1
|
Bandara JMRP, Rosairo A, Ranasinghe GS, De Silva TD, Gawarammana IB. Is therapeutic plasma exchange effective in leptospirosis-associated severe pulmonary haemorrhagic syndrome? A systematic review. Trans R Soc Trop Med Hyg 2025; 119:453-463. [PMID: 39574344 DOI: 10.1093/trstmh/trae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 10/24/2024] [Indexed: 05/06/2025] Open
Abstract
Leptospirosis is a re-emerging zoonosis fast becoming a global burden. Pulmonary haemorrhages are a deadly complication, with case fatality rates >50%. Systemic vasculitis is thought to be the pathological process responsible for pulmonary haemorrhages and therapeutic plasma exchange (TPE) is one of the treatments offered. This systematic review aims to evaluate the effectiveness of TPE in managing leptospirosis-associated severe pulmonary haemorrhagic syndrome (SPHS). A systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis protocol. The search used Medical Subject Headings in PubMed with keywords 'Leptospirosis' OR 'Leptospira' OR 'Weil disease' AND 'plasmapheresis' OR 'plasma exchange' AND 'pulmonary haemorrhage' OR 'alveolar haemorrhage'. The search was widened to include the Google Scholar database. The review was confined to English-language articles and focused on primary research studies. Nineteen articles were considered for analysis. There were no randomized controlled trials. A non-randomized trial and a retrospective cohort documented recovery following adjuvant TPE treatment. Most case reports mention significant improvement and complete recovery following administration of TPE. One case reported the death of a patient despite treatment. However, this review revealed a lack of strong evidence endorsing the routine application of TPE as a therapeutic intervention for cases of SPHS. Thus we recommend the initiation of a well-structured randomized controlled trial to ensure an accurate assessment of the efficacy of TPE.
Collapse
Affiliation(s)
- J M R P Bandara
- Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - A Rosairo
- District General Hospital, Nawalapitiya 20650, Sri Lanka
| | - G S Ranasinghe
- District General Hospital, Nawalapitiya 20650, Sri Lanka
| | | | - I B Gawarammana
- Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
2
|
Abdullah M, Kadivella M, Sharma R, Baig MS, Faisal SM, Azam S. Identification of virulence genes and clade-specific markers through pan-genomic analysis of Leptospira. BMC Microbiol 2025; 25:248. [PMID: 40287647 PMCID: PMC12032809 DOI: 10.1186/s12866-025-03795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/29/2025] [Indexed: 04/29/2025] Open
Abstract
Leptospirosis is an emerging zoonotic and neglected disease across the world causing huge loss of life and economy. In this study, we did whole genome sequencing of one Leptospira isolate and a comparative genomic analysis with 69 other species of Leptospira available in RefSeq database provided insight into taxonomic and evolutionary relationship between species. AAI and whole genome based phylogenomic analysis established 3 clusters of Leptospira i.e. pathogenic, intermediate and saprophytic correlating with level of virulence of species. Leptospira has large closed core genome of 1038 genes and an open pan genome with 20,822 genes. The mobilome related genes were found mainly in pan-genome of pathogenic clade. A total of 498 genes have been identified as virulomes, with 329 virulent genes exhibiting presence/absence in various Leptospira species contributing to each species specific virulence profile. The hierarchical clustering of the congregated pathogenic genes yielded five groups, each with a distinct pattern of predominant genes that were either unique or common among clades, indicating lineage uniqueness. Most of the virulent gene pool identified were significantly enriched in COG functional categories of Nucleotide transport and metabolism, Intracellular trafficking, secretion and vesicular transport, cell motility and amino acid transport & metabolism. Pathogenic leptospires exhibit fewer clade-specific genes than non-pathogenic and intermediate leptospires, indicating gene loss and gain events in the evolution of pathogenic leptospires from non-pathogenic. The study's clade-specific and virulent genes can be utilised as markers for defining clade and associated virulence levels in any new Leptospira isolates. Wet-lab validation of virulent genes will help in accurately targeting pathogenic pathways of Leptospira and controlling leptospirosis.
Collapse
Affiliation(s)
- Mohd Abdullah
- Genomics and Computational Biology Lab, National Institute of Animal Biotechnology, Hyderabad, 500049, India
- Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Kadivella
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Rolee Sharma
- Department of Biosciences, Integral University, Lucknow, India
- Chhatrapati Shahu Ji Maharaj University, Kanpur, UP, India
| | - Mirza S Baig
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, MP, India
| | - Syed M Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Sarwar Azam
- Genomics and Computational Biology Lab, National Institute of Animal Biotechnology, Hyderabad, 500049, India.
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.
| |
Collapse
|
3
|
Garcia LE, Lin Z, Culos S, Catherine Muenker M, Johnson EE, Wang Z, Lopez-Giraldez F, Giraud-Gatineau A, Jackson A, Picardeau M, Goodlett DR, Townsend JP, Pětrošová H, Wunder EA. DMEM and EMEM are suitable surrogate media to mimic host environment and expand leptospiral pathogenesis studies using in vitro tools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634353. [PMID: 39896660 PMCID: PMC11785191 DOI: 10.1101/2025.01.22.634353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pathogenic Leptospira species can survive and thrive in a wide range of environments. Distinct environments expose the bacteria to different temperatures, osmolarities, and amounts and sources of nutrition. However, leptospires are mostly cultured, in a laboratory setting under in vitro conditions that do not reflect natural environments. This constraint on laboratory cultures limits the applicability of in vitro studies to the understanding of even simple pathogenic processes. Here we report, investigate, and identify a medium and conditions that mimic the host environment during leptospirosis infection, expanding the available in vitro tools to evaluate leptospiral pathogenesis. We quantified genome-wide gene expression of pathogenic Leptospira interrogans cultured in different in vitro media compositions (EMJH, DMEM, EMEM, and HAN). Using EMJH as standard, we compared gene expression in these compositions to genome-wide gene expression gathered in a host environment: whole blood (WB) of hamsters after infection with pathogenic leptospires. Leptospires cultured in DMEM and EMEM media shared 40% and 47% of all differentially expressed genes (DEGs) of leptospires present within WB (FDR<0.01), while leptospires cultured in HAN media only shared 20% of DEGs with those from WB. Furthermore, gene and pathway expression of leptospires cultured on DMEM and EMEM media exhibited a better correlation with leptospires grown in WB, including promoting expression of a similar leptospiral lipid A profile to the one identified directly in host tissues. Taken together, these results indicate that commercial cell-culture media EMEM or DMEM are better surrogates for in vivo pathogenic studies than EMJH or HAN media in Leptospira. These alternative culture conditions, using media that are a standard supply worldwide, provide a reproducible and cost-effective approach that can accelerate research investigation and reduce the number of animal infections necessary for basic research of leptospirosis.
Collapse
Affiliation(s)
- Leandro E. Garcia
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Zitong Lin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Sophie Culos
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - M Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Emily E. Johnson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | | | | | - Angela Jackson
- University of Victoria Genome BC Proteomic Center, Victoria, BC, Canada
| | - Mathieu Picardeau
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biology of Spirochetes Unit, Paris, France
| | - David R. Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria Genome BC Proteomic Center, Victoria, BC, Canada
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Helena Pětrošová
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria Genome BC Proteomic Center, Victoria, BC, Canada
| | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation; Brazilian Ministry of Health; Salvador, Brazil
| |
Collapse
|
4
|
Dos Santos Courrol D, Santos CM, Chura-Chambi RM, Morganti L, Avelar KES, de Moraes Maia F, Rodrigues-da-Silva RN, Wunder EA, Barbosa AS. Leptospira Leptolysin Contributes to Serum Resistance but Is Not Essential for Acute Infection. Mol Microbiol 2024; 122:720-729. [PMID: 39484742 DOI: 10.1111/mmi.15327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Previous in vitro works focusing on virulence determinants of the spirochete Leptospira implicated metalloproteinases as putative contributing factors to the pathogenicity of these bacteria. Those proteins have the capacity to degrade extracellular matrix components (ECM) and proteins of host's innate immunity, notably effectors of the complement system. In this study, we gained further knowledge on the role of leptolysin, one of the leptospiral-secreted metalloproteinases, previously described as having a broad substrate specificity. We demonstrated that a proportion of human patients with mild leptospirosis evaluated in the current study produced antibodies that recognize leptolysin, thus indicating that the protease is expressed during host infection. Using recombinant protein and a knockout mutant strain, Manilae leptolysin-, we determined that leptolysin contributes to Leptospira interrogans serum resistance in vitro, likely by proteolysis of complement molecules of the alternative, the classical, the lectin, and the terminal pathways. Furthermore, in a hamster model of infection, the mutant strain retained virulence; however, infected animals had lower bacterial loads in their kidneys. Further studies are necessary to better understand the role and potential redundancy of metalloproteinases on the pathogenicity of this important neglected disease.
Collapse
Affiliation(s)
- Daniella Dos Santos Courrol
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cassia Moreira Santos
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- Laboratory of Bacterial Zoonosis, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Rosa Maria Chura-Chambi
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- Center of Biotechnology, Energy and Nuclear Research Institute (IPEN)-CNEN/SP, São Paulo, Brazil
| | - Lígia Morganti
- Center of Biotechnology, Energy and Nuclear Research Institute (IPEN)-CNEN/SP, São Paulo, Brazil
| | - Kátia Eliane Santos Avelar
- Laboratório de Referência Nacional para Leptospirose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda de Moraes Maia
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Elsio Augusto Wunder
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | | |
Collapse
|
5
|
Ramírez-Rico G, Ruiz-Mazón L, Reyes-López M, Rivillas Acevedo L, Serrano-Luna J, de la Garza M. Apo-Lactoferrin Inhibits the Proteolytic Activity of the 110 kDa Zn Metalloprotease Produced by Mannheimia haemolytica A2. Int J Mol Sci 2024; 25:8232. [PMID: 39125801 PMCID: PMC11311601 DOI: 10.3390/ijms25158232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Mannheimia haemolytica is the main etiological bacterial agent in ruminant respiratory disease. M. haemolytica secretes leukotoxin, lipopolysaccharides, and proteases, which may be targeted to treat infections. We recently reported the purification and in vivo detection of a 110 kDa Zn metalloprotease with collagenase activity (110-Mh metalloprotease) in a sheep with mannheimiosis, and this protease may be an important virulence factor. Due to the increase in the number of multidrug-resistant strains of M. haemolytica, new alternatives to antibiotics are being explored; one option is lactoferrin (Lf), which is a multifunctional iron-binding glycoprotein from the innate immune system of mammals. Bovine apo-lactoferrin (apo-bLf) possesses many properties, and its bactericidal and bacteriostatic effects have been highlighted. The present study was conducted to investigate whether apo-bLf inhibits the secretion and proteolytic activity of the 110-Mh metalloprotease. This enzyme was purified and sublethal doses of apo-bLf were added to cultures of M. haemolytica or co-incubated with the 110-Mh metalloprotease. The collagenase activity was evaluated using zymography and azocoll assays. Our results showed that apo-bLf inhibited the secretion and activity of the 110-Mh metalloprotease. Molecular docking and overlay assays showed that apo-bLf bound near the active site of the 110-Mh metalloprotease, which affected its enzymatic activity.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México 54714, Mexico;
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Lina Rivillas Acevedo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| |
Collapse
|
6
|
de la Fuente M, Delgado D, Beitia M, Barreda-Gómez G, Acera A, Sanchez M, Vecino E. Validation of a rapid collagenase activity detection technique based on fluorescent quenched gelatin with synovial fluid samples. BMC Biotechnol 2024; 24:50. [PMID: 39030513 PMCID: PMC11264812 DOI: 10.1186/s12896-024-00869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/13/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Measuring collagenase activity is crucial in the field of joint health and disease management. Collagenases, enzymes responsible for collagen degradation, play a vital role in maintaining the balance between collagen synthesis and breakdown in joints. Dysregulation of collagenase activity leads to joint tissue degradation and diseases such as rheumatoid arthritis and osteoarthritis. The development of methods to measure collagenase activity is essential for diagnosis, disease severity assessment, treatment monitoring, and identification of therapeutic targets. RESULTS This study aimed to validate a rapid collagenase activity detection technique using synovial fluid samples. Antibody microarray analysis was initially performed to quantify the levels of matrix metalloproteinase-9 (MMP-9), a major collagenase in joints. Subsequently, the developed gelatin-based test utilizing fluorescence measurement was used to determine collagenase activity. There was a significant correlation between the presence of MMP-9 and collagenase activity. In addition, Lower Limit of Detection and Upper Limit of Detection can be preliminary estimated as 8 ng/mL and 48 ng/mL respectively. CONCLUSIONS The developed technique offers a potential point-of-care assessment of collagenase activity, providing real-time information for clinicians and researchers. By accurately quantifying collagenase activity, healthcare professionals can optimize patient care, improve treatment outcomes, and contribute to the understanding and management of joint-related disorders. Further research and validation are necessary to establish the full potential of this rapid collagenase activity detection method in clinical practice.
Collapse
Affiliation(s)
- Miguel de la Fuente
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE, www.ehu.eus/gobe), University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, 01008, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, 01008, Spain
| | | | - Arantxa Acera
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE, www.ehu.eus/gobe), University of the Basque Country UPV/EHU, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48001, Spain
| | - Mikel Sanchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, 01008, Spain
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, 01008, Spain
| | - Elena Vecino
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE, www.ehu.eus/gobe), University of the Basque Country UPV/EHU, Leioa, 48940, Spain.
| |
Collapse
|
7
|
Giraud-Gatineau A, Nieves C, Harrison LB, Benaroudj N, Veyrier FJ, Picardeau M. Evolutionary insights into the emergence of virulent Leptospira spirochetes. PLoS Pathog 2024; 20:e1012161. [PMID: 39018329 DOI: 10.1371/journal.ppat.1012161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
Pathogenic Leptospira are spirochete bacteria which cause leptospirosis, a re-emerging zoonotic disease of global importance. Here, we use a recently described lineage of environmental-adapted leptospires, which are evolutionarily the closest relatives of the highly virulent Leptospira species, to explore the key phenotypic traits and genetic determinants of Leptospira virulence. Through a comprehensive approach integrating phylogenomic comparisons with in vitro and in vivo phenotyping studies, we show that the evolution towards pathogenicity is associated with both a decrease of the ability to survive in the environment and the acquisition of strategies that enable successful host colonization. This includes the evasion of the mammalian complement system and the adaptations to avoid activation of the innate immune cells by the highly-virulent Leptospira species (also called P1+ species), unlike other species belonging to the phylogenetically related P1- and P2 groups, as well as saprophytes. Moreover, our analysis reveals specific genetic determinants that have undergone positive selection during the course of evolution in Leptospira, contributing directly to virulence and host adaptation as demonstrated by gain-of-function and knock-down studies. Taken together, our findings define a new vision on Leptospira pathogenicity, identifying virulence attributes associated with clinically relevant species, and provide insights into the evolution and emergence of these life-threatening pathogens.
Collapse
Affiliation(s)
| | - Cecilia Nieves
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
| | - Luke B Harrison
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
| | - Nadia Benaroudj
- Institut Pasteur, Université Paris Cité, Biology of Spirochetes Unit, Paris, France
| | - Frédéric J Veyrier
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
| | - Mathieu Picardeau
- Institut Pasteur, Université Paris Cité, Biology of Spirochetes Unit, Paris, France
| |
Collapse
|
8
|
Giraud-Gatineau A, Nieves C, Harrison LB, Benaroudj N, Veyrier FJ, Picardeau M. Evolutionary insights into the emergence of virulent Leptospira spirochetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587687. [PMID: 38617210 PMCID: PMC11014503 DOI: 10.1101/2024.04.02.587687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Pathogenic Leptospira are spirochete bacteria which cause leptospirosis, a re-emerging zoonotic disease of global importance. Here, we use a recently described lineage of environmental-adapted leptospires, which are evolutionarily the closest relatives of the highly virulent Leptospira species, to explore the key phenotypic traits and genetic determinants of Leptospira virulence. Through a comprehensive approach integrating phylogenomic comparisons with in vitro and in vivo phenotyping studies, we show that the evolution towards pathogenicity is associated with both a decrease of the ability to survive in the environment and the acquisition of strategies that enable successful host colonization. This includes the evasion of the human complement system and the adaptations to avoid activation of the innate immune cells. Moreover, our analysis reveals specific genetic determinants that have undergone positive selection during the course of evolution in Leptospira, contributing directly to virulence and host adaptation as demonstrated by gain-of-function and knock-down studies. Taken together, our findings define a new vision on Leptospira pathogenicity, identifying virulence attributes associated with clinically relevant species, and provide insights into the evolution and emergence of these life-threatening pathogens.
Collapse
Affiliation(s)
| | - Cecilia Nieves
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| | - Luke B. Harrison
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| | - Nadia Benaroudj
- Institut Pasteur, Université Paris Cité, Biology of Spirochetes Unit, Paris, France
| | - Frédéric J. Veyrier
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| | - Mathieu Picardeau
- Institut Pasteur, Université Paris Cité, Biology of Spirochetes Unit, Paris, France
| |
Collapse
|
9
|
Liu YH, Chen YH, Chen CM. Fulminant Leptospirosis Presenting with Rapidly Developing Acute Renal Failure and Multiorgan Failure. Biomedicines 2024; 12:435. [PMID: 38398036 PMCID: PMC10886720 DOI: 10.3390/biomedicines12020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Leptospirosis, caused by pathogenic spirochetes of the Leptospira genus, is a common zoonosis in tropical and subtropical regions and can lead to an epidemic following heavy rainfall or flooding. The primary reservoirs of Leptospira include rodents, wild animals, dogs, cats, amphibians, and others, but the brown rat (Rattus norvegicus) remains the main source of human Leptospirosis. Humans are often accidental hosts and they can be infected through cuts, abrasions, mucosa, conjunctiva, or by ingesting contaminated water. The clinical manifestation of leptospirosis can vary from mild, nonspecific symptoms to a fatal outcome involving liver and renal failure, pulmonary hemorrhage, meningitis, and septic shock. The severity of fatal outcomes is likely to be due to virulence factors, host susceptibility, and epidemiological conditions. L. interrogans are associated with high-risk individuals, particularly patients older than 60 years of age in clinical settings. The current case study showed a foreign worker who presented with rapidly deteriorating clinical signs of fever, jaundice, impaired consciousness, and oliguric acute renal failure. Drawing from our experience, it is advisable to consider the possibility of leptospirosis diagnosis in patients who show clinical symptoms such as fever, hepatic failure with jaundice, and acute renal failure. This is particularly important for those individuals with a prior history of pathogen exposure. This case study had a strong suspicion of leptospirosis, which was confirmed by the microscopic agglutination test (MAT) and, later, the patient's recovery following treatment.
Collapse
Affiliation(s)
- Yu-Hsien Liu
- Department of Life Sciences, Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.L.); (Y.-H.C.)
- Department of Internal Medicine, Jen-Ai Hospital, Dali Branch, Jen-Ai Medical Foundation and Chang Gung Medical Foundation Cooperation Alliance, Taichung 402, Taiwan
| | - Yu-Hsuan Chen
- Department of Life Sciences, Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.L.); (Y.-H.C.)
- Department of Internal Medicine, Jen-Ai Hospital, Dali Branch, Jen-Ai Medical Foundation and Chang Gung Medical Foundation Cooperation Alliance, Taichung 402, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.L.); (Y.-H.C.)
- The iEGG and Animal Biotechnology Research Center, The Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
10
|
Costa EP, Brandão-Costa RMP, Albuquerque WWC, Nascimento TP, Sales Conniff AE, Cardoso KBB, Neves AGD, Batista JMDS, Porto ALF. Extracellular collagenase isolated from Streptomyces antibioticus UFPEDA 3421: purification and biochemical characterization. Prep Biochem Biotechnol 2024; 54:260-271. [PMID: 37355277 DOI: 10.1080/10826068.2023.2225090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Collagenases are proteases able to degrade native and denatured collagen, with broad applications such as leather, food, and pharmaceutical industries. The aim of this research was to purify and characterize a collagenase from Streptomyces antibioticus. In the present work, the coffee ground substrate provided conditions to obtaining high collagenase activity (377.5 U/mL) using anion-exchange DEAE-Sephadex G50 chromatographic protocol. SDS-PAGE revealed the metallo-collagenase with a single band of 41.28 kDa and was able to hydrolyzed type I and type V collagen producing bioactive peptides that delayed the coagulation time. The enzyme activity showed stability across a range of pH (6.0-11) and temperature (30-55 °C) with optima at pH 7.0 and 60 °C, respectively. Activators include Mg+2, Ca+2, Na+, K+, while full inhibition was given by other tested metalloproteinase inhibitors. Kinetic parameters (Km of 27.14 mg/mol, Vmax of 714.29 mg/mol/min, Kcat of 79.9 s-1 and Kcat/Km of 2.95 mL/mg/s) and thermodynamic parameters (Ea of 65.224 kJ/mol, ΔH of 62.75 kJ/mol, ΔS of 1.96 J/mol, ΔG of 62.16 kJ/mol, ΔGE-S of 8.18 kJ/mol and ΔGE-T of -2.64 kJ/mol) were also defined. Coffee grounds showed to be an interesting source to obtaining a collagenase able to produce bioactive peptides with anticoagulant activity.
Collapse
Affiliation(s)
- Elizianne Pereira Costa
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco, Recife, PE, Brazil
- Center of Biological Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | | | - Ana Lúcia Figueiredo Porto
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco, Recife, PE, Brazil
- Center of Biological Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
11
|
Ramírez-Rico G, Martinez-Castillo M, Ruiz-Mazón L, Meneses-Romero EP, Palacios JAF, Díaz-Aparicio E, Abascal EN, de la Garza M. Identification, Biochemical Characterization, and In Vivo Detection of a Zn-Metalloprotease with Collagenase Activity from Mannheimia haemolytica A2. Int J Mol Sci 2024; 25:1289. [PMID: 38279292 PMCID: PMC10816954 DOI: 10.3390/ijms25021289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Respiratory diseases in ruminants are a main cause of economic losses to farmers worldwide. Approximately 25% of ruminants experience at least one episode of respiratory disease during the first year of life. Mannheimia haemolytica is the main etiological bacterial agent in the ruminant respiratory disease complex. M. haemolytica can secrete several virulence factors, such as leukotoxin, lipopolysaccharide, and proteases, that can be targeted to treat infections. At present, little information has been reported on the secretion of M. haemolytica A2 proteases and their host protein targets. Here, we obtained evidence that M. haemolytica A2 proteases promote the degradation of hemoglobin, holo-lactoferrin, albumin, and fibrinogen. Additionally, we performed biochemical characterization for a specific 110 kDa Zn-dependent metalloprotease (110-Mh metalloprotease). This metalloprotease was purified through ion exchange chromatography and characterized using denaturing and chaotropic agents and through zymography assays. Furthermore, mass spectrometry identification and 3D modeling were performed. Then, antibodies against the 110 kDa-Mh metalloprotease were produced, which achieved great inhibition of proteolytic activity. Finally, the antibodies were used to perform immunohistochemical tests on postmortem lung samples from sheep with suggestive histology data of pneumonic mannheimiosis. Taken together, our results strongly suggest that the 110-Mh metalloprotease participates as a virulence mechanism that promotes damage to host tissues.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Faculty of Professional Studies Cuautitlan, Autonomous National University of Mexico (UNAM), Mexico City 54714, Mexico;
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| | - Moises Martinez-Castillo
- Liver, Pancreas and Motility Laboratory, Unit of Research in Experimental Medicine, School of Medicine, Autonomous National University of Mexico (UNAM), Mexico City 06726, Mexico;
| | - Lucero Ruiz-Mazón
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| | | | | | - Efrén Díaz-Aparicio
- National Center for Disciplinary Research in Animal Health and Safety, National Institute of Forestry, Agricultural and Livestock Research (INIFAP), Mexico City 05110, Mexico
| | - Erasmo Negrete Abascal
- Faculty of Professional Studies Iztacala, Autonomous National University of Mexico (UNAM), Mexico City 54090, Mexico;
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| |
Collapse
|
12
|
Sandrasaigaran P, Mohan S, Segaran NS, Lee TY, Radu S, Hasan H. Prevalence of multi-antimicrobial resistant non-typhoidal Salmonella isolated from filth flies at wet markets in Klang, Malaysia, and their survival in the simulated gastric fluid. Int J Food Microbiol 2023; 407:110390. [PMID: 37722349 DOI: 10.1016/j.ijfoodmicro.2023.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/20/2023]
Abstract
Filth flies at wet markets can be a vector harbouring multiple antimicrobial-resistant (MAR) nontyphoidal Salmonella (NTS), and such strains are a significant threat to public health as they may cause severe infections in humans. This study aims to investigate the prevalence of antimicrobial-resistant NTS, especially Salmonella Enteritidis and S. Typhimurium harboured by filth flies at wet markets, and investigate their survival in the simulated gastric fluid (SGF). Filth flies (n = 90) were captured from wet markets in Klang, Malaysia, and processed to isolate Salmonella spp. The isolates (n = 16) were identified using the multiplex-touchdown PCR and assessed their antimicrobial susceptibility against 11 antimicrobial agents. Finally, three isolates with the highest MAR index were subjected to SGF survival tests. It was observed that 17.8 % of flies (n = 16/90) harbouring Salmonella, out of which 10 % (n = 9/90) was S. Enteritidis, 2.2 % (n = 2/90) was S. Typhimurium, and 5.6 % was unidentified serotypes of Salmonella enterica subsp. I. 43.8 % (n = 7/16) were confirmed as MAR, and they were observed to be resistant against ampicillin, chloramphenicol, kanamycin, streptomycin, and nalidixic acid. Three strains, F35, F75, and F85 demonstrated the highest MAR index and were able to survive (>6-log10) in the SGF (180 min), indicating their potential virulence and invasiveness. This study provides significant insights into the prevalence and severity of MAR nontyphoidal Salmonella harboured by filth flies in wet markets, which may help inform strategies for controlling the spread and outbreak of foodborne disease.
Collapse
Affiliation(s)
- Pratheep Sandrasaigaran
- Department of Biotechnology, School of Biotechnology, Manipal International University, Nilai, Negeri Sembilan, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Shuvarnah Mohan
- Department of Biotechnology, School of Biotechnology, Manipal International University, Nilai, Negeri Sembilan, Malaysia
| | - Nithiyha Sandara Segaran
- Department of Biotechnology, School of Biotechnology, Manipal International University, Nilai, Negeri Sembilan, Malaysia
| | - Tze Yan Lee
- School of Liberal Arts, Science and Technology (PUScLST), Perdana University, Wisma Chase Perdana, Changkat Semantan Damansara Heights, 50490 Kuala Lumpur, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
13
|
Kavela S, Vyas P, CP J, Kushwaha SK, Majumdar SS, Faisal SM. Use of an Integrated Multi-Omics Approach To Identify Molecular Mechanisms and Critical Factors Involved in the Pathogenesis of Leptospira. Microbiol Spectr 2023; 11:e0313522. [PMID: 36853003 PMCID: PMC10100824 DOI: 10.1128/spectrum.03135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Leptospirosis, a bacterial zoonosis caused by pathogenic Leptospira spp., is prevalent worldwide and has become a serious threat in recent years. Limited understanding of Leptospira pathogenesis and host response has hampered the development of effective vaccine and diagnostics. Although Leptospira is phagocytosed by innate immune cells, it resists its destruction, and the evading mechanism involved is unclear. In the present study, we used an integrative multi-omics approach to identify the critical molecular factors of Leptospira involved in pathogenesis during interaction with human macrophages. Transcriptomic and proteomic analyses were performed at 24 h postinfection of human macrophages (phorbol-12-myristate-13-acetate differentiated THP-1 cells) with the pathogenic Leptospira interrogans serovar Icterohaemorrhagiae strain RGA (LEPIRGA). Our results identified a total of 1,528 transcripts and 871 proteins that were significantly expressed with an adjusted P value of <0.05. The correlations between the transcriptomic and proteomic data were above average (r = 0.844), suggesting the role of the posttranscriptional processes during host interaction. The conjoint analysis revealed the expression of several virulence-associated proteins such as adhesins, invasins, and secretory and chemotaxis proteins that might be involved in various processes of attachment and invasion and as effectors during pathogenesis in the host. Further, the interaction of bacteria with the host cell (macrophages) was a major factor in the differential expression of these proteins. Finally, eight common differentially expressed RNA-protein pairs, predicted as virulent, outer membrane/extracellular proteins were validated by quantitative PCR. This is the first report using integrated multi-omics approach to identify critical factors involved in Leptospira pathogenesis. Validation of these critical factors may lead to the identification of target antigens for the development of improved diagnostics and vaccines against leptospirosis. IMPORTANCE Leptospirosis is a zoonotic disease of global importance. It is caused by a Gram-negative bacterial spirochete of the genus Leptospira. The current challenge is to detect the infection at early stage for treatment or to develop potent vaccines that can induce cross-protection against various pathogenic serovars. Understanding host-pathogen interactions is important to identify the critical factors involved in pathogenesis and host defense for developing improved vaccines and diagnostics. Utilizing an integrated multi-omics approach, our study provides important insight into the interaction of Leptospira with human macrophages and identifies a few critical factors (such as virulence-associated proteins) involved in pathogenesis. These factors can be exploited for the development of novel tools for the detection, treatment, or prevention of leptospirosis.
Collapse
Affiliation(s)
- Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jusail CP
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep K. Kushwaha
- Bioinformatics Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Subeer S. Majumdar
- Gene and Protein Engineering Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
14
|
Ashaiba A, Arun AB, Prasad KS, Tellis RC. Leptospiral sphingomyelinase Sph2 as a potential biomarker for diagnosis of leptospirosis. J Microbiol Methods 2022; 203:106621. [PMID: 36375539 DOI: 10.1016/j.mimet.2022.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Leptospirosis is an underestimated infectious tropical disease caused by the spirochetes belonging to the genus Leptospira. Leptospirosis is grossly underdiagnosed due to its myriad symptoms, varying from mild febrile illness to severe haemorrhage. Laboratory tests for leptospirosis is an extremely important and potent way for disease diagnosis, as the clinical manifestations are very similar to other febrile diseases. Currently available diagnostic techniques are time-consuming, require expertise and sophisticated instruments, and cannot identify the disease at an early phase of infection. Early diagnosis of leptospirosis is the need of the hour while considering the severe complications after the infection and the rate of mortality after misdiagnosis. Secretion of Leptospira-specific sphingomyelinases in leptospirosis patient's urine within a few days of the onset of infection is quite common and is a virulence factor present only in pathogenic Leptospira species. Herein, the structural and functional importance of leptospiral sphingomyelinase Sph2 in leptospirosis pathogenesis, as well as the potential of screening urinary Sph2 for diagnosis and the scope for developing a rapid and easily affordable point-of-care test for urinary leptospiral sphingomyelinase Sph2 as an alternative to current diagnostic methods are discussed.
Collapse
Affiliation(s)
- A Ashaiba
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India; Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - A B Arun
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - K Sudhakara Prasad
- Nano Materials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India.
| | - Rouchelle C Tellis
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India.
| |
Collapse
|
15
|
Courrol DDS, da Silva CCF, Prado LG, Chura-Chambi RM, Morganti L, de Souza GO, Heinemann MB, Isaac L, Conte FP, Portaro FCV, Rodrigues-da-Silva RN, Barbosa AS. Leptolysin, a Leptospira secreted metalloprotease of the pappalysin family with broad-spectrum activity. Front Cell Infect Microbiol 2022; 12:966370. [PMID: 36081769 PMCID: PMC9445424 DOI: 10.3389/fcimb.2022.966370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular proteolytic enzymes are produced by a variety of pathogenic microorganisms, and contribute to host colonization by modulating virulence. Here, we present a first characterization of leptolysin, a Leptospira metalloprotease of the pappalysin family identified in a previous exoproteomic study. Comparative molecular analysis of leptolysin with two other pappalysins from prokaryotes, ulilysin and mirolysin, reveals similarities regarding calcium, zinc, and arginine -binding sites conservation within the catalytic domain, but also discloses peculiarities. Variations observed in the primary and tertiary structures may reflect differences in primary specificities. Purified recombinant leptolysin of L. interrogans was obtained as a ~50 kDa protein. The protease exhibited maximal activity at pH 8.0 and 37°C, and hydrolytic activity was observed in the presence of different salts with maximum efficiency in NaCl. Substrate specificity was assessed using a small number of FRET peptides, and showed a marked preference for arginine residues at the P1 position. L. interrogans leptolysin proteolytic activity on proteinaceous substrates such as proteoglycans and plasma fibronectin was also evaluated. All proteins tested were efficiently degraded over time, confirming the protease´s broad-spectrum activity in vitro. In addition, leptolysin induced morphological alterations on HK-2 cells, which may be partially attributed to extracellular matrix (ECM) degradation. Hemorrhagic foci were observed in the dorsal skin of mice intradermally injected with leptolysin, as a plausible consequence of ECM disarray and vascular endothelium glycocalyx damage. Assuming that leptospiral proteases play an important role in all stages of the infectious process, characterizing their functional properties, substrates and mechanisms of action is of great importance for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Luan Gavião Prado
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rosa Maria Chura-Chambi
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- Center of Biotechnology, Energy and Nuclear Research Institute (IPEN)-CNEN/SP), São Paulo, Brazil
| | - Ligia Morganti
- Center of Biotechnology, Energy and Nuclear Research Institute (IPEN)-CNEN/SP), São Paulo, Brazil
| | - Gisele Oliveira de Souza
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Paiva Conte
- Pilot Plant Implementation Project, Immunobiological Technology Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Angela Silva Barbosa
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- *Correspondence: Angela Silva Barbosa,
| |
Collapse
|
16
|
Camberlein V, Jézéquel G, Haupenthal J, Hirsch AKH. The Structures and Binding Modes of Small-Molecule Inhibitors of Pseudomonas aeruginosa Elastase LasB. Antibiotics (Basel) 2022; 11:1060. [PMID: 36009930 PMCID: PMC9404851 DOI: 10.3390/antibiotics11081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Elastase B (LasB) is a zinc metalloprotease and a crucial virulence factor of Pseudomonas aeruginosa. As the need for new strategies to fight antimicrobial resistance (AMR) constantly rises, this protein has become a key target in the development of novel antivirulence agents. The extensive knowledge of the structure of its active site, containing two subpockets and a zinc atom, led to various structure-based medicinal chemistry programs and the optimization of several chemical classes of inhibitors. This review provides a brief reminder of the structure of the active site and a summary of the disclosed P. aeruginosa LasB inhibitors. We specifically focused on the analysis of their binding modes with a detailed representation of them, hence giving an overview of the strategies aiming at targeting LasB by small molecules.
Collapse
Affiliation(s)
- Virgyl Camberlein
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
17
|
Chaurasia R, Marroquin AS, Vinetz JM, Matthias MA. Pathogenic Leptospira Evolved a Unique Gene Family Comprised of Ricin B-Like Lectin Domain-Containing Cytotoxins. Front Microbiol 2022; 13:859680. [PMID: 35422779 PMCID: PMC9002632 DOI: 10.3389/fmicb.2022.859680] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Leptospirosis is a globally important neglected zoonotic disease. Previous data suggest that a family of virulence-modifying (VM) proteins (PF07598) is a distinctive feature of group I pathogenic Leptospira that evolved as important virulence determinants. Here, we show that one such VM protein, LA3490 (also known as Q8F0K3), is expressed by Leptospira interrogans serovar Lai, as a secreted genotoxin that is potently cytotoxic to human cells. Structural homology searches using Phyre2 suggested that VM proteins are novel R-type lectins containing tandem N-terminal ricin B-chain-like β-trefoil domains. Recombinant LA3490 (rLA3490) and an N-terminal fragment, t3490, containing only the predicted ricin B domain, bound to the terminal galactose and N-acetyl-galactosamine residues, asialofetuin, and directly competed for asialofetuin-binding sites with recombinant ricin B chain. t3490 alone was sufficient for binding, both to immobilized asialofetuin and to the HeLa cell surface but was neither internalized nor cytotoxic. Treatment of HeLa cells with rLA3490 led to cytoskeleton disassembly, caspase-3 activation, and nuclear fragmentation, and was rapidly cytolethal. rLA3490 had DNase activity on mammalian and bacterial plasmid DNA. The combination of cell surface binding, internalization, nuclear translocation, and DNase functions indicate that LA3490 and other VM proteins evolved as novel forms of the bacterial AB domain-containing toxin paradigm.
Collapse
Affiliation(s)
- Reetika Chaurasia
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Alan S Marroquin
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Michael A Matthias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Candidates for Repurposing as Anti-Virulence Agents Based on the Structural Profile Analysis of Microbial Collagenase Inhibitors. Pharmaceutics 2021; 14:pharmaceutics14010062. [PMID: 35056958 PMCID: PMC8780423 DOI: 10.3390/pharmaceutics14010062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 01/17/2023] Open
Abstract
The pharmacological inhibition of the bacterial collagenases (BC) enzymes is considered a promising strategy to block the virulence of the bacteria without targeting the selection mechanism leading to drug resistance. The chemical structures of the Clostridium perfringens collagenase A (ColA) inhibitors were analyzed using Bemis-Murcko skeletons, Murcko frameworks, the type of plain rings, and docking studies. The inhibitors were classified based on their structural architecture and various scoring methods were implemented to predict the probability of new compounds to inhibit ColA and other BC. The analyses indicated that all compounds contain at least one aromatic ring, which is often a nitrobenzene fragment. 2-Nitrobenzene based compounds are, on average, more potent BC inhibitors compared to those derived from 4-nitrobenzene. The molecular descriptors MDEO-11, AATS0s, ASP-0, and MAXDN were determined as filters to identify new BC inhibitors and highlighted the necessity for a compound to contain at least three primary oxygen atoms. The DrugBank database was virtually screened using the developed methods. A total of 100 compounds were identified as potential BC inhibitors, of which, 10 are human approved drugs. Benzthiazide, entacapone, and lodoxamide were chosen as the best candidates for in vitro testing based on their pharmaco-toxicological profile.
Collapse
|
19
|
Grassmann AA, Zavala-Alvarado C, Bettin EB, Picardeau M, Benaroudj N, Caimano MJ. The FUR-like regulators PerRA and PerRB integrate a complex regulatory network that promotes mammalian host-adaptation and virulence of Leptospira interrogans. PLoS Pathog 2021; 17:e1009078. [PMID: 34855918 PMCID: PMC8638967 DOI: 10.1371/journal.ppat.1009078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Leptospira interrogans, the causative agent of most cases of human leptospirosis, must respond to myriad environmental signals during its free-living and pathogenic lifestyles. Previously, we compared L. interrogans cultivated in vitro and in vivo using a dialysis membrane chamber (DMC) peritoneal implant model. From these studies emerged the importance of genes encoding the Peroxide responsive regulators PerRA and PerRB. First described in in Bacillus subtilis, PerRs are widespread in Gram-negative and -positive bacteria, where regulate the expression of gene products involved in detoxification of reactive oxygen species and virulence. Using perRA and perRB single and double mutants, we establish that L. interrogans requires at least one functional PerR for infectivity and renal colonization in a reservoir host. Our finding that the perRA/B double mutant survives at wild-type levels in DMCs is noteworthy as it demonstrates that the loss of virulence is not due to a metabolic lesion (i.e., metal starvation) but instead reflects dysregulation of virulence-related gene products. Comparative RNA-Seq analyses of perRA, perRB and perRA/B mutants cultivated within DMCs identified 106 genes that are dysregulated in the double mutant, including ligA, ligB and lvrA/B sensory histidine kinases. Decreased expression of LigA and LigB in the perRA/B mutant was not due to loss of LvrAB signaling. The majority of genes in the perRA and perRB single and double mutant DMC regulons were differentially expressed only in vivo, highlighting the importance of host signals for regulating gene expression in L. interrogans. Importantly, the PerRA, PerRB and PerRA/B DMC regulons each contain multiple genes related to environmental sensing and/or transcriptional regulation. Collectively, our data suggest that PerRA and PerRB are part of a complex regulatory network that promotes host adaptation by L. interrogans within mammals.
Collapse
Affiliation(s)
- André A. Grassmann
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
| | - Crispin Zavala-Alvarado
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Communauté d’universités et d’établissements (COMUE), Bio Sorbonne Paris Cité (BioSPC), Paris, France
| | - Everton B. Bettin
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sol, Brazil
| | - Mathieu Picardeau
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Nadia Benaroudj
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, United States of America
| |
Collapse
|
20
|
Chirathaworn C, Janwitthayanan W, Suputtamongkol Y, Poovorawan Y. Leptospira collagenase and LipL32 for antibody detection in leptospirosis. J Immunol Methods 2021; 499:113168. [PMID: 34673004 DOI: 10.1016/j.jim.2021.113168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Various Leptospira components have been identified as candidate antigens for the detection of antibody to Leptospira. LipL32 is a Leptospira membrane protein which has been widely studied. The report of Leptospira whole-genome sequencing demonstrated that pathogenic Leptospira contained the nucleotide sequence (colA gene) coding for the collagenase. Expression of ColA protein and its enzymatic activity was demonstrated. In this study, cloned ColA protein, in comparison with LipL32, was used as an antigen for antibody detection. Thirty pairs of sera from human leptospirosis patients were tested. Sera from blood donors, and patients with scrub typhus and dengue virus infection (20 samples from each group) were tested for the specificity. All sera from leptospirosis patients tested in this study reacted with both ColA and LipL32 proteins. Sera from blood donors, patients with scrub typhus and dengue virus infection did not react with ColA protein. Data suggested that sensitivity and specificity of ColA protein for Leptospira antibody detection were 100%. In addition, ColA protein showed higher specificity than LipL32. Our data suggested that ColA protein could be another candidate antigen for antibody detection in leptospirosis diagnosis.
Collapse
Affiliation(s)
- Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Weena Janwitthayanan
- Master of Science Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
22
|
Philip N, Jani J, Azhari NN, Sekawi Z, Neela VK. In vivo and in silico Virulence Analysis of Leptospira Species Isolated From Environments and Rodents in Leptospirosis Outbreak Areas in Malaysia. Front Microbiol 2021; 12:753328. [PMID: 34803975 PMCID: PMC8602918 DOI: 10.3389/fmicb.2021.753328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
The zoonotic disease leptospirosis is caused by pathogenic species of the genus Leptospira. With the advancement of studies in leptospirosis, several new species are being reported. It has always been a query, whether Leptospira species, serovars, and strains isolated from different geographical locations contribute to the difference in the disease presentations and severity. In an epidemiological surveillance study performed in Malaysia, we isolated seven novel intermediate and saprophytic species (Leptospira semungkisensis, Leptospira fletcheri, Leptospira langatensis, Leptospira selangorensis, Leptospira jelokensis, Leptospira perdikensis, Leptospira congkakensis) from environments and three pathogenic species from rodents (Leptospira borgpetersenii strain HP364, Leptospira weilii strain SC295, Leptospira interrogans strain HP358) trapped in human leptospirosis outbreak premises. To evaluate the pathogenic potential of these isolates, we performed an in vivo and in silico virulence analysis. Environmental isolates and strain HP364 did not induce any clinical manifestations in hamsters. Strain SC295 caused inactivity and weight loss with histopathological changes in kidneys, however, all hamsters survived until the end of the experiment. Strain HP358 showed a high virulent phenotype as all infected hamsters died or were moribund within 7 days postinfection. Lungs, liver, and kidneys showed pathological changes with hemorrhage as the main presentation. In silico analysis elucidated the genome size of strain HP358 to be larger than strains HP364 and SC295 and containing virulence genes reported in Leptospira species and a high number of specific putative virulence factors. In conclusion, L. interrogans strain HP358 was highly pathogenic with fatal outcome. The constituent of Leptospira genomes may determine the level of disease severity and that needs further investigations.
Collapse
Affiliation(s)
- Noraini Philip
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Jaeyres Jani
- Borneo Medical and Health Research Center, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Nurul Natasya Azhari
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
23
|
The Vibriolysin-Like Protease VnpA and the Collagenase ColA Are Required for Full Virulence of the Bivalve Mollusks Pathogen Vibrio neptunius. Antibiotics (Basel) 2021; 10:antibiotics10040391. [PMID: 33917401 PMCID: PMC8067407 DOI: 10.3390/antibiotics10040391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Vibrio neptunius is an important pathogen of bivalve mollusks worldwide. Several metalloproteases have been described as virulence factors in species of Vibrio that are pathogenic to bivalves, but little is known about the contribution of these potential virulence factors to Vibrio neptunius pathogenesis. In silico analysis of the genome of V. neptunius strain PP-145.98 led to the identification of two hitherto uncharacterized chromosomal loci encoding a probable vibriolysin-like metalloprotease and a putative collagenase, which were designated VnpA and ColA, respectively. Single defective mutants of each gene were obtained in V. neptunius PP-145.98, and the phospholipase, esterase and collagenase activities were studied and compared with those of the wild-type strain. The results showed that the single inactivation of vnpA resulted in a 3-fold reduction in phospholipase/esterase activity. Inactivation of colA reduced the collagenase activity by 50%. Finally, infection challenges performed in oyster larvae showed that ΔvnpA and ΔcolA—single mutant strains of V. neptunius—are between 2–3-fold less virulent than the wild-type strain. Thus, the present work demonstrates that the production of both VnpA and ColA is required for the full virulence of the bivalve pathogen V. neptunius.
Collapse
|
24
|
TcpC inhibits toll-like receptor signaling pathway by serving as an E3 ubiquitin ligase that promotes degradation of myeloid differentiation factor 88. PLoS Pathog 2021; 17:e1009481. [PMID: 33788895 PMCID: PMC8041205 DOI: 10.1371/journal.ppat.1009481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/12/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
TcpC is a virulence factor of uropathogenic E. coli (UPEC). It was found that TIR domain of TcpC impedes TLR signaling by direct association with MyD88. It has been a long-standing question whether bacterial pathogens have evolved a mechanism to manipulate MyD88 degradation by ubiquitin-proteasome pathway. Here, we show that TcpC is a MyD88-targeted E3 ubiquitin ligase. Kidney macrophages from mice with pyelonephritis induced by TcpC-secreting UPEC showed significantly decreased MyD88 protein levels. Recombinant TcpC (rTcpC) dose-dependently inhibited protein but not mRNA levels of MyD88 in macrophages. Moreover, rTcpC significantly promoted MyD88 ubiquitination and accumulation in proteasomes in macrophages. Cys12 and Trp106 in TcpC are crucial amino acids in maintaining its E3 activity. Therefore, TcpC blocks TLR signaling pathway by degradation of MyD88 through ubiquitin-proteasome system. Our findings provide not only a novel biochemical mechanism underlying TcpC-medicated immune evasion, but also the first example that bacterial pathogens inhibit MyD88-mediated signaling pathway by virulence factors that function as E3 ubiquitin ligase. Toll/interleukin-1 receptor domain-containing protein encoded by E. coli (TcpC) is an important virulence factor in many strains of uropathogenic E. coli (UPEC). TcpC-mediated evasion of innate immunity plays an important role in the pathogenesis of UPEC caused urinary tract infection (UTI) including pyelonephritis. In the present study, we show TcpC is an E3 ubiquitin ligase that promotes ubiquitination and degradation of MyD88, hereby blocking the TLR signaling pathway. Our findings not only illuminate the novel biochemical mechanisms underlying TcpC-mediated evasion of innate immunity, but also provide the first example that bacterial pathogens can subvert TLR signaling pathway through virulence factors that function as MyD88-targeted E3 ubiquitin ligase.
Collapse
|
25
|
Ge YM, Sun AH, Ojcius DM, Li SJ, Hu WL, Lin X, Yan J. M16-Type Metallopeptidases Are Involved in Virulence for Invasiveness and Diffusion of Leptospira interrogans and Transmission of Leptospirosis. J Infect Dis 2021; 222:1008-1020. [PMID: 32274497 DOI: 10.1093/infdis/jiaa176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Leptospirosis is a global zoonotic infectious disease caused by Leptospira interrogans. The pathogen rapidly invades into hosts and diffuses from bloodstream into internal organs and excretes from urine to cause transmission of leptospirosis. However, the mechanism of leptospiral invasiveness remains poorly understood. METHODS Proteolytic activity of M16-type metallopeptidases (Lep-MP1/2/3) of L. interrogans was determined by spectrophotometry. Expression and secretion of Lep-MP1/2/3 during infection of cells were detected by quantitative reverse-transcription polymerase chain reaction, Western blot assay, and confocal microscopy. Deletion and complementation mutants of the genes encoding Lep-MP1/2/3 were generated to determine the roles of Lep-MP1/2/3 in invasiveness using transwell assay and virulence in hamsters. RESULTS Leptospira interrogans but not saprophytic Leptospira biflexa strains were detectable for Lep-MP-1/2/3-encoding genes. rLep-MP1/2/3 hydrolyzed extracellular matrix proteins, but rLep-MP1/3 displayed stronger proteolysis than rLep-MP2, with 123.179/340.136 μmol/L Km and 0.154/0.159 s-1 Kcat values. Expression, secretion and translocation of Lep-MP1/2/3 during infection of cells were increased. ΔMP1/3 but not ΔMP2 mutant presented attenuated transmigration through cell monolayers, decreased leptospiral loading in the blood, lungs, liver, kidneys, and urine, and 10/13-fold decreased 50% lethal dose and milder histopathologic injury in hamsters. CONCLUSIONS Lep-MP1 and 3 are involved in virulence of L. interrogans in invasion into hosts and diffusion in vivo, and transmission of leptospirosis.
Collapse
Affiliation(s)
- Yu-Mei Ge
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - David M Ojcius
- Department of Biomedical Sciences, School of Dentistry, University of the Pacific, San Francisco, California, USA.,Université de Paris, Paris, France
| | - Shi-Jun Li
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, People's Republic of China
| | - Wei-Lin Hu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
26
|
In Silico Structural and Functional Characterization of HtrA Proteins of Leptospira spp.: Possible Implications in Pathogenesis. Trop Med Infect Dis 2020; 5:tropicalmed5040179. [PMID: 33260771 PMCID: PMC7709667 DOI: 10.3390/tropicalmed5040179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Leptospirosis is a zoonosis caused by the pathogenic bacteria of the genus Leptospira. The identification of conserved outer membrane proteins among pathogenic strains is a major research target in elucidating mechanisms of pathogenicity. Surface-exposed proteins are most probably the ones involved in the interaction of leptospires with the environment. Some spirochetes use outer membrane proteases as a way to penetrate host tissues. HtrA is a family of proteins found in various cell types, from prokaryotes to primates. They are a set of proteases usually composed of a serine protease and PDZ domains, and they are generally transported to the periplasm. Here, we identified four genes—annotated as HtrA, LIC11111, LIC20143, LIC20144 and LIC11037—and another one annotated as a serine protease, LIC11112. It is believed that the last forms a functional heterodimer with LIC11111, since they are organized in one operon. Our analyses showed that these proteins are highly conserved among pathogenic strains. LIC11112, LIC20143, and LIC11037 have the serine protease domain with the conserved catalytic triad His-Asp-Ser. This is the first bioinformatics analysis of HtrA proteins from Leptospira that suggests their proteolytic activity potential. Experimental studies are warranted to elucidate this possibility.
Collapse
|
27
|
Eckhard U, Blöchl C, Jenkins BGL, Mansfield MJ, Huber CG, Doxey AC, Brandstetter H. Identification and characterization of the proteolytic flagellin from the common freshwater bacterium Hylemonella gracilis. Sci Rep 2020; 10:19052. [PMID: 33149258 PMCID: PMC7643111 DOI: 10.1038/s41598-020-76010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Flagellins are the protein components of bacterial flagella and assemble in up to 20,000 copies to form extracellular flagellar filaments. An unusual family of flagellins was recently discovered that contains a unique metalloprotease domain within its surface-exposed hypervariable region. To date, these proteolytic flagellins (also termed flagellinolysins) have only been characterized in the Gram-positive organism Clostridium haemolyticum, where flagellinolysin was shown to be proteolytically active and capable of cleaving extracellular protein substrates. The biological function of flagellinolysin and its activity in other organisms, however, remain unclear. Here, using molecular biochemistry and proteomics, we have performed an initial characterization of a novel flagellinolysin identified from Hylemonella gracilis, a Gram-negative organism originally isolated from pond water. We demonstrate that H. gracilis flagellinolysin (HgrFlaMP) is an active calcium-dependent zinc metallopeptidase and characterize its cleavage specificity profile using both trypsin and GluC-derived peptide libraries and protein substrates. Based on high-throughput degradomic assays, HgrFlaMP cleaved 784 unique peptides and displayed a cleavage site specificity similar to flagellinolysin from C. haemolyticum. Additionally, by using a set of six protein substrates, we identified 206 protein-embedded cleavage sites, further refining the substrate preference of HgrFlaMP, which is dominated by large hydrophobic amino acids in P1', and small hydrophobic or medium-sized polar residues on the amino-terminal side of the scissile bond. Intriguingly, recombinant HgrFlaMP was also capable of cleaving full-length flagellins from another species, suggesting its potential involvement in interbacterial interactions. Our study reports the first experimentally characterized proteolytic flagellin in a Gram-negative organism, and provides new insights into flagellum-mediated enzymatic activity.
Collapse
Affiliation(s)
- Ulrich Eckhard
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria. .,Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Baldiri Reixac, 15-21, 08028, Barcelona, Catalonia, Spain.
| | - Constantin Blöchl
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Benjamin G L Jenkins
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Michael J Mansfield
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada.,Genomics and Regulatory Sytems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Christian G Huber
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada.
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| |
Collapse
|
28
|
Kędzierska-Mieszkowska S, Arent Z. AAA+ Molecular Chaperone ClpB in Leptospira interrogans: Its Role and Significance in Leptospiral Virulence and Pathogenesis of Leptospirosis. Int J Mol Sci 2020; 21:E6645. [PMID: 32932775 PMCID: PMC7555560 DOI: 10.3390/ijms21186645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial ClpB is an ATP-dependent disaggregase that belongs to the Hsp100/Clp subfamily of the AAA+ ATPases and cooperates with the DnaK chaperone system in the reactivation of aggregated proteins, as well as promotes bacterial survival under adverse environmental conditions, including thermal and oxidative stresses. In addition, extensive evidence indicates that ClpB supports the virulence of numerous bacteria, including pathogenic spirochaete Leptospira interrogans responsible for leptospirosis in animals and humans. However, the specific function of ClpB in leptospiral virulence still remains to be fully elucidated. Interestingly, ClpB was predicted as one of the L. interrogans hub proteins interacting with human proteins, and pathogen-host protein interactions are fundamental for successful invasion of the host immune system by bacteria. The aim of this review is to discuss the most important aspects of ClpB's function in L. interrogans, including contribution of ClpB to leptospiral virulence and pathogenesis of leptospirosis, a zoonotic disease with a significant impact on public health worldwide.
Collapse
Affiliation(s)
| | - Zbigniew Arent
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, 30-059 Krakow, Poland;
| |
Collapse
|
29
|
Afzal I, Thaker R, Weissman S, Kothari M. Leptospirosis as an unusual culprit of acute pancreatitis and portal vein thrombosis in a New Yorker. Clin Case Rep 2020; 8:690-695. [PMID: 32274037 PMCID: PMC7141725 DOI: 10.1002/ccr3.2736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 11/10/2022] Open
Abstract
Leptospirosis often takes clinicians by surprise when presenting in urban locations with unusual manifestations. This delays diagnosis and treatment which increases mortality rate. Our case illustrates the importance of taking into account the socioeconomic backgrounds, environmental exposures, and clinical presentations of patients to create a good differential diagnosis.
Collapse
Affiliation(s)
- Iman Afzal
- NewYork‐Presbyterian Brooklyn Methodist Hospital affiliate of Weill Medical College of Cornell UniversityBrooklynNew York
| | - Rishi Thaker
- NewYork‐Presbyterian Brooklyn Methodist Hospital affiliate of Weill Medical College of Cornell UniversityBrooklynNew York
| | - Simcha Weissman
- Hackensack University‐Palisades Medical CenterNorth BergenNew Jersey
| | - Megha Kothari
- NewYork‐Presbyterian Brooklyn Methodist Hospital affiliate of Weill Medical College of Cornell UniversityBrooklynNew York
| |
Collapse
|
30
|
Sun AH, Liu XX, Yan J. Leptospirosis is an invasive infectious and systemic inflammatory disease. Biomed J 2020; 43:24-31. [PMID: 32200953 PMCID: PMC7090314 DOI: 10.1016/j.bj.2019.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Pathogenic Leptospira species are the causative agents of leptospirosis, a world-spreading zoonotic infectious disease. The pathogens possess a powerful invasiveness by invading human body through mucosal/skin barriers, rapid entry into bloodstream to cause septicemia, diffusion from bloodstream into internal organs and tissues to cause aggravation of disease, and discharge from urine through renal tubules to form natural infectious sources. Leptospirosis patients present severe inflammatory symptoms such as high fever, myalgia and lymphadenectasis. Hemorrhage and jaundice are the pathological features of this disease. Previous studies revealed that some outer membrane proteins of Leptospira interrogans, the most important pathogenic Leptospira species, acted as adherence factors to binding to receptor molecules (fibronectin, laminin and collagens) in extracellular matrix of host cells. Collagenase, metallopeptidases and endoflagellum contributed to the invasiveness of L. interrogans. Except for lipopolysaccharide, multiple hemolysins of L. interrogans displayed a powerful ability to induce pro-inflammatory cytokines and hepatocyte apoptosis. vWA and platelet activating factor acetylhydrolase-like proteins from L. interrogans could induce severe pulmonary hemorrhage in mice. L. interrogans utilized cellular endocytic recycling and vesicular transport systems for intracellular migration and transcellular transport. All the research achievements are helpful for further understanding the virulence of pathogenic Leptospira species and pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Xiao-Xiang Liu
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
31
|
Karpagam KB, Ganesh B. Leptospirosis: a neglected tropical zoonotic infection of public health importance-an updated review. Eur J Clin Microbiol Infect Dis 2020; 39:835-846. [PMID: 31898795 DOI: 10.1007/s10096-019-03797-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Leptospirosis is a zoonotic and waterborne disease worldwide. It is a neglected, reemerging disease of global public health importance with respect to morbidity and mortality both in humans and animals. Due to negligence, rapid, unplanned urbanization, and poor sanitation, leptospirosis emerges as a leading cause of acute febrile illness in many of the developing countries. Every individual has a risk of getting infected as domestic and wild animals carry leptospires; the at-risk population varies from the healthcare professionals, animal caretakers, farmers and agricultural workers, fishermen, rodent catchers, water sports people, National Disaster Response Force (NDRF) personnel, people who volunteer rescue operations in flood-affected areas, sanitary workers, sewage workers, etc. The clinical manifestations of leptospirosis range from flu-like illness to acute kidney failure (AKF), pneumonia, jaundice, pulmonary hemorrhages, etc. But many rare and uncommon clinical manifestations are being reported worldwide. This review will cover all possible updates in leptospirosis from occurrence, transmission, rare clinical manifestations, diagnosis, treatment, and prophylactic measures that are currently available, their advantages and the future perspectives, elaborately. There are less or very few reviews on leptospirosis in recent years. Thus, this work will serve as background knowledge for the current understanding of leptospirosis for researchers. This will provide a detailed analysis of leptospirosis and also help in finding research gaps and areas to focus on regarding future research perspectives.
Collapse
Affiliation(s)
- Krishnan Baby Karpagam
- Laboratory Division, ICMR-National Institute of Epidemiology, R-127, 2nd Main Road, TNHB, Ayapakkam, Chennai, Tamil Nadu, 600 077, India.,University of Madras, Chennai, India
| | - Balasubramanian Ganesh
- Laboratory Division, ICMR-National Institute of Epidemiology, R-127, 2nd Main Road, TNHB, Ayapakkam, Chennai, Tamil Nadu, 600 077, India. .,University of Madras, Chennai, India.
| |
Collapse
|
32
|
Transbronchial Invasion and Proliferation of Leptospira interrogans in Lung without Inflammatory Cell Infiltration in a Hamster Model. Infect Immun 2019; 87:IAI.00727-19. [PMID: 31548321 DOI: 10.1128/iai.00727-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022] Open
Abstract
Leptospirosis caused by pathogenic Leptospira is one of the most common zoonoses in the world. It is believed that humans become infected with it mainly through their skin and mucous membranes by contact with water or soil that is contaminated with urine excreted from infected animals. Recently, outbreaks have frequently occurred in the tropics, especially after flooding, but how leptospires cause mass infection remains poorly understood. In this study, we injected leptospires into the tracheas of hamsters under direct view and prove for the first time that leptospires can infect through the respiratory tract. We determined that a 50% lethal dose (LD50) of the Leptospira interrogans strain UP-MMC-SM (L495) for hamsters in transtracheal infection was 3.2 × 102 cells. The results of culture, macroscopic findings, and histopathological analysis suggested that intratracheally injected leptospires invaded the lung tissue, proliferated in the collagen-rich stroma adjacent to the bronchus and blood vessels, and then spread throughout the body via the bloodstream. In the lung, leptospires continuously infiltrated the alveolar wall without inflammatory cell infiltration, spread throughout the lung, and finally caused pulmonary hemorrhage. Our results revealed that the respiratory tract might be a portal of entry for leptospires. We speculate that some cases of leptospirosis might be caused by transbronchial infection from inhaling infectious aerosols containing leptospires during floods. Leptospira was also confirmed to be a unique pathogen that invades through the bronchus, proliferates in the collagen-rich lung stroma, and spreads through the alveolar interstitium throughout the lung without causing pneumonia.
Collapse
|
33
|
Abstract
Until about 15 years ago, the molecular and cellular basis for pathogenesis in leptospirosis was virtually unknown. The determination of the first full genome sequence in 2003 was followed rapidly by other whole genome sequences, whose availability facilitated the development of transposon mutagenesis and then directed mutagenesis of pathogenic Leptospira spp. The combination of genomics, transcriptomics and mutant construction and characterisation has resulted in major progress in our understanding of the taxonomy and biology of Leptospira. The most recent advances are analysed and discussed in this chapter.
Collapse
Affiliation(s)
- Dieter Bulach
- Melbourne Bioinformatics, The University of Melbourne, Carlton, VIC, Australia
| | - Ben Adler
- Department of Microbiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
34
|
Abstract
This chapter covers the progress made in the Leptospira field since the application of mutagenesis techniques and how they have allowed the study of virulence factors and, more generally, the biology of Leptospira. The last decade has seen advances in our ability to perform molecular genetic analysis of Leptospira. Major achievements include the generation of large collections of mutant strains and the construction of replicative plasmids, enabling complementation of mutations. However, there are still no practical tools for routine genetic manipulation of pathogenic Leptospira strains, slowing down advances in pathogenesis research. This review summarizes the status of the molecular genetic toolbox for Leptospira species and highlights new challenges in the nascent field of Leptospira genetics.
Collapse
Affiliation(s)
- Mathieu Picardeau
- Biology of Spirochetes Unit, Institut Pasteur, 28 Rue Du Docteur Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
35
|
Li Y, Li KX, Hu WL, Ojcius DM, Fang JQ, Li SJ, Lin X, Yan J. Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer. eLife 2019; 8:44594. [PMID: 31012847 PMCID: PMC6513555 DOI: 10.7554/elife.44594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
Many bacterial pathogens can cause septicemia and spread from the bloodstream into internal organs. During leptospirosis, individuals are infected by contact with Leptospira-containing animal urine-contaminated water. The spirochetes invade internal organs after septicemia to cause disease aggravation, but the mechanism of leptospiral excretion and spreading remains unknown. Here, we demonstrated that Leptospira interrogans entered human/mouse endothelial and epithelial cells and fibroblasts by caveolae/integrin-β1-PI3K/FAK-mediated microfilament-dependent endocytosis to form Leptospira (Lep)-vesicles that did not fuse with lysosomes. Lep-vesicles recruited Rab5/Rab11 and Sec/Exo-SNARE proteins in endocytic recycling and vesicular transport systems for intracellular transport and release by SNARE-complex/FAK-mediated microfilament/microtubule-dependent exocytosis. Both intracellular leptospires and infected cells maintained their viability. Leptospiral propagation was only observed in mouse fibroblasts. Our study revealed that L. interrogans utilizes endocytic recycling and vesicular transport systems for transcytosis across endothelial or epithelial barrier in blood vessels or renal tubules, which contributes to spreading in vivo and transmission of leptospirosis.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai-Xuan Li
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Jia-Qi Fang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi-Jun Li
- Institute of Communicable Disease Prevention and Control, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Xu'ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Kurilung A, Keeratipusana C, Suriyaphol P, Hampson DJ, Prapasarakul N. Genomic analysis of Leptospira interrogans serovar Paidjan and Dadas isolates from carrier dogs and comparative genomic analysis to detect genes under positive selection. BMC Genomics 2019; 20:168. [PMID: 30832578 PMCID: PMC6399948 DOI: 10.1186/s12864-019-5562-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/25/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Leptospirosis is an emerging infectious disease worldwide that can cause high morbidity and mortality rates in humans and animals. The causative spirochetes have reservoirs in mammalian hosts, but there has been limited analysis of the genomes of isolates recovered from animals. The aims of this study were to characterize genomic features of two Leptospira interrogans strains recently isolated from asymptomatic dogs in Thailand (strains CUDO5 and CDUO8), and to perform comparative genome analyses with other strains. Molecular adaptive evolution in L. interrogans as signaled by positive selection also was analyzed. RESULTS Whole genome sequence analysis revealed that strains CUDO5 and CUDO8 had genome sizes of approximately 4.9 Mbp with 35.1% GC contents. Using monoclonal antibodies, strains CUDO5 and CUDO8 were identified as serovars Paidjan and Dadas, respectively. These strains harbored genes known to be associated with acute and chronic infections. Using Single Nucleotide Polymorphisms phylogeny (SNPs) with 97 L. interrogans strains, CUDO5 and CUDO8 had closest genetic relatedness with each other. Nevertheless, the serovar determinant region (rfb locus) showed variations in the genes encoding sugar biosynthesis. Amongst 13 representative L. interrogans strains examined for molecular adaptive evolution through positive selection under the site-model of Phylogenetic Analysis of Maximum Likelihood, genes responsible for iron acquisition (tlyA and hbpA), motility (fliN2, flgK, and flhB) and thermal adaptation (lpxD1) were under increased selective pressure. CONCLUSIONS L. interrogans serovar Paidjan strain CUDO5 and serovar Dadas strain CUDO8 had close genetic relatedness as analyzed by SNPs phylogeny. They contained genes with established roles in acute and chronic leptospirosis. The rfb locus in both serovars showed gene variation associated with sugar biosynthesis. Positive selection analysis indicated that genes encoding factors involved in motility, temperature adaptation, and iron acquisition were under strong positive selection in L. interrogans. These may be associated with adaptation in the early stages of infection.
Collapse
Affiliation(s)
- Alongkorn Kurilung
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chantisa Keeratipusana
- Bioinformatics and Data Management for Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prapat Suriyaphol
- Bioinformatics and Data Management for Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David J. Hampson
- Department of Infectious Diseases and Public Health, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Nuvee Prapasarakul
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Diagnosis and Monitoring of Animal Pathogens Research Unit, Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
37
|
Che R, Ding S, Zhang Q, Yang W, Yan J, Lin X. Haemolysin Sph2 of Leptospira interrogans induces cell apoptosis via intracellular reactive oxygen species elevation and mitochondrial membrane injury. Cell Microbiol 2018; 21:e12959. [PMID: 30278102 DOI: 10.1111/cmi.12959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Leptospira interrogans causes widespread leptospirosis in humans and animals, with major symptoms of jaundice and haemorrhage. Sph2, a member of the sphingomyelinase haemolysins, is an important virulence factor for leptospire. In this study, the function and mechanism of Sph2 in the pathogenesis of leptospirosis were investigated to further understand the pathogenesis of leptospire. Real-time PCR analysis of expression levels during cell invasion showed that sph2 gene expression was transiently induced in human umbilical vein endothelial cells (HUVECs), human embryo liver cells (L02), and human epithelial lung cells (L132), with expression levels reaching a peak after 45 min of infection. Further functional analysis of recombinant Sph2 (rSph2) by LDH assays and confocal microscopy showed that rSph2 can be internalised by cells both by causing cell membrane damage and by a damage-independent clathrin-mediated endocytosis pathway. Subsequently, rSph2 is able to translocate to mitochondria, which led to an increase in the levels of reactive oxygen species (ROS) and a decrease of the mitochondrial membrane potential (ΔΨm ). Further flowcytometry analyses after rSph2 exposure showed that 28.7%, 31%, and 27.3% of the HUVEC, L02, and L132 cells, respectively, became apoptotic. Because apoptosis could be decreased with the ROS inhibitor N-acetyl cysteine, these experiments suggested that rSph2 triggers apoptosis through mitochondrial membrane damage and ROS elevation. The ability of leptospiral haemolysin rSph2 to cause apoptosis likely contributes to the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Rongbo Che
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shibiao Ding
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, Hospital of integrated traditional Chinese and Western, Hangzhou, China
| | - Qinchao Zhang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqun Yang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
vWA proteins of Leptospira interrogans induce hemorrhage in leptospirosis by competitive inhibition of vWF/GPIb-mediated platelet aggregation. EBioMedicine 2018; 37:428-441. [PMID: 30337247 PMCID: PMC6284457 DOI: 10.1016/j.ebiom.2018.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUD Leptospira interrogans is the major causative agent of leptospirosis, a worldwide zoonotic disease. Hemorrhage is a typical pathological feature of leptospirosis. Binding of von Willebrand factor (vWF) to platelet glycoprotein-Ibα (GPIbα) is a crucial step in initiation of platelet aggregation. The products of L. interrogans vwa-I and vwa-II genes contain vWF-A domains, but their ability to induce hemorrhage has not been determined. METHODS Human (Hu)-platelet- and Hu-GPIbα-binding abilities of the recombinant proteins expressed by L. interrogans strain Lai vwa-I and vwa-II genes (rLep-vWA-I and rLep-vWA-II) were detected by flowcytometry, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Hu-platelet aggregation and its signaling kinases and active components were detected by lumiaggregometry, Western analysis, spectrophotometry and confocal microscopy. Hu-GPIbα-binding sites in rLep-vWA-I and rLep-vWA-II were identified by SPR/ITC measurements. FINDINGS Both rLep-vWA-I and rLep-vWA-II were able to bind to Hu-platelets and inhibit rHu-vWF/ristocetin-induced Hu-platelet aggregation, but Hu-GPIbα-IgG, rLep-vWA-I-IgG and rLep-vWA-II-IgG blocked this binding or inhibition. SPR and ITC revealed a tight interaction between Hu-GPIbα and rLep-vWA-I/rLep-vWA-II with KD values of 3.87 × 10-7-8.65 × 10-8 M. Hu-GPIbα-binding of rL-vWA-I/rL-vWA-II neither activated the PI3K/AKT-ERK and PLC/PKC kinases nor affected the NO, cGMP, ADP, Ca2+ and TXA2 levels in Hu-platelets. G13/R36/G47 in Lep-vWA-I and G76/Q126 in Lep-vWA-II were confirmed as the Hu-GPIbα-binding sites. Injection of rLep-vWA-I or rLep-vWA-II in mice resulted in diffuse pulmonary and focal renal hemorrhage but this hemorrhage was blocked by rLep-vWA-I-IgG or rLep-vWA-II-IgG. INTERPRETATION The products of L. interrogans vwa-I and vwa-II genes induce hemorrhage by competitive inhibition of vWF-mediated Hu-platelet aggregation.
Collapse
|
39
|
Sex Matters: Male Hamsters Are More Susceptible to Lethal Infection with Lower Doses of Pathogenic Leptospira than Female Hamsters. Infect Immun 2018; 86:IAI.00369-18. [PMID: 30012637 DOI: 10.1128/iai.00369-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 11/20/2022] Open
Abstract
A somewhat contradictory published body of evidence suggests that sex impacts severity outcomes of human leptospirosis. In this study, we used an acute animal model of disease to analyze leptospirosis in male and female hamsters infected side by side with low but increasing doses of Leptospira interrogans serovar Copenhageni. We found that male hamsters were considerably more susceptible to leptospirosis, given that only 6.3% survived infection, whereas 68.7% of the females survived the same infection doses. In contrast to the females, male hamsters had high burdens of L. interrogans in kidney and high histopathological scores after exposure to low infection doses (∼103 bacteria). In hamsters infected with higher doses of L. interrogans (∼104 bacteria), differences in pathogen burdens as well as cytokine and fibrosis transcript levels in kidney were not distinct between sexes. Our results indicate that male hamsters infected with L. interrogans are more susceptible to severe leptospirosis after exposure to lower infectious doses than females.
Collapse
|
40
|
Huang YY, Sun YH, Huang N, Liu XX, Yan J, Sun AH. Sublethal β-lactam antibiotics induce PhpP phosphatase expression and StkP kinase phosphorylation in PBP-independent β-lactam antibiotic resistance of Streptococcus pneumoniae. Biochem Biophys Res Commun 2018; 503:2000-2008. [PMID: 30135012 DOI: 10.1016/j.bbrc.2018.07.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
StkP and PhpP of Streptococcus pneumoniae have been confirmed to compose a signaling couple, in which the former is a serine/threonine (Ser/Thr) kinase while the latter was annotated as a phosphotase. StkP has been reported to be involved in penicillin-binding protein (PBP)-independent penicillin resistance of S. pneumoniae. However, the enzymatic characterization of PhpP and the role of PhpP in StkP-PhpP couple remain poorly understood. Here we showed that 1/4 minimal inhibitory concentration (MIC) of penicillin (PCN) or cefotaxime (CTX), the representatives of β-lactam antibiotics, could induce the expression of stkP and phpP genes and phosphorylation of StkP in PCN/CTX-sensitive strain ATCC6306 and three isolates of S. pneumoniae (MICs: 0.02-0.5 μg/ml). The product of phpP gene hydrolyzed PP2C type Ser/Thr phosphotase-specific RRA (pT)VA phosphopeptide substrate with the Km and Kcat values of 277.35 μmoL/L and 0.71 S-1, and the hydrolytic activity was blocked by sodium fluoride, a PP2C type Ser/Thr phosphatase inhibitor. The phosphorylation levels of StkP in the four phpP gene-knockout (ΔphpP) mutants were significantly higher than that in the wild-type strains. In particular, the MICs of PCN and CTX against the ΔphpP mutants were significantly elevated as 4-16 μg/ml. Therefore, our findings confirmed that sublethal PCN and CTX act as environmental inducers to cause the increase of phpP and stkP gene expression and StkP phosphorylation. PhpP is a PP2C type Ser/Thr protein phosphatase responsible for dephosphorylation of StkP. Knockout of the phpP gene results in a high level of StkP phosphorylation and PBP-independent PCN/CTX resistance of S. pneumoniae.
Collapse
Affiliation(s)
- Yan-Ying Huang
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, PR China; Department of Pathology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, 310003, PR China.
| | - Yan-Hong Sun
- Department of Laboratory Medicine, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, PR China.
| | - Nan Huang
- College of Medical Technology, Zhang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Xiao-Xiang Liu
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, PR China.
| | - Jie Yan
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, PR China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, PR China.
| | - Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, PR China.
| |
Collapse
|
41
|
A novel Fas-binding outer membrane protein and lipopolysaccharide of Leptospira interrogans induce macrophage apoptosis through the Fas/FasL-caspase-8/-3 pathway. Emerg Microbes Infect 2018; 7:135. [PMID: 30061622 PMCID: PMC6066479 DOI: 10.1038/s41426-018-0135-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 02/08/2023]
Abstract
Leptospira interrogans is the major causative agent of leptospirosis, an emerging, globally spreading zoonotic infectious disease. The pathogen induces macrophage apoptosis, but the molecular basis and mechanism remain unknown. In the present study, we found that L. interrogans caused apoptosis of phagocytosis-inhibited macrophages, and the product of the L. interrogans LB047 gene (Lep-OMP047) was the unique protein captured by mouse and human Fas proteins. The recombinant expressed Lep-OMP047 (rLep-OMP047) strongly bound mouse and human Fas proteins with equilibrium association constant (KD) values of 5.20 × 10−6 to 2.84 × 10−9 M according to surface plasmon resonance measurement and isothermal titration calorimetry. Flow-cytometric examination showed that 5 μg rLep-OMP047 or 1 μg lipopolysaccharide of L. interrogans (Lep-LPS) caused 43.70% or 21.90% early apoptosis in mouse J774A.1 macrophages and 28.41% or 15.80% for PMA-differentiated human THP-1 macrophages, respectively, but the apoptosis was blocked by Fas-antagonizing IgGs, Fas siRNAs, and caspase-8/-3 inhibitors. Moreover, Lep-OMP047 was significantly upregulated during infection of macrophages. Lep-LPS promoted the expression and cytomembrane translocation of Fas and FasL in macrophages. The JNK and p38 MAPK but not ERK signaling pathways, as well as the transcription factors c-Jun and ATF2 but not CHOP, mediated Lep-LPS-induced Fas/FasL expression and translocation. TLR2 but not TLR4 mediated Lep-LPS-induced JNK/p38 MAPK activation. Therefore, we demonstrated that a novel Fas-binding OMP and LPS of L. interrogans induce macrophage apoptosis through the Fas/FasL-caspase-8/-3 pathway.
Collapse
|
42
|
De Brito T, da Silva AMG, Abreu PAE. Pathology and pathogenesis of human leptospirosis: a commented review. Rev Inst Med Trop Sao Paulo 2018; 60:e23. [PMID: 29846473 PMCID: PMC5975557 DOI: 10.1590/s1678-9946201860023] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
Leptospirosis is an acute bacterial septicemic febrile disease caused by pathogenic leptospires, which affect humans and animals in all parts of the world. Transmission can occur by direct contact with infected animals or, more commonly, through indirect contact with water or soil contaminated with urine from infected animals. Leptospires enter the body by penetrating mucous membranes or skin abrasions and disseminate through the hematogenic route. In humans, leptospirosis may cause a wide spectrum of symptoms. Most cases have a biphasic clinical presentation, which begins with the septicemic phase followed by immune manifestations. The severe forms of the disease may be life threatening with multisystem damage including renal failure, hepatic dysfunction, vascular damage, pulmonary hemorrhage and muscle lesions. In this review, we present and discuss the pathogenesis of the human disease and the mechanisms of cell membrane injuries, which occur mainly due to the presence of leptospires and/or their antigen/s in the host tissues.
Collapse
Affiliation(s)
- Thales De Brito
- Universidade de São Paulo, Instituto de Medicina Tropical de São
Paulo, LIM 06, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de
Patologia, São Paulo, São Paulo, Brazil
| | - Ana Maria Gonçalves da Silva
- Universidade de São Paulo, Instituto de Medicina Tropical de São
Paulo, LIM 06, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de
Patologia, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
43
|
Proteomic approach and expression analysis revealed the differential expression of predicted leptospiral proteases capable of ECM degradation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:712-721. [DOI: 10.1016/j.bbapap.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
|
44
|
da Silva LB, Menezes MC, Kitano ES, Oliveira AK, Abreu AG, Souza GO, Heinemann MB, Isaac L, Fraga TR, Serrano SMT, Barbosa AS. Leptospira interrogans Secreted Proteases Degrade Extracellular Matrix and Plasma Proteins From the Host. Front Cell Infect Microbiol 2018; 8:92. [PMID: 29637048 PMCID: PMC5881292 DOI: 10.3389/fcimb.2018.00092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/07/2018] [Indexed: 12/30/2022] Open
Abstract
Leptospires are highly motile spirochetes equipped with strategies for efficient invasion and dissemination within the host. Our group previously demonstrated that pathogenic leptospires secrete proteases capable of cleaving and inactivating key molecules of the complement system, allowing these bacteria to circumvent host's innate immune defense mechanisms. Given the successful dissemination of leptospires during infection, we wondered if such proteases would target a broader range of host molecules. In the present study, the proteolytic activity of secreted leptospiral proteases against a panel of extracellular matrix (ECM) and plasma proteins was assessed. The culture supernatant of the virulent L. interrogans serovar Kennewicki strain Fromm (LPF) degraded human fibrinogen, plasma fibronectin, gelatin, and the proteoglycans decorin, biglycan, and lumican. Interestingly, human plasminogen was not cleaved by proteases present in the supernatants. Proteolytic activity was inhibited by 1,10-phenanthroline, suggesting the participation of metalloproteases. Moreover, production of proteases might be an important virulence determinant since culture-attenuated or saprophytic Leptospira did not display proteolytic activity against ECM or plasma components. Exoproteomic analysis allowed the identification of three metalloproteases that could be involved in the degradation of host components. The ability to cleave conjunctive tissue molecules and coagulation cascade proteins may certainly contribute to invasion and tissue destruction observed upon infection with Leptospira.
Collapse
Affiliation(s)
| | - Milene C Menezes
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, Brazil
| | - Eduardo S Kitano
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, Brazil
| | - Ana K Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Afonso G Abreu
- Postgraduation Program in Parasitic Biology, CEUMA University, São Luís, Brazil.,Postgraduation Program in Health Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Gisele O Souza
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marcos B Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiana R Fraga
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Solange M T Serrano
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, Brazil
| | - Angela S Barbosa
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
45
|
Adhikarla H, Wunder EA, Mechaly AE, Mehta S, Wang Z, Santos L, Bisht V, Diggle P, Murray G, Adler B, Lopez F, Townsend JP, Groisman E, Picardeau M, Buschiazzo A, Ko AI. Lvr, a Signaling System That Controls Global Gene Regulation and Virulence in Pathogenic Leptospira. Front Cell Infect Microbiol 2018; 8:45. [PMID: 29600195 PMCID: PMC5863495 DOI: 10.3389/fcimb.2018.00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 11/17/2022] Open
Abstract
Leptospirosis is an emerging zoonotic disease with more than 1 million cases annually. Currently there is lack of evidence for signaling pathways involved during the infection process of Leptospira. In our comprehensive genomic analysis of 20 Leptospira spp. we identified seven pathogen-specific Two-Component System (TCS) proteins. Disruption of two these TCS genes in pathogenic Leptospira strain resulted in loss-of-virulence in a hamster model of leptospirosis. Corresponding genes lvrA and lvrB (leptospira virulence regulator) are juxtaposed in an operon and are predicted to encode a hybrid histidine kinase and a hybrid response regulator, respectively. Transcriptome analysis of lvr mutant strains with disruption of one (lvrB) or both genes (lvrA/B) revealed global transcriptional regulation of 850 differentially expressed genes. Phosphotransfer assays demonstrated that LvrA phosphorylates LvrB and predicted further signaling downstream to one or more DNA-binding response regulators, suggesting that it is a branched pathway. Phylogenetic analyses indicated that lvrA and lvrB evolved independently within different ecological lineages in Leptospira via gene duplication. This study uncovers a novel-signaling pathway that regulates virulence in pathogenic Leptospira (Lvr), providing a framework to understand the molecular bases of regulation in this life-threatening bacterium.
Collapse
Affiliation(s)
- Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Ariel E Mechaly
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sameet Mehta
- Yale Centre for Genome Analysis, West Haven, CT, United States
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Luciane Santos
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States.,Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Brazil
| | - Vimla Bisht
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Peter Diggle
- Lancaster Medical School, Lancaster, United Kingdom
| | - Gerald Murray
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ben Adler
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, VIC, Australia
| | - Francesc Lopez
- Yale Centre for Genome Analysis, West Haven, CT, United States
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Eduardo Groisman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States
| | | | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Department of Microbiology, Institut Pasteur, Paris, France
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States.,Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Brazil
| |
Collapse
|
46
|
Priya SP, Sakinah S, Sharmilah K, Hamat RA, Sekawi Z, Higuchi A, Ling MP, Nordin SA, Benelli G, Kumar SS. Leptospirosis: Molecular trial path and immunopathogenesis correlated with dengue, malaria and mimetic hemorrhagic infections. Acta Trop 2017; 176:206-223. [PMID: 28823908 DOI: 10.1016/j.actatropica.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
Immuno-pathogenesis of leptospirosis can be recounted well by following its trail path from entry to exit, while inducing disastrous damages in various tissues of the host. Dysregulated, inappropriate and excessive immune responses are unanimously blamed in fatal leptospirosis. The inherent abilities of the pathogen and inabilities of the host were debated targeting the severity of the disease. Hemorrhagic manifestation through various mechanisms leading to a fatal end is observed when this disease is unattended. The similar vascular destructions and hemorrhage manifestations are noted in infections with different microbes in endemic areas. The simultaneous infection in a host with more than one pathogen or parasite is referred as the coinfection. Notably, common endemic infections such as leptospirosis, dengue, chikungunya, and malaria, harbor favorable environments to flourish in similar climates, which is aggregated with stagnated water and aggravated with the poor personal and environmental hygiene of the inhabitants. These factors aid the spread of pathogens and parasites to humans and potential vectors, eventually leading to outbreaks of public health relevance. Malaria, dengue and chikungunya need mosquitoes as vectors, in contrast with leptospirosis, which directly invades human, although the environmental bacterial load is maintained through other mammals, such as rodents. The more complicating issue is that infections by different pathogens exhibiting similar symptoms but require different treatment management. The current review explores different pathogens expressing specific surface proteins and their ability to bind with array of host proteins with or without immune response to enter into the host tissues and their ability to evade the host immune responses to invade and their affinity to certain tissues leading to the common squeal of hemorrhage. Furthermore, at the host level, the increased susceptibility and inability of the host to arrest the pathogens' and parasites' spread in different tissues, various cytokines accumulated to eradicate the microorganisms and their cellular interactions, the antibody dependent defense and the susceptibility of individual organs bringing the manifestation of the diseases were explored. Lastly, we provided a discussion on the immune trail path of pathogenesis from entry to exit to narrate the similarities and dissimilarities among various hemorrhagic fevers mentioned above, in order to outline future possibilities of prevention, diagnosis, and treatment of coinfections, with special reference to endemic areas.
Collapse
|
47
|
Dong SL, Hu WL, Ge YM, Ojcius DM, Lin X, Yan J. A leptospiral AAA+ chaperone-Ntn peptidase complex, HslUV, contributes to the intracellular survival of Leptospira interrogans in hosts and the transmission of leptospirosis. Emerg Microbes Infect 2017; 6:e105. [PMID: 29184154 PMCID: PMC5717094 DOI: 10.1038/emi.2017.93] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/17/2017] [Accepted: 09/24/2017] [Indexed: 12/13/2022]
Abstract
Leptospirosis caused by Leptospira is a zoonotic disease of global importance but it is considered as an emerging or re-emerging infectious disease in many areas in the world. Until now, the mechanisms about pathogenesis and transmission of Leptospira remains poorly understood. As eukaryotic and prokaryotic proteins can be denatured in adverse environments and chaperone-protease/peptidase complexes degrade these harmful proteins, we speculate that infection may also cause leptospiral protein denaturation, and the HslU and HslV proteins of L. interrogans may compose a complex to degrade denatured proteins that enhances leptospiral survival in hosts. Here we show that leptospiral HslUV is an ATP-dependent chaperone-peptidase complex containing ATPase associated with various cellular activity (AAA+) and N-terminal nucleophile (Ntn) hydrolase superfamily domains, respectively, which hydrolyzed casein and chymotrypsin-like substrates, and this hydrolysis was blocked by threonine protease inhibitors. The infection of J774A.1 macrophages caused the increase of leptospiral denatured protein aggresomes, but more aggresomes accumulated in hslUV gene-deleted mutant. The abundant denatured leptospiral proteins are involved in ribosomal structure, flagellar assembly, two-component signaling systems and transmembrane transport. Compared to the wild-type strain, infection of cells in vitro with the mutant resulted in a higher number of dead leptospires, less leptospiral colony-forming units and lower growth ability, but also displayed a lower half lethal dose, attenuated histopathological injury and decreased leptospiral loading in lungs, liver, kidneys, peripheral blood and urine in hamsters. Therefore, our findings confirmed that HslUV AAA+ chaperone-Ntn peptidase complex of L. interrogans contributes to leptospiral survival in hosts and transmission of leptospirosis.
Collapse
Affiliation(s)
- Shi-Lei Dong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yu-Mei Ge
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94103, USA
| | - Xu'ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
48
|
Schönauer E, Kany AM, Haupenthal J, Hüsecken K, Hoppe IJ, Voos K, Yahiaoui S, Elsässer B, Ducho C, Brandstetter H, Hartmann RW. Discovery of a Potent Inhibitor Class with High Selectivity toward Clostridial Collagenases. J Am Chem Soc 2017; 139:12696-12703. [PMID: 28820255 PMCID: PMC5607459 DOI: 10.1021/jacs.7b06935] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Secreted virulence
factors like bacterial collagenases are conceptually
attractive targets for fighting microbial infections. However, previous
attempts to develop potent compounds against these metalloproteases
failed to achieve selectivity against human matrix metalloproteinases
(MMPs). Using a surface plasmon resonance-based screening complemented
with enzyme inhibition assays, we discovered an N-aryl mercaptoacetamide-based inhibitor scaffold that showed
sub-micromolar affinities toward collagenase H (ColH) from the human
pathogen Clostridium histolyticum. Moreover, these
inhibitors also efficiently blocked the homologous bacterial collagenases,
ColG from C. histolyticum, ColT from C. tetani, and ColQ1 from the Bacillus cereus strain Q1,
while showing negligible activity toward human MMPs-1, -2, -3, -7,
-8, and -14. The most active compound displayed a more than 1000-fold
selectivity over human MMPs. This selectivity can be rationalized
by the crystal structure of ColH with this compound, revealing a distinct
non-primed binding mode to the active site. The non-primed binding
mode presented here paves the way for the development of selective
broad-spectrum bacterial collagenase inhibitors with potential therapeutic
application in humans.
Collapse
Affiliation(s)
- Esther Schönauer
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Andreas M Kany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Kristina Hüsecken
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabel J Hoppe
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Katrin Voos
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| | - Samir Yahiaoui
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Brigitta Elsässer
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| |
Collapse
|
49
|
Sato H, Coburn J. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells. PLoS Negl Trop Dis 2017; 11:e0005830. [PMID: 28750011 PMCID: PMC5549773 DOI: 10.1371/journal.pntd.0005830] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/08/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways including endothelial barrier damage and inflammation, potentially leading to vascular hyperpermeability and severe illness in vivo. This work provides new insights into the pathophysiological mechanisms of Leptospira infection.
Collapse
Affiliation(s)
- Hiromi Sato
- Center for Infectious Disease Research, Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Jenifer Coburn
- Center for Infectious Disease Research, Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States of America
- * E-mail:
| |
Collapse
|
50
|
Chen X, Li SJ, Ojcius DM, Sun AH, Hu WL, Lin X, Yan J. Mononuclear-macrophages but not neutrophils act as major infiltrating anti-leptospiral phagocytes during leptospirosis. PLoS One 2017; 12:e0181014. [PMID: 28700741 PMCID: PMC5507415 DOI: 10.1371/journal.pone.0181014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To identify the major infiltrating phagocytes during leptospirosis and examine the killing mechanism used by the host to eliminate Leptospira interrogans. METHODS Major infiltrating phagocytes in Leptospira-infected C3H/HeJ mice were detected by immunohistochemistry. Chemokines and vascular endothelial cell adhesion molecules (VECAMs) of Leptospira-infected mice and leptospirosis patients were detected by microarray and immunohistochemistry. Leptospira-phagocytosing and -killing abilities of human or mouse macrophages and neutrophils, and the roles of intracellular ROS, NO and [Ca2+]i in Leptospira-killing process were evaluated by confocal microscopy and spectrofluorimetry. RESULTS Peripheral blood mononuclear-macrophages rather than neutrophils were the main infiltrating phagocytes in the lungs, liver and kidneys of infected mice. Levels of macrophage- but not neutrophil-specific chemokines and VECAMs were significantly increased in the samples from infected mice and patients. All macrophages tested had a higher ability than neutrophils to phagocytose and kill leptospires. Higher ROS and NO levels and [Ca2+]i in the macrophages were involved in killing leptospires. Human macrophages displayed more phagolysosome formation and a stronger leptospire-killing ability to than mouse macrophages. CONCLUSIONS Mononuclear-macrophages but not neutrophils represent the main infiltrating and anti-leptospiral phagocytes during leptospirosis. A lower level of phagosome-lysosome fusion may be responsible for the lower Leptospira-killing ability of human macrophages.
Collapse
Affiliation(s)
- Xu Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Shi-Jun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - David M. Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, California, United States of America
| | - Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xu’ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|