetent healthy adults: Insights from a longitudinal study. PLoS One 2021; 16:e0253739. [PMID: 34191834 PMCID: PMC8244897 DOI: 10.1371/journal.pone.0253739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/12/2021] [Indexed: 11/29/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has long been known as a major cause of hospital-acquired (HA-MRSA) infections worldwide. For the past twenty years, an increasing number of studies have described its emergence in the community as well. In Portugal, a country with a high-prevalence of HA-MRSA, there are only limited data available on the epidemiology of MRSA in the community. We studied the prevalence of S. aureus and MRSA colonization among healthy adults in Portugal. Between February 2015 and December 2016, a longitudinal study was conducted in which 87 adults aged 25–50 years old were followed for six months. For each participant nasopharyngeal, oropharyngeal and saliva samples were obtained monthly and, in some cases, weekly. A total of 1,578 samples (n = 526 for each sampling site) were examined for the presence of S. aureus and MRSA by classical culture-based methods. Fifty-seven adults (65.5%) carried S. aureus at least once during the six months period of the study: 19.5% were persistent S. aureus carriers and 46.0% were intermittent carriers. Carriage rates per sampling site were 20.5% in nasopharynx, 18.3% in oropharynx, and 13.5% in saliva. Simultaneous screening of the three sampling sites increased detection of S. aureus, which overall occurred in 34.4% of the 526 sampling time-points. No MRSA were isolated. In conclusion, this study adds novel information about the MRSA scenario in the Portuguese community. Our results indicate that, in Portugal, MRSA does not seem to circulate among healthy adults without risk factors and therefore this age group does not constitute, at the current time, a reservoir of MRSA in the community.
Collapse
|