1
|
Mohammadzadeh N, Razavi S, Shahriari M, Ebrahimipour G. Impact of bariatric surgery on gut microbiota in obese patients: A systematic review. Indian J Gastroenterol 2025:10.1007/s12664-025-01763-x. [PMID: 40220249 DOI: 10.1007/s12664-025-01763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/25/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Obesity is a multi-factorial disease linked to various metabolic disorders, including insulin resistance, type-2 diabetes (T2D) and cardiovascular diseases. Traditional treatments often show limited long-term success, while bariatric surgery has emerged as the most effective intervention for sustained weight loss and comorbidity improvement. Alterations in gut microbiota may significantly contribute to these metabolic improvements. OBJECTIVE This systematic review was aimed at evaluating changes in gut microbiota composition before and after bariatric surgery and their association with clinical outcomes, including weight loss, insulin sensitivity and lipid metabolism. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a comprehensive search of PubMed, Scopus, Web of Science and clinicaltrials.gov databases was conducted for studies published between 2004 and 2024. Keywords included "bariatric surgery," "gut microbiota" and "obesity." Inclusion criteria focused on human studies with pre and post-surgical microbiota analysis. Non-human studies, pediatric populations and studies without microbiota assessment were excluded. Data extraction covered microbiota profiles, metabolic outcomes and clinical markers. RESULTS Total 27 articles and 28 clinical trials met the inclusion criteria. Pre-surgery, obese patients exhibited dysbiosis characterized by reduced microbial diversity and imbalances in key bacterial phyla. Post-surgery, especially after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), patients showed increased microbial diversity, reduced Firmicutes and elevated beneficial bacteria such as Akkermansia muciniphila and short-chain fatty acid (SCFA) producing bacteria. These microbiota changes were correlated with significant improvements in weight loss, insulin sensitivity and lipid profiles. However, some studies reported inconsistent or modest microbiota changes. CONCLUSION Bariatric surgery leads to significant gut microbiota alterations that are closely linked to metabolic improvements, including enhanced glucose control and lipid metabolism. However, the long-term sustainability of these microbial changes remains unclear. Longitudinal studies are essential to determine whether these alterations persist over time and how they continuously impact metabolic health. Further research should explore targeted microbiota interventions to maintain beneficial microbial profiles post-surgery.
Collapse
Affiliation(s)
- Nima Mohammadzadeh
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahla Shahriari
- Bacteriology Department, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Greene E, Green CL, Hurst J, MacIver NJ. Metformin use associated with lower rate of hospitalization for influenza in individuals with diabetes. Diabetes Obes Metab 2024; 26:3281-3289. [PMID: 38742467 DOI: 10.1111/dom.15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
AIM To investigate if patients with diabetes taking metformin have better outcomes versus those not taking metformin following an emergency room visit for influenza. METHODS Using electronic medical records, we performed a retrospective chart review of all adult patients with a diagnosis of diabetes seen in any Duke University Medical Center-affiliated emergency department for influenza over a 6-year period. We documented patient characteristics and comorbidities, and compared outcomes for patients taking metformin versus patients not taking metformin using both univariable and multivariable analyses. Our primary outcome was hospital admission rate. Secondary outcomes were in-hospital length of stay and in-hospital death. RESULTS Our cohort included 1023 adult patients with diabetes, of whom 59.9% were female. The mean age was 62.9 years, 58.4% were African American, 36.1% were White, and 81.9% were obese or overweight. Of these patients, 347 (34%) were taking metformin. Patients with diabetes taking metformin were less likely to be hospitalized following an emergency department visit for influenza than patients with diabetes not taking metformin (56.8% vs. 70.1%; p < 0.001). Of those patients admitted, there was no statistically significant difference in length of stay or death. CONCLUSIONS In patients with diabetes, metformin use is associated with lower rate of hospitalization following an emergency department visit for influenza.
Collapse
Affiliation(s)
- Elizabeth Greene
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cynthia L Green
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jillian Hurst
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nancie J MacIver
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Honce R, Vazquez-Pagan A, Livingston B, Mandarano AH, Wilander BA, Cherry S, Hargest V, Sharp B, Brigleb PH, Kirkpatrick Roubidoux E, Van de Velde LA, Skinner RC, McGargill MA, Thomas PG, Schultz-Cherry S. Diet switch pre-vaccination improves immune response and metabolic status in formerly obese mice. Nat Microbiol 2024; 9:1593-1606. [PMID: 38637722 DOI: 10.1038/s41564-024-01677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Metabolic disease is epidemiologically linked to severe complications upon influenza virus infection, thus vaccination is a priority in this high-risk population. Yet, vaccine responses are less effective in these same hosts. Here we examined how the timing of diet switching from a high-fat diet to a control diet affected influenza vaccine efficacy in diet-induced obese mice. Our results demonstrate that the systemic meta-inflammation generated by high-fat diet exposure limited T cell maturation to the memory compartment at the time of vaccination, impacting the recall of effector memory T cells upon viral challenge. This was not improved with a diet switch post-vaccination. However, the metabolic dysfunction of T cells was reversed if weight loss occurred 4 weeks before vaccination, restoring a functional recall response. This corresponded with changes in the systemic obesity-related biomarkers leptin and adiponectin, highlighting the systemic and specific effects of diet on influenza vaccine immunogenicity.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
- Vermont Lung Center, Division of Pulmonology and Critical Care, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Ana Vazquez-Pagan
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Weill Cornell Medicine, New York City, NY, USA
- Noguchi Medical Research Institute (NMRI), Accra, Ghana
| | - Brandi Livingston
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Benjamin A Wilander
- Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sean Cherry
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Virginia Hargest
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bridgett Sharp
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Pamela H Brigleb
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Lee-Ann Van de Velde
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - R Chris Skinner
- Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, AR, USA
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT, USA
| | - Maureen A McGargill
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Shaikh SR, Beck MA, Alwarawrah Y, MacIver NJ. Emerging mechanisms of obesity-associated immune dysfunction. Nat Rev Endocrinol 2024; 20:136-148. [PMID: 38129700 DOI: 10.1038/s41574-023-00932-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Obesity is associated with a wide range of complications, including type 2 diabetes mellitus, cardiovascular disease, hypertension and nonalcoholic fatty liver disease. Obesity also increases the incidence and progression of cancers, autoimmunity and infections, as well as lowering vaccine responsiveness. A unifying concept across these differing diseases is dysregulated immunity, particularly inflammation, in response to metabolic overload. Herein, we review emerging mechanisms by which obesity drives inflammation and autoimmunity, as well as impairing tumour immunosurveillance and the response to infections. Among these mechanisms are obesity-associated changes in the hormones that regulate immune cell metabolism and function and drive inflammation. The cargo of extracellular vesicles derived from adipose tissue, which controls cytokine secretion from immune cells, is also dysregulated in obesity, in addition to impairments in fatty acid metabolism related to inflammation. Furthermore, an imbalance exists in obesity in the biosynthesis and levels of polyunsaturated fatty acid-derived oxylipins, which control a range of outcomes related to inflammation, such as immune cell chemotaxis and cytokine production. Finally, there is a need to investigate how obesity influences immunity using innovative model systems that account for the heterogeneous nature of obesity in the human population.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Yazan Alwarawrah
- Department of Paediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancie J MacIver
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Paediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|