1
|
Li X, Ma Y, Li G, Jin G, Xu L, Li Y, Wei P, Zhang L. Leprosy: treatment, prevention, immune response and gene function. Front Immunol 2024; 15:1298749. [PMID: 38440733 PMCID: PMC10909994 DOI: 10.3389/fimmu.2024.1298749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Since the leprosy cases have fallen dramatically, the incidence of leprosy has remained stable over the past years, indicating that multidrug therapy seems unable to eradicate leprosy. More seriously, the emergence of rifampicin-resistant strains also affects the effectiveness of treatment. Immunoprophylaxis was mainly carried out through vaccination with the BCG but also included vaccines such as LepVax and MiP. Meanwhile, it is well known that the infection and pathogenesis largely depend on the host's genetic background and immunity, with the onset of the disease being genetically regulated. The immune process heavily influences the clinical course of the disease. However, the impact of immune processes and genetic regulation of leprosy on pathogenesis and immunological levels is largely unknown. Therefore, we summarize the latest research progress in leprosy treatment, prevention, immunity and gene function. The comprehensive research in these areas will help elucidate the pathogenesis of leprosy and provide a basis for developing leprosy elimination strategies.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yun Ma
- Chronic Infectious Disease Control Section, Nantong Center for Disease Control and Prevention, Nantong, China
| | - Guoli Li
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Guangjie Jin
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Li Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yunhui Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Lianhua Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
2
|
Lu YW, Dong RJ, Yang LH, Liu J, Yang T, Xiao YH, Chen YJ, Wang RR, Li YY. Identification of gene signatures and molecular mechanisms underlying the mutual exclusion between psoriasis and leprosy. Sci Rep 2024; 14:2199. [PMID: 38273053 PMCID: PMC10810956 DOI: 10.1038/s41598-024-52783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024] Open
Abstract
Leprosy and psoriasis rarely coexist, the specific molecular mechanisms underlying their mutual exclusion have not been extensively investigated. This study aimed to reveal the underlying mechanism responsible for the mutual exclusion between psoriasis and leprosy. We obtained leprosy and psoriasis data from ArrayExpress and GEO database. Differential expression analysis was conducted separately on the leprosy and psoriasis using DEseq2. Differentially expressed genes (DEGs) with opposite expression patterns in psoriasis and leprosy were identified, which could potentially involve in their mutual exclusion. Enrichment analysis was performed on these candidate mutually exclusive genes, and a protein-protein interaction (PPI) network was constructed to identify hub genes. The expression of these hub genes was further validated in an external dataset to obtain the critical mutually exclusive genes. Additionally, immune cell infiltration in psoriasis and leprosy was analyzed using single-sample gene set enrichment analysis (ssGSEA), and the correlation between critical mutually exclusive genes and immune cells was also examined. Finally, the expression pattern of critical mutually exclusive genes was evaluated in a single-cell transcriptome dataset. We identified 1098 DEGs in the leprosy dataset and 3839 DEGs in the psoriasis dataset. 48 candidate mutually exclusive genes were identified by taking the intersection. Enrichment analysis revealed that these genes were involved in cholesterol metabolism pathways. Through PPI network analysis, we identified APOE, CYP27A1, FADS1, and SOAT1 as hub genes. APOE, CYP27A1, and SOAT1 were subsequently validated as critical mutually exclusive genes on both internal and external datasets. Analysis of immune cell infiltration indicated higher abundance of 16 immune cell types in psoriasis and leprosy compared to normal controls. The abundance of 6 immune cell types in psoriasis and leprosy positively correlated with the expression levels of APOE and CYP27A1. Single-cell data analysis demonstrated that critical mutually exclusive genes were predominantly expressed in Schwann cells and fibroblasts. This study identified APOE, CYP27A1, and SOAT1 as critical mutually exclusive genes. Cholesterol metabolism pathway illustrated the possible mechanism of the inverse association of psoriasis and leprosy. The findings of this study provide a basis for identifying mechanisms and therapeutic targets for psoriasis.
Collapse
Affiliation(s)
- You-Wang Lu
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Rong-Jing Dong
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Lu-Hui Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jiang Liu
- Department of Reproduction and Genetics, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Ting Yang
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Yong-Hong Xiao
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yong-Jun Chen
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China.
| | - Rui-Rui Wang
- College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China.
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
3
|
Ge G, Shang J, Gan T, Chen Z, Pan C, Mei Y, Long S, Wu A, Wang H. Psoriasis and Leprosy: An Arcane Relationship. J Inflamm Res 2023; 16:2521-2533. [PMID: 37337513 PMCID: PMC10277007 DOI: 10.2147/jir.s407650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/18/2023] [Indexed: 06/21/2023] Open
Abstract
Purpose Psoriasis (Ps) and leprosy are chronic inflammatory skin disorders, characterised by enhanced innate and adaptive immunity. Ps and leprosy rarely coexist. The molecular immune mechanism of the Ps and leprosy rarely coexistence is unclear. Patients and Methods RNA-sequencing (RNA-seq) was performed on 20 patients with Ps, 5 adults with lepromatous leprosy (L-lep), and 5 patients with tuberculoid leprosy (T-lep) to analyse the differentially expressed genes (DEGs) between them. Moreover, the biological mechanism of Ps and leprosy was explored by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Ontology (GO) analysis, Gene Set Enrichment Analysis analysis, and protein-protein interaction (PPI) analyses. Finally, 13 DEGs of 10 skin biopsies of Ps patients, 6 samples of L-lep patients, 6 samples of T-lep patients and 5 healthy controls were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Results The PPI network was constructed and primarily associated with immune response, IL-17 signalling, and Toll-like receptor pathway between Ps and leprosy. Th17 markers (interleukin (IL)-19, IL-20, IL-36A, IL-36G, IL-22, IL-17A, and lipocalin-2 (LCN2) had higher expression in Ps than in L-lep and T-lep, whereas macrophage biomarkers (CLEC4E and TREM2), SPP1, and dendritic cell (DC)-related hallmarks (ITGAX) and TNF-a had significantly lower expression across Ps and T-lep than in L-lep. Conclusion To put it simply, Ps patients with IL-17A, IL-19, IL-20, IL-36A, IL-36G, and IL-22 in conjunction with LCN2 with up-graduated expression might be not susceptible to L-lep. However, high levels of CLEC4E, TREM2, and SPP1 in L-lep patients indicated that they unlikely suffered from Ps.
Collapse
Affiliation(s)
- Gai Ge
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Jingzhe Shang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Suzhou Institute of Systems Medicine, Suzhou, People's Republic of China
| | - Tian Gan
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Zhiming Chen
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Chun Pan
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Youming Mei
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
| | - Siyu Long
- Department of Dermatology, Beijing Chao-Yang Hospital & Capital Medical University, Beijing, People's Republic of China
| | - Aiping Wu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Suzhou Institute of Systems Medicine, Suzhou, People's Republic of China
| | - Hongsheng Wang
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China
- National Center for Sexually Transmitted Disease and Leprosy Control, China Centers for Disease Control and Prevention, Nanjing, People's Republic of China
- Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Wang X, Liu Y. Offense and Defense in Granulomatous Inflammation Disease. Front Cell Infect Microbiol 2022; 12:797749. [PMID: 35846773 PMCID: PMC9277142 DOI: 10.3389/fcimb.2022.797749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Granulomatous inflammation (GI) diseases are a group of chronic inflammation disorders characterized by focal collections of multinucleated giant cells, epithelioid cells and macrophages, with or without necrosis. GI diseases are closely related to microbes, especially virulent intracellular bacterial infections are important factors in the progression of these diseases. They employ a range of strategies to survive the stresses imposed upon them and persist in host cells, becoming the initiator of the fighting. Microbe-host communication is essential to maintain functions of a healthy host, so defense capacity of hosts is another influence factor, which is thought to combine to determine the result of the fighting. With the development of gene research technology, many human genetic loci were identified to be involved in GI diseases susceptibility, providing more insights into and knowledge about GI diseases. The current review aims to provide an update on the most recent progress in the identification and characterization of bacteria in GI diseases in a variety of organ systems and clinical conditions, and examine the invasion and escape mechanisms of pathogens that have been demonstrated in previous studies, we also review the existing data on the predictive factors of the host, mainly on genetic findings. These strategies may improve our understanding of the mechanisms underlying GI diseases, and open new avenues for the study of the associated conditions in the future.
Collapse
Affiliation(s)
- Xinwen Wang
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yuan Liu
- Shaanxi International Joint Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Zhang R, Cao L, Chen W, Ge H, Hu X, Li Z, Wang Y, Fan W, Yong L, Yu Y, Mao Y, Zhen Q, Liu H, Zhang F, Sun L. Fine-Mapping of the Major Histocompatibility Complex Region Linked to Leprosy in Northern China. Front Genet 2022; 12:768259. [PMID: 34976012 PMCID: PMC8716717 DOI: 10.3389/fgene.2021.768259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/29/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Leprosy is a chronic infectious skin and neurological disease, and genetic background is considered to be one of the major factors of risk. The major histocompatibility complex (MHC) region not only affects susceptibility to leprosy but also its development and outcome. Given the complex traits of the MHC region, variants and the potential mechanism by which HLA influences leprosy development need to be further explored. Methods: We extracted previous genome-wide association study data from the Northern Han Chinese population to perform HLA fine-mapping. Using the 1,000 Genome Project Phase 3 dataset as the reference panel, single-nucleotide polymorphisms (SNP), insertion and deletion (INDEL) and copy number variant (CNV) imputation were carried out. HLA classical alleles and amino acids in the MHC region were imputed using the HAN-MHC database. Further stepwise regression analysis was conducted to analyze independent signals of variants related to leprosy. Results: We identified four independent variants: esv3608598, rs7754498, rs3130781 and rs144388449. Among them, esv3608598 is a CNV and the first HLA CNV associated with leprosy risk. SNP annotation using RegulomeDB, HaploReg, and rVarBase showed that three SNPs are likely to affect the pathogenesis of leprosy. Conclusion: In summary, this is the first study to assess the association between HLA CNV and leprosy susceptibility in a Northern Han Chinese population. By fine mapping of the MHC region in this population, our findings provide evidence for the contribution of HLA to leprosy susceptibility.
Collapse
Affiliation(s)
- Ruixue Zhang
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Lu Cao
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Xia Hu
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Zhuo Li
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yirui Wang
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Wencheng Fan
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Liang Yong
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yafen Yu
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yiwen Mao
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Qi Zhen
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liangdan Sun
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
6
|
HLA-DPB1 and HLA-C alleles are associated with leprosy in a Brazilian population. Hum Immunol 2020; 82:11-18. [PMID: 33189423 DOI: 10.1016/j.humimm.2020.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022]
Abstract
Despite intense efforts, the number of new cases of leprosy has remained significantly high over the past 20 years. Host genetic background is strongly linked to the pathogenesis of this disease, which is caused by Mycobacterium leprae (M. leprae), and there is a consensus that the most significant genetic association with leprosy is attributed to the major histocompatibility complex (MHC). Here, we investigated the association of human leukocyte antigen (HLA) class I and II genes with leprosy in a Brazilian population encompassing 826 individuals from a hyperendemic area of Brazil; HLA typing of class I (-A, -B, -C) and class II (-DRB1, -DQA1, -DQB1, -DPA1, and -DPB1) loci was conducted. Initially, the associations were tested using the chi-square test, with p-values adjusted using the false discovery rate (FDR) method. Next, statistically significant signals of the associations were submitted to logistic regression analyses to adjust for sex and molecular ancestry data. The results showed that HLA-C*08, -DPB1*04, and -DPB1*18 were associated with protective effects, while HLA-C*12 and -DPB1*105 were associated with susceptibility to leprosy. Thus, our findings reveal new associations between leprosy and the HLA-DPB1 locus and confirm previous associations between the HLA-C locus and leprosy.
Collapse
|
7
|
Jarduli LR, Alves HV, de Souza VH, Uaska Sartori PV, Fava VM, de Souza FC, Marcos EVC, Pereira AC, Dias-Baptista IMF, Virmond MDCL, de Moraes MO, Mira MT, Visentainer JEL. Association of MICA and HLA-B alleles with leprosy in two endemic populations in Brazil. Int J Immunogenet 2020; 48:25-35. [PMID: 33151039 DOI: 10.1111/iji.12518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Leprosy is a prevalent disease in Brazil, which ranks as the country with the second highest number of cases in the world. The disease manifests in a spectrum of forms, and genetic differences in the host can help to elucidate the immunopathogenesis. For a better understanding of MICA association with leprosy, we performed a case-control and a family-based study in two endemic populations in Brazil. MICA and HLA-B alleles were evaluated in 409 leprosy patients and in 419 healthy contacts by PCR-SSOP-Luminex-based technology. In the familial study, analysis of 46 families was completed by direct sequencing of all exons and 3'/5'untranslated regions, using the Ilumina MiSeq platform. All data were collected between 2006 and 2009. Statistical analysis was performed using the Chi-square or Fisher's exact test together with a multivariate analysis. Family-based association was assessed by transmission disequilibrium test (TDT) software FBAT 2.0.4. We found associations between the haplotype MICA*002-HLA-B*35 with leprosy in both the per se and the multibacillary (MB) forms when compared to healthy contacts. The MICA allele *008 was associated with the clinical forms of paucibacillary (PB). Additionally, MICA*029 was associated with the clinical forms of MB. The association of MICA*029 allele (MICA-A4 variant) with the susceptibility to the MB form suggests this variant for the transmembrane domain of the MICA molecule may be a risk factor for leprosy. Two MICA and nine HLA-B variants were found associated with leprosy per se in the Colônia do Prata population. Linkage disequilibrium analysis revealed perfect linkage disequilibrium (LD) between HLA-B markers rs2596498 and rs2507992, and high LD (R2 = .92) between these and the marker rs2442718. This familial study demonstrates that MICA association signals are not independent from those observed for HLA-B. Our findings contribute the knowledge pool of the immunogenetics of Hansen's disease and reveals a new association of the MICA*029 allele.
Collapse
Affiliation(s)
- Luciana Ribeiro Jarduli
- Department of Clinical Analysis and Biomedicine, Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Brazil
| | - Hugo Vicentin Alves
- Department of Clinical Analysis and Biomedicine, Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Brazil
| | - Victor Hugo de Souza
- Department of Clinical Analysis and Biomedicine, Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Brazil
| | | | - Vinícius Medeiros Fava
- Infectious Diseases and Immunity in Global Health (IDIGH) Program at the Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada
| | | | | | | | | | | | | | - Marcelo Távora Mira
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Jeane Eliete Laguila Visentainer
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.,Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| |
Collapse
|
8
|
The complex pattern of genetic associations of leprosy with HLA class I and class II alleles can be reduced to four amino acid positions. PLoS Pathog 2020; 16:e1008818. [PMID: 32776973 PMCID: PMC7440659 DOI: 10.1371/journal.ppat.1008818] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/20/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Leprosy is a chronic disease caused by Mycobacterium leprae. Worldwide, more than 200,000 new patients are affected by leprosy annually, making it the second most common mycobacterial disease after tuberculosis. The MHC/HLA region has been consistently identified as carrying major leprosy susceptibility variants in different populations at times with inconsistent results. To establish the unambiguous molecular identity of classical HLA class I and class II leprosy susceptibility factors, we applied next-generation sequencing to genotype with high-resolution 11 HLA class I and class II genes in 1,155 individuals from a Vietnamese leprosy case-control sample. HLA alleles belonging to an extended haplotype from HLA-A to HLA-DPB1 were associated with risk to leprosy. This susceptibility signal could be reduced to the HLA-DRB1*10:01~ HLA-DQA1*01:05 alleles which were in complete linkage disequilibrium (LD). In addition, haplotypes containing HLA-DRB3~ HLA-DRB1*12:02 and HLA-C*07:06~ HLA-B*44:03~ HLA-DRB1*07:01 alleles were found as two independent protective factors for leprosy. Moreover, we replicated the previously associated HLA-DRB1*15:01 as leprosy risk factor and HLA-DRB1*04:05~HLA-DQA1*03:03 as protective alleles. When we narrowed the analysis to the single amino acid level, we found that the associations of the HLA alleles were largely captured by four independent amino acids at HLA-DRβ1 positions 57 (D) and 13 (F), HLA-B position 63 (E) and HLA-A position 19 (K). Hence, analyses at the amino acid level circumvented the ambiguity caused by strong LD of leprosy susceptibility HLA alleles and identified four distinct leprosy susceptibility factors. Despite global efforts to eliminate leprosy over the past 25 years, more than 200,000 new cases are reported annually, and leprosy still represents a major public health problem in endemic regions. Leprosy presents a strong link with the host genetic background. The most significant susceptibility factors are located in the MHC region and likely involve classical HLA genes. However, the molecular identity of the HLA class I/II-leprosy risk factor(s) has been a matter of longstanding scientific dispute. By conducting a comprehensive sequenced-based analysis of HLA class I and class II genes, we are able to provide a unifying view of the complex relationship of leprosy susceptibility and HLA alleles. In addition, we show that four amino acid polymorphisms in HLA-DRβ1, HLA-B and HLA-A are sufficient to explain the majority of leprosy-HLA associations which opens the way for select protein-HLA peptide binding studies.
Collapse
|
9
|
Teles SF, Silva EA, Souza RMD, Tomimori J, Florian MC, Souza RO, Marcos EVC, Souza-Santana FCD, Gamba MA. Association between NDO-LID and PGL-1 for leprosy and class I and II human leukocyte antigen alleles in an indigenous community in Southwest Amazon. Braz J Infect Dis 2020; 24:296-303. [PMID: 32589879 PMCID: PMC9392080 DOI: 10.1016/j.bjid.2020.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/11/2020] [Accepted: 05/31/2020] [Indexed: 11/25/2022] Open
Abstract
The frequencies of the Human leukocyte antigen (HLA) alleles in the Puyanawa indigenous reserve population and their association with the NDO-LID and ELISA PGL-1 rapid serological test was assessed. This was a cross-sectional study with an epidemiological clinical design conducted in two indigenous communities in the state of Acre, Brazil. Blood was collected in a tube with EDTA to identify HLA alleles and perform serological tests. DNA was obtained using the salting out procedure. The LabType™ technique (One-Lambda-USA) was used for HLA class I (loci A*, B* and C*) and II (loci DRB1*, DQA1* and DQB1*) typing. Allele frequency was obtained by direct count, and the chi-square test was used to assess the association with the NDO-LID and PGL-1 tests. The most frequent alleles in the two communities were: HLA-A*02:01, HLA-B*40:02, HLA-DRB1*16:02, HLA-DQA1*05:05 and HLA-DQB1*03:01. The allele HLA-C*04:01 was the most common in the Barão community, and the allele HLA-C*07:01 in Ipiranga. Among individuals who presented seropositivity to the NDO-LID test, the association with alleles HLA-A*02 (43.18% vs 24.8%, p = 0.03, OR = 2.35) and HLA-B*53 (6.83% vs 0.0%, p = 0.03, OR = 8.95) was observed in the Barão community. HLA-B*15 was associated with non-seroconversion to the NDO-LID test in Ipiranga. In both communities, HLA-B*40 and HLA-C*03 were associated with positive serological response to ELISA PGL-1. The HLA class I and II alleles most frequently found in this study have already been described among Terena indigenous groups, and HLA class I contributes to seroconversion to NDO-LID and PGL-1 tests in inhabitants of the Barão and Ipiranga communities.
Collapse
|
10
|
Gzara C, Dallmann-Sauer M, Orlova M, Van Thuc N, Thai VH, Fava VM, Bihoreau MT, Boland A, Abel L, Alcaïs A, Schurr E, Cobat A. Family-based genome-wide association study of leprosy in Vietnam. PLoS Pathog 2020; 16:e1008565. [PMID: 32421744 PMCID: PMC7259797 DOI: 10.1371/journal.ppat.1008565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/29/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Leprosy is a chronic infectious disease of the skin and peripheral nerves with a strong genetic predisposition. Recent genome-wide approaches have identified numerous common variants associated with leprosy, almost all in the Chinese population. We conducted the first family-based genome-wide association study of leprosy in 622 affected offspring from Vietnam, followed by replication in an independent sample of 1181 leprosy cases and 668 controls of the same ethnic origin. The most significant results were observed within the HLA region, in which six SNPs displayed genome-wide significant associations, all of which were replicated in the independent case/control sample. We investigated the signal in the HLA region in more detail, by conducting a multivariate analysis on the case/control sample of 319 GWAS-suggestive HLA hits for which evidence for replication was obtained. We identified three independently associated SNPs, two located in the HLA class I region (rs1265048: OR = 0.69 [0.58-0.80], combined p-value = 5.53x10-11; and rs114598080: OR = 1.47 [1.46-1.48], combined p-value = 8.77x10-13), and one located in the HLA class II region (rs3187964 (OR = 1.67 [1.55-1.80], combined p-value = 8.35x10-16). We also validated two previously identified risk factors for leprosy: the missense variant rs3764147 in the LACC1 gene (OR = 1.52 [1.41-1.63], combined p-value = 5.06x10-14), and the intergenic variant rs6871626 located close to the IL12B gene (OR = 0.73 [0.61-0.84], combined p-value = 6.44x10-8). These results shed new light on the genetic control of leprosy, by dissecting the influence of HLA SNPs, and validating the independent role of two additional variants in a large Vietnamese sample.
Collapse
Affiliation(s)
- Chaima Gzara
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Université de Paris, Imagine Institute, Paris, France
| | - Monica Dallmann-Sauer
- McGill International TB Centre, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine and Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Marianna Orlova
- McGill International TB Centre, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine and Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Nguyen Van Thuc
- Hospital for Dermato-Venereology, District, Ho Chi Minh City, Vietnam
| | - Vu Hong Thai
- Hospital for Dermato-Venereology, District, Ho Chi Minh City, Vietnam
| | - Vinicius M. Fava
- McGill International TB Centre, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Marie-Thérèse Bihoreau
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Université de Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, United States of America
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Université de Paris, Imagine Institute, Paris, France
| | - Erwin Schurr
- McGill International TB Centre, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine and Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Université de Paris, Imagine Institute, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Abstract
Leprosy is a chronic infectious disease of the skin and peripheral nerves that presents a strong link with the host genetic background. Different approaches in genetic studies have been applied to leprosy and today leprosy is among the infectious diseases with the greatest number of genetic risk variants identified. Several leprosy genes have been implicated in host immune response to pathogens and point to specific pathways that are relevant for host defense to infection. In addition, host genetic factors are also involved in the heterogeneity of leprosy clinical manifestations and in excessive inflammatory responses that occur in some leprosy patients. Finally, genetic studies in leprosy have provided strong evidence of pleiotropic effects between leprosy and other complex diseases, such as immune-mediated or neurodegenerative diseases. These findings not only impact on the field of leprosy and infectious diseases but also make leprosy a good model for the study of complex immune-mediated diseases. Here, we summarize recent genetic findings in leprosy susceptibility and discuss the overlap of the genetic control in leprosy with Parkinson's disease and inflammatory bowel disease. Moreover, some limitations, challenges, and potential new avenues for future genetics studies of leprosy are also discussed in this review.
Collapse
|
12
|
VDR polymorphism, gene expression and vitamin D levels in leprosy patients from North Indian population. PLoS Negl Trop Dis 2018; 12:e0006823. [PMID: 30481178 PMCID: PMC6286024 DOI: 10.1371/journal.pntd.0006823] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 12/07/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae and mainly affects skin, peripheral nerves. Vitamin D receptor (VDR) gene polymorphism has been found to be associated with leprosy. Vitamin D has been shown to control several host immunomodulating properties through VDR gene. Vitamin D deficiency was also found to be linked to an increased risk for several infections and metabolic diseases. Objective In the present study, we investigated the association of VDR gene polymorphism, mRNA gene expression of VDR and the vitamin D levels with leprosy and its reactional states. Methodology A total of 305 leprosy patients consisting of tuberculoid (TT), borderline tuberculoid (BT), borderline lepromatous (BL), lepromatous leprosy (LL), as well as 200 healthy controls were enrolled in the study. We identified single nucleotide polymorphisms (SNPs) of VDR Taq1, Fok1 and Apa1, as well as the expression of VDR mRNA gene using PCR-based restriction fragment length polymorphism (RFLP) analysis and real-time PCR respectively. We also performed ELISA to measure vitamin D levels. Result We observed that SNP of VDR gene (Fok1 and Taq1) are associated with the leprosy disease. The allelic frequency distribution of T and t allele (p = 0.0037), F and f allele (p = 0.0024) was significantly higher in leprosy patients and healthy controls. ff genotype of Fok1 was found to be associated with leprosy patients [p = 0.0004; OR (95% CI) 3.148 (1.662–5.965)]. The recessive model of Fok1 genotype was also found to be significantly associated in leprosy patients in comparison to healthy controls [p = 0.00004; OR (95% CI) 2.85 (1.56–5.22)]. Leprosy patients are significantly associated with t-F-a haplotype. Further, VDR gene expression was found to be lower in non-reaction group compared to that of reaction group of leprosy and healthy controls. Paradoxically, we noted no difference in the levels of vitamin D between leprosy patients and healthy controls. Conclusion Blood levels of vitamin D do not play any role in clinical manifestations of any forms of leprosy. ff genotype of Fok1 and tt genotype of Taq1 was found to be associated with leprosy per se. Association of t-F-a haplotype with leprosy was found to be significant and could be used as a genetic marker to identify individuals at high risk for developing leprosy. VDR gene expression was lower in TT/BT and BL/LL groups of leprosy in comparison to that of healthy controls. Present study was carried out to find out the association of vitamin D receptor (VDR) gene polymorphism, mRNA gene expression of VDR gene and level of vitamin D with leprosy reactions and leprosy patients. Surprisingly, level of vitamin D in leprosy patients was not found to be associated with the disease and its manifestations. VDR genotypes (Fok1 and Taq1) were found to be associated with leprosy patients. t-F-a haplotype was significantly associated with leprosy patients. Gene expression of vitamin D receptor was lower in leprosy patients in comparison to healthy controls.
Collapse
|
13
|
Dallmann-Sauer M, Correa-Macedo W, Schurr E. Human genetics of mycobacterial disease. Mamm Genome 2018; 29:523-538. [PMID: 30116885 PMCID: PMC6132723 DOI: 10.1007/s00335-018-9765-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
Abstract
Mycobacterial diseases are caused by members of the genus Mycobacterium, acid-fast bacteria characterized by the presence of mycolic acids within their cell walls. Claiming almost 2 million lives every year, tuberculosis (TB) is the most common mycobacterial disease and is caused by infection with M. tuberculosis and, in rare cases, by M. bovis or M. africanum. The second and third most common mycobacterial diseases are leprosy and buruli ulcer (BU), respectively. Both diseases affect the skin and can lead to permanent sequelae and deformities. Leprosy is caused by the uncultivable M. leprae while the etiological agent of BU is the environmental bacterium M. ulcerans. After exposure to these mycobacterial species, a majority of individuals will not progress to clinical disease and, among those who do, inter-individual variability in disease manifestation and outcome can be observed. Susceptibility to mycobacterial diseases carries a human genetic component and intense efforts have been applied over the past decades to decipher the exact nature of the genetic factors controlling disease susceptibility. While for BU this search was mostly conducted on the basis of candidate genes association studies, genome-wide approaches have been widely applied for TB and leprosy. In this review, we summarize some of the findings achieved by genome-wide linkage, association and transcriptome analyses in TB disease and leprosy and the recent genetic findings for BU susceptibility.
Collapse
Affiliation(s)
- Monica Dallmann-Sauer
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada. .,The McGill International TB Centre, McGill University, Montreal, QC, Canada. .,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada. .,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
14
|
Cambri G, Mira MT. Genetic Susceptibility to Leprosy-From Classic Immune-Related Candidate Genes to Hypothesis-Free, Whole Genome Approaches. Front Immunol 2018; 9:1674. [PMID: 30079069 PMCID: PMC6062607 DOI: 10.3389/fimmu.2018.01674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/06/2018] [Indexed: 01/15/2023] Open
Abstract
Genetics plays a crucial role in controlling susceptibility to infectious diseases by modulating the interplay between humans and pathogens. This is particularly evident in leprosy, since the etiological agent, Mycobacterium leprae, displays semiclonal characteristics not compatible with the wide spectrum of disease phenotypes. Over the past decades, genetic studies have unraveled several gene variants as risk factors for leprosy per se, disease clinical forms and the occurrence of leprosy reactions. As expected, several of these genes are immune-related; yet, hypothesis-free approaches have led to genes not classically linked to immune response. The PARK2, originally described as a Parkinson's disease gene, illustrates the case: Parkin-the protein coded by PARK2-was defined as an important player regulating innate and adaptive immune responses only years after its description as a leprosy susceptibility gene. Interestingly, even with the use of powerful hypothesis-free study designs such as genome-wide association studies, most of the major gene effect controlling leprosy susceptibility remains elusive. One hypothesis to explain this "hidden heritability" is that rare variants not captured by classic association studies are of critical importance. To address this question, massively parallel sequencing of large segments of the human genome-even whole exomes/genomes-is an alternative to properly identify rare, disease-causing mutations. These mutations may then be investigated through sophisticated approaches such as cell reprogramming and genome editing applied to create in vitro models for functional leprosy studies.
Collapse
Affiliation(s)
- Geison Cambri
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Marcelo Távora Mira
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
15
|
Cardona-Pemberthy V, Rendón M, Beltrán JC, Soto-Ospina A, Muñoz-Gomez A, Araque-Marín P, Corredor M, Bedoya G, Cardona-Castro N. Genetic variants, structural, and functional changes of Myelin Protein Zero and Mannose-Binding Lectin 2 protein involved in immune response and its allelic transmission in families of patients with leprosy in Colombia. INFECTION GENETICS AND EVOLUTION 2018; 61:215-223. [DOI: 10.1016/j.meegid.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/09/2018] [Accepted: 04/01/2018] [Indexed: 10/17/2022]
|
16
|
Manry J, Nédélec Y, Fava VM, Cobat A, Orlova M, Thuc NV, Thai VH, Laval G, Barreiro LB, Schurr E. Deciphering the genetic control of gene expression following Mycobacterium leprae antigen stimulation. PLoS Genet 2017; 13:e1006952. [PMID: 28793313 PMCID: PMC5565194 DOI: 10.1371/journal.pgen.1006952] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/21/2017] [Accepted: 08/02/2017] [Indexed: 12/02/2022] Open
Abstract
Leprosy is a human infectious disease caused by Mycobacterium leprae. A strong host genetic contribution to leprosy susceptibility is well established. However, the modulation of the transcriptional response to infection and the mechanism(s) of disease control are poorly understood. To address this gap in knowledge of leprosy pathogenicity, we conducted a genome-wide search for expression quantitative trait loci (eQTL) that are associated with transcript variation before and after stimulation with M. leprae sonicate in whole blood cells. We show that M. leprae antigen stimulation mainly triggered the upregulation of immune related genes and that a substantial proportion of the differential gene expression is genetically controlled. Indeed, using stringent criteria, we identified 318 genes displaying cis-eQTL at an FDR of 0.01, including 66 genes displaying response-eQTL (reQTL), i.e. cis-eQTL that showed significant evidence for interaction with the M. leprae stimulus. Such reQTL correspond to regulatory variations that affect the interaction between human whole blood cells and M. leprae sonicate and, thus, likely between the human host and M. leprae bacilli. We found that reQTL were significantly enriched among binding sites of transcription factors that are activated in response to infection, and that they were enriched among single nucleotide polymorphisms (SNPs) associated with susceptibility to leprosy per se and Type-I Reaction, and seven of them have been targeted by recent positive selection. Our study suggested that natural selection shaped our genomic diversity to face pathogen exposure including M. leprae infection. Each year, 200,000 new leprosy cases are reported worldwide. While there is unambiguous evidence for a role of host genetics in leprosy pathogenesis, the mechanisms by which the human host fights the infection are poorly understood. Here, we highlight the search for naturally occurring genetic variations that modulate gene expression levels following exposure to sonicate of Mycobacterium leprae, the bacterium causing the disease. Because M. leprae is not cultivable and the genuine immune cells involved in the host response during infection are still unknown, we performed a genome-wide search for such genetic variations after stimulation of whole-blood from leprosy patients with M. leprae sonicate. This design allowed to provide a general framework for the genetic control of host responses to M. leprae and outlined the contribution of host genetics to leprosy pathogenesis. Among the M. leprae-dependent genetic regulators of gene expression levels there was an enrichment of variants (i) associated with leprosy, (ii) located in transcription factor binding sites and (iii) targeted by recent positive selection.
Collapse
Affiliation(s)
- Jérémy Manry
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
- * E-mail: (ES); (JM)
| | - Yohann Nédélec
- Department of Genetics, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Biochemistry, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U.1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Vu Hong Thai
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Guillaume Laval
- Institut Pasteur, Unit of Human Evolutionary Genetics, Department of Genomes and Genetics, Paris, France
- Centre National de la Recherche Scientifique, URA3012, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Luis B. Barreiro
- Department of Genetics, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
- * E-mail: (ES); (JM)
| |
Collapse
|
17
|
Kim K, Bang SY, Lee S, Lee HS, Shim SC, Kang YM, Suh CH, Sun C, Nath SK, Bae SC, Kim TH. An HLA-C amino-acid variant in addition to HLA-B*27 confers risk for ankylosing spondylitis in the Korean population. Arthritis Res Ther 2015; 17:342. [PMID: 26613595 PMCID: PMC4662802 DOI: 10.1186/s13075-015-0855-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/06/2015] [Indexed: 08/30/2023] Open
Abstract
INTRODUCTION The presence of the HLA-B*27 allele is a major risk factor for the development of ankylosing spondylitis (AS), which causes chronic inflammation of the spine and other sites. We investigated residual effects outside HLA-B within the major histocompatibility complex (MHC) region in the Korean population. METHODS Using the Korean HLA reference panel, we inferred the classic HLA alleles and amino-acid residues of the six HLA genes (HLA-A, -B, -C, -DPB1, -DQB1, and -DRB1) and MHC single-nucleotide polymorphisms in 3820 Korean subjects, including 654 Korean cases of AS and 3166 controls, who were genotyped by using Immunochip. Logistic regression and log-likelihood ratio tests were used in AS association tests for imputed markers. RESULTS The most significant associations were identified at amino-acid positions in the epitope-binding site of HLA-B (P = 1.71 × 10(-481) at position 70, P = 7.20 × 10(-479) at position 97, and P = 2.54 × 10(-484) at positions 114), highlighting the risk effect of the HLA-B*27 allele and the protective effects of other classic alleles. A secondary effect was located at the leucine at amino-acid position 116 in the epitope-binding site of HLA-C (P = 1.69 × 10(-14)), completely tagging the HLA-C*15:02 allele. This residue had a large effect in HLA-B*27-negative patients (odds ratio = 6.6, 95 % confidence interval = 3.8 to 11.4). CONCLUSIONS The four amino-acid positions of HLA-B and -C account for most of the associations between AS and MHC in the Korean population. This finding updates the list of AS susceptibility loci and provides new insight into AS pathogenesis mediated by MHC class I molecules.
Collapse
Affiliation(s)
- Kwangwoo Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Seunghun Lee
- Department of Radiology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Seung-Cheol Shim
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.
| | - Young Mo Kang
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University School of Medicine, 680, Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK, 73104, USA.
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK, 73104, USA.
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
18
|
Sauer MED, Salomão H, Ramos GB, D'Espindula HRS, Rodrigues RSA, Macedo WC, Sindeaux RHM, Mira MT. Genetics of leprosy: Expected-and unexpected-developments and perspectives. Clin Dermatol 2015; 34:96-104. [PMID: 26773629 DOI: 10.1016/j.clindermatol.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A solid body of evidence produced over decades of intense research supports the hypothesis that leprosy phenotypes are largely dependent on the genetic characteristics of the host. The early evidence of a major gene effect controlling susceptibility to leprosy came from studies of familial aggregation, twins, and complex segregation analysis. Later, linkage and association analysis, first applied to the investigation of candidate genes and chromosomal regions and more recently, to genome-wide scans, have revealed several HLA and non-HLA gene variants as risk factors for leprosy phenotypes such as disease per se, its clinical forms, and leprosy reactions. In addition, powerful, hypothesis-free strategies such as genome-wide association studies have led to an exciting, unexpected development: Leprosy susceptibility genes seem to be shared with Crohn's and Parkinson's disease. Today, a major challenge is to find the exact variants causing the biological effect underlying the genetic associations. New technologies, such as Next Generation Sequencing-that allows, for the first time, the cost- and time-effective sequencing of a complete human genome-hold the promise to reveal such variants; thus, strategies can be developed to study the functional impact of these variants in the context of infection, hopefully leading to the development of new targets for leprosy treatment and prevention.
Collapse
Affiliation(s)
- Monica E D Sauer
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Heloisa Salomão
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Geovana B Ramos
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Helena R S D'Espindula
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Rafael S A Rodrigues
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Wilian C Macedo
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Renata H M Sindeaux
- School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Marcelo T Mira
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil; School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
19
|
Salie M, Daya M, Möller M, Hoal EG. Activating KIRs alter susceptibility to pulmonary tuberculosis in a South African population. Tuberculosis (Edinb) 2015; 95:817-821. [PMID: 26542219 DOI: 10.1016/j.tube.2015.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
Abstract
We investigate the role of killer immunoglobulin-like receptor (KIR) genes and human leukocyte antigen class-I (HLA) variants in susceptibility to tuberculosis in a South African population. In a sample set comprising 408 TB cases and 351 healthy controls, we show that the KIR3DS1 gene and KIR genotypes with five or more activating KIRs, and the presence of 3DS1, protect against developing active TB in the South African Coloured population. Several HLA class-I alleles were identified as susceptibility factors for TB disease. However, none of the KIR-HLA compound genotypes were found to be associated with TB. Our data suggests that the KIR genes may play an important role in TB disease.
Collapse
Affiliation(s)
- Muneeb Salie
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Michelle Daya
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
20
|
Sauer MED, Salomão H, Ramos GB, D'Espindula HRS, Rodrigues RSA, Macedo WC, Sindeaux RHM, Mira MT. Genetics of leprosy: expected and unexpected developments and perspectives. Clin Dermatol 2015; 33:99-107. [PMID: 25432815 DOI: 10.1016/j.clindermatol.2014.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A solid body of evidence produced over decades of intense research supports the hypothesis that leprosy phenotypes are largely dependent on the genetic characteristics of the host. The early evidence of a major gene effect controlling susceptibility to leprosy came from studies of familial aggregation, twins, and Complex Segregation Analysis. Later, linkage and association analysis, first applied to the investigation of candidate genes and chromosomal regions and more recently, to genome-wide scans, have revealed several leukocyte antigen complex and nonleukocyte antigen complex gene variants as risk factors for leprosy phenotypes such as disease per se, its clinical forms and leprosy reactions. In addition, powerful, hypothesis-free strategies such as Genome-Wide Association Studies have led to an exciting, unexpected development: Leprosy susceptibility genes seem to be shared with Crohn's and Parkinson's diseases. Today, a major challenge is to find the exact variants causing the biological effect underlying the genetic associations. New technologies, such as Next Generation Sequencing that allows, for the first time, the cost and time-effective sequencing of a complete human genome, hold the promise to reveal such variants. Strategies can be developed to study the functional effect of these variants in the context of infection, hopefully leading to the development of new targets for leprosy treatment and prevention.
Collapse
Affiliation(s)
- Monica E D Sauer
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Heloisa Salomão
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Geovana B Ramos
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Helena R S D'Espindula
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Rafael S A Rodrigues
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Wilian C Macedo
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Renata H M Sindeaux
- School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Marcelo T Mira
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil; School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
21
|
Neela VSK, Suryadevara NC, Shinde VG, Pydi SS, Jain S, Jonnalagada S, Singh SS, Valluri VL, Anandaraj MPJS. Association of Taq I, Fok I and Apa I polymorphisms in Vitamin D Receptor (VDR) gene with leprosy. Hum Immunol 2015; 76:402-5. [PMID: 25890006 DOI: 10.1016/j.humimm.2015.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Vitamin D Receptor (VDR) is a transacting transcription factor which mediates immunomodulatory function and plays a key role in innate and adaptive immune responses through its ligand and polymorphisms in VDR gene may affect its regulatory function. OBJECTIVE To investigate the association of three VDR gene polymorphisms (TaqI rs731236, FokI rs2228570 and ApaI rs7975232) with leprosy. METHODS The study group includes 404 participants of which 222 were leprosy patients (paucibacillary=87, multibacillary=135) and 182 healthy controls. Genotyping was done using PCR-RFLP technique. Statistical analysis was performed using SNP Stats and PLINK software. RESULTS The VDR FokI (rs2228570) ff genotype, ApaI (rs7975232) AA, Aa genotype and haplotype T-f-a, T-F-A were positively associated with leprosy when compared to healthy controls. CONCLUSION The two variants at Fok and Apa positions in VDR gene are significantly associated with leprosy. Genotypes at FokI (ff), ApaI (aa) and haplotype (T-F-a, T-f-a) may contribute to the risk of developing leprosy by altering VDR phenotype/levels subsequently modulation of immune response.
Collapse
Affiliation(s)
| | | | - Vidya Gouri Shinde
- LEPRA India - Blue Peter Public Health & Research Centre (BPHRC), Hyderabad, Telangana, India
| | - Satya Sudheer Pydi
- LEPRA India - Blue Peter Public Health & Research Centre (BPHRC), Hyderabad, Telangana, India
| | - Suman Jain
- Thalassemia and Sickle Cell Anaemia Society (TSCS), Hyderabad, Telangana, India
| | - Subbanna Jonnalagada
- LEPRA India - Blue Peter Public Health & Research Centre (BPHRC), Hyderabad, Telangana, India
| | | | - Vijaya Lakshmi Valluri
- LEPRA India - Blue Peter Public Health & Research Centre (BPHRC), Hyderabad, Telangana, India
| | - M P J S Anandaraj
- LEPRA India - Blue Peter Public Health & Research Centre (BPHRC), Hyderabad, Telangana, India
| |
Collapse
|
22
|
de Souza-Santana FC, Marcos EVC, Nogueira MES, Ura S, Tomimori J. Human leukocyte antigen class I and class II alleles are associated with susceptibility and resistance in borderline leprosy patients from Southeast Brazil. BMC Infect Dis 2015; 15:22. [PMID: 25605482 PMCID: PMC4307149 DOI: 10.1186/s12879-015-0751-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 01/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evidence suggests that human leukocyte antigen (HLA) alleles influence the host immune response against Mycobacterium leprae. However, the association between HLA alleles and borderline (B) leprosy has not been studied. The aim of this study was to determine whether HLA class I and II molecules are associated with susceptibility or resistance to B leprosy including borderline-tuberculoid (BT), borderline-borderline (BB), and borderline-lepromatous (BL). METHODS DNA was obtained by the salting-out technique from the blood samples of 202 patients with B leprosy and 478 control subjects. HLA class I (A*, B*, and C* loci) and class II (DRB1* and DQB1* loci) genotypes were determined by polymerase chain reaction amplification and reverse hybridization with sequence-specific oligonucleotide probes and sequence-specific primers. RESULTS The case-controlled analysis results showed a significant association between B leprosy and HLA-C*05 (5.94% vs. 14.02%; p = 0.002, OR = 0.38, 95% CI = 0.20-0.73, pc = 0.032) and HLA-DRB1*07 (16.34% vs. 26.77%; p = 0.003, OR = 0.53, 95% CI = 0.3-0.8, pc = 0.039). A protective association was observed between BL leprosy and HLA-DQB1*02 (18.18% vs. 39.53%; p = 0.005, OR = 0.34, 95% CI = 0.15-0.75, pc = 0.025). In reactional patients, a significant association was observed between HLA-B*15 (28.72% vs. 12.76%; p = 0.011, OR = 2.75, 95% CI = 1.30-5.85, pc = 0.352) and predisposition to reversal reaction. Haplotype analysis showed that A*02-B*07-C*07-DRB1*15-DQB1*06 (2.97% vs. 1.04%; p = 0.015) and A*02-B*40-C*03-DRB1*13-DQB1*06 (1.73% vs. 0.10%; p = 0.0011) were associated with susceptibility to the B form. The presence of the HLA-DRB1*02 or HLA-DRB1*03/HLA-DQB1*01 haplotypes in B patients (22.05% vs. 33.0%; p = 0.005) suggested the involvement of these haplotypes in this clinical form of the disease. CONCLUSIONS The results indicate the involvement of HLA class I and class II molecules in B leprosy and reversal reactions; it also suggest a role for HLA in polarization of the disease in this group of patients.
Collapse
Affiliation(s)
- Fabiana Covolo de Souza-Santana
- Immunogenetics Laboratory, Instituto Lauro de Souza Lima, Rod. Cte João Ribeiro de Barros, km 225/26, Bauru, SP, CEP: 17039-800, Brazil.
| | - Elaine Valim Camarinha Marcos
- Immunogenetics Laboratory, Instituto Lauro de Souza Lima, Rod. Cte João Ribeiro de Barros, km 225/26, Bauru, SP, CEP: 17039-800, Brazil.
| | - Maria Esther Salles Nogueira
- Immunology Laboratory, Instituto Lauro de Souza Lima, Rod. Cte João Ribeiro de Barros, km 225/26, Bauru, SP, CEP: 17039-800, Brazil.
| | - Somei Ura
- Department of Education and Research, Instituto Lauro de Souza Lima, Rod. Cte João Ribeiro de Barros, km 225/26, Bauru, SP, CEP: 17039-800, Brazil.
| | - Jane Tomimori
- Department of Dermatology, Federal University of São Paulo, UNIFESP, Av. Borges Lagoa, 598, São Paulo, SP, CEP: 04038-000, Brazil.
| |
Collapse
|
23
|
Fava VM, Cobat A, Van Thuc N, Latini ACP, Stefani MMA, Belone AF, Ba NN, Orlova M, Manry J, Mira MT, Thai VH, Abel L, Alcaïs A, Schurr E. Association of TNFSF8 regulatory variants with excessive inflammatory responses but not leprosy per se. J Infect Dis 2014; 211:968-77. [PMID: 25320285 DOI: 10.1093/infdis/jiu566] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Type 1 reactions (T1R) affect a considerable proportion of patients with leprosy. In those with T1R, the host immune response pathologically overcompensates for the actual infectious threat, resulting in nerve damage and permanent disability. Based on the results of a genome-wide association study of leprosy per se, we investigated the TNFSF15 chromosomal region for a possible contribution to susceptibility to T1R. METHODS We performed a high-resolution association scan of the TNFSF15 locus to evaluate the association with T1R in 2 geographically and ethnically distinct populations: a family-based sample from Vietnam and a case-control sample from Brazil, comprising a total of 1768 subjects. RESULTS In the Vietnamese sample, 47 single-nucleotide polymorphisms (SNPs) overlapping TNFSF15 and the adjacent TNFSF8 gene were associated with T1R but not with leprosy. Of the 47 SNPs, 39 were cis-expression quantitative trait loci (cis-eQTL) for TNFSF8 including SNPs located within the TNFSF15 gene. In the Brazilian sample, 18 of these cis-eQTL SNPs overlapping the TNFSF8 gene were validated for association with T1R. CONCLUSIONS Taken together, these results indicate TNFSF8 and not TNFSF15 as an important T1R susceptibility gene. Our data support the need for infection genetics to go beyond genes for pathogen control to explore genes involved in a commensurate host response.
Collapse
Affiliation(s)
- Vinicius M Fava
- Program in Immunology and Infectious Diseases in Global Health, Research Institute of the McGill University Health Centre The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Aurélie Cobat
- Program in Immunology and Infectious Diseases in Global Health, Research Institute of the McGill University Health Centre The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Nguyen Van Thuc
- Hospital for Dermato-Venerology, Ho Chi Minh City, District 3, Vietnam
| | | | - Mariane M A Stefani
- Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia
| | | | - Nguyen Ngoc Ba
- Hospital for Dermato-Venerology, Ho Chi Minh City, District 3, Vietnam
| | - Marianna Orlova
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Jérémy Manry
- Program in Immunology and Infectious Diseases in Global Health, Research Institute of the McGill University Health Centre The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Marcelo T Mira
- Core for Advanced Molecular Investigation, Pontifical Catholic University of Paraná, Curitiba, Brazil
| | - Vu Hong Thai
- Hospital for Dermato-Venerology, Ho Chi Minh City, District 3, Vietnam
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale University Paris Descartes, Imagine Institute St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale University Paris Descartes, Imagine Institute Centre d'Investigation Clinique, Unité de Recherche Clinique, Necker and Cochin Hospitals, Paris, France St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York
| | - Erwin Schurr
- Program in Immunology and Infectious Diseases in Global Health, Research Institute of the McGill University Health Centre The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Development of rheumatoid arthritis specific HLA-DRB1 genotyping microarray. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8305-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Abel L, Alcaïs A, Schurr E. The dissection of complex susceptibility to infectious disease: bacterial, viral and parasitic infections. Curr Opin Immunol 2014; 30:72-8. [PMID: 25083600 DOI: 10.1016/j.coi.2014.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/17/2014] [Accepted: 07/06/2014] [Indexed: 01/01/2023]
Abstract
Infectious diseases are the result of the exposure of susceptible hosts to pathogenic microbes. Genetic factors are important determinants of host susceptibility and efforts are being made to establish the molecular identity of such genetic susceptibility variants by genome-wide association studies. Results obtained to date partly confirm already known genetic vulnerabilities, but also point to new and unexpected mechanisms of susceptibility that extend from classical innate and acquired immunity to weaknesses in constitutional resistance. These studies also revealed an overlap in genetic control between infectious disease and other common immune and inflammatory disorders.
Collapse
Affiliation(s)
- Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.980, University Paris Descartes, Necker Enfants-Malades Hospital, Paris 75015, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.980, University Paris Descartes, Necker Enfants-Malades Hospital, Paris 75015, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; URC, CIC, Necker and Cochin Hospitals, Paris, France
| | - Erwin Schurr
- McGill International TB Centre & Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada; Program in Immunology and Infectious Diseases in Global Health, The Research Institute of the McGill University Health Centre, Canada.
| |
Collapse
|
26
|
Cobat A, Abel L, Alcaïs A, Schurr E. A general efficient and flexible approach for genome-wide association analyses of imputed genotypes in family-based designs. Genet Epidemiol 2014; 38:560-71. [PMID: 25044438 DOI: 10.1002/gepi.21842] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 01/10/2023]
Abstract
Genotype imputation is a critical technique for following up genome-wide association studies. Efficient methods are available for dealing with the probabilistic nature of imputed single nucleotide polymorphisms (SNPs) in population-based designs, but not for family-based studies. We have developed a new analytical approach (FBATdosage), using imputed allele dosage in the general framework of family-based association tests to bridge this gap. Simulation studies showed that FBATdosage yielded highly consistent type I error rates, whatever the level of genotype uncertainty, and a much higher power than the best-guess genotype approach. FBATdosage allows fast linkage and association testing of several million of imputed variants with binary or quantitative phenotypes in nuclear families of arbitrary size with arbitrary missing data for the parents. The application of this approach to a family-based association study of leprosy susceptibility successfully refined the association signal at two candidate loci, C1orf141-IL23R on chromosome 1 and RAB32-C6orf103 on chromosome 6.
Collapse
Affiliation(s)
- Aurélie Cobat
- Departments of Human Genetics and Medicine, McGill International TB Center, McGill University Health Center, Montreal, QC, Canada
| | | | | | | |
Collapse
|
27
|
Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130428. [PMID: 24821915 PMCID: PMC4024222 DOI: 10.1098/rstb.2013.0428] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Only a small fraction of individuals exposed to Mycobacterium tuberculosis develop clinical tuberculosis (TB). Over the past century, epidemiological studies have shown that human genetic factors contribute significantly to this interindividual variability, and molecular progress has been made over the past decade for at least two of the three key TB-related phenotypes: (i) a major locus controlling resistance to infection with M. tuberculosis has been identified, and (ii) proof of principle that severe TB of childhood can result from single-gene inborn errors of interferon-γ immunity has been provided; genetic association studies with pulmonary TB in adulthood have met with more limited success. Future genetic studies of these three phenotypes could consider subgroups of subjects defined on the basis of individual (e.g. age at TB onset) or environmental (e.g. pathogen strain) factors. Progress may also be facilitated by further methodological advances in human genetics. Identification of the human genetic variants controlling the various stages and forms of TB is critical for understanding TB pathogenesis. These findings should have major implications for TB control, in the definition of improved prevention strategies, the optimization of vaccines and clinical trials and the development of novel treatments aiming to restore deficient immune responses.
Collapse
Affiliation(s)
- Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, , 75015 Paris, France
| | | | | | | | | |
Collapse
|
28
|
CUBN and NEBL common variants in the chromosome 10p13 linkage region are associated with multibacillary leprosy in Vietnam. Hum Genet 2014; 133:883-93. [PMID: 24563210 DOI: 10.1007/s00439-014-1430-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/08/2014] [Indexed: 01/04/2023]
Abstract
Leprosy is caused by infection with Mycobacterium leprae and is classified clinically into paucibacillary (PB) or multibacillary (MB) subtypes based on the number of skin lesions and the bacillary index detected in skin smears. We previously identified a major PB susceptibility locus on chromosome region 10p13 in Vietnamese families by linkage analysis. In the current study, we conducted high-density association mapping of the 9.5 Mb linkage peak on chromosome region 10p13 covering 39 genes. Using leprosy per se and leprosy subtypes as phenotypes, we employed 294 nuclear families (303 leprosy cases, 63 % MB, 37 % PB) as a discovery sample and 192 nuclear families (192 cases, 55 % MB, 45 % PB) as a replication sample. Replicated significant association signals were revealed in the genes for cubilin (CUBN) and nebulette (NEBL). In the combined sample, the C allele (frequency 0.26) at CUBN SNP rs10904831 showed association [p = 1 × 10(-5); OR 0.52 (0.38-0.7)] with MB leprosy only. Likewise, allele T (frequency 0.42) at NEBL SNP rs11012461 showed association [p = 4.2 × 10(-5); OR 2.51 (1.6-4)] with MB leprosy only. These associations remained valid for the CUBN signal when taking into account the effective number of tests performed (type I error significance threshold = 2.4 × 10(-5)). We used the results of our analyses to propose a new model for the genetic control of polarization of clinical leprosy.
Collapse
|
29
|
Salie M, van der Merwe L, Möller M, Daya M, van der Spuy GD, van Helden PD, Martin MP, Gao XJ, Warren RM, Carrington M, Hoal EG. Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease. J Infect Dis 2014; 209:216-23. [PMID: 23945374 PMCID: PMC3873786 DOI: 10.1093/infdis/jit443] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/17/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The development of active tuberculosis disease has been shown to be multifactorial. Interactions between host and bacterial genotype may influence disease outcome, with some studies indicating the adaptation of M. tuberculosis strains to specific human populations. Here we investigate the role of the human leukocyte antigen (HLA) class I genes in this biological process. METHODS Three hundred patients with tuberculosis from South Africa were typed for their HLA class I alleles by direct sequencing. Mycobacterium tuberculosis genotype classification was done by IS6110 restriction fragment length polymorphism genotyping and spoligotyping. RESULTS We showed that Beijing strain occurred more frequently in individuals with multiple disease episodes (P < .001) with the HLA-B27 allele lowering the odds of having an additional episode (odds ratio, 0.21; P = .006). Associations were also identified for specific HLA types and disease caused by the Beijing, LAM, LCC, and Quebec strains. HLA types were also associated with disease caused by strains from the Euro-American or East Asian lineages, and the frequencies of these alleles in their sympatric human populations identified potential coevolutionary events between host and pathogen. CONCLUSIONS This is the first report of the association of human HLA types and M. tuberculosis strain genotype, highlighting that both host and pathogen genetics need to be taken into consideration when studying tuberculosis disease development.
Collapse
Affiliation(s)
- Muneeb Salie
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Lize van der Merwe
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
- MRC Biostatistics Unit, Medical Research Council, Tygerberg
- Department of Statistics, University of Western Cape, Bellville,South Africa
| | - Marlo Möller
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Michelle Daya
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Gian D. van der Spuy
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Paul D. van Helden
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge
| | - Xiao-jiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge
| | - Robin M. Warren
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge
| | - Eileen G. Hoal
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| |
Collapse
|
30
|
Jarduli LR, Sell AM, Reis PG, Sippert EÂ, Ayo CM, Mazini PS, Alves HV, Teixeira JJV, Visentainer JEL. Role of HLA, KIR, MICA, and cytokines genes in leprosy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:989837. [PMID: 23936864 PMCID: PMC3722889 DOI: 10.1155/2013/989837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/16/2013] [Accepted: 06/05/2013] [Indexed: 01/08/2023]
Abstract
Many genes including HLA, KIR, and MICA genes, as well as polymorphisms in cytokines have been investigated for their role in infectious disease. HLA alleles may influence not only susceptibility or resistance to leprosy, but also the course of the disease. Some combinations of HLA and KIR may result in negative as well as positive interactions between NK cells and infected host cells with M. leprae, resulting in activation or inhibition of NK cells and, consequently, in death of bacillus. In addition, studies have demonstrated the influence of MICA genes in the pathogenesis of leprosy. Specifically, they may play a role in the interaction between NK cells and infected cells. Finally, pro- and anti-inflammatory cytokines have been influencing the clinical course of leprosy. Data from a wide variety of sources support the existence of genetic factors influencing the leprosy pathogenesis. These sources include twin studies, segregation analyses, family-based linkage and association studies, candidate gene association studies, and, most recently, genome-wide association studies (GWAS). The purpose of this brief review was to highlight the importance of some immune response genes and their correlation with the clinical forms of leprosy, as well as their implications for disease resistance and susceptibility.
Collapse
Affiliation(s)
- Luciana Ribeiro Jarduli
- Program of Biosciences Applied to Pharmacy, Department of Clinical Analysis and Biomedicine, Maringa State University, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Ana Maria Sell
- Basic Health Sciences Department, Maringa State University, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Pâmela Guimarães Reis
- Program of Biosciences Applied to Pharmacy, Department of Clinical Analysis and Biomedicine, Maringa State University, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Emília Ângela Sippert
- Program of Biosciences Applied to Pharmacy, Department of Clinical Analysis and Biomedicine, Maringa State University, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Christiane Maria Ayo
- Program of Biosciences Applied to Pharmacy, Department of Clinical Analysis and Biomedicine, Maringa State University, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Priscila Saamara Mazini
- Program of Biosciences Applied to Pharmacy, Department of Clinical Analysis and Biomedicine, Maringa State University, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Hugo Vicentin Alves
- Program of Biosciences Applied to Pharmacy, Department of Clinical Analysis and Biomedicine, Maringa State University, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Jorge Juarez Vieira Teixeira
- Program of Biosciences Applied to Pharmacy, Department of Clinical Analysis and Biomedicine, Maringa State University, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | | |
Collapse
|
31
|
Grant AV, El Baghdadi J, Sabri A, El Azbaoui S, Alaoui-Tahiri K, Abderrahmani Rhorfi I, Gharbaoui Y, Abid A, Benkirane M, Raharimanga V, Richard V, Orlova M, Boland A, Migaud M, Okada S, Nolan DK, Bustamante J, Barreiro LB, Schurr E, Boisson-Dupuis S, Rasolofo V, Casanova JL, Abel L. Age-dependent association between pulmonary tuberculosis and common TOX variants in the 8q12-13 linkage region. Am J Hum Genet 2013; 92:407-14. [PMID: 23415668 DOI: 10.1016/j.ajhg.2013.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/12/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
Only a small fraction of individuals infected with Mycobacterium tuberculosis develop clinical tuberculosis (TB) in their lifetime. Genetic epidemiological evidence suggests a genetic determinism of pulmonary TB (PTB), but the molecular basis of genetic predisposition to PTB remains largely unknown. We used a positional-cloning approach to carry out ultrafine linkage-disequilibrium mapping of a previously identified susceptibility locus in chromosomal region 8q12-13 by genotyping 3,216 SNPs in a family-based Moroccan sample including 286 offspring with PTB. We observed 44 PTB-associated SNPs (p < 0.01), which were genotyped in an independent set of 317 cases and 650 controls from Morocco. A single signal, consisting of two correlated SNPs close to TOX, rs1568952 and rs2726600 (combined p = 1.1 × 10(-5) and 9.2 × 10(-5), respectively), was replicated. Stronger evidence of association was found in individuals who developed PTB before the age of 25 years (combined p for rs1568952 = 4.4 × 10(-8); odds ratio of PTB for AA versus AG/GG = 3.09 [1.99-4.78]). The association with rs2726600 (p = 0.04) was subsequently replicated in PTB-affected subjects under 25 years in a study of 243 nuclear families from Madagascar. Stronger evidence of replication in Madagascar was obtained for additional SNPs in strong linkage disequilibrium with the two initial SNPs (p = 0.003 for rs2726597), further confirming the signal. We thus identified around rs1568952 and rs2726600 a cluster of SNPs strongly associated with early-onset PTB in Morocco and Madagascar. SNP rs2726600 is located in a transcription-factor binding site in the 3' region of TOX, and further functional explorations will focus on CD4 T lymphocytes.
Collapse
Affiliation(s)
- Audrey V Grant
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U980, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
PARK2 mediates interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages. PLoS Negl Trop Dis 2013; 7:e2015. [PMID: 23350010 PMCID: PMC3547867 DOI: 10.1371/journal.pntd.0002015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/03/2012] [Indexed: 01/02/2023] Open
Abstract
Leprosy is a persistent infectious disease caused by Mycobacterium leprae that still affects over 200,000 new patients annually. The host genetic background is an important risk factor for leprosy susceptibility and the PARK2 gene is a replicated leprosy susceptibility candidate gene. The protein product of PARK2, Parkin, is an E3 ubiquitin ligase that is involved in the development of various forms of Parkinsonism. The human macrophage is both a natural host cell of M. leprae as well as a primary mediator of natural immune defenses, in part by secreting important pro-inflammatory cytokines and chemokines. Here, we report that down-regulation of Parkin in THP-1 macrophages, human monocyte-derived macrophages and human Schwann cells resulted in a consistent and specific decrease in interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1/CCL2) production in response to mycobacteria or LPS. Interestingly, production of IL-6 at 6 hours by THP-1 cells stimulated with live M. leprae and M. bovis BCG was dependent on pretreatment with 1,25-dihydroxyvitamin D3 (VD). Parkin knockdown in VD-treated cells blocked IL-6 induction by mycobacteria. However, IκB-α phosphorylation and levels of IκB-ξ, a nuclear protein required for IL-6 expression, were not affected by Parkin silencing. Phosphorylation of MAPK ERK1/2 and p38 was unaffected by Parkin silencing while JNK activation was promoted but did not explain the altered cytokine production. In a final set of experiments we found that genetic risk factors of leprosy located in the PARK2 promoter region were significantly correlated with M. leprae sonicate triggered CCL2 and IL6 transcript levels in whole blood assays. These results associated genetically controlled changes in the production of MCP-1/CCL2 and IL-6 with known leprosy susceptibility factors. Leprosy is an infectious disease with a strong host genetic component. The identification of host genetic lesions predisposing to disease is a powerful approach for mapping key junctions in the host pathogen interplay. Genetic variants located in the promoter region of the PARK2 gene are replicated leprosy susceptibility factors. To better understand a possible contribution of PARK2 to host effector mechanisms in leprosy patients, we developed a cellular model to test the contribution of the PARK2 encoded parkin protein to host responses to mycobacterial antigens. We observed that parkin was a mediator of IL-6 production in response to mycobacterial antigen in both THP-1 macrophages and human Schwann cells while human monocyte-derived macrophages needed to be pre-activated with VitD to show the same impact. Parkin also impacted on the constitutive production of MCP-1. The regulatory activity of parkin on cytokine production was found to be independent of the canonical TLR-NFκB signalling pathway. We also tested association of IL6 and CCL2 gene expression levels in whole blood assays with PARK2 polymorphisms. For both cytokines, we found significant associations with those PARK2 variants that were established leprosy susceptibility factors. Hence, our results show that genetic PARK2 variants that are correlated with leprosy susceptibility are also correlated with production of these cytokines following stimulation with M. leprae sonicate.
Collapse
|
33
|
Linkage disequilibrium pattern and age-at-diagnosis are critical for replicating genetic associations across ethnic groups in leprosy. Hum Genet 2012; 132:107-16. [PMID: 23052943 DOI: 10.1007/s00439-012-1227-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
One of the persistent challenges of genetic association studies is the replication of genetic marker-disease associations across ethnic groups. Here, we conducted high-density association mapping of PARK2/PACRG SNPs with leprosy and identified 69 SNPs significantly associated with leprosy in 198 single-case Vietnamese leprosy families. A total of 56 associated SNPs localized to the overlapping promoter regions of PARK2/PACRG. For this region, multivariate analysis identified four SNPs belonging to two major SNP bins (rs1333955, rs7744433) and two single SNP bins (rs2023004, rs6936895) that capture the combined statistical evidence (P = 1.1 × 10(-5)) for association among Vietnamese patients. Next, we enrolled a case-control sample of 364 leprosy cases and 370 controls from Northern India. We genotyped all subjects for 149 SNPs that capture >80 % of the genetic variation in the Vietnamese sample and found 24 SNPs significantly associated with leprosy. Multivariate analysis identified three SNPs (rs1333955, rs9356058 and rs2023004) that capture the association with leprosy (P < 10(-8)). Hence, two SNPs (rs1333955 and rs2023004) were replicated by multivariate analysis between both ethnic groups. Marked differences in the linkage disequilibrium pattern explained some of the differences in univariate analysis between the two ethnic groups. In addition, the strength of association for two promoter region SNP bins was significantly stronger among young leprosy patients in the Vietnamese sample. The same trend was observed in the Indian sample, but due to the higher age-at-diagnosis of the patients the age effect was less pronounced.
Collapse
|
34
|
Grant AV, Alter A, Huong NT, Orlova M, Van Thuc N, Ba NN, Thai VH, Abel L, Schurr E, Alcais A. Crohn's disease susceptibility genes are associated with leprosy in the Vietnamese population. J Infect Dis 2012; 206:1763-7. [PMID: 22984114 DOI: 10.1093/infdis/jis588] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A genomewide association study in Chinese patients with leprosy detected association signals in 16 single-nucleotide polymorphisms (SNPs) belonging to 6 loci, of which 4 are related to the NOD2 signaling pathway and are Crohn's disease susceptibility loci. Here, we studied these 16 SNPs as potential leprosy susceptibility factors in 474 Vietnamese leprosy simplex families. We replicated SNPs at HLA-DR-DQ, RIPK2, CCDC122-LACC1, and NOD2 as leprosy susceptibility factors in Vietnam. These results validated the striking overlap in the genetic control of Crohn's disease and leprosy.
Collapse
Affiliation(s)
- Audrey V Grant
- Laboratoire de Génétique des Maladies Infectieuses, Institut National de la Santé et de la Recherche Médicale, University Paris Descartes, Sorbonne Paris Cité, Necker Medical School, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Leprosy and the natural selection for psoriasis. Med Hypotheses 2012; 78:183-90. [DOI: 10.1016/j.mehy.2011.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/21/2011] [Indexed: 12/30/2022]
|
36
|
Cardoso CC, Pereira AC, Brito-de-Souza VN, Duraes SMB, Ribeiro-Alves M, Nery JAC, Francio ÂS, Vanderborght PR, Parelli FPC, Alter A, Salgado JL, Sampaio EP, Santos AR, Oliveira MLWR, Sarno EN, Schurr E, Mira MT, Pacheco AG, Moraes MO. TNF -308G>A single nucleotide polymorphism is associated with leprosy among Brazilians: a genetic epidemiology assessment, meta-analysis, and functional study. J Infect Dis 2011; 204:1256-63. [PMID: 21917899 DOI: 10.1093/infdis/jir521] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leprosy is an infectious disease caused by Mycobacterium leprae. Tumor necrosis factor (TNF) plays a key role in the host response. Some association studies have implicated the single nucleotide polymorphism TNF -308G>A in leprosy susceptibility, but these results are still controversial. We first conducted 4 association studies (2639 individuals) that showed a protective effect of the -308A allele (odds ratio [OR] = 0.77; P = .005). Next, results of a meta-analysis reinforced this association after inclusion of our new data (OR = 0.74; P = .04). Furthermore, a subgroup analysis including only Brazilian studies suggested that the association is specific to this population (OR = 0.63; P = .005). Finally, functional analyses using whole blood cultures showed that patients carrying the -308A allele produced higher TNF levels after lipopolysaccharide (LPS) (6 hours) and M. leprae (3 hours) stimulation. These results reinforce the association between TNF and leprosy and suggest the -308A allele as a marker of disease resistance, especially among Brazilians.
Collapse
Affiliation(s)
- Cynthia C Cardoso
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ali S, Chopra R, Aggarwal S, Srivastava AK, Kalaiarasan P, Malhotra D, Gochhait S, Garg VK, Bhattacharya SN, Bamezai RNK. Association of variants in BAT1-LTA-TNF-BTNL2 genes within 6p21.3 region show graded risk to leprosy in unrelated cohorts of Indian population. Hum Genet 2011; 131:703-16. [DOI: 10.1007/s00439-011-1114-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/29/2011] [Indexed: 12/19/2022]
|
38
|
Aggarwal S, Ali S, Chopra R, Srivastava A, Kalaiarasan P, Malhotra D, Gochhait S, Garg VK, Bhattacharya SN, Bamezai RNK. Genetic Variations and Interactions in Anti-inflammatory Cytokine Pathway Genes in the Outcome of Leprosy: A Study Conducted on a MassARRAY Platform. J Infect Dis 2011; 204:1264-73. [DOI: 10.1093/infdis/jir516] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
39
|
Al-Mubarak R, Vander Heiden J, Broeckling CD, Balagon M, Brennan PJ, Vissa VD. Serum metabolomics reveals higher levels of polyunsaturated fatty acids in lepromatous leprosy: potential markers for susceptibility and pathogenesis. PLoS Negl Trop Dis 2011; 5:e1303. [PMID: 21909445 PMCID: PMC3167790 DOI: 10.1371/journal.pntd.0001303] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/20/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Leprosy is a disease of the skin and peripheral nervous system caused by the obligate intracellular bacterium Mycobacterium leprae. The clinical presentations of leprosy are spectral, with the severity of disease determined by the balance between the cellular and humoral immune response of the host. The exact mechanisms that facilitate disease susceptibility, onset and progression to certain clinical phenotypes are presently unclear. Various studies have examined lipid metabolism in leprosy, but there has been limited work using whole metabolite profiles to distinguish the clinical forms of leprosy. METHODOLOGY AND PRINCIPAL FINDINGS In this study we adopted a metabolomics approach using high mass accuracy ultrahigh pressure liquid chromatography mass spectrometry (UPLC-MS) to investigate the circulatory biomarkers in newly diagnosed untreated leprosy patients. Sera from patients having bacterial indices (BI) below 1 or above 4 were selected, subjected to UPLC-MS, and then analyzed for biomarkers which distinguish the polar presentations of leprosy. We found significant increases in the abundance of certain polyunsaturated fatty acids (PUFAs) and phospholipids in the high-BI patients, when contrasted with the levels in the low-BI patients. In particular, the median values of arachidonic acid (2-fold increase), eicosapentaenoic acid (2.6-fold increase) and docosahexaenoic acid (1.6-fold increase) were found to be greater in the high-BI patients. SIGNIFICANCE Eicosapentaenoic acid and docosahexaenoic acid are known to exert anti-inflammatory properties, while arachidonic acid has been reported to have both pro- and anti-inflammatory activities. The observed increase in the levels of several lipids in high-BI patients may provide novel clues regarding the biological pathways involved in the immunomodulation of leprosy. Furthermore, these results may lead to the discovery of biomarkers that can be used to investigate susceptibility to infection, facilitate early diagnosis and monitor the progression of disease.
Collapse
Affiliation(s)
- Reem Al-Mubarak
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jason Vander Heiden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Corey D. Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, United States of America
| | - Marivic Balagon
- Leonard Wood Memorial Center for Leprosy Research, Cebu, Philippines
| | - Patrick J. Brennan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Varalakshmi D. Vissa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
40
|
Orlova M, Di Pietrantonio T, Schurr E. Genetics of infectious diseases: hidden etiologies and common pathways. Clin Chem Lab Med 2011; 49:1427-37. [PMID: 21619464 DOI: 10.1515/cclm.2011.620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the completion of the human genome sequence, the study of common genetic polymorphisms in complex human diseases has become a main activity of human genetics. Employing genome-wide association studies, hundreds of modest genetic risk factors have been identified. In infectious diseases the identification of common risk factors has been varied and as in other common diseases it seems likely that important genetic risk factors remain to be discovered. Nevertheless, the identification of disease-specific genetic risk factors revealed an unexpected overlap in susceptibility genes of diverse inflammatory and infectious diseases. Analysis of the multi-disease susceptibility genes has allowed the definition of shared key pathways of inflammatory dysregulation and suggested unexpected infectious etiologies for other "non-infectious" common diseases.
Collapse
Affiliation(s)
- Marianna Orlova
- McGill Centre for the Study of Host Resistance, The Research Institute of the McGill University Health Centre, Montreal, PQ, Canada
| | | | | |
Collapse
|