1
|
Cardenas AJ, Thomas KS, Broden MW, Ferraro NJ, Pires MM, John CM, Jarvis GA, Criss AK. Neisseria gonorrhoeae scavenges host sialic acid for Siglec-mediated, complement-independent suppression of neutrophil activation. mBio 2024; 15:e0011924. [PMID: 38587424 PMCID: PMC11078009 DOI: 10.1128/mbio.00119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophilic influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid, which is scavenged from the host using LOS sialyltransferase (Lst) since Gc cannot make its sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress the oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea. IMPORTANCE Neisseria gonorrhoeae, the bacterium that causes gonorrhea, is an urgent global health concern due to increasing infection rates, widespread antibiotic resistance, and its ability to thwart protective immune responses. The mechanisms by which Gc subverts protective immune responses remain poorly characterized. One way N. gonorrhoeae evades human immunity is by adding sialic acid that is scavenged from the host onto its lipooligosaccharide, using the sialyltransferase Lst. Here, we found that sialylation enhances N. gonorrhoeae survival from neutrophil assault and inhibits neutrophil activation, independently of the complement system. Our results implicate bacterial binding of sialic acid-binding lectins (Siglecs) on the neutrophil surface, which dampens neutrophil antimicrobial responses. This work identifies a new role for sialylation in protecting N. gonorrhoeae from cellular innate immunity, which can be targeted to enhance the human immune response in gonorrhea.
Collapse
Affiliation(s)
- Amaris J. Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Keena S. Thomas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mary W. Broden
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Constance M. John
- VA Medical Center and University of California, San Francisco, San Francisco, California, USA
| | - Gary A. Jarvis
- VA Medical Center and University of California, San Francisco, San Francisco, California, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Chen L, Li J, Xiao B. The role of sialidases in the pathogenesis of bacterial vaginosis and their use as a promising pharmacological target in bacterial vaginosis. Front Cell Infect Microbiol 2024; 14:1367233. [PMID: 38495652 PMCID: PMC10940449 DOI: 10.3389/fcimb.2024.1367233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Bacterial vaginosis (BV) is an infection of the genital tract characterized by disturbance of the normally Lactobacilli-dominated vaginal flora due to the overgrowth of Gardnerella and other anaerobic bacteria. Gardnerella vaginalis, an anaerobic pathogen and the major pathogen of BV, produces sialidases that cleave terminal sialic acid residues off of human glycans. By desialylation, sialidases not only alter the function of sialic acid-containing glycoconjugates but also play a vital role in the attachment, colonization and spread of many other vaginal pathogens. With known pathogenic effects, excellent performance of sialidase-based diagnostic tests, and promising therapeutic potentials of sialidase inhibitors, sialidases could be used as a biomarker of BV. This review explores the sources of sialidases and their role in vaginal dysbiosis, in aims to better understand their participation in the pathogenesis of BV and their value in the diagnosis and treatment of BV.
Collapse
Affiliation(s)
- Liuyan Chen
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jiayue Li
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Muzny CA, Elnaggar JH, Sousa LGV, Lima Â, Aaron KJ, Eastlund IC, Graves KJ, Dong C, Van Gerwen OT, Luo M, Tamhane A, Long D, Cerca N, Taylor CM. Microbial interactions among Gardnerella, Prevotella and Fannyhessea prior to incident bacterial vaginosis: protocol for a prospective, observational study. BMJ Open 2024; 14:e083516. [PMID: 38316599 PMCID: PMC10859992 DOI: 10.1136/bmjopen-2023-083516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION The aetiology of bacterial vaginosis (BV), a biofilm-associated vaginal infection, remains unknown. Epidemiologic data suggest that it is sexually transmitted. BV is characterised by loss of lactic acid-producing lactobacilli and an increase in facultative and strict anaerobic bacteria. Gardnerella spp are present in 95%-100% of cases; Gardnerella vaginalis has been found to be more virulent than other BV-associated bacteria (BVAB) in vitro. However, G. vaginalis is found in women with normal vaginal microbiota and colonisation is not sufficient for BV development. We hypothesise that Gardnerella spp initiate BV biofilm formation, but incident BV (iBV) requires incorporation of other key BVAB (ie, Prevotella bivia, Fannyhessea vaginae) into the biofilm that alter the transcriptome of the polymicrobial consortium. This study will investigate the sequence of microbiologic events preceding iBV. METHODS AND ANALYSIS This study will enrol 150 women aged 18-45 years with normal vaginal microbiota and no sexually transmitted infections at a sexual health research clinic in Birmingham, Alabama. Women will self-collect twice daily vaginal specimens up to 60 days. A combination of 16S rRNA gene sequencing, qPCR for Gardnerella spp, P. bivia and F. vaginae, and broad range 16S rRNA gene qPCR will be performed on twice daily vaginal specimens from women with iBV (Nugent score 7-10 on at least 2 consecutive days) and controls (with comparable age, race, contraceptive method and menstrual cycle days) maintaining normal vaginal microbiota to investigate changes in the vaginal microbiota over time for women with iBV. Participants will complete daily diaries on multiple factors including sexual activity. ETHICS AND DISSEMINATION This protocol is approved by the University of Alabama at Birmingham Institutional Review Board (IRB-300004547) and written informed consent will be obtained from all participants. Findings will be presented at scientific conferences and published in peer-reviewed journals as well as disseminated to providers and patients in communities of interest.
Collapse
Affiliation(s)
- Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jacob H Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Lúcia G V Sousa
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho-Gualtar Campus, Braga, Portugal
| | - Ângela Lima
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho-Gualtar Campus, Braga, Portugal
| | - Kristal J Aaron
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Isaac C Eastlund
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Keonte J Graves
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chaoling Dong
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olivia T Van Gerwen
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Microbial Genomics Resource Group, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Ashutosh Tamhane
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dustin Long
- Department of Biostatistics, University of Alabama at Birmingham, School of Public Health, Birmingham, Alabama, USA
| | - Nuno Cerca
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho-Gualtar Campus, Braga, Portugal
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Cardenas AJ, Thomas KS, Broden MW, Ferraro NJ, John CM, Pires MM, Jarvis GA, Criss AK. Neisseria gonorrhoeae scavenges host sialic acid for Siglec-mediated, complement-independent suppression of neutrophil activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576097. [PMID: 38293026 PMCID: PMC10827150 DOI: 10.1101/2024.01.17.576097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophil influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-NANA) scavenged from the host using LOS sialyltransferase (Lst), since Gc cannot make its own sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea.
Collapse
Affiliation(s)
- Amaris J Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Keena S. Thomas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Mary W. Broden
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Constance M. John
- VA Medical Center and University of California, San Francisco, San Francisco, CA, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Gary A. Jarvis
- VA Medical Center and University of California, San Francisco, San Francisco, CA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Morrill SR, Saha S, Varki AP, Lewis WG, Ram S, Lewis AL. Gardnerella Vaginolysin Potentiates Glycan Molecular Mimicry by Neisseria gonorrhoeae. J Infect Dis 2023; 228:1610-1620. [PMID: 37722688 PMCID: PMC10681867 DOI: 10.1093/infdis/jiad391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
Bacterial vaginosis (BV) is a dysbiotic condition of the vaginal microbiome associated with higher risk of infection by Neisseria gonorrhoeae-the cause of gonorrhea. Here we test if one known facet of BV-the presence of bacterial cytolysins-leads to mobilization of intracellular contents that enhance gonococcal virulence. We cloned and expressed recombinant vaginolysin (VLY), a cytolysin produced by the BV-associated bacterium Gardnerella, verifying that it liberates contents of cervical epithelial (HeLa) cells, while vector control preparations did not. We tested if VLY mediates a well-known gonococcal virulence mechanism-the molecular mimicry of host glycans. To evade host immunity, N. gonorrhoeae caps its lipooligosaccharide (LOS) with α2-3-linked sialic acid. For this, gonococci must scavenge a metabolite made inside host cells. Flow cytometry-based lectin-binding assays showed that gonococci exposed to vaginolysin-liberated contents of HeLa cells displayed greater sialic acid capping of their LOS. This higher level of bacterial sialylation was accompanied by increased binding of the complement regulatory protein factor H, and greater resistance to complement attack. Together these results suggest that cytolytic activities present during BV may enhance the ability of N. gonorrhoeae to capture intracellular metabolites and evade host immunity via glycan molecular mimicry.
Collapse
Affiliation(s)
- Sydney R Morrill
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Sudeshna Saha
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Ajit P Varki
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Center for Academic Research and Training in Anthropogeny, University of California San Diego, La Jolla, California, USA
| | - Warren G Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
John CM, Phillips NJ, Cardenas AJ, Criss AK, Jarvis GA. Comparison of lipooligosaccharides from human challenge strains of Neisseria gonorrhoeae. Front Microbiol 2023; 14:1215946. [PMID: 37779694 PMCID: PMC10540682 DOI: 10.3389/fmicb.2023.1215946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
The alarming rise of antibiotic resistance and the emergence of new vaccine technologies have increased the focus on vaccination to control gonorrhea. Neisseria gonorrhoeae strains FA1090 and MS11 have been used in challenge studies in human males. We used negative-ion MALDI-TOF MS to profile intact lipooligosaccharide (LOS) from strains MS11mkA, MS11mkC, FA1090 A23a, and FA1090 1-81-S2. The MS11mkC and 1-81-S2 variants were isolated from male volunteers infected with MS11mkA and A23a, respectively. LOS profiles were obtained after purification using the classical phenol water extraction method and by microwave-enhanced enzymatic digestion, which is more amenable for small-scale work. Despite detecting some differences in the LOS profiles, the same major species were observed, indicating that microwave-enhanced enzymatic digestion is appropriate for MS studies. The compositions determined for MS11mkA and mkC LOS were consistent with previous reports. FA1090 is strongly recognized by mAb 2C7, an antibody-binding LOS with both α- and β-chains if the latter is a lactosyl group. The spectra of the A23a and 1-81-S2 FA1090 LOS were similar to each other and consistent with the expression of α-chain lacto-N-neotetraose and β-chain lactosyl moieties that can both be acceptor sites for sialic acid substitution. 1-81-S2 LOS was analyzed after culture with and without media supplemented with cytidine-5'-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac), which N. gonorrhoeae needs to sialylate its LOS. LOS sialylation reduces the infectivity of gonococci in men, although it induces serum resistance in serum-sensitive strains and reduces killing by neutrophils and antimicrobial peptides. The infectivity of FA1090 in men is much lower than that of MS11mkC, but the reason for this difference is unclear. Interestingly, some peaks in the spectra of 1-81-S2 LOS after bacterial culture with CMP-Neu5Ac were consistent with disialylation of the LOS, which could be relevant to the reduced infectivity of FA1090 in men and could have implications regarding the phase variation of the LOS and the natural history of infection.
Collapse
Affiliation(s)
- Constance M. John
- Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nancy J. Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Amaris J. Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Gary A. Jarvis
- Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Muzny CA, Van Gerwen OT, Schroeder JA, Kay-Duncan ES, Siwakoti K, Aaron KJ, Eastlund IC, Graves KJ, Elnaggar JH, Tamhane A, Long D, Van Wagoner N, Toh E, Taylor CM. Impact of testosterone use on the vaginal microbiota of transgender men, including susceptibility to bacterial vaginosis: study protocol for a prospective, observational study. BMJ Open 2023; 13:e073068. [PMID: 36972958 PMCID: PMC10069580 DOI: 10.1136/bmjopen-2023-073068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
INTRODUCTION The effect of testosterone (T) therapy on the vaginal microbiota of transgender men (TGM) is not well characterised, although one cross-sectional study comparing the vaginal microbiota of cisgender women to TGM on T≥1 year found that, in 71% of the TGM, the vaginal microbiota was less likely to be Lactobacillus-dominated and more likely to be enriched with >30 other bacterial species, many associated with bacterial vaginosis (BV). This prospective study aims to investigate changes in the composition of the vaginal microbiota over time in TGM who retain their natal genitalia (ie, vagina) and initiate T. In addition, we will identify changes in the vaginal microbiota preceding incident BV (iBV) in this cohort while investigating behavioural factors, along with hormonal shifts, which may be associated with iBV. METHODS AND ANALYSIS T-naïve TGM who have not undergone gender-affirming genital surgery with normal baseline vaginal microbiota (ie, no Amsel criteria, normal Nugent Score with no Gardnerella vaginalis morphotypes) will self-collect daily vaginal specimens for 7 days prior to initiating T and for 90 days thereafter. These specimens will be used for vaginal Gram stain, 16S rRNA gene sequencing and shotgun metagenomic sequencing to characterise shifts in the vaginal microbiota over time, including development of iBV. Participants will complete daily diaries on douching, menses and behavioural factors including sexual activity during the study. ETHICS AND DISSEMINATION This protocol is approved through the single Institutional Review Board mechanism by the University of Alabama at Birmingham. External relying sites are the Louisiana State University Health Sciences Center, New Orleans Human Research Protection Program and the Indiana University Human Research Protection Program. Study findings will be presented at scientific conferences and peer-reviewed journals as well as shared with community advisory boards at participating gender health clinics and community-based organisations servicing transgender people. REGISTRATION DETAILS Protocol # IRB-300008073.
Collapse
Affiliation(s)
- Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olivia T Van Gerwen
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Julia A Schroeder
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Krishmita Siwakoti
- Division of Endocrinology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kristal J Aaron
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Isaac C Eastlund
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Keonte J Graves
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jacob H Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Ashutosh Tamhane
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dustin Long
- Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham, Alabama, USA
| | - Nicholas Van Wagoner
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
8
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Łaniewski P, Herbst-Kralovetz MM. Bacterial vaginosis and health-associated bacteria modulate the immunometabolic landscape in 3D model of human cervix. NPJ Biofilms Microbiomes 2021; 7:88. [PMID: 34903740 PMCID: PMC8669023 DOI: 10.1038/s41522-021-00259-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial vaginosis (BV) is an enigmatic polymicrobial condition characterized by a depletion of health-associated Lactobacillus and an overgrowth of anaerobes. Importantly, BV is linked to adverse gynecologic and obstetric outcomes: an increased risk of sexually transmitted infections, preterm birth, and cancer. We hypothesized that members of the cervicovaginal microbiota distinctly contribute to immunometabolic changes in the human cervix, leading to these sequelae. Our 3D epithelial cell model that recapitulates the human cervical epithelium was infected with clinical isolates of cervicovaginal bacteria, alone or as a polymicrobial community. We used Lactobacillus crispatus as a representative health-associated commensal and four common BV-associated species: Gardnerella vaginalis, Prevotella bivia, Atopobium vaginae, and Sneathia amnii. The immunometabolic profiles of these microenvironments were analyzed using multiplex immunoassays and untargeted global metabolomics. A. vaginae and S. amnii exhibited the highest proinflammatory potential through induction of cytokines, iNOS, and oxidative stress-associated compounds. G. vaginalis, P. bivia, and S. amnii distinctly altered physicochemical barrier-related proteins and metabolites (mucins, sialic acid, polyamines), whereas L. crispatus produced an antimicrobial compound, phenyllactic acid. Alterations to the immunometabolic landscape correlate with symptoms and hallmarks of BV and connected BV with adverse women’s health outcomes. Overall, this study demonstrated that 3D cervical epithelial cell colonized with cervicovaginal microbiota faithfully reproduce the immunometabolic microenvironment previously observed in clinical studies and can successfully be used as a robust tool to evaluate host responses to commensal and pathogenic bacteria in the female reproductive tract.
Collapse
Affiliation(s)
- Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA. .,Department of Obstetrics and Gynecology, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA.
| |
Collapse
|
10
|
Vaginal Microbiota of the Sexually Transmitted Infections Caused by Chlamydia trachomatis and Trichomonas vaginalis in Women with Vaginitis in Taiwan. Microorganisms 2021; 9:microorganisms9091864. [PMID: 34576759 PMCID: PMC8470505 DOI: 10.3390/microorganisms9091864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
The three most common sexually transmitted infections (STIs) are Chlamydia trachomatis (CT), Neisseria gonorrhoeae (GC) and Trichomonas vaginalis (TV). The prevalence of these STIs in Taiwan remains largely unknown and the risk of STI acquisition affected by the vaginal microbiota is also elusive. In this study, a total of 327 vaginal swabs collected from women with vaginitis were analyzed to determine the presence of STIs and the associated microorganisms by using the BD Max CT/GC/TV molecular assay, microbial cultures, and 16S rRNA sequencing. The prevalence of CT, TV, and GC was 10.8%, 2.2% and 0.6%, respectively. A culture-dependent method identified that Escherichia coli and Streptococcus agalactiae (GBS) were more likely to be associated with CT and TV infections. In CT-positive patients, the vaginal microbiota was dominated by L. iners, and the relative abundance of Gardnerella vaginalis (12.46%) was also higher than that in TV-positive patients and the non-STIs group. However, Lactobacillus spp. was significantly lower in TV-positive patients, while GBS (10.11%), Prevotella bivia (6.19%), Sneathia sanguinegens (12.75%), and Gemella asaccharolytica (5.31%) were significantly enriched. Using an in vitro co-culture assay, we demonstrated that the growth of L. iners was suppressed in the initial interaction with TV, but it may adapt and survive after longer exposure to TV. Additionally, it is noteworthy that TV was able to promote GBS growth. Our study highlights the vaginal microbiota composition associated with the common STIs and the crosstalk between TV and the associated bacteria, paving the way for future development of health interventions targeting the specific vaginal bacterial taxa to reduce the risk of common STIs.
Collapse
|
11
|
Challenges and Controversies Concerning Neisseria gonorrhoeae-Neutrophil Interactions in Pathogenesis. mBio 2021; 12:e0072121. [PMID: 34060328 PMCID: PMC8262874 DOI: 10.1128/mbio.00721-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The bacterium Neisseria gonorrhoeae (Ngo) is the main cause of the sexually transmitted infection gonorrhea. The global incidence of 87 million new Ngo infections each year, rising infection rates, and the emergence of Ngo strains that are resistant to all clinically recommended antibiotics have raised the specter of untreatable infections (M. Unemo, H. S. Seifert, E. W. Hook, III, S. Hawkes, et al., Nat Rev Dis Primers 5:79, 2019, https://doi.org/10.1038/s41572-019-0128-6). Given their abundance in symptomatic disease, neutrophils are central to both Ngo infection and consequent damage to host tissues. This article highlights present knowledge and the main open questions about Ngo-neutrophil interactions in immunity versus disease pathogenesis.
Collapse
|
12
|
Ilhan ZE, Łaniewski P, Tonachio A, Herbst-Kralovetz MM. Members of Prevotella Genus Distinctively Modulate Innate Immune and Barrier Functions in a Human Three-Dimensional Endometrial Epithelial Cell Model. J Infect Dis 2020; 222:2082-2092. [PMID: 32515473 PMCID: PMC7661762 DOI: 10.1093/infdis/jiaa324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prevotella species are commonly isolated from the reproductive tract of women with obstetric/gynecologic health complications. However, contributions of this genus to changes in local microenvironment are not well characterized. Our objective was to evaluate species-specific effects of Prevotella on the human endometrial epithelium. METHODS Thirteen Prevotella strains, originally isolated from the human oral cavity, amniotic fluid, endometrium, or vagina (including women with bacterial vaginosis), were obtained from BEI and ATCC resources. Bacteria were evaluated in silico and in vitro using human endometrial epithelial cells (EEC) grown as monolayers or a 3-dimensional (3D) model. RESULTS Genomic characterization illustrated metabolic and phylogenetic diversity of Prevotella genus. Among tested species, P. disiens exhibited cytotoxicity. Scanning electron microscopy analysis of the 3D EEC model revealed species-specific colonization patterns and alterations of ultracellular structures. Infection with sialidase-producing P. timonensis resulted in elongated microvilli, and increased MUC3 and MUC4 expression. Infections with Prevotella species, including P. bivia, did not result in significant proinflammatory activation of EEC. CONCLUSIONS Collectively, findings indicate that Prevotella species are metabolically diverse and overall not cytotoxic or overtly inflammatory in EEC; however, these bacteria can form biofilms, alter barrier properties of the endometrial epithelium, and ultimately impact colonization of secondary colonizers.
Collapse
Affiliation(s)
- Zehra Esra Ilhan
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Adriana Tonachio
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
13
|
Gulati S, Schoenhofen IC, Lindhout-Djukic T, Schur MJ, Landig CS, Saha S, Deng L, Lewis LA, Zheng B, Varki A, Ram S. Therapeutic CMP-Nonulosonates against Multidrug-Resistant Neisseria gonorrhoeae. THE JOURNAL OF IMMUNOLOGY 2020; 204:3283-3295. [PMID: 32434942 DOI: 10.4049/jimmunol.1901398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
Neisseria gonorrhoeae deploys a unique immune evasion strategy wherein the lacto-N-neotetraose termini of lipooligosaccharide (LOS) are "capped" by a surface LOS sialyltransferase (Lst), using extracellular host-derived CMP-sialic acid (CMP-Neu5Ac in humans). LOS sialylation enhances complement resistance by recruiting factor H (FH; alternative complement pathway inhibitor) and also by limiting classical pathway activation. Sialylated LOS also engages inhibitory Siglecs on host leukocytes, dampening innate immunity. Previously, we showed that analogues of CMP-sialic acids (CMP-nonulosonates [CMP-NulOs]), such as CMP-Leg5,7Ac2 and CMP-Neu5Ac9N3, are also substrates for Lst. Incorporation of Leg5,7Ac2 and Neu5Ac9N3 into LOS results in N. gonorrhoeae being fully serum sensitive. Importantly, intravaginal administration of CMP-Leg5,7Ac2 attenuated N. gonorrhoeae colonization of mouse vaginas. In this study, we characterize and develop additional candidate therapeutic CMP-NulOs. CMP-ketodeoxynonulosonate (CMP-Kdn) and CMP-Kdn7N3, but not CMP-Neu4,5Ac2, were substrates for Lst, further elucidating gonococcal Lst specificity. Lacto-N-neotetraose LOS capped with Kdn and Kdn7N3 bound FH to levels ∼60% of that seen with Neu5Ac and enabled gonococci to resist low (3.3%) but not higher (10%) concentrations of human complement. CMP-Kdn, CMP-Neu5Ac9N3, and CMP-Leg5,7Ac2 administered intravaginally (10 μg/d) to N. gonorrhoeae-colonized mice were equally efficacious. Of the three CMP-NulOs above, CMP-Leg5,7Ac2 was the most pH and temperature stable. In addition, Leg5,7Ac2-fed human cells did not display this NulO on their surface. Moreover, CMP-Leg5,7Ac2 was efficacious against several multidrug-resistant gonococci in mice with a humanized sialome (Cmah-/- mice) or humanized complement system (FH/C4b-binding protein transgenic mice). CMP-Leg5,7Ac2 and CMP-Kdn remain viable leads as topical preventive/therapeutic agents against the global threat of multidrug-resistant N. gonorrhoeae.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ian C Schoenhofen
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada;
| | - Theresa Lindhout-Djukic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Melissa J Schur
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Corinna S Landig
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Sudeshna Saha
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Lingquan Deng
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ajit Varki
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
14
|
Wang YH. Sialidases From Clostridium perfringens and Their Inhibitors. Front Cell Infect Microbiol 2020; 9:462. [PMID: 31998664 PMCID: PMC6966327 DOI: 10.3389/fcimb.2019.00462] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Clostridium perfringens is an important human and animal pathogen that is the primary causative agent of necrotizing enteritis and enterotoxemia in many types of animals; it causes traumatic gas gangrene in humans and animals and is associated with cases of food poisoning in humans. C. perfringens produces a variety of toxins as well as many enzymes, including three sialidases, NanH, NanI, and NanJ. Sialidases could be important virulence factors that promote the pathogenesis of C. perfringens. Among them, NanI promotes the colonization of C. perfringens in the intestinal tract and enhances the cytotoxic activity and association of several major C. perfringens toxins with host cells. In recent years, studies on the structure and functions of sialidases have yielded interesting results, and the functions of sialic acid and sialidases in bacterial pathogenesis have become a hot research topic. An in-depth understanding and additional studies of sialidases will further elucidate mechanisms of C. perfringens pathogenesis and could promote the development and clinical applications of sialidase inhibitors. This article reviews the structural characteristics, expression regulation, roles of sialidases in C. perfringens pathogenesis, and effects of their inhibitors.
Collapse
Affiliation(s)
- Yan-Hua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
15
|
Russell MW, Jerse AE, Gray-Owen SD. Progress Toward a Gonococcal Vaccine: The Way Forward. Front Immunol 2019; 10:2417. [PMID: 31681305 PMCID: PMC6803597 DOI: 10.3389/fimmu.2019.02417] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
The concept of immunizing against gonorrhea has received renewed interest because of the recent emergence of strains of Neisseria gonorrhoeae that are resistant to most currently available antibiotics, an occurrence that threatens to render gonorrhea untreatable. However, despite efforts over many decades, no vaccine has yet been successfully developed for human use, leading to pessimism over whether this goal was actually attainable. Several factors have contributed to this situation, including extensive variation of the expression and specificity of many of the gonococcal surface antigens, and the ability of N. gonorrhoeae to resist destruction by complement and other innate immune defense mechanisms. The natural host restriction of N. gonorrhoeae for humans, coupled with the absence of any definable state of immunity arising from an episode of gonorrhea, have also complicated efforts to study gonococcal pathogenesis and the host's immune responses. However, recent findings have elucidated how the gonococcus exploits and manipulates the host's immune system for its own benefit, utilizing human-specific receptors for attachment to and invasion of tissues, and subverting adaptive immune responses that might otherwise be capable of eliminating it. While no single experimental model is capable of providing all the answers, experiments utilizing human cells and tissues in vitro, various in vivo animal models, including genetically modified strains of mice, and both experimental and observational human clinical studies, have combined to yield important new insight into the immuno-pathogenesis of gonococcal infection. In turn, these have now led to novel approaches for the development of a gonococcal vaccine. Ongoing investigations utilizing all available tools are now poised to make the development of an effective human vaccine against gonorrhea an achievable goal within a foreseeable time-frame.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, United States
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Landig CS, Hazel A, Kellman BP, Fong JJ, Schwarz F, Agarwal S, Varki N, Massari P, Lewis NE, Ram S, Varki A. Evolution of the exclusively human pathogen Neisseria gonorrhoeae: Human-specific engagement of immunoregulatory Siglecs. Evol Appl 2019; 12:337-349. [PMID: 30697344 PMCID: PMC6346652 DOI: 10.1111/eva.12744] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhea exclusively in humans and uses multiple strategies to infect, including acquisition of host sialic acids that cap and mask lipooligosaccharide termini, while restricting complement activation. We hypothesized that gonococci selectively target human anti-inflammatory sialic acid-recognizing Siglec receptors on innate immune cells to blunt host responses and that pro-inflammatory Siglecs and SIGLEC pseudogene polymorphisms represent host evolutionary adaptations to counteract this interaction. N. gonorrhoeae can indeed engage multiple human but not chimpanzee CD33rSiglecs expressed on innate immune cells and in the genitourinary tract--including Siglec-11 (inhibitory) and Siglec-16 (activating), which we detected for the first time on human cervical epithelium. Surprisingly, in addition to LOS sialic acid, we found that gonococcal porin (PorB) mediated binding to multiple Siglecs. PorB also bound preferentially to human Siglecs and not chimpanzee orthologs, modulating host immune reactions in a human-specific manner. Lastly, we studied the distribution of null SIGLEC polymorphisms in a Namibian cohort with a high prevalence of gonorrhea and found that uninfected women preferentially harbor functional SIGLEC16 alleles encoding an activating immune receptor. These results contribute to the understanding of the human specificity of N. gonorrhoeae and how it evolved to evade the human immune defense.
Collapse
Affiliation(s)
- Corinna S. Landig
- Glycobiology Research and Training CenterUniversity of California, San DiegoLa JollaCalifornia
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaCalifornia
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
| | - Ashley Hazel
- Department of Earth System ScienceStanford UniversityStanfordCalifornia
| | - Benjamin P. Kellman
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
- Bioinformatics and Systems Biology Graduate ProgramUniversity of California, San DiegoLa JollaCalifornia
| | - Jerry J. Fong
- Glycobiology Research and Training CenterUniversity of California, San DiegoLa JollaCalifornia
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaCalifornia
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
| | - Flavio Schwarz
- Glycobiology Research and Training CenterUniversity of California, San DiegoLa JollaCalifornia
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaCalifornia
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
| | - Sarika Agarwal
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Nissi Varki
- Glycobiology Research and Training CenterUniversity of California, San DiegoLa JollaCalifornia
- Department of PathologyUniversity of California, San DiegoLa JollaCalifornia
| | - Paola Massari
- Department of ImmunologyTufts University School of MedicineBostonMassachusetts
| | - Nathan E. Lewis
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
- Bioinformatics and Systems Biology Graduate ProgramUniversity of California, San DiegoLa JollaCalifornia
- Novo Nordisk Foundation Center for BiosustainabilityUniversity of California, San DiegoLa JollaCalifornia
| | - Sanjay Ram
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Ajit Varki
- Glycobiology Research and Training CenterUniversity of California, San DiegoLa JollaCalifornia
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaCalifornia
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
| |
Collapse
|
17
|
Wei M, Wang PG. Desialylation in physiological and pathological processes: New target for diagnostic and therapeutic development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:25-57. [PMID: 30905454 DOI: 10.1016/bs.pmbts.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Desialylation is a pivotal part of sialic acid metabolism, which initiates the catabolism of glycans by removing the terminal sialic acid residues on glycans, thereby modulating the structure and functions of glycans, glycoproteins, or glycolipids. The functions of sialic acids have been well recognized, whereas the function of desialylation process is underappreciated or largely ignored. However, accumulating evidence demonstrates that desialylation plays an important role in a variety of physiological and pathological processes. This chapter summarizes the current knowledge pertaining to desialylation in a variety of physiological and pathological processes, with a focus on the underlying molecular mechanisms. The potential of targeting desialylation process for diagnostic and therapeutic development is also discussed.
Collapse
Affiliation(s)
- Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Peng George Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
18
|
Lenz JD, Dillard JP. Pathogenesis of Neisseria gonorrhoeae and the Host Defense in Ascending Infections of Human Fallopian Tube. Front Immunol 2018; 9:2710. [PMID: 30524442 PMCID: PMC6258741 DOI: 10.3389/fimmu.2018.02710] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that causes mucosal surface infections of male and female reproductive tracts, pharynx, rectum, and conjunctiva. Asymptomatic or unnoticed infections in the lower reproductive tract of women can lead to serious, long-term consequences if these infections ascend into the fallopian tube. The damage caused by gonococcal infection and the subsequent inflammatory response produce the condition known as pelvic inflammatory disease (PID). Infection can lead to tubal scarring, occlusion of the oviduct, and loss of critical ciliated cells. Consequences of the damage sustained on the fallopian tube epithelium include increased risk of ectopic pregnancy and tubal-factor infertility. Additionally, the resolution of infection can produce new adhesions between internal tissues, which can tear and reform, producing chronic pelvic pain. As a bacterium adapted to life in a human host, the gonococcus presents a challenge to the development of model systems for probing host-microbe interactions. Advances in small-animal models have yielded previously unattainable data on systemic immune responses, but the specificity of N. gonorrhoeae for many known (and unknown) host targets remains a constant hurdle. Infections of human volunteers are possible, though they present ethical and logistical challenges, and are necessarily limited to males due to the risk of severe complications in women. It is routine, however, that normal, healthy fallopian tubes are removed in the course of different gynecological surgeries (namely hysterectomy), making the very tissue most consequentially damaged during ascending gonococcal infection available for laboratory research. The study of fallopian tube organ cultures has allowed the opportunity to observe gonococcal biology and immune responses in a complex, multi-layered tissue from a natural host. Forty-five years since the first published example of human fallopian tube being infected ex vivo with N. gonorrhoeae, we review what modeling infections in human tissue explants has taught us about the gonococcus, what we have learned about the defenses mounted by the human host in the upper female reproductive tract, what other fields have taught us about ciliated and non-ciliated cell development, and ultimately offer suggestions regarding the next generation of model systems to help expand our ability to study gonococcal pathogenesis.
Collapse
Affiliation(s)
- Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
19
|
Shaughnessy J, Lewis LA, Zheng B, Carr C, Bass I, Gulati S, DeOliveira RB, Gose S, Reed GW, Botto M, Rice PA, Ram S. Human Factor H Domains 6 and 7 Fused to IgG1 Fc Are Immunotherapeutic against Neisseria gonorrhoeae. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2700-2709. [PMID: 30266769 PMCID: PMC6200640 DOI: 10.4049/jimmunol.1701666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/27/2018] [Indexed: 01/15/2023]
Abstract
Novel therapeutics against multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococcal lipooligosaccharide often expresses lacto-N-neotetraose (LNnT), which becomes sialylated in vivo, enhancing factor H (FH) binding and contributing to the organism's ability to resist killing by complement. We previously showed that FH domains 18-20 (with a D-to-G mutation at position 1119 in domain 19) fused to Fc (FHD1119G/Fc) displayed complement-dependent bactericidal activity in vitro and attenuated gonococcal vaginal colonization of mice. Gonococcal lipooligosaccharide phase variation can result in loss of LNnT expression. Loss of sialylated LNnT, although associated with a considerable fitness cost, could decrease efficacy of FHD1119G/Fc. Similar to N. meningitidis, gonococci also bind FH domains 6 and 7 through Neisserial surface protein A (NspA). In this study, we show that a fusion protein comprising FH domains 6 and 7 fused to human IgG1 Fc (FH6,7/Fc) bound to 15 wild-type antimicrobial resistant isolates of N. gonorrhoeae and to each of six lgtA gonococcal deletion mutants. FH6,7/Fc mediated complement-dependent killing of 8 of the 15 wild-type gonococcal isolates and effectively reduced the duration and burden of vaginal colonization of three gonococcal strains tested in wild-type mice, including two strains that resisted complement-dependent killing but on which FH6,7/Fc enhanced C3 deposition. FH/Fc lost efficacy when Fc was mutated to abrogate C1q binding and in C1q-/- mice, highlighting the requirement of the classical pathway for its activity. Targeting gonococci with FH6,7/Fc provides an additional immunotherapeutic approach against multidrug-resistant gonorrhea.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Caleb Carr
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Isaac Bass
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Rosane B DeOliveira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Severin Gose
- San Francisco Department of Public Health, San Francisco, CA 94102; and
| | - George W Reed
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Marina Botto
- Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
20
|
Structure of the Recombinant Neisseria gonorrhoeae Adhesin Complex Protein (rNg-ACP) and Generation of Murine Antibodies with Bactericidal Activity against Gonococci. mSphere 2018; 3:3/5/e00331-18. [PMID: 30305317 PMCID: PMC6180225 DOI: 10.1128/msphere.00331-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neisseria gonorrhoeae (gonococcus [Ng]) is the causative organism of the sexually transmitted disease gonorrhoea, and the organism is listed by the World Health Organization as a high-priority pathogen for research and development of new control measures, including vaccines. In this study, we demonstrated that the N. gonorrhoeae adhesin complex protein (Ng-ACP) was conserved and expressed by 50 gonococcal strains and that recombinant proteins induced antibodies in mice that killed the bacteria in vitro. We determined the structure of Ng-ACP by X-ray crystallography and investigated structural conservation with Neisseria meningitidis ACP and MliC/PliC proteins from other bacteria which act as inhibitors of the human innate defense molecule lysozyme. These findings are important and suggest that Ng-ACP could provide a potential dual target for tackling gonococcal infections. Neisseria gonorrhoeae (gonococcus [Ng]) is the causative organism of the sexually transmitted disease gonorrhoea, and no effective vaccine exists currently. In this study, the structure, biological properties, and vaccine potential of the Ng-adhesin complex protein (Ng-ACP) are presented. The crystal structure of recombinant Ng-ACP (rNg-ACP) protein was solved at 1.65 Å. Diversity and conservation of Ng-ACP were examined in different Neisseria species and gonococcal isolates (https://pubmlst.org/neisseria/ database) in silico, and protein expression among 50 gonococcal strains in the Centers for Disease Control and Prevention/Food and Drug Administration (CDCP/FDA) AR Isolate Bank was examined by Western blotting. Murine antisera were raised to allele 10 (strain P9-17)-encoded rNg-ACP protein with different adjuvants and examined by enzyme-linked immunosorbent assay (ELISA), Western blotting, and a human serum bactericidal assay. Rabbit antiserum to rNg-ACP was tested for its ability to prevent Ng-ACP from inhibiting human lysozyme activity in vitro. Ng-ACP is structurally homologous to Neisseria meningitidis ACP and MliC/PliC lysozyme inhibitors. Gonococci expressed predominantly allele 10- and allele 6-encoded Ng-ACP (81% and 15% of isolates, respectively). Murine antisera were bactericidal (titers of 64 to 512, P < 0.05) for the homologous P9-17 strain and heterologous (allele 6) FA1090 strain. Rabbit anti-rNg-ACP serum prevented Ng-ACP from inhibiting human lysozyme with ∼100% efficiency. Ng-ACP protein was expressed by all 50 gonococcal isolates examined with minor differences in the relative levels of expression. rNg-ACP is a potential vaccine candidate that induces antibodies that (i) are bactericidal and (ii) prevent the gonococcus from inhibiting the lytic activity of an innate defense molecule. IMPORTANCENeisseria gonorrhoeae (gonococcus [Ng]) is the causative organism of the sexually transmitted disease gonorrhoea, and the organism is listed by the World Health Organization as a high-priority pathogen for research and development of new control measures, including vaccines. In this study, we demonstrated that the N. gonorrhoeae adhesin complex protein (Ng-ACP) was conserved and expressed by 50 gonococcal strains and that recombinant proteins induced antibodies in mice that killed the bacteria in vitro. We determined the structure of Ng-ACP by X-ray crystallography and investigated structural conservation with Neisseria meningitidis ACP and MliC/PliC proteins from other bacteria which act as inhibitors of the human innate defense molecule lysozyme. These findings are important and suggest that Ng-ACP could provide a potential dual target for tackling gonococcal infections.
Collapse
|
21
|
Muzny CA, Blanchard E, Taylor CM, Aaron KJ, Talluri R, Griswold ME, Redden DT, Luo M, Welsh DA, Van Der Pol WJ, Lefkowitz EJ, Martin DH, Schwebke JR. Identification of Key Bacteria Involved in the Induction of Incident Bacterial Vaginosis: A Prospective Study. J Infect Dis 2018; 218:966-978. [PMID: 29718358 PMCID: PMC6093354 DOI: 10.1093/infdis/jiy243] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
Background The sequence of events preceding incident bacterial vaginosis (iBV) is unclear. Methods African American women who have sex with women, who had no Amsel criteria and Nugent scores of 0-3, were followed for 90 days to detect iBV (defined as a Nugent score of 7-10 on at least 2-3 consecutive days), using self-collected vaginal swab specimens. For women with iBV (cases) and women maintaining normal vaginal flora (healthy women), 16S ribosomal RNA gene sequencing targeting V4 was performed. Longitudinal vaginal microbiome data were analyzed. Results Of 204 women screened, 42 enrolled; of these, 45% developed iBV. Sequencing was performed on 448 specimens from 14 cases and 8 healthy women. Among healthy women, Lactobacillus crispatus dominated the vaginal microbiota in 75%. In contrast, prior to iBV, the vaginal microbiota in 79% of cases was dominated by Lactobacillus iners and/or Lactobacillus jensenii/Lactobacillus gasseri. The mean relative abundance of Prevotella bivia, Gardnerella vaginalis, Atopobium vaginae, and Megasphaera type I became significantly higher in cases 4 days before (P. bivia), 3 days before (G. vaginalis), and on the day of (A. vaginae and Megasphaera type I) iBV onset. The mean relative abundance of Sneathia sanguinegens, Finegoldia magna, BV-associated bacteria 1-3, and L. iners was not significantly different between groups before onset of iBV. Conclusion G. vaginalis, P. bivia, A. vaginae, and Megasphaera type I may play significant roles in iBV.
Collapse
Affiliation(s)
| | - Eugene Blanchard
- Department of Microbiology, Immunology, and Parasitology, New Orleans, Louisiana
- BusPatrol America, Salt Lake City, Utah
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, New Orleans, Louisiana
- Microbial Genomics Resource Group, School of Medicine, New Orleans, Louisiana
| | | | - Rajesh Talluri
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson
| | - Michael E Griswold
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson
| | - David T Redden
- Department of Biostatistics, School of Public Health, New Orleans, Louisiana
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, New Orleans, Louisiana
- Microbial Genomics Resource Group, School of Medicine, New Orleans, Louisiana
| | - David A Welsh
- Microbial Genomics Resource Group, School of Medicine, New Orleans, Louisiana
- Section of Pulmonary, Critical Care, Allergy/Immunology, New Orleans, Louisiana
| | | | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, New Orleans, Louisiana
| | - David H Martin
- Division of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | | |
Collapse
|
22
|
Transcriptome Analysis of Neisseria gonorrhoeae during Natural Infection Reveals Differential Expression of Antibiotic Resistance Determinants between Men and Women. mSphere 2018; 3:3/3/e00312-18. [PMID: 29950382 PMCID: PMC6021601 DOI: 10.1128/mspheredirect.00312-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 11/20/2022] Open
Abstract
Recent emergence of antimicrobial resistance of Neisseria gonorrhoeae worldwide has resulted in limited therapeutic choices for treatment of infections caused by this organism. We performed global transcriptomic analysis of N. gonorrhoeae in subjects with gonorrhea who attended a Nanjing, China, sexually transmitted infection (STI) clinic, where antimicrobial resistance of N. gonorrhoeae is high and increasing. We found that N. gonorrhoeae transcriptional responses to infection differed in genital specimens taken from men and women, particularly antibiotic resistance gene expression, which was increased in men. These sex-specific findings may provide a new approach to guide therapeutic interventions and preventive measures that are also sex specific while providing additional insight to address antimicrobial resistance of N. gonorrhoeae. Neisseria gonorrhoeae is a bacterial pathogen responsible for the sexually transmitted infection gonorrhea. Emergence of antimicrobial resistance (AMR) of N. gonorrhoeae worldwide has resulted in limited therapeutic choices for this infection. Men who seek treatment often have symptomatic urethritis; in contrast, gonococcal cervicitis in women is usually minimally symptomatic, but may progress to pelvic inflammatory disease. Previously, we reported the first analysis of gonococcal transcriptome expression determined in secretions from women with cervical infection. Here, we defined gonococcal global transcriptional responses in urethral specimens from men with symptomatic urethritis and compared these with transcriptional responses in specimens obtained from women with cervical infections and in vitro-grown N. gonorrhoeae isolates. This is the first comprehensive comparison of gonococcal gene expression in infected men and women. RNA sequencing analysis revealed that 9.4% of gonococcal genes showed increased expression exclusively in men and included genes involved in host immune cell interactions, while 4.3% showed increased expression exclusively in women and included phage-associated genes. Infected men and women displayed comparable antibiotic-resistant genotypes and in vitro phenotypes, but a 4-fold higher expression of the Mtr efflux pump-related genes was observed in men. These results suggest that expression of AMR genes is programed genotypically and also driven by sex-specific environments. Collectively, our results indicate that distinct N. gonorrhoeae gene expression signatures are detected during genital infection in men and women. We propose that therapeutic strategies could target sex-specific differences in expression of antibiotic resistance genes. IMPORTANCE Recent emergence of antimicrobial resistance of Neisseria gonorrhoeae worldwide has resulted in limited therapeutic choices for treatment of infections caused by this organism. We performed global transcriptomic analysis of N. gonorrhoeae in subjects with gonorrhea who attended a Nanjing, China, sexually transmitted infection (STI) clinic, where antimicrobial resistance of N. gonorrhoeae is high and increasing. We found that N. gonorrhoeae transcriptional responses to infection differed in genital specimens taken from men and women, particularly antibiotic resistance gene expression, which was increased in men. These sex-specific findings may provide a new approach to guide therapeutic interventions and preventive measures that are also sex specific while providing additional insight to address antimicrobial resistance of N. gonorrhoeae.
Collapse
|
23
|
Abstract
The host-adapted human pathogen Neisseria gonorrhoeae is the causative agent of gonorrhoea. Consistent with its proposed evolution from an ancestral commensal bacterium, N. gonorrhoeae has retained features that are common in commensals, but it has also developed unique features that are crucial to its pathogenesis. The continued worldwide incidence of gonorrhoeal infection, coupled with the rising resistance to antimicrobials and the difficulties in controlling the disease in developing countries, highlights the need to better understand the molecular basis of N. gonorrhoeae infection. This knowledge will facilitate disease prevention, surveillance and control, improve diagnostics and may help to facilitate the development of effective vaccines or new therapeutics. In this Review, we discuss sex-related symptomatic gonorrhoeal disease and provide an overview of the bacterial factors that are important for the different stages of pathogenesis, including transmission, colonization and immune evasion, and we discuss the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Sarah Jane Quillin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
24
|
Ram S, Shaughnessy J, de Oliveira RB, Lewis LA, Gulati S, Rice PA. Gonococcal lipooligosaccharide sialylation: virulence factor and target for novel immunotherapeutics. Pathog Dis 2017; 75:3777971. [PMID: 28460033 PMCID: PMC5449626 DOI: 10.1093/femspd/ftx049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Gonorrhea has become resistant to most conventional antimicrobials used in clinical practice. The global spread of multidrug-resistant isolates of Neisseria gonorrhoeae could lead to an era of untreatable gonorrhea. New therapeutic modalities with novel mechanisms of action that do not lend themselves to the development of resistance are urgently needed. Gonococcal lipooligosaccharide (LOS) sialylation is critical for complement resistance and for establishing infection in humans and experimental mouse models. Here we describe two immunotherapeutic approaches that target LOS sialic acid: (i) a fusion protein that comprises the region in the complement inhibitor factor H (FH) that binds to sialylated gonococci and IgG Fc (FH/Fc fusion protein) and (ii) analogs of sialic acid that are incorporated into LOS but fail to protect the bacterium against killing. Both molecules showed efficacy in the mouse vaginal colonization model of gonorrhea and may represent promising immunotherapeutic approaches to target multidrug-resistant isolates. Disabling key gonococcal virulence mechanisms is an effective therapeutic strategy because the reduction of virulence is likely to be accompanied by a loss of fitness, rapid elimination by host immunity and consequently, decreased transmission.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B. de Oliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
25
|
|
26
|
Shafer WM. Does the Cervicovaginal Microbiome Facilitate Transmission of Neisseria gonorrhoeae From Women to Men? Implications for Understanding Transmission of Gonorrhea and Advancing Vaccine Development. J Infect Dis 2016; 214:1615-1617. [PMID: 27471316 DOI: 10.1093/infdis/jiw331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 01/11/2023] Open
Affiliation(s)
- William M Shafer
- Department of Microbiology and Immunology.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta.,Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|