1
|
Li J, Shuai S. CocoVax: a web server for codon-based deoptimization of viral genes in live attenuated vaccine design. Nucleic Acids Res 2025:gkaf358. [PMID: 40297995 DOI: 10.1093/nar/gkaf358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Viral infections pose major economic and public health challenges worldwide, with vaccines as a critical tool for prevention. Synonymous recoding of viral genes through codon and codon-pair deoptimization offers a promising approach to design live attenuated vaccines (LAVs) by reducing viral fitness without altering protein sequences. This strategy has been successfully applied to develop vaccines for a range of pathogens affecting human and livestock. To support this approach, we developed CocoVax, the first web server dedicated to codon and codon-pair deoptimization for LAV design. CocoVax features four modules, Virus Database, Gene Recoder, Sequence Evaluator, and Reference Library, guiding users through the entire vaccine development process. With its intuitive interface, CocoVax enables rapid generation of vaccine candidates using only a pathogen's gene sequence, providing a valuable resource for researchers in virology and vaccine development. CocoVax is freely accessible at https://comics.med.sustech.edu.cn/cocovax with no login required.
Collapse
Affiliation(s)
- Jiaxuan Li
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Meurens F, Renois F, Karniychuk U. Elegant and Innovative Recoding Strategies for Advancing Vaccine Development. Vaccines (Basel) 2025; 13:78. [PMID: 39852857 PMCID: PMC11768987 DOI: 10.3390/vaccines13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Recoding strategies have emerged as a promising approach for developing safer and more effective vaccines by altering the genetic structure of microorganisms, such as viruses, without changing their proteins. This method enhances vaccine safety and efficacy while minimizing the risk of reversion to virulence. Recoding enhances the frequency of CpG dinucleotides, which in turn activates immune responses and ensures a strong attenuation of the pathogens. Recent advancements highlight synonymous recoding's potential, offering improved genetic stability and immunogenicity compared to traditional methods. Live vaccines attenuated using classical methods pose a risk of reversion to virulence and can be time-consuming to produce. Synonymous recoding, involving numerous codon alterations, boosts safety and vaccine stability. One challenge is balancing attenuation with yield; however, innovations like Zinc-finger antiviral protein (ZAP) knockout cell lines can enhance vaccine production. Beyond viral vaccines, recoding can apply to bacterial vaccines, as exemplified by modified Escherichia coli and Streptococcus pneumoniae strains, which show reduced virulence. Despite promising results, challenges like ensuring genetic stability, high yield, and regulatory approval remain. Briefly, ongoing research aims to harness these innovations for comprehensive improvements in vaccine design and deployment. In this commentary, we sought to further engage the community's interest in this elegant approach by briefly highlighting its main advantages, disadvantages, and future prospects.
Collapse
Affiliation(s)
- François Meurens
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada;
| | - Fanny Renois
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Uladzimir Karniychuk
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Echlin H, Iverson A, McKnight A, Rosch JW. A Trivalent Live Vaccine Elicits Cross-Species Protection Against Acute Otitis Media in a Murine Model. Vaccines (Basel) 2024; 12:1432. [PMID: 39772092 PMCID: PMC11728825 DOI: 10.3390/vaccines12121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Acute otitis media (AOM) is a common pediatric infection worldwide and is the primary basis for pediatric primary care visits and antibiotic prescriptions in children. Current licensed vaccines have been incompletely ineffective at reducing the global burden of AOM, underscoring a major unmet medical need. The complex etiology of AOM presents additional challenges for vaccine development, as it can stem from multiple bacterial species including Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. As such, targeting multiple pathogens simultaneously may be required to significantly impact the overall disease burden. Methods: In this study, we aim to overcome this challenge by engineering a live-attenuated vaccine platform based on an attenuated mutant of S. pneumoniae that expresses H. influenzae and M. catarrhalis surface epitopes to induce protective immunity against all three pathogens. Results: The trivalent live-attenuated vaccine conferred significant protection against all three bacterial otopathogens as measured by seroconversion and the development of AOM, with the inclusion of the additional epitopes providing unexpected synergy and enhanced protection against S. pneumoniae. Conclusions: These data demonstrate a novel mechanism of introducing non-native immunogenic antigens into a live-attenuated vaccine platform to engender protection against AOM from multiple pathogenic species.
Collapse
Affiliation(s)
| | | | | | - Jason W. Rosch
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (H.E.); (A.I.); (A.M.)
| |
Collapse
|
4
|
Hegelmeyer NK, Parkin LA, Previti ML, Andrade J, Utama R, Sejour RJ, Gardin J, Muller S, Ketchum S, Yurovsky A, Futcher B, Goodwin S, Ueberheide B, Seeliger JC. Gene recoding by synonymous mutations creates promiscuous intragenic transcription initiation in mycobacteria. mBio 2023; 14:e0084123. [PMID: 37787543 PMCID: PMC10653884 DOI: 10.1128/mbio.00841-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/16/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the deadliest infectious diseases worldwide. Previous studies have established that synonymous recoding to introduce rare codon pairings can attenuate viral pathogens. We hypothesized that non-optimal codon pairing could be an effective strategy for attenuating gene expression to create a live vaccine for Mtb. We instead discovered that these synonymous changes enabled the transcription of functional mRNA that initiated in the middle of the open reading frame and from which many smaller protein products were expressed. To our knowledge, this is one of the first reports that synonymous recoding of a gene in any organism can create or induce intragenic transcription start sites.
Collapse
Affiliation(s)
- Nuri K. Hegelmeyer
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Lia A. Parkin
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Mary L. Previti
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Joshua Andrade
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
| | - Raditya Utama
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Richard J. Sejour
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Justin Gardin
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Stephanie Muller
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Steven Ketchum
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Alisa Yurovsky
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Bruce Futcher
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jessica C. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
5
|
Hegelmeyer NK, Previti ML, Andrade J, Utama R, Sejour RJ, Gardin J, Muller S, Ketchum S, Yurovsky A, Futcher B, Goodwin S, Ueberheide B, Seeliger JC. Gene recoding by synonymous mutations creates promiscuous intragenic transcription initiation in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.532606. [PMID: 36993691 PMCID: PMC10055193 DOI: 10.1101/2023.03.17.532606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Each genome encodes some codons more frequently than their synonyms (codon usage bias), but codons are also arranged more frequently into specific pairs (codon pair bias). Recoding viral genomes and yeast or bacterial genes with non-optimal codon pairs has been shown to decrease gene expression. Gene expression is thus importantly regulated not only by the use of particular codons but by their proper juxtaposition. We therefore hypothesized that non-optimal codon pairing could likewise attenuate Mtb genes. We explored the role of codon pair bias by recoding Mtb genes ( rpoB, mmpL3, ndh ) and assessing their expression in the closely related and tractable model organism M. smegmatis . To our surprise, recoding caused the expression of multiple smaller protein isoforms from all three genes. We confirmed that these smaller proteins were not due to protein degradation, but instead issued from new transcription initiation sites positioned within the open reading frame. New transcripts gave rise to intragenic translation initiation sites, which in turn led to the expression of smaller proteins. We next identified the nucleotide changes associated with these new sites of transcription and translation. Our results demonstrated that apparently benign, synonymous changes can drastically alter gene expression in mycobacteria. More generally, our work expands our understanding of the codon-level parameters that control translation and transcription initiation. IMPORTANCE Mycobacterium tuberculosis ( Mtb ) is the causative agent of tuberculosis, one of the deadliest infectious diseases worldwide. Previous studies have established that synonymous recoding to introduce rare codon pairings can attenuate viral pathogens. We hypothesized that non-optimal codon pairing could be an effective strategy for attenuating gene expression to create a live vaccine for Mtb . We instead discovered that these synonymous changes enabled the transcription of functional mRNA that initiated in the middle of the open reading frame and from which many smaller protein products were expressed. To our knowledge, this is the first report that synonymous recoding of a gene in any organism can create or induce intragenic transcription start sites.
Collapse
Affiliation(s)
- Nuri K. Hegelmeyer
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Mary L. Previti
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Joshua Andrade
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
| | - Raditya Utama
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Richard J. Sejour
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Justin Gardin
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Stephanie Muller
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Steven Ketchum
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Alisa Yurovsky
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Bruce Futcher
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jessica C. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Nishiguchi M, Ali ME, Kaya T, Kobayashi K. Plant virus disease control by vaccination and transgenic approaches: Current status and perspective. PLANT RNA VIRUSES 2023:373-424. [DOI: 10.1016/b978-0-323-95339-9.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Synthetically recoded virus sCPD9 - A tool to accelerate SARS-CoV-2 research under biosafety level 2 conditions. Comput Struct Biotechnol J 2022; 20:4376-4380. [PMID: 35992535 PMCID: PMC9375251 DOI: 10.1016/j.csbj.2022.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
Research with infectious SARS-CoV-2 is complicated because it must be conducted under biosafety level 3 (BSL-3) conditions. Recently, we constructed a live attenuated SARS-CoV-2 virus by rational design through partial recoding of the SARS-CoV-2 genome and showed that the attenuated virus, designated sCPD9, was highly attenuated in preclinical animal models. The recoded sequence was designed by codon pair deoptimization and is located at the distal end of gene ORF1ab. Codon pair deoptimization involves recoding of the viral sequence with underrepresented codon pairs but without altering the amino acid sequence of the encoded proteins. Thus, parental and attenuated viruses produce exactly the same proteins. In Germany, the live attenuated SARS-CoV-2 mutant sCPD9 was recently classified as a BSL-2 pathogen based on its genetic stability and strong attenuation in preclinical animal models. Despite its high attenuation in vivo, sCPD9 grows to high titers in common cell lines, making it suitable as substitute for virulent SARS-CoV-2 in many experimental setups. Consequently, sCPD9 can ease and accelerate SARS-CoV-2 research under BSL-2 conditions, particularly in experiments requiring replicating virus, such as diagnostics and development of antiviral drugs.
Collapse
|
8
|
K.C N, Noatia L, Priyadarshini S, M P, Gali JM, Ali MA, Behera S, Sharma B, Roychoudhury P, Kumar A, Behera P. Recoding anaerobic regulator fnr of Salmonella Typhimurium attenuates it's pathogenicity. Microb Pathog 2022; 168:105591. [DOI: 10.1016/j.micpath.2022.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022]
|
9
|
Jordan-Paiz A, Franco S, Martínez MA. Impact of Synonymous Genome Recoding on the HIV Life Cycle. Front Microbiol 2021; 12:606087. [PMID: 33796084 PMCID: PMC8007914 DOI: 10.3389/fmicb.2021.606087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Synonymous mutations within protein coding regions introduce changes in DNA or messenger (m) RNA, without mutating the encoded proteins. Synonymous recoding of virus genomes has facilitated the identification of previously unknown virus biological features. Moreover, large-scale synonymous recoding of the genome of human immunodeficiency virus type 1 (HIV-1) has elucidated new antiviral mechanisms within the innate immune response, and has improved our knowledge of new functional virus genome structures, the relevance of codon usage for the temporal regulation of viral gene expression, and HIV-1 mutational robustness and adaptability. Continuous improvements in our understanding of the impacts of synonymous substitutions on virus phenotype - coupled with the decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments - have enhanced our ability to identify potential HIV-1 and host factors and other aspects involved in the infection process. In this review, we address how silent mutagenesis impacts HIV-1 phenotype and replication capacity. We also discuss the general potential of synonymous recoding of the HIV-1 genome to elucidate unknown aspects of the virus life cycle, and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
10
|
Lee MHP, Tan CW, Tee HK, Ong KC, Sam IC, Chan YF. Vaccine candidates generated by codon and codon pair deoptimization of enterovirus A71 protect against lethal challenge in mice. Vaccine 2021; 39:1708-1720. [PMID: 33640144 DOI: 10.1016/j.vaccine.2021.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
Enterovirus A71 (EV-A71) causes hand, foot and mouth disease (HFMD) in young children. It is associated with severe neurological complications and death. This study aims to develop a live-attenuated vaccine by codon deoptimization (CD) and codon-pair deoptimization (CPD) of EV-A71. CD is generated by introducing the least preferred codons for amino acids while CPD increases the presence of underrepresented codon pairs in the specific genes. CD and CPD chimeras were generated by synonymous mutations at the VP2, VP3, VP1 and 2A gene regions, designated as XYZ. All twelve deoptimized viruses were viable with similar replication kinetics, but the plaque sizes were inversely proportional to the level of deoptimization. All the deoptimized viruses showed attenuated growth in vitro with reduced viral protein expression at 48 h and lower viral RNA at 39 °C. Six-week-old ICR mice were immunized intraperitoneally with selected CD and CPD X and XY vaccine candidates covering the VP2-VP3 and VP2-VP3-VP1 genes, respectively. All vaccine candidates elicited high anti-EV-A71 IgG levels similar to wild-type (WT) EV-A71. The CD X and CPD X vaccines produced robust neutralizing antibodies but not the CD XY and CPD XY. On lethal challenge, offspring of mice immunized with WT, CD X and CPD X were fully protected, but the CD XY- and CPD XY-vaccinated mice had delayed symptoms and eventually died. Similarly, active immunization of 1-day-old suckling mice with CD X, CPD X and CD XY vaccine candidates provided complete immune protection but CPD XY only protected 40% of the challenged mice. Histology of the muscles from CD X- and CPD X-vaccinated mice showed minimal pathology compared to extensive inflammation in the post-challenged mock-vaccinated mice. Overall, we demonstrated that the CD X and CPD X elicited good neutralizing antibodies, conferred immune protection and are promising live-attenuated vaccine candidates for EV-A71.
Collapse
Affiliation(s)
- Michelle Hui Pheng Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee Wah Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design. Sci Rep 2020; 10:15643. [PMID: 32973171 PMCID: PMC7519053 DOI: 10.1038/s41598-020-72533-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022] Open
Abstract
As the SARS-CoV-2 pandemic is rapidly progressing, the need for the development of an effective vaccine is critical. A promising approach for vaccine development is to generate, through codon pair deoptimization, an attenuated virus. This approach carries the advantage that it only requires limited knowledge specific to the virus in question, other than its genome sequence. Therefore, it is well suited for emerging viruses, for which we may not have extensive data. We performed comprehensive in silico analyses of several features of SARS-CoV-2 genomic sequence (e.g., codon usage, codon pair usage, dinucleotide/junction dinucleotide usage, RNA structure around the frameshift region) in comparison with other members of the coronaviridae family of viruses, the overall human genome, and the transcriptome of specific human tissues such as lung, which are primarily targeted by the virus. Our analysis identified the spike (S) and nucleocapsid (N) proteins as promising targets for deoptimization and suggests a roadmap for SARS-CoV-2 vaccine development, which can be generalizable to other viruses.
Collapse
|
12
|
Martínez MA, Jordan-Paiz A, Franco S, Nevot M. Synonymous genome recoding: a tool to explore microbial biology and new therapeutic strategies. Nucleic Acids Res 2020; 47:10506-10519. [PMID: 31584076 PMCID: PMC6846928 DOI: 10.1093/nar/gkz831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Abstract
Synthetic genome recoding is a new means of generating designed organisms with altered phenotypes. Synonymous mutations introduced into the protein coding region tolerate modifications in DNA or mRNA without modifying the encoded proteins. Synonymous genome-wide recoding has allowed the synthetic generation of different small-genome viruses with modified phenotypes and biological properties. Recently, a decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments (e.g. lambda red recombination and CRISPR-based editing) have enabled the construction of an Escherichia coli variant with a 4-Mb synthetic synonymously recoded genome with a reduced number of sense codons (n = 59) encoding the 20 canonical amino acids. Synonymous genome recoding is increasing our knowledge of microbial interactions with innate immune responses, identifying functional genome structures, and strategically ameliorating cis-inhibitory signaling sequences related to splicing, replication (in eukaryotes), and complex microbe functions, unraveling the relevance of codon usage for the temporal regulation of gene expression and the microbe mutant spectrum and adaptability. New biotechnological and therapeutic applications of this methodology can easily be envisaged. In this review, we discuss how synonymous genome recoding may impact our knowledge of microbial biology and the development of new and better therapeutic methodologies.
Collapse
Affiliation(s)
- Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Maria Nevot
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
13
|
Kames J, Holcomb DD, Kimchi O, DiCuccio M, Hamasaki-Katagiri N, Wang T, Komar AA, Alexaki A, Kimchi-Sarfaty C. Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.30.016832. [PMID: 32511300 PMCID: PMC7217226 DOI: 10.1101/2020.03.30.016832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As the SARS-CoV-2 pandemic is rapidly progressing, the need for the development of an effective vaccine is critical. A promising approach for vaccine development is to generate, through codon pair deoptimization, an attenuated virus. This approach carries the advantage that it only requires limited knowledge specific to the virus in question, other than its genome sequence. Therefore, it is well suited for emerging viruses for which we may not have extensive data. We performed comprehensive in silico analyses of several features of SARS-CoV-2 genomic sequence (e.g., codon usage, codon pair usage, dinucleotide/junction dinucleotide usage, RNA structure around the frameshift region) in comparison with other members of the coronaviridae family of viruses, the overall human genome, and the transcriptome of specific human tissues such as lung, which are primarily targeted by the virus. Our analysis identified the spike (S) and nucleocapsid (N) proteins as promising targets for deoptimization and suggests a roadmap for SARS-CoV-2 vaccine development, which can be generalizable to other viruses.
Collapse
Affiliation(s)
- Jacob Kames
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA
| | - David D. Holcomb
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA
| | - Ofer Kimchi
- Harvard University School of Engineering and Applied Sciences
| | - Michael DiCuccio
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Nobuko Hamasaki-Katagiri
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA
| | - Tony Wang
- Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Viral Products, Food and Drug Administration, Silver Spring, MD, USA
| | - Anton A. Komar
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Aikaterini Alexaki
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
14
|
Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating Genetic Variation Analyses and Recombinant Gene Design. J Mol Biol 2019; 431:2434-2441. [PMID: 31029701 DOI: 10.1016/j.jmb.2019.04.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
Usage of sequential codon-pairs is non-random and unique to each species. Codon-pair bias is related to but clearly distinct from individual codon usage bias. Codon-pair bias is thought to affect translational fidelity and efficiency and is presumed to be under the selective pressure. It was suggested that changes in codon-pair utilization may affect human disease more significantly than changes in single codons. Although recombinant gene technologies often take codon-pair usage bias into account, codon-pair usage data/tables are not readily available, thus potentially impeding research efforts. The present computational resource (https://hive.biochemistry.gwu.edu/review/codon2) systematically addresses this issue. Building on our recent HIVE-Codon Usage Tables, we constructed a new database to include genomic codon-pair and dinucleotide statistics of all organisms with sequenced genome, available in the GenBank. We believe that the growing understanding of the importance of codon-pair usage will make this resource an invaluable tool to many researchers in academia and pharmaceutical industry.
Collapse
|
15
|
Abstract
Western blot analysis is widely used for detecting protein expression, analysis of protein-protein interactions, and searching for new biomarkers. Also, it is a diagnostic tool used for detection of human diseases and microorganism infections.Some Streptococcus pneumoniae proteins are important virulence factors and a few of them are diagnostic markers. Here, we describe the detection of two pneumococcal proteins, pneumolysin and PpmA, in human urine by using monoclonal and polyclonal antibodies.
Collapse
|
16
|
Kuo J, Stirling F, Lau YH, Shulgina Y, Way JC, Silver PA. Synthetic genome recoding: new genetic codes for new features. Curr Genet 2018; 64:327-333. [PMID: 28983660 PMCID: PMC5849531 DOI: 10.1007/s00294-017-0754-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Full genome recoding, or rewriting codon meaning, through chemical synthesis of entire bacterial chromosomes has become feasible in the past several years. Recoding an organism can impart new properties including non-natural amino acid incorporation, virus resistance, and biocontainment. The estimated cost of construction that includes DNA synthesis, assembly by recombination, and troubleshooting, is now comparable to costs of early stage development of drugs or other high-tech products. Here, we discuss several recently published assembly methods and provide some thoughts on the future, including how synthetic efforts might benefit from the analysis of natural recoding processes and organisms that use alternative genetic codes.
Collapse
Affiliation(s)
- James Kuo
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Finn Stirling
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Yu Heng Lau
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Yekaterina Shulgina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jeffrey C Way
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Papamichail D, Liu H, Machado V, Gould N, Coleman JR, Papamichail G. Codon Context Optimization in Synthetic Gene Design. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:452-459. [PMID: 27019501 DOI: 10.1109/tcbb.2016.2542808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Advances in de novo synthesis of DNA and computational gene design methods make possible the customization of genes by direct manipulation of features such as codon bias and mRNA secondary structure. Codon context is another feature significantly affecting mRNA translational efficiency, but existing methods and tools for evaluating and designing novel optimized protein coding sequences utilize untested heuristics and do not provide quantifiable guarantees on design quality. In this study we examine statistical properties of codon context measures in an effort to better understand the phenomenon. We analyze the computational complexity of codon context optimization and design exact and efficient heuristic gene recoding algorithms under reasonable constraint models. We also present a web-based tool for evaluating codon context bias in the appropriate context.
Collapse
|
18
|
Osterrieder N, Kunec D. Attenuation of Viruses by Large-Scale Recoding of their Genomes: the Selection Is Always Biased. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:66-72. [PMID: 32226716 PMCID: PMC7100164 DOI: 10.1007/s40588-018-0080-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the current understanding of virus attenuation by large-scale recoding of viral genomes and discusses what would ultimately be necessary for construction of better and safer live modified virus vaccines. RECENT FINDINGS It has been shown that codon and codon pair deoptimization are rapid and robust methods that can be used for the development of attenuated vaccine candidates. The viruses attenuated by large-scale recoding have the added value that they are extremely genetically stable. However, the exact mechanisms that lead to viral attenuation by recoding are yet to be determined. SUMMARY While the advantages of large-scale recoding (speed, simplicity, potency, and universal applicability) have been known for more than a decade, this approach has been only inadequately explored and the attention was focused on a limited number of RNA viruses. Attenuation of viruses by large-scale recoding should be explored to combat known and future viral threats.
Collapse
Affiliation(s)
- Nikolaus Osterrieder
- Institut für Virologie, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Dusan Kunec
- Institut für Virologie, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
19
|
Behera P, Kutty VHM, Kumar A, Sharma B. Changing the Codon Usage of hfq Gene has Profound Effect on Phenotype and Pathogenicity of Salmonella Typhimurium. Curr Microbiol 2016; 72:288-96. [PMID: 26620536 DOI: 10.1007/s00284-015-0951-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/21/2015] [Indexed: 11/26/2022]
Abstract
Genome recoding with bias codons (synonymous rare codons) or codon pair bias is being used as a method to attenuate virulence mostly in viruses. The target gene chosen for attenuation in general in bacteria is mostly toxin or virulence gene. We have used RNA chaperone hfq, a global post-transcriptional regulator of bacterial gene expression that regulates about 20 % genes in Salmonella, as the target of recoding. The hfq gene was recoded by replacing the codons of hfq gene with synonymous rare codons. Recoding decreased the expression of Hfq protein about two-fold in the mutant as compared to the parent strain. Recoding did not affect growth kinetics, but in growth competition the mutant strain was outcompeted by the parent strain. There was significant decrease in survivability of mutant strain in macrophage as compared to the parent strain. The biofilm formation was significantly impaired in case of recoded mutant. The mutants were also less motile as compared to the parent strain. Intraperitoneal infection of mice with the mutant strain had shown better survival as compared to parent strain. The results show that recoding is an effective method of reducing virulence.
Collapse
Affiliation(s)
| | - V H Muhammed Kutty
- Division of Biochemistry, Indian Veterinary Research Institute, Bareilly, India
| | - Ajeet Kumar
- Division of Biochemistry, Indian Veterinary Research Institute, Bareilly, India
| | - Bhaskar Sharma
- Division of Biochemistry, Indian Veterinary Research Institute, Bareilly, India.
| |
Collapse
|
20
|
Martínez MA, Jordan-Paiz A, Franco S, Nevot M. Synonymous Virus Genome Recoding as a Tool to Impact Viral Fitness. Trends Microbiol 2016; 24:134-147. [DOI: 10.1016/j.tim.2015.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 01/28/2023]
|
21
|
Gao L, Wang L, Huang C, Yang L, Guo XK, Yu Z, Liu Y, Yang P, Feng WH. HP-PRRSV is attenuated by de-optimization of codon pair bias in its RNA-dependent RNA polymerase nsp9 gene. Virology 2015; 485:135-44. [PMID: 26247624 DOI: 10.1016/j.virol.2015.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/21/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
There is an urgent need to develop new vaccines against highly pathogenic PRRS virus (HP-PRRSV) variant in China. The actual use of each codon pairs is more or less frequent than that of the statistical prediction and codon pair bias (CPB) usage affects gene translation. We "shuffled" the existing codons in HP-PRRSV genes GP5, M, nsp2 and nsp9, so that the CPB of these genes could be more negative. De-optimization of nsp9, the RNA-dependent RNA polymerase, significantly decreased PRRSV replication in porcine alveolar macrophages (PAMs). In vitro study showed that HV-nsp9(min) and HV-nsp29(min) were remarkably attenuated in PAMs, and inoculation of pigs with 2 ml⁎10(5.0) TCID50/ml of HV-nsp9(min) or HV-nsp29(min) did not cause PRRS. Importantly, pigs immunized with HV-nsp29(min) were fully protected against different HP-PRRSV strains׳ lethal challenges. Our results imply that the CPB de-optimized HV-nsp29(min) has the potential to be used as a live vaccine candidate against HP-PRRSV.
Collapse
Affiliation(s)
- Li Gao
- China Academy of Medicine Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Beijing 100193, China
| | - Lianghai Wang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Huang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Longlong Yang
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709-2137, USA
| | - Xue-Kun Guo
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhibin Yu
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yihao Liu
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Yang
- Beijing Senkang Biotech Development Co., Ltd, Beijing 101400, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Amaral FE, Parker D, Randis TM, Kulkarni R, Prince AS, Shirasu-Hiza MM, Ratner AJ. Rational manipulation of mRNA folding free energy allows rheostat control of pneumolysin production by Streptococcus pneumoniae. PLoS One 2015; 10:e0119823. [PMID: 25798590 PMCID: PMC4370707 DOI: 10.1371/journal.pone.0119823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/16/2015] [Indexed: 12/04/2022] Open
Abstract
The contribution of specific factors to bacterial virulence is generally investigated through creation of genetic “knockouts” that are then compared to wild-type strains or complemented mutants. This paradigm is useful to understand the effect of presence vs. absence of a specific gene product but cannot account for concentration-dependent effects, such as may occur with some bacterial toxins. In order to assess threshold and dose-response effects of virulence factors, robust systems for tunable expression are required. Recent evidence suggests that the folding free energy (ΔG) of the 5’ end of mRNA transcripts can have a significant effect on translation efficiency and overall protein abundance. Here we demonstrate that rational alteration of 5’ mRNA folding free energy by introduction of synonymous mutations allows for predictable changes in pneumolysin (PLY) expression by Streptococcus pneumoniae without the need for chemical inducers or heterologous promoters. We created a panel of isogenic S. pneumoniae strains, differing only in synonymous (silent) mutations at the 5’ end of the PLY mRNA that are predicted to alter ΔG. Such manipulation allows rheostat-like control of PLY production and alters the cytotoxicity of whole S. pneumoniae on primary and immortalized human cells. These studies provide proof-of-principle for further investigation of mRNA ΔG manipulation as a tool in studies of bacterial pathogenesis.
Collapse
Affiliation(s)
- Fábio E. Amaral
- Department of Pediatrics, Columbia University, New York, NY United States of America
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Dane Parker
- Department of Pediatrics, Columbia University, New York, NY United States of America
| | - Tara M. Randis
- Department of Pediatrics, Columbia University, New York, NY United States of America
| | - Ritwij Kulkarni
- Department of Pediatrics, Columbia University, New York, NY United States of America
| | - Alice S. Prince
- Department of Pediatrics, Columbia University, New York, NY United States of America
- Department of Pharmacology, Columbia University, New York, NY, United States of America
| | - Mimi M. Shirasu-Hiza
- Department of Genetics & Development, Columbia University, New York, NY, United States of America
| | - Adam J. Ratner
- Department of Pediatrics, Columbia University, New York, NY United States of America
- * E-mail:
| |
Collapse
|
23
|
Gould N, Hendy O, Papamichail D. Computational tools and algorithms for designing customized synthetic genes. Front Bioeng Biotechnol 2014; 2:41. [PMID: 25340050 PMCID: PMC4186344 DOI: 10.3389/fbioe.2014.00041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/16/2014] [Indexed: 11/13/2022] Open
Abstract
Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations.
Collapse
Affiliation(s)
- Nathan Gould
- Department of Computer Science, The College of New Jersey , Ewing, NJ , USA
| | - Oliver Hendy
- Department of Biology, The College of New Jersey , Ewing, NJ , USA
| | | |
Collapse
|
24
|
Le Nouën C, Brock LG, Luongo C, McCarty T, Yang L, Mehedi M, Wimmer E, Mueller S, Collins PL, Buchholz UJ, DiNapoli JM. Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization. Proc Natl Acad Sci U S A 2014; 111:13169-13174. [PMID: 25157129 PMCID: PMC4246931 DOI: 10.1073/pnas.1411290111] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the most important viral agent of serious pediatric respiratory-tract disease worldwide. A vaccine or generally effective antiviral drug is not yet available. We designed new live attenuated RSV vaccine candidates by codon-pair deoptimization (CPD). Specifically, viral ORFs were recoded by rearranging existing synonymous codons to increase the content of underrepresented codon pairs. Amino acid coding was completely unchanged. Four CPD RSV genomes were designed in which the indicated ORFs were recoded: Min A (NS1, NS2, N, P, M, and SH), Min B (G and F), Min L (L), and Min FLC (all ORFs except M2-1 and M2-2). Surprisingly, the recombinant CPD viruses were temperature-sensitive for replication in vitro (level of sensitivity: Min FLC > Min L > Min B > Min A). All of the CPD mutants grew less efficiently in vitro than recombinant wild-type (WT) RSV, even at the typically permissive temperature of 32 °C (growth efficiency: WT > Min L > Min A > Min FLC > Min B). CPD of the ORFs for the G and F surface glycoproteins provided the greatest restrictive effect. The CPD viruses exhibited a range of restriction in mice and African green monkeys comparable with that of two attenuated RSV strains presently in clinical trials. This study provided a new type of attenuated RSV and showed that CPD can rapidly generate vaccine candidates against nonsegmented negative-strand RNA viruses, a large and expanding group that includes numerous pathogens of humans and animals.
Collapse
Affiliation(s)
- Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Linda G Brock
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Thomas McCarty
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Masfique Mehedi
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - Steffen Mueller
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - Peter L Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Joshua M DiNapoli
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
25
|
Khan MN, Coleman JR, Vernatter J, Varshney AK, Dufaud C, Pirofski LA. An ahemolytic pneumolysin of Streptococcus pneumoniae manipulates human innate and CD4⁺ T-cell responses and reduces resistance to colonization in mice in a serotype-independent manner. J Infect Dis 2014; 210:1658-69. [PMID: 25001458 DOI: 10.1093/infdis/jiu321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Some Streptococcus pneumoniae serotypes express an ahemolytic pneumolysin (PLYa). Serotypes that commonly express PLYa, including serotype 8 (ST8) and ST1, are often associated with a low prevalence during colonization but a higher propensity to cause invasive disease. We sought to study the host response to ST8 PLYa in a homologous and heterologous capsular background. METHODS We genetically exchanged the PLYa of ST8 strain 6308 with the hemolytic PLY (PLYh) of ST3 A66.1 and vice versa and determined the impact of the exchange on nasopharyngeal colonization in mice. Then, to compare the response of human cells to PLYa-expressing and PLYh-expressing strains, we infected human peripheral blood mononuclear cells (PBMCs) with PLY-switched strains and assessed dendritic cell and CD4(+) T-cell responses by intracellular cytokine staining. RESULT Mice colonized with PLYa-expressing strains had significantly higher colonization densities than those colonized with PLYh-expressing strains, irrespective of capsular background. Compared with infection of PBMCs with PLYh-expressing strains, infection with PLYa-expressing strains induced diminished innate (dendritic cell cytokines, costimulatory receptor, and apoptotic) and adaptive (CD4(+) T-cell proliferative and memory interleukin 17A) responses. CONCLUSION Our findings demonstrate that PLYa has the potential to manipulate host immunity irrespective of capsule type. PLY exchange between STs expressing PLYa and PLYh could lead to unexpected colonization or invasion phenotypes.
Collapse
Affiliation(s)
- M Nadeem Khan
- Department of Medicine, Division of Infectious Disease, Albert Einstein College of Medicine and Montefiore Medical Center
| | | | - Joshua Vernatter
- Department of Medicine, Division of Infectious Disease, Albert Einstein College of Medicine and Montefiore Medical Center
| | - Avanish Kumar Varshney
- Department of Medicine, Division of Infectious Disease, Albert Einstein College of Medicine and Montefiore Medical Center
| | - Chad Dufaud
- Department of Medicine, Division of Infectious Disease, Albert Einstein College of Medicine and Montefiore Medical Center
| | - Liise-Anne Pirofski
- Department of Medicine, Division of Infectious Disease, Albert Einstein College of Medicine and Montefiore Medical Center Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx
| |
Collapse
|
26
|
Tailoring the Immune Response via Customization of Pathogen Gene Expression. J Pathog 2014; 2014:651568. [PMID: 24719769 PMCID: PMC3955589 DOI: 10.1155/2014/651568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/23/2013] [Indexed: 12/27/2022] Open
Abstract
The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Infection with Streptococcus pneumoniae (pneumococcus) results in colonization, which can lead to local or invasive disease, of which pneumonia is the most common manifestation. Despite the availability of pneumococcal vaccines, pneumococcal pneumonia is the leading cause of community and inhospital pneumonia in the United States and globally. This article discusses new insights into the pathogenesis of pneumococcal disease. RECENT FINDINGS The host-microbe interactions that determine whether pneumococcal colonization will result in clearance or invasive disease are highly complex. This article focuses on new information in three areas that bear on the pathogenesis of pneumococcal disease: factors that govern colonization, the prelude to invasive disease, including effects on colonization and invasion of capsular serotype, pneumolysin, surface proteins that regulate complement deposition, biofilm formation and agglutination; the effect of coinfection with other bacteria and viruses on pneumococcal growth and virulence, including the synergistic effect of influenza virus; and the contribution of the host inflammatory response to the pathogenesis of pneumococcal pneumonia, including the effects of pattern recognition molecules, cells that enhance and modulate inflammation, and therapies that modulate inflammation, such as statins. SUMMARY Recent research on pneumococcal pathogenesis reveals new mechanisms by which microbial factors govern the ability of pneumococcus to progress from the state of colonization to disease and host inflammatory responses contribute to the development of pneumonia. These mechanisms suggest that therapies which modulate the inflammatory response could hold promise for ameliorating damage stemming from the host inflammatory response in pneumococcal disease.
Collapse
|
28
|
Hofmeyer KA, Scandiuzzi L, Ghosh K, Pirofski LA, Zang X. Tissue-expressed B7x affects the immune response to and outcome of lethal pulmonary infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:3054-63. [PMID: 22855708 DOI: 10.4049/jimmunol.1200701] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
B7x (B7-H4 or B7S1), a member of the B7 family, inhibits in vitro T cell proliferation and cytokine production by binding to an unidentified receptor on activated T cells, but its in vivo function remains largely unclear. We show that B7x protein was expressed in epithelial cells of the lung, but not in lymphoid tissues. To investigate the role of B7x in the lung, we determined the susceptibility of B7x-deficient (B7x(-/-)) mice to a lethal pulmonary infection with Streptococcus pneumoniae. B7x(-/-), but not B7-H3-deficient, mice were significantly more resistant to S. pneumoniae pulmonary infection than their wild-type (Wt) counterparts. B7x(-/-) mice had significantly lower bacterial burdens and levels of inflammatory cytokines in lungs as early as 12 h postinfection. They also had milder immunopathology that was localized in alveolar spaces, whereas Wt mice had severe inflammation that was perivascular. Control of infection in B7x(-/-) mice was associated with a marked increase in activated CD4 and CD8 T cells and fewer neutrophils in lungs, whereas the susceptible Wt mice had the opposite cellular profile. In B7x(-/-)Rag1(-/-) mice that lack T cells, reduction in bacterial burden was no longer observed. Control of S. pneumoniae and the increased survival observed was specific to the lung, because systemically infected B7x(-/-) mice were not resistant to infection. These data indicate that lung-expressed B7x negatively regulates T cells, and that in its absence, in B7x(-/-) mice, an enhanced T cell response contributed to reduced lethality in a pulmonary infection model with S. pneumoniae.
Collapse
Affiliation(s)
- Kimberly A Hofmeyer
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
29
|
CD8+ T cells and risk for bacterial pneumonia and all-cause mortality among HIV-infected women. J Acquir Immune Defic Syndr 2012; 60:191-8. [PMID: 22334070 DOI: 10.1097/qai.0b013e31824d90fe] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bacterial pneumonia risk is disproportionately high among those infected with HIV. This risk is present across all CD4(+) T-cell levels (TCLs), suggesting that additional factors govern susceptibility. This study examines CD8(+) TCLs and risk for HIV-associated bacterial pneumonia and all-cause mortality. METHODS Demographic, clinical, and laboratory data were obtained for 885 HIV-infected women enrolled in the HIV Epidemiologic Research Study (HERS). Bacterial pneumonia cases were identified using clinical, microbiological, and radiographic criteria. CD8(+) TCLs were assessed at 6-month intervals. Statistical methods included Cox proportional hazards regression modeling and covariate-adjusted survival estimates. RESULTS Relative to a referent CD8(+) TCL of 401-800 cells per cubic millimeter, risk for bacterial pneumonia was significantly higher when CD8(+) TCLs were <400 (hazard ratio 1.65, P = 0.017, 95% confidence interval 1.10 to 2.49), after adjusting for age, CD4(+) TCL, viral load, and antiretroviral use. There was also a significantly higher risk of death when CD8(+) TCLs were ≤400 cells per cubic millimeter (hazard ratio 1.45, P = 0.04, 95% confidence interval 1.02 to 2.06). Covariate-adjusted survival estimates revealed shorter time to pneumonia and death in this CD8(+) TCL category, and the overall associations of the categorized CD8(+) TCL with bacterial pneumonia and all-cause mortality were each statistically significant (P = 0.017 and P < 0.0001, respectively). CONCLUSIONS CD8(+) TCL ≤400 cells per cubic millimeter was associated with increased risk for pneumonia and all-cause mortality in HIV-infected women in the HERS cohort, suggesting that CD8(+) TCL could serve as an adjunctive biomarker of pneumonia risk and mortality in HIV-infected individuals.
Collapse
|
30
|
Pirofski LA, Casadevall A. Q and A: What is a pathogen? A question that begs the point. BMC Biol 2012; 10:6. [PMID: 22293325 PMCID: PMC3269390 DOI: 10.1186/1741-7007-10-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/31/2012] [Indexed: 02/01/2023] Open
Affiliation(s)
- Liise-anne Pirofski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | |
Collapse
|
31
|
A serotype 3 pneumococcal capsular polysaccharide-specific monoclonal antibody requires Fcγ receptor III and macrophages to mediate protection against pneumococcal pneumonia in mice. Infect Immun 2012; 80:1314-22. [PMID: 22290146 DOI: 10.1128/iai.06081-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibodies to pneumococcal capsular polysaccharide (PPS) are required for PPS-based vaccine-mediated protection against Streptococcus pneumoniae. Previous work established that 1E2, a mouse IgG1 to PPS3 that does not induce serotype 3 (ST3) S. pneumoniae killing by phagocytes in vitro, protects mice from death after intranasal infection with ST3, but its efficacy was abrogated in FcγR (F common gamma receptor)-deficient mice. In this study, we determined whether 1E2 efficacy against pulmonary ST3 infection requires FcγRIII. 1E2 did not protect FcγRIII-deficient (FcγRIII(-/-)) mice. Studies of the mechanism of 1E2-mediated effects showed that it resulted in a marked reduction in lung inflammation in ST3-infected wild-type (Wt [C57BL/6]) mice that was abrogated in FcγRIII(-/-) mice. 1E2 had no effect on early bacterial clearance in the lungs of ST3-infected Wt, FcγRIIB(-/-), or FcγRIII(-/-) mice, but it reduced levels of bacteremia and serum macrophage inflammatory protein-2) (MIP-2), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) in Wt and FcγRIIB(-/-) mice, strains in which it is protective. As previous work showed that neutrophils were dispensable for 1E2 efficacy, we investigated whether macrophages are required for 1E2 efficacy against intranasal infection with ST3 and found that its efficacy was abrogated in Wt mice depleted of macrophages intranasally. In vitro studies revealed that1E2 promoted ST3 internalization by naïve alveolar macrophages but did not induce early intracellular killing. Macrophages from 1E2-treated ST3-infected mice studied ex vivo exhibited more apoptosis than those from FcγRIII(-/-) mice. These findings suggest that 1E2 mediates protection against ST3 in mice by affecting the inflammatory response, perhaps in part via macrophage apoptosis, rather than by inducing early bacterial clearance.
Collapse
|
32
|
Abstract
The view that immunoglobulins function largely by potentiating neutralization, cytotoxicity or phagocytosis is being replaced by a new synthesis whereby antibodies participate in all aspects of the immune response, from protecting the host at the earliest time of encounter with a microbe to later challenges. Perhaps the most transformative concept is that immunoglobulins manifest emergent properties, from their structure and function as individual molecules to their interactions with microbial targets and the host immune system. Given that emergent properties are neither reducible to first principles nor predictable, there is a need for new conceptual approaches for understanding antibody function and mechanisms of antibody immunity.
Collapse
|
33
|
Antibodies to Streptococcus pneumoniae capsular polysaccharide enhance pneumococcal quorum sensing. mBio 2011; 2:mBio.00176-11. [PMID: 21917597 PMCID: PMC3171983 DOI: 10.1128/mbio.00176-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The use of pneumococcal capsular polysaccharide (PPS)-based vaccines has resulted in a substantial reduction in invasive pneumococcal disease. However, much remains to be learned about vaccine-mediated immunity, as seven-valent PPS-protein conjugate vaccine use in children has been associated with nonvaccine serotype replacement and 23-valent vaccine use in adults has not prevented pneumococcal pneumonia. In this report, we demonstrate that certain PPS-specific monoclonal antibodies (MAbs) enhance the transformation frequency of two different Streptococcus pneumoniae serotypes. This phenomenon was mediated by PPS-specific MAbs that agglutinate but do not promote opsonic effector cell killing of the homologous serotype in vitro. Compared to the autoinducer, competence-stimulating peptide (CSP) alone, transcriptional profiling of pneumococcal gene expression after incubation with CSP and one such MAb to the PPS of serotype 3 revealed changes in the expression of competence (com)-related and bacteriocin-like peptide (blp) genes involved in pneumococcal quorum sensing. This MAb was also found to induce a nearly 2-fold increase in CSP2-mediated bacterial killing or fratricide. These observations reveal a novel, direct effect of PPS-binding MAbs on pneumococcal biology that has important implications for antibody immunity to pneumococcus in the pneumococcal vaccine era. Taken together, our data suggest heretofore unsuspected mechanisms by which PPS-specific antibodies could affect genetic exchange and bacterial viability in the absence of host cells. IMPORTANCE Current thought holds that pneumococcal capsular polysaccharide (PPS)-binding antibodies protect against pneumococcus by inducing effector cell opsonic killing of the homologous serotype. While such antibodies are an important part of how pneumococcal vaccines protect against pneumococcal disease, PPS-specific antibodies that do not exhibit this activity but are highly protective against pneumococcus in mice have been identified. This article examines the effect of nonopsonic PPS-specific monoclonal antibodies (MAbs) on the biology of Streptococcus pneumoniae. The results showed that in the presence of a competence-stimulating peptide (CSP), such MAbs increase the frequency of pneumococcal transformation. Further studies with one such MAb showed that it altered the expression of genes involved in quorum sensing and increased competence-induced killing or fratricide. These findings reveal a novel, previously unsuspected mechanism by which certain PPS-specific antibodies exert a direct effect on pneumococcal biology that has broad implications for bacterial clearance, genetic exchange, and antibody immunity to pneumococcus.
Collapse
|
34
|
Cockeran R, Steel HC, Theron AJ, Mitchell TJ, Feldman C, Anderson R. Characterization of the interactions of the pneumolysoid, Δ6 PLY, with human neutrophils in vitro. Vaccine 2011; 29:8780-2. [PMID: 21968446 DOI: 10.1016/j.vaccine.2011.09.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
Abstract
The pneumolysin toxoid, Δ6 PLY, is a prototype pneumococcal protein vaccine candidate. However, its potentially detrimental residual pro-inflammatory interactions with human neutrophils are unknown. In the current study the effects of the toxoid (8-1000 ng/ml) have been compared with those of wild-type pneumolysin (WT/PLY, 8 ng/ml) on neutrophil cytosolic Ca(2+) fluxes, generation of leukotriene B(4) (LTB(4)), and release of matrix metalloproteinase-9 (MMP-9), using spectrofluorimetric, and ELISA procedures (LTB(4) and MMP-9) respectively. Exposure of neutrophils to WT/PLY resulted in influx of Ca(2+) and significant (P<0.05) release of MMP-9 and generation of LTB(4). However, treatment of the cells with Δ6 PLY at concentrations of up to 1000 ng/ml had only trivial effects on Ca(2+) influx and no effects on either release of MMP-9 or LTB(4) production. The observed absence of pro-inflammatory interactions of Δ6 PLY with neutrophils is clearly an important property of this pneumococcal protein vaccine candidate.
Collapse
Affiliation(s)
- R Cockeran
- MRC Unit for Inflammation and Immunity, Department of Immunology, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | | | | | | | | | | |
Collapse
|
35
|
The innate immune response to Streptococcus pneumoniae in the lung depends on serotype and host response. Vaccine 2011; 29:8002-11. [PMID: 21864623 DOI: 10.1016/j.vaccine.2011.08.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 07/22/2011] [Accepted: 08/12/2011] [Indexed: 11/24/2022]
Abstract
Bacteremic pneumonia with some pneumococcal capsular serotypes, including serotype 3 (ST3), has been associated with a higher risk of death, whereas others, such as ST8, are associated with a lower risk. To provide a molecular basis for understanding such differences, we used oligo cDNA microarrays to analyze and compare the gene expression profiles of the lungs of Balb/c mice infected intranasally with either ST3, strain A66.1, or ST8, strain ATCC 6308 (6308). Compared to uninfected controls, infection with either A66.1 or 6308 led to inoculum-dependent expression of IFN-γ inducible CXC chemokines among other pro-inflammatory genes. To investigate the role that IFN-γ inducible chemokines CXCL9, CXCL10 and CXCL11 play in A66.1- and 6308-induced pneumonia, we examined the effect of the absence of their common receptor, CXCR3, on intranasal infection in CXCR3(-/-) (Balb/c) mice. Compared to wild type (WT) mice, virulence of A66.1 but not 6308 was attenuated in CXCR3(-/-) mice. A66.1-infected CXCR3(-/-) mice had fewer lung neutrophils and more alveolar macrophages 48 h after infection and fewer blood CFU 72 h after infection. Histopathological examination of lung sections revealed less inflammation among A66.1-infected CXCR3(-/-) than WT mice. The reduced virulence of A66.1 in CXCR3(-/-) mice suggests that inhibition of the functional activity of IFN-γ inducible chemokines modulates the host response to A66.1, in turn suggesting a novel approach to improve vaccine-mediated protection against ST3 pneumonia.
Collapse
|