1
|
Xu Y, Yu M, Huang X, Wang G, Wang H, Zhang F, Zhang J, Gao X. Differences in salivary microbiome among children with tonsillar hypertrophy and/or adenoid hypertrophy. mSystems 2024; 9:e0096824. [PMID: 39287377 PMCID: PMC11494981 DOI: 10.1128/msystems.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Children diagnosed with severe tonsillar hypertrophy display discernible craniofacial features distinct from those with adenoid hypertrophy, prompting illuminating considerations regarding microbiota regulation in this non-inflammatory condition. The present study aimed to characterize the salivary microbial profile in children with tonsillar hypertrophy and explore the potential functionality therein. A total of 112 children, with a mean age of 7.79 ± 2.41 years, were enrolled and divided into the tonsillar hypertrophy (TH) group (n = 46, 8.4 ± 2.5 years old), adenoid hypertrophy (AH) group (n = 21, 7.6 ± 2.8 years old), adenotonsillar hypertrophy (ATH) group (n = 23, 7.2 ± 2.1 years old), and control group (n = 22, 8.6 ± 2.1 years old). Unstimulated saliva samples were collected, and microbial profiles were analyzed by 16S rRNA sequencing of V3-V4 regions. Diversity and composition of salivary microbiome and the correlation with parameters of overnight polysomnography and complete blood count were investigated. As a result, children with tonsillar hypertrophy had significantly higher α-diversity indices (P<0.05). β-diversity based on Bray-Curtis distance revealed that the salivary microbiome of the tonsillar hypertrophy group had a slight separation from the other three groups (P<0.05). The linear discriminant analysis effect size (LEfSe) analysis indicated that Gemella was most closely related to tonsillar hypertrophy, and higher abundance of Gemella, Parvimonas, Dialister, and Lactobacillus may reflect an active state of immune regulation. Meanwhile, children with different degrees of tonsillar hypertrophy shared similar salivary microbiome diversity. This study demonstrated that the salivary microbiome in pediatric tonsillar hypertrophy patients had different signatures, highlighting that the site of upper airway obstruction primarily influences the salivary microbiome rather than hypertrophy severity.IMPORTANCETonsillar hypertrophy is the most frequent cause of upper airway obstruction and one of the primary risk factors for pediatric obstructive sleep apnea (OSA). Studies have discovered that children with isolated tonsillar hypertrophy exhibit different craniofacial morphology features compared with those with isolated adenoid hypertrophy or adenotonsillar hypertrophy. Furthermore, characteristic salivary microbiota from children with OSA compared with healthy children has been identified in our previous research. However, few studies provided insight into the relationship between the different sites of upper airway obstruction resulting from the enlargement of pharyngeal lymphoid tissue at different sites and the alterations in the microbiome. Here, to investigate the differences in the salivary microbiome of children with tonsillar hypertrophy and/or adenoid hypertrophy, we conducted a cross-sectional study and depicted the unique microbiome profile of pediatric tonsillar hypertrophy, which was mainly characterized by a significantly higher abundance of genera belonging to phyla Firmicutes and certain bacteria involving in the immune response in tonsillar hypertrophy, offering novel perspectives for future related research.
Collapse
Affiliation(s)
- Ying Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Min Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guixiang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Hua Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fengzhen Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
2
|
Rivera K, Tanaka KJ, Buechel ER, Origel O, Harrison A, Mason KM, Pinkett HW. Antimicrobial Peptide Recognition Motif of the Substrate Binding Protein SapA from Nontypeable Haemophilus influenzae. Biochemistry 2024; 63:294-311. [PMID: 38189237 PMCID: PMC10851439 DOI: 10.1021/acs.biochem.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen associated with respiratory diseases, including otitis media and exacerbations of chronic obstructive pulmonary disease. NTHi exhibits resistance to killing by host antimicrobial peptides (AMPs) mediated by SapA, the substrate binding protein of the sensitivity to antimicrobial peptides (Sap) transporter. However, the specific mechanisms by which SapA selectively binds various AMPs such as defensins and cathelicidin are unknown. In this study, we report mutational analyses of both defensin AMPs and the SapA binding pocket to define the specificity of AMP recognition. Bactericidal assays revealed that NTHi lacking SapA are more susceptible to human beta defensins and LL-37, while remaining highly resistant to a human alpha defensin. In contrast to homologues, our research underscores the distinct specificity of NTHi SapA, which selectively recognizes and binds to peptides containing the charged-hydrophobic motif PKE and RRY. These findings provide valuable insight into the divergence of SapA among bacterial species and NTHi SapA's ability to selectively interact with specific AMPs to mediate resistance.
Collapse
Affiliation(s)
- Kristen
G. Rivera
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Kari J. Tanaka
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan R. Buechel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Octavio Origel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Alistair Harrison
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Kevin M. Mason
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Heather W. Pinkett
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Ohm-Laursen L, Meng H, Hoehn KB, Nouri N, Jiang Y, Clouser C, Johnstone TG, Hause R, Sandhar BS, Upton NEG, Chevretton EB, Lakhani R, Corrigan CJ, Kleinstein SH, Gould HJ. B Cell Mobilization, Dissemination, Fine Tuning of Local Antigen Specificity and Isotype Selection in Asthma. Front Immunol 2021; 12:702074. [PMID: 34721376 PMCID: PMC8552043 DOI: 10.3389/fimmu.2021.702074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
In order to better understand how the immune system interacts with environmental triggers to produce organ-specific disease, we here address the hypothesis that B and plasma cells are free to migrate through the mucosal surfaces of the upper and lower respiratory tracts, and that their total antibody repertoire is modified in a common respiratory tract disease, in this case atopic asthma. Using Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) we have catalogued the antibody repertoires of B cell clones retrieved near contemporaneously from multiple sites in the upper and lower respiratory tract mucosa of adult volunteers with atopic asthma and non-atopic controls and traced their migration. We show that the lower and upper respiratory tracts are immunologically connected, with trafficking of B cells directionally biased from the upper to the lower respiratory tract and points of selection when migrating from the nasal mucosa and into the bronchial mucosa. The repertoires are characterized by both IgD-only B cells and others undergoing class switch recombination, with restriction of the antibody repertoire distinct in asthmatics compared with controls. We conclude that B cells and plasma cells migrate freely throughout the respiratory tract and exhibit distinct antibody repertoires in health and disease.
Collapse
Affiliation(s)
- Line Ohm-Laursen
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Nima Nouri
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Center for Medical Informatics, Yale School of Medicine, New Haven, CT, United States
| | - Yue Jiang
- Bristol Myers Squibb, Seattle, WA, United States
| | | | | | - Ron Hause
- Bristol Myers Squibb, Seattle, WA, United States
| | - Balraj S. Sandhar
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Nadine E. G. Upton
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Elfy B. Chevretton
- Department of Ear, Nose and Throat (ENT) Services, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Raj Lakhani
- Department of Ear, Nose and Throat (ENT) Services, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Chris J. Corrigan
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Department of Respiratory Medicine and Allergy and School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Hannah J. Gould
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| |
Collapse
|
4
|
Thofte O, Bettoni S, Su YC, Thegerström J, Jonsson S, Mattsson E, Sandblad L, Martí S, Garmendia J, Blom AM, Riesbeck K. Nontypeable Haemophilus influenzae P5 Binds Human C4b-Binding Protein, Promoting Serum Resistance. THE JOURNAL OF IMMUNOLOGY 2021; 207:1566-1577. [PMID: 34433620 PMCID: PMC8428749 DOI: 10.4049/jimmunol.2100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Exposure of P5 at the surface of NTHi positively correlates with C4BP binding. C4BP bound to the bacterial surface retains its complement inhibitory capacity. C4BP binding to P5 is important for NTHi serum resistance.
Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes infections mainly in the upper and lower respiratory tract. The bacterium is associated with bronchitis and exacerbations in patients suffering from chronic obstructive pulmonary disease and frequently causes acute otitis media in preschool children. We have previously demonstrated that the binding of C4b binding protein (C4BP) is important for NTHi complement evasion. In this study, we identified outer membrane protein 5 (P5) of NTHi as a novel ligand of C4BP. Importantly, we observed significantly lower C4BP binding and decreased serum resistance in P5-deficient NTHi mutants. Surface expression of recombinant P5 on Escherichia coli conferred C4BP binding and consequently increased serum resistance. Moreover, P5 expression was positively correlated with C4BP binding in a series of clinical isolates. We revealed higher levels of P5 surface expression and consequently more C4BP binding in isolates from the lower respiratory tract of chronic obstructive pulmonary disease patients and tonsil specimens compared with isolates from the upper respiratory tract and the bloodstream (invasive strains). Our results highlight P5 as an important protein for protecting NTHi against complement-mediated killing.
Collapse
Affiliation(s)
- Oskar Thofte
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Serena Bettoni
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Sandra Jonsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Emma Mattsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umea, Sweden
| | - Sara Martí
- Microbiology Department, Research Network for Respiratory Diseases, Bellvitge Institute for Biomedical Research, Bellvitge University Hospital, Barcelona, Spain; and
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Anna M Blom
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden;
| |
Collapse
|
5
|
Wainwright M. A New Penicillin? Antibiotics (Basel) 2020; 9:antibiotics9030117. [PMID: 32168863 PMCID: PMC7175144 DOI: 10.3390/antibiotics9030117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/29/2022] Open
Abstract
The spectre of antimicrobial resistance looms very large indeed in the 21st century; the supply of efficacious conventional drugs is short and not guaranteed, for various reasons. It is time to look elsewhere for answers and for protocols which might be used in tandem with our diminishing arsenal in order to protect vital drugs. This could bridge the gap before new development in conventional antimicrobial therapy occurs, or might be a longer-term solution, particularly in the area of infectious disease prophylaxis (conventional-sensitive or -resistant). Reliable and safe protocols have been developed for the use of photoantimicrobials in this respect, offering much greater coverage, in terms of the microbial target, than Fleming ever imagined.
Collapse
Affiliation(s)
- Mark Wainwright
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
6
|
Sun Y, Huang T, Hammarström L, Zhao Y. The Immunoglobulins: New Insights, Implications, and Applications. Annu Rev Anim Biosci 2019; 8:145-169. [PMID: 31846352 DOI: 10.1146/annurev-animal-021419-083720] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulins (Igs), as one of the hallmarks of adaptive immunity, first arose approximately 500 million years ago with the emergence of jawed vertebrates. Two events stand out in the evolutionary history of Igs from cartilaginous fish to mammals: (a) the diversification of Ig heavy chain (IgH) genes, resulting in Ig isotypes or subclasses associated with novel functions, and (b) the diversification of genetic and structural strategies, leading to the creation of the antibody repertoire we know today. This review first gives an overview of the IgH isotypes identified in jawed vertebrates to date and then highlights the implications or applications of five new recent discoveries arising from comparative studies of Igs derived from different vertebrate species.
Collapse
Affiliation(s)
- Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China;
| | - Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng 475004, Henan, People's Republic of China;
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Hospital Huddinge, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
7
|
Min JY, Nayak JV, Hulse KE, Stevens WW, Raju PA, Huang JH, Suh LA, Van Roey GA, Norton JE, Carter RG, Price CPE, Weibman AR, Rashan AR, Ghosn EE, Patel ZM, Homma T, Conley DB, Welch KC, Shintani-Smith S, Peters AT, Grammer LC, Harris KE, Kato A, Hwang PH, Kern RC, Herzenberg LA, Schleimer RP, Tan BK. Evidence for altered levels of IgD in the nasal airway mucosa of patients with chronic rhinosinusitis. J Allergy Clin Immunol 2017; 140:1562-1571.e5. [PMID: 28625807 PMCID: PMC5723216 DOI: 10.1016/j.jaci.2017.05.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/01/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND IgD is an enigmatic antibody isotype best known when coexpressed with IgM on naive B cells. However, increased soluble IgD (sIgD) levels and increased IgD+IgM- B-cell populations have been described in the human upper respiratory mucosa. OBJECTIVE We assessed whether levels of sIgD and IgD+ B cell counts are altered in nasal tissue from patients with chronic rhinosinusitis (CRS). We further characterized IgD+ B-cell populations and explored clinical and local inflammatory factors associated with tissue sIgD levels. METHODS sIgD levels were measured by means of ELISA in nasal tissues, nasal lavage fluid, sera, and supernatants of dissociated nasal tissues. IgD+ cells were identified by using immunofluorescence and flow cytometry. Inflammatory mediator levels in tissues were assessed by using real-time PCR and multiplex immunoassays. Bacterial cultures from the middle meatus were performed. Underlying medical history and medicine use were obtained from medical records. RESULTS sIgD levels and numbers of IgD+ cells were significantly increased in uncinate tissue (UT) of patients with chronic rhinosinusitis without nasal polyps (CRSsNP) compared with that of control subjects (4-fold, P < .05). IgD+ cells were densely scattered in the periglandular regions of UT from patients with CRSsNP. We also found that IgD+CD19+CD38bright plasmablast numbers were significantly increased in tissues from patients with CRSsNP compared with control tissues (P < .05). Among numerous factors tested, IL-2 levels were increased in UT from patients with CRSsNP and were positively correlated with tissue IgD levels. Additionally, supernatants of IL-2-stimulated dissociated tissue from patients with CRSsNP had significantly increased sIgD levels compared with those in IL-2-stimulated dissociated control tissue ex vivo (P < .05). Tissue from patients with CRS with preoperative antibiotic use or those with pathogenic bacteria showed higher IgD levels compared with tissue from patients without these variables (P < .05). CONCLUSION sIgD levels and IgD+CD19+CD38bright plasmablast counts were increased in nasal tissue of patients with CRSsNP. IgD levels were associated with increased IL-2 levels and the presence of pathogenic bacteria. These findings suggest that IgD might contribute to enhancement mucosal immunity or inflammation or respond to bacterial infections in patients with CRS, especially CRSsNP.
Collapse
Affiliation(s)
- Jin-Young Min
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Kathryn E Hulse
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Paul A Raju
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Julia H Huang
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Griet A Van Roey
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Caroline P E Price
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ava R Weibman
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ali R Rashan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Eliver E Ghosn
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Tetsuya Homma
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - Anju T Peters
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathleen E Harris
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - Robert P Schleimer
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
8
|
Sokoya M, Ramakrishnan VR, Frank DN, Rahkola J, Getz A, Kingdom TT, Kofonow JM, Nguyen Q, Janoff EN. Expression of immunoglobulin D is increased in chronic rhinosinusitis. Ann Allergy Asthma Immunol 2017; 119:317-323.e1. [PMID: 28958373 DOI: 10.1016/j.anai.2017.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/18/2017] [Accepted: 07/23/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Immunoglobulin (Ig) D is largely localized to the upper airway and reacts with colonizing respiratory pathogens. OBJECTIVE To determine whether chronic rhinosinusitis (CRS) is associated with increased IgD expression. METHODS We performed immunofluorescent staining for cytoplasmic IgD, IgA, IgM, and surface plasma cell marker CD138 (syndecan-1) in sinus tissue of patients with CRS with and without nasal polyps (CRSwNP and CRSsNP, respectively) and control subjects without CRS (n = 6 each). Sinonasal mucus antibody levels of patients with CRSwNP or CRSsNP and control subjects were measured by enzyme-linked immunosorbent assay (n = 13, 11, and 9 subjects, respectively). Cells per square millimeter and antibody levels were compared by analysis of variance. Histopathology was performed with sinus tissue from subjects in the 3 groups (n = 6, 8, and 13 subjects respectively). RESULTS Cells expressing cytoplasmic IgD exceeded those with cytoplasmic IgA and IgM and represented most CD138+ plasma cells in the lamina propria. The frequencies of IgD+ plasma cells were significantly higher in patients with CRSsNP and CRSwNP compared with control subjects (P < .01). Only patients with CRSwNP showed increased frequencies of IgM and IgA plasma cells (P < .01). In contrast to high plasma cell frequencies in tissues, the levels of secreted IgD were lower than those of IgA, IgM, and IgG but were highest in the CRSwNP group compared with the other groups (P < .05). CONCLUSION IgD plasma cells are prominent in sinus tissues and are increased in CRS. That IgD protein also shows the lowest concentration of antibodies in secretions suggests that its activity might be targeted to the tissue rather than secretions.
Collapse
Affiliation(s)
- Mofiyinfolu Sokoya
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Denver, Colorado
| | - Vijay R Ramakrishnan
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Denver, Colorado
| | - Daniel N Frank
- Division of Infectious Diseases, Mucosal and Vaccine Research Program Colorado, University of Colorado School of Medicine, Denver, Colorado; Microbiome Research Consortium, University of Colorado School of Medicine, Denver, Colorado; University of Colorado School of Medicine and Denver Veterans Affairs Medical Center, Denver, Colorado
| | - Jeremy Rahkola
- Division of Infectious Diseases, Mucosal and Vaccine Research Program Colorado, University of Colorado School of Medicine, Denver, Colorado; University of Colorado School of Medicine and Denver Veterans Affairs Medical Center, Denver, Colorado
| | - Anne Getz
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Denver, Colorado
| | - Todd T Kingdom
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Denver, Colorado
| | - Jennifer M Kofonow
- Division of Infectious Diseases, Mucosal and Vaccine Research Program Colorado, University of Colorado School of Medicine, Denver, Colorado; Microbiome Research Consortium, University of Colorado School of Medicine, Denver, Colorado
| | - Quyen Nguyen
- University of Colorado School of Medicine and Denver Veterans Affairs Medical Center, Denver, Colorado
| | - Edward N Janoff
- Division of Infectious Diseases, Mucosal and Vaccine Research Program Colorado, University of Colorado School of Medicine, Denver, Colorado; University of Colorado School of Medicine and Denver Veterans Affairs Medical Center, Denver, Colorado.
| |
Collapse
|
9
|
Adenoid bacterial colonization in a paediatric population. Eur Arch Otorhinolaryngol 2017; 274:1933-1938. [PMID: 28213779 DOI: 10.1007/s00405-017-4493-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022]
Abstract
Adenoids play a key role in both respiratory and ear infection in children. It has also been shown that adenoidectomy improves these symptoms in this population. The main goal of the present study was to evaluate adenoid bacterial colonization and document a possible relation with infectious respiratory disease. A prospective observational study was designed to evaluate the proposed hypothesis in a paediatric population submitted to adenoidectomy by either infectious or non-infectious indications and compare these two cohorts. A total of 62 patients with ages ranging from 1 to 12 years old were enrolled in the study. Adenoid surface, adenoid core and middle meatus microbiota were compared. A close association between adenoid colonization and nasal infection was found, supporting that adenoids may function as bacterial reservoir for upper airway infection. The obtained results also contribute to explain the success of adenoidectomy in patients with infectious indications.
Collapse
|
10
|
Schaut RG, Lamb IM, Toepp AJ, Scott B, Mendes-Aguiar CO, Coutinho JFV, Jeronimo SMB, Wilson ME, Harty JT, Waldschmidt TJ, Petersen CA. Regulatory IgDhi B Cells Suppress T Cell Function via IL-10 and PD-L1 during Progressive Visceral Leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2016; 196:4100-9. [PMID: 27076677 DOI: 10.4049/jimmunol.1502678] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/08/2016] [Indexed: 01/13/2023]
Abstract
During visceral leishmaniasis (VL), Th1-based inflammation is induced to control intracellular parasites. Inflammation-based pathology was shown to be dampened by IL-10 and eventual programmed death 1-mediated T cell exhaustion. Cell type(s) responsible for the initiation of T cell-produced IL-10 during VL are unknown. CD19(+), CD5(-), CD1d(-), IgD(hi) regulatory B cells from healthy controls produced IL-10 in the absence of infection or stimulation, in contrast to IgD(lo/neg) B cells. IgD(hi) B cells may have a de novo versus induced regulatory program. The population of IgD(hi) B cells increased 3-fold as VL progressed. B cells from VL dogs were necessary and sufficient to suppress Th1 cell effector function. IgD(hi) B cells induced IL-10 production by T cells and IgD(lo) B cells. Blockage of B cell-specific PD-L1 restored Th1 responses. IgD(hi) regulatory B cells represent a novel regulatory B cell that may precipitate T cell exhaustion during VL.
Collapse
Affiliation(s)
- Robert G Schaut
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52242
| | - Ian M Lamb
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52242
| | - Angela J Toepp
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52242
| | - Benjamin Scott
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52242
| | - Carolina O Mendes-Aguiar
- Department of Biochemistry, Health Graduate Program, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal 1655, 59072-970, Brazil; Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 4365, 21045-900, Brazil
| | - Jose F V Coutinho
- Department of Biochemistry, Health Graduate Program, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal 1655, 59072-970, Brazil; Center for Zoonosis, Health Secretariat, Natal 1655, 59072-970, Brazil; and
| | - Selma M B Jeronimo
- Department of Biochemistry, Health Graduate Program, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal 1655, 59072-970, Brazil
| | - Mary E Wilson
- Immunology Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - John T Harty
- Immunology Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Thomas J Waldschmidt
- Immunology Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Christine A Petersen
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52242; Immunology Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
11
|
Kluin PM, Langerak AW, Beverdam-Vincent J, Geurts-Giele WRR, Visser L, Rutgers B, Schuuring E, Van Baarlen J, Lam KH, Seldenrijk K, Kibbelaar RE, de Wit P, Diepstra A, Rosati S, van Noesel MM, Zwaan CM, Hunting JCB, Hoogendoorn M, van der Gaag EJ, van Esser JWJ, de Bont E, Kluin-Nelemans HC, Winter RH, Lo ten Foe JR, van der Zanden AGM. Paediatric nodal marginal zone B-cell lymphadenopathy of the neck: a Haemophilus influenzae
-driven immune disorder? J Pathol 2015; 236:302-14. [DOI: 10.1002/path.4524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/10/2015] [Accepted: 02/23/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Philip M Kluin
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC; University Medical Centre Rotterdam; Rotterdam The Netherlands
| | - Jannetta Beverdam-Vincent
- Microbiology and Infection Control, Zorggroep Twente; Hengelo The Netherlands
- Laboratory for Microbiology; Twente Achterhoek Hengelo The Netherlands
| | | | - Lydia Visser
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | | | - King H Lam
- Department of Pathology, Erasmus Medical Centre Rotterdam; EMCR; Rotterdam The Netherlands
| | - Kees Seldenrijk
- Department of Pathology; St Antonius Hospital; Nieuwegein The Netherlands
| | - Robby E Kibbelaar
- Department of Pathology; Pathologie Friesland; Leeuwarden The Netherlands
| | - Peter de Wit
- Department of Pathology; Amphia Hospital; Breda The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Stefano Rosati
- Department of Pathology and Medical Biology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Max M van Noesel
- Department of Oncology and Hematology; Sophia Children Hospital; Rotterdam The Netherlands
| | - C Michel Zwaan
- Department of Oncology and Hematology; Sophia Children Hospital; Rotterdam The Netherlands
| | - Jarmo CB Hunting
- Department of Internal Medicine; St Antonius Ziekenhuis; Nieuwegein The Netherlands
| | - Mels Hoogendoorn
- Department of Internal Medicine; Medisch Centrum Leeuwarden; The Netherlands
| | | | | | - Eveline de Bont
- Department of Pediatric Oncology & Hematology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Hanneke C Kluin-Nelemans
- Department of Hematology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Rik H Winter
- Department of Medical Microbiology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Jerome R Lo ten Foe
- Department of Medical Microbiology; University Medical Centre Groningen, University of Groningen; Groningen The Netherlands
| | - Adri GM van der Zanden
- Microbiology and Infection Control, Zorggroep Twente; Hengelo The Netherlands
- Laboratory for Microbiology; Twente Achterhoek Hengelo The Netherlands
| |
Collapse
|