1
|
Thomas TS, Walpert AR, Srinivasa S. Large lessons learned from small vessels: coronary microvascular dysfunction in HIV. Curr Opin Infect Dis 2024; 37:26-34. [PMID: 37889554 DOI: 10.1097/qco.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
PURPOSE OF REVIEW Large cohort studies have consistently shown the presence of heart failure is approximately doubled among persons with HIV (PWH). Early studies of cardiovascular disease (CVD) in HIV were primarily focused on atherosclerotic burden, and we now have a greater understanding of large vessel disease in HIV. More recent studies have begun to inform us about small vessel disease, or coronary microvascular dysfunction (CMD), in HIV. CMD is recognized to be an important risk factor for adverse events related to heart failure, associated with cardiovascular mortality, and often presents without overt atherosclerotic disease. RECENT FINDINGS In this review, we highlight implications for CMD and relevant clinical studies in HIV. Inflammation and endothelial dysfunction, well known risk factors in HIV, may mediate the pathogenesis of CMD. Initial studies suggest that CMD worsens with ART initiation. Newer studies reveal CMD is present among well treated PWH without known CVD. In addition, myocardial flow reserve (MFR), a marker of CMD, is reduced in HIV similar to diabetes. There also appears to be sex differences, such that CMD is worse among women vs. men with HIV. SUMMARY Alterations in the coronary microvasculature may be an important mediator of subclinical myocardial dysfunction that deserves further clinical attention among PWH without known CVD.
Collapse
Affiliation(s)
- Teressa S Thomas
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
2
|
Srinivasa S, Walpert AR, Thomas TS, Huck DM, Jerosch-Herold M, Islam S, Lu MT, Burdo TH, deFilippi CR, Dunderdale CN, Feldpausch M, Iyengar S, Shen G, Baak S, Torriani M, Robbins GK, Lee H, Kwong R, DiCarli M, Adler GK, Grinspoon SK. Randomized Placebo-Controlled Trial to Evaluate Effects of Eplerenone on Myocardial Perfusion and Function Among Persons With Human Immunodeficiency Virus (HIV)-Results From the MIRACLE HIV Study. Clin Infect Dis 2023; 77:1166-1175. [PMID: 37243345 PMCID: PMC10573745 DOI: 10.1093/cid/ciad310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Increased renin angiotensin aldosterone system (RAAS) activity may contribute to excess cardiovascular disease in people with HIV (PWH). We investigated how RAAS blockade may improve myocardial perfusion, injury, and function among well-treated PWH. METHODS Forty PWH, on stable ART, without known heart disease were randomized to eplerenone 50 mg PO BID (n = 20) or identical placebo (n = 20) for 12 months. The primary endpoints were (1) myocardial perfusion assessed by coronary flow reserve (CFR) on cardiac PET or stress myocardial blood flow (sMBF) on cardiac MRI or (2) myocardial inflammation by extracellular mass index (ECMi) on cardiac MRI. RESULTS Beneficial effects on myocardial perfusion were seen for sMBF by cardiac MRI (mean [SD]: 0.09 [0.56] vs -0.53 [0.68] mL/min/g; P = .03) but not CFR by cardiac PET (0.01 [0.64] vs -0.07 [0.48]; P = .72, eplerenone vs placebo). Eplerenone improved parameters of myocardial function on cardiac MRI including left ventricular end diastolic volume (-13 [28] vs 10 [26] mL; P = .03) and global circumferential strain (GCS; median [interquartile range 25th-75th]: -1.3% [-2.9%-1.0%] vs 2.3% [-0.4%-4.1%]; P = .03), eplerenone versus placebo respectively. On cardiac MRI, improvement in sMBF related to improvement in global circumferential strain (ρ = -0.65, P = .057) among those treated with eplerenone. Selecting for those with impaired myocardial perfusion (CFR <2.5 and/or sMBF <1.8), there was a treatment effect of eplerenone versus placebo to improve CFR (0.28 [0.27] vs -0.05 [0.36]; P = .04). Eplerenone prevented a small increase in troponin (0.00 [-0.13-0.00] vs 0.00 [0.00-0.74] ng/L; P = .03) without effects on ECMi (0.9 [-2.3-4.3] vs -0.7 [-2.2--0.1] g/m2; P = .38). CD4+ T-cell count (127 [-38-286] vs -6 [-168-53] cells/μL; P = .02) increased in the eplerenone- versus placebo-treated groups. CONCLUSIONS RAAS blockade with eplerenone benefitted key indices and prevented worsening of myocardial perfusion, injury, and function among PWH with subclinical cardiac disease when compared with placebo. CLINICAL TRIALS REGISTRATION NCT02740179 (https://clinicaltrials.gov/ct2/show/NCT02740179?term=NCT02740179&draw=2&rank=1).
Collapse
Affiliation(s)
- Suman Srinivasa
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Allie R Walpert
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Teressa S Thomas
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel M Huck
- Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Jerosch-Herold
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sabeeh Islam
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael T Lu
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tricia H Burdo
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | | - Carolyn N Dunderdale
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Meghan Feldpausch
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sanjna Iyengar
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Grace Shen
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Baak
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory K Robbins
- Division of Infectious Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond Kwong
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelo DiCarli
- Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gail K Adler
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Shen G, Thomas TS, Walpert AR, McClure CM, Fitch KV, deFilippi C, Torriani M, Buckless CG, Adler GK, Grinspoon SK, Srinivasa S. Role of renin-angiotensin-aldosterone system activation and other metabolic variables in relation to arterial inflammation in HIV. Clin Endocrinol (Oxf) 2022; 97:581-587. [PMID: 35614846 PMCID: PMC9532371 DOI: 10.1111/cen.14784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Arterial inflammation remains increased among persons with HIV (PWH) compared with persons without HIV (PWOH) even when controlling for traditional risk factors. We sought to understand whether increased renin-angiotensin-aldosterone system (RAAS) activation may be related to arterial inflammation in PWH and when compared with PWOH. DESIGN Twenty PWH and 9 PWOH followed a controlled, standardized low and liberal sodium diet to simulate a RAAS-activated and RAAS-suppressed state, respectively. We measured serum lipoprotein-associated phospholipase A2 (LpPLA2) concentrations following both conditions to assess the physiologic dynamics of aldosterone in relation to arterial inflammation. RESULTS LpPLA2 levels were significantly higher among PWH versus PWOH during both the RAAS-activated state[5.3(4.2, 6.1) versus 4.0(3.0, 4.8)nmol/L, median(interquartile range),p = .01]) and RAAS-suppressed state[4.4(3.9, 5.3) versus 3.8(3.4, 4.1)nmol/L,p = .01]. Among PWH, but not PWOH, LpPLA2 increased significantly with RAAS activation(p = .03). LpPLA2 levels measured during the RAAS-suppressed state among PWH remained relatively higher than LpPLA2 levels under both conditions among PWOH. Log LpPLA2 was related to log aldosterone during the RAAS-activated state(r = .39,p = .04) among all participants. Log LpPLA2 was correlated with visceral fat(r = .46,p = .04) and log systolic blood pressure(r = .57,p = .009) during a RAAS-activated state when an increase in aldosterone was stimulated in HIV. CONCLUSION LpPLA2 is increased during a RAAS-activated state among PWH, but not among PWOH. Further, LpPLA2 was increased in both RAAS-activated and suppressed states in PWH compared with PWOH. These data suggest a biological link between increased aldosterone and arterial inflammation in this population. Future studies should test RAAS blockade on arterial inflammation as a targeted treatment approach in HIV.
Collapse
Affiliation(s)
- Grace Shen
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Teressa S Thomas
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Allie R Walpert
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Colin M McClure
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathleen V Fitch
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Colleen G Buckless
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gail K Adler
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Suman Srinivasa
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Shrivastav S, Lee H, Okamoto K, Lu H, Yoshida T, Latt KZ, Wakashin H, Dalgleish JLT, Koritzinsky EH, Xu P, Asico LD, Chung JY, Hewitt S, Gildea JJ, Felder RA, Jose PA, Rosenberg AZ, Knepper MA, Kino T, Kopp JB. HIV-1 Vpr suppresses expression of the thiazide-sensitive sodium chloride co-transporter in the distal convoluted tubule. PLoS One 2022; 17:e0273313. [PMID: 36129874 PMCID: PMC9491550 DOI: 10.1371/journal.pone.0273313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice.
Collapse
Affiliation(s)
- Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Hewang Lee
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, United States of America
| | - Koji Okamoto
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Huiyan Lu
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Hidefumi Wakashin
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - James L. T. Dalgleish
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Erik H. Koritzinsky
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Peng Xu
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Laureano D. Asico
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, United States of America
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Stephen Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - John J. Gildea
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Robin A. Felder
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Pedro A. Jose
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, United States of America
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland, United States of America
| | - Tomoshige Kino
- Laboratory for Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Savedchuk S, Raslan R, Nystrom S, Sparks MA. Emerging Viral Infections and the Potential Impact on Hypertension, Cardiovascular Disease, and Kidney Disease. Circ Res 2022; 130:1618-1641. [PMID: 35549373 DOI: 10.1161/circresaha.122.320873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Viruses are ubiquitous in the environment and continue to have a profound impact on human health and disease. The COVID-19 pandemic has highlighted this with impressive morbidity and mortality affecting the world's population. Importantly, the link between viruses and hypertension, cardiovascular disease, and kidney disease has resulted in a renewed focus and attention on this potential relationship. The virus responsible for COVID-19, SARS-CoV-2, has a direct link to one of the major enzymatic regulatory systems connected to blood pressure control and hypertension pathogenesis, the renin-angiotensin system. This is because the entry point for SARS-CoV-2 is the ACE2 (angiotensin-converting enzyme 2) protein. ACE2 is one of the main enzymes responsible for dampening the primary effector peptide Ang II (angiotensin II), metabolizing it to Ang-(1-7). A myriad of clinical questions has since emerged and are covered in this review. Several other viruses have been linked to hypertension, cardiovascular disease, and kidney health. Importantly, patients with high-risk apolipoprotein L1 (APOL1) alleles are at risk for developing the kidney lesion of collapsing glomerulopathy after viral infection. This review will highlight several emerging viruses and their potential unique tropisms for the kidney and cardiovascular system. We focus on SARS-CoV-2 as this body of literature in regards to cardiovascular disease has advanced significantly since the COVID-19 pandemic.
Collapse
Affiliation(s)
- Solomiia Savedchuk
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Rasha Raslan
- Internal Medicine, Virginia Commonwealth University, Richmond (R.R.)
| | - Sarah Nystrom
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
- Renal Section, Durham VA Health Care System, NC (M.A.S.)
| |
Collapse
|
6
|
Srinivasa S, Thomas TS, Feldpausch MN, Adler GK, Grinspoon SK. Coronary Vasculature and Myocardial Structure in HIV: Physiologic Insights From the Renin-Angiotensin-Aldosterone System. J Clin Endocrinol Metab 2021; 106:3398-3412. [PMID: 33624807 PMCID: PMC8864747 DOI: 10.1210/clinem/dgab112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 11/19/2022]
Abstract
The landscape of HIV medicine dramatically changed with the advent of contemporary antiretroviral therapies, which has allowed persons with HIV (PWH) to achieve good virologic control, essentially eliminating HIV-related complications and increasing life expectancy. As PWH are living longer, noncommunicable diseases, such as cardiovascular disease (CVD), have become a leading cause of morbidity and mortality in PWH with rates that are 50% to 100% higher than in well-matched persons without HIV. In this review, we focus on disease of the coronary microvasculature and myocardium in HIV. We highlight a key hormonal system important to cardiovascular endocrinology, the renin-angiotensin-aldosterone system (RAAS), as a potential mediator of inflammatory driven-vascular and myocardial injury and consider RAAS blockade as a physiologically targeted strategy to reduce CVD in HIV.
Collapse
Affiliation(s)
- Suman Srinivasa
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Teressa S Thomas
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Meghan N Feldpausch
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gail K Adler
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Correspondence: Steven K. Grinspoon, MD, Metabolism Unit, Massachusetts General Hospital, 55 Fruit Street, 5LON207, Boston, MA 02114, USA. E-mail:
| |
Collapse
|
7
|
Cooper SL, Boyle E, Jefferson SR, Heslop CRA, Mohan P, Mohanraj GGJ, Sidow HA, Tan RCP, Hill SJ, Woolard J. Role of the Renin-Angiotensin-Aldosterone and Kinin-Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID. Int J Mol Sci 2021; 22:8255. [PMID: 34361021 PMCID: PMC8347967 DOI: 10.3390/ijms22158255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardiovascular complications (CVCs) associated with infection. The reported CVCs include myocarditis, heart failure, arrhythmias, thromboembolism and blood pressure abnormalities. These occur, in part, because of dysregulation of the Renin-Angiotensin-Aldosterone System (RAAS) and Kinin-Kallikrein System (KKS). A major route by which SARS-CoV-2 gains cellular entry is via the docking of the viral spike (S) protein to the membrane-bound angiotensin converting enzyme 2 (ACE2). The roles of ACE2 within the cardiovascular and immune systems are vital to ensure homeostasis. The key routes for the development of CVCs and the recently described long COVID have been hypothesised as the direct consequences of the viral S protein/ACE2 axis, downregulation of ACE2 and the resulting damage inflicted by the immune response. Here, we review the impact of COVID-19 on the cardiovascular system, the mechanisms by which dysregulation of the RAAS and KKS can occur following virus infection and the future implications for pharmacological therapies.
Collapse
Affiliation(s)
- Samantha L. Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Eleanor Boyle
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Sophie R. Jefferson
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Calum R. A. Heslop
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Pirathini Mohan
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Gearry G. J. Mohanraj
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Hamza A. Sidow
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Rory C. P. Tan
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
8
|
Masenga SK, Elijovich F, Koethe JR, Hamooya BM, Heimburger DC, Munsaka SM, Laffer CL, Kirabo A. Hypertension and Metabolic Syndrome in Persons with HIV. Curr Hypertens Rep 2020; 22:78. [PMID: 32880756 PMCID: PMC7467859 DOI: 10.1007/s11906-020-01089-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW With the advent of highly active antiretroviral therapy (ART), the life span of persons with HIV (PWH) has been nearly normalized. With aging, prevalence of the metabolic syndrome (MetS), including hypertension, has increased in the HIV population and exceeds that in the general population in some studies. This is due to a combination of traditional risk factors in addition to the effects attributable to the virus and ART. We review recent findings on the mechanisms contributing to MetS and hypertension in PWH, particularly those specific to the viral infection and to ART. RECENT FINDINGS Activation of the renin-angiotensin-aldosterone system (RAAS) and chronic immune activation contribute to the development of MetS and hypertension in PWH. HIV proteins and some ART agents alter adipocyte health contributing to dyslipidemias, weight gain, and insulin resistance. HIV infection also contributes to hypertension by direct effects on the RAAS that intertwine with inflammation by the RAAS also contributing to T cell activation. Recent data suggest that in addition to current ART, therapeutic targeting of the MetS and hypertension in PWH, by interfering with the RAAS, treating insulin resistance directly or by use of immunomodulators that dampen inflammation, may be critical for preventing or treating these risk factors and to improve overall cardiovascular complications in the HIV-infected aging population.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Fernando Elijovich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John R Koethe
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benson M Hamooya
- HAND Research group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- School of Public Health, University of Zambia, Lusaka, Zambia
| | - Douglas C Heimburger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Internal Medicine, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Sody M Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Cheryl L Laffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA.
| |
Collapse
|
9
|
Bogorodskaya M, Fitch KV, Burdo TH, Maehler P, Easly RM, Murray GR, Feldpausch M, Adler GK, Grinspoon SK, Srinivasa S. Serum Lipocalin 2 (Neutrophil Gelatinase-Associated Lipocalin) in Relation to Biomarkers of Inflammation and Cardiac Stretch During Activation of the Renin-Angiotensin-Aldosterone System in Human Immunodeficiency Virus. J Infect Dis 2020; 220:1420-1424. [PMID: 31298286 DOI: 10.1093/infdis/jiz346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To evaluate the relationship of lipocalin 2 to inflammation and cardiac injury with increased aldosterone in human immunodeficiency virus (HIV). METHODS A standardized 6-day low-sodium diet was used to stimulate renin-angiotensin-aldosterone system (RAAS) activation, and serum lipocalin 2 and biomarkers of inflammation and cardiac stretch were assessed among persons with or without HIV. RESULTS Lipocalin 2 levels increased with RAAS activation compared with suppression in the HIV group (median level [interquartile range], 71.3 [59.2-99.7] vs 67.0 [51.8-86.3] ng/mL; P = .01). During RAAS activation, lipocalin 2 was related to biomarkers of inflammation (tumor necrosis factor α [P = .007]), monocyte/macrophage activation (soluble CD163 [P = .005] and chemokine [C-C motif] ligand 2 [P = .03]), and markers of cardiac stretch (brain natriuretic peptide [P < .001] and N-terminal fragment of the prohormone brain natriuretic peptide [P = .001]) in HIV. CONCLUSION Lipocalin 2 may be important in modulating aldosterone-induced inflammation, monocyte activation, and cardiac stretch during RAAS activation in HIV. CLINICAL TRIAL REGISTRATION NCT01407237.
Collapse
Affiliation(s)
- Milana Bogorodskaya
- Division of Infectious Disease, Beth Israel Deaconess Medical Center and Harvard Medical School, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, Pennsylvania
| | - Kathleen V Fitch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, Pennsylvania
| | - Tricia H Burdo
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Patrick Maehler
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, Pennsylvania
| | - Rebecca M Easly
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, Pennsylvania
| | - Gillian R Murray
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, Pennsylvania
| | - Meghan Feldpausch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, Pennsylvania
| | - Gail K Adler
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, Pennsylvania
| | - Steven K Grinspoon
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, Pennsylvania
| | - Suman Srinivasa
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, Pennsylvania
| |
Collapse
|
10
|
Mayne ES, Louw S. Good Fences Make Good Neighbors: Human Immunodeficiency Virus and Vascular Disease. Open Forum Infect Dis 2019; 6:ofz303. [PMID: 31737735 PMCID: PMC6847507 DOI: 10.1093/ofid/ofz303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease, venous thrombosis, and microvascular disease in people with HIV (PWH) is predicted to increase in an aging HIV-infected population. Endothelial damage and dysfunction is a risk factor for cardiovascular events in PWH and is characterized by impaired vascular relaxation and decreased nitric oxide availability. Vascular disease has been attributed to direct viral effects, opportunistic infections, chronic inflammation, effects of antiretroviral therapy, and underlying comorbid conditions, like hypertension and use of tobacco. Although biomarkers have been examined to predict and prognosticate thrombotic and cardiovascular disease in this population, more comprehensive validation of risk factors is necessary to ensure patients are managed appropriately. This review examines the pathogenesis of vascular disease in PWH and summarizes the biomarkers used to predict vascular disease in this population.
Collapse
Affiliation(s)
- Elizabeth S Mayne
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service
| | - Susan Louw
- Department of Molecular Medicine Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
11
|
Srinivasa S, Fitch KV, Quadri N, Maehler P, O'Malley TK, Martinez-Salazar EL, Burdo TH, Feldpausch M, Torriani M, Adler GK, Grinspoon SK. Significant Association of Aldosterone and Liver Fat Among HIV-Infected Individuals With Metabolic Dysregulation. J Endocr Soc 2018; 2:1147-1157. [PMID: 30283827 PMCID: PMC6162603 DOI: 10.1210/js.2018-00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
Objective Fatty liver disease is increased among individuals with HIV. We sought to explore how aldosterone, a key hormone linked to insulin resistance and inflammation, relates to liver fat in the large population of individuals with HIV and metabolic abnormalities. Methods Forty-six individuals with HIV and increased waist circumference and dysglycemia were assessed for liver fat using proton magnetic resonance spectroscopy. Serum aldosterone level was obtained following strictly controlled posture conditions and a standardized sodium diet and was related to liver fat. Results Among the entire group [median (interquartile range) liver fat: 5% (3%, 12%) and homeostatic model assessment of insulin resistance: 1.74 (1.21, 2.83)], serum aldosterone significantly correlated with liver fat (r = 0.31; P = 0.049). Liver fat level was significantly higher in those with aldosterone above vs below the median [8% (3%, 20%) vs 4% (2%, 10%); P = 0.02]. In the presence of metabolic syndrome, individuals with aldosterone levels above vs below the median had markedly elevated liver fat values [14% (9%, 23%) vs 5% (3%, 12%); P = 0.005] and increased presence of fatty liver disease (FLD; 92% vs 50%; P = 0.02). Controlling for metabolic syndrome, hepatitis C virus, and alcohol use, aldosterone was a significant and independent predictor of liver fat (β estimate: 0.6038, P = 0.01; overall model r2 = 0.41, P = 0.0005) and FLD (OR: 1.38, P = 0.02; overall model r2 = 0.28, P = 0.002). Conclusion These data highlight a robust association between aldosterone and liver fat among individuals with HIV and metabolic dysregulation. Increased aldosterone may be a risk factor for liver fat accumulation among the population with HIV.
Collapse
Affiliation(s)
- Suman Srinivasa
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathleen V Fitch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nabiha Quadri
- St. Louis University School of Medicine, St. Louis, Missouri
| | - Patrick Maehler
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Timothy K O'Malley
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edgar L Martinez-Salazar
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tricia H Burdo
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Meghan Feldpausch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gail K Adler
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven K Grinspoon
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Srinivasa S, Fitch KV, Wong K, O’Malley TK, Maehler P, Branch KL, Looby SE, Burdo TH, Martinez-Salazar EL, Torriani M, Lyons SH, Weiss J, Feldpausch M, Stanley TL, Adler GK, Grinspoon SK. Randomized, Placebo-Controlled Trial to Evaluate Effects of Eplerenone on Metabolic and Inflammatory Indices in HIV. J Clin Endocrinol Metab 2018; 103:2376-2384. [PMID: 29659888 PMCID: PMC6370281 DOI: 10.1210/jc.2018-00330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/02/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT HIV-infected individuals demonstrate increased renin-angiotensin-aldosterone system activation in association with visceral adiposity, insulin resistance, and inflammation. A physiologically based treatment approach targeting mineralocorticoid receptor (MR) blockade may improve metabolic and inflammatory indices in HIV. OBJECTIVE To investigate effects of eplerenone on insulin sensitivity, inflammatory indices, and other metabolic parameters in HIV. DESIGN Six-month, double-blind, randomized, placebo-controlled trial. SETTING Academic clinical research center. PARTICIPANTS HIV-infected individuals with increased waist circumference and abnormal glucose homeostasis. INTERVENTION Eplerenone 50 mg or placebo daily. OUTCOME The primary end point was change in insulin sensitivity measured by the euglycemic-hyperinsulinemic clamp technique. Secondary end points included change in body composition and inflammatory markers. RESULTS Forty-six individuals were randomized to eplerenone (n = 25) vs placebo (n = 21). Eplerenone did not improve insulin sensitivity [0.48 (-1.28 to 1.48) vs 0.43 (-1.95 to 2.55) mg/min/μIU/mL insulin; P = 0.71, eplerenone vs placebo] when measured by the gold standard euglycemic-hyperinsulinemic clamp technique. Intramyocellular lipids (P = 0.04), monocyte chemoattractant protein-1 (P = 0.04), and high-density lipoprotein (P = 0.04) improved among those randomized to eplerenone vs placebo. Trends toward decreases in interleukin-6 (P = 0.10) and high-sensitivity C-reactive protein (P = 0.10) were also seen with eplerenone vs placebo. Plasma renin activity and aldosterone levels increased in the eplerenone vs placebo-treated group, demonstrating expected physiology. MR antagonism with eplerenone was well tolerated among the HIV population, with no considerable changes in blood pressure or potassium. CONCLUSION MR blockade may improve selected metabolic and inflammatory indices in HIV-infected individuals. Further studies are necessary to understand the clinical potential of MR antagonism in HIV.
Collapse
Affiliation(s)
- Suman Srinivasa
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
| | - Kathleen V Fitch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
| | - Kimberly Wong
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
| | - Timothy K O’Malley
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
| | - Patrick Maehler
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
| | - Karen L Branch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
| | - Sara E Looby
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
- Yvonne L. Munn Center for Nursing Research, Massachusetts General Hospital,
Boston, Massachusetts
| | - Tricia H Burdo
- Department of Neuroscience, Temple University School of Medicine, Philadelphia,
Pennsylvania
| | - Edgar L Martinez-Salazar
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts
| | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shannon H Lyons
- Division of Cardiovascular Medicine, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
| | - Julian Weiss
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
| | - Meghan Feldpausch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
| | - Takara L Stanley
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
| | - Gail K Adler
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s
Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven K Grinspoon
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts
- Correspondence and Reprint Requests: Steven K. Grinspoon, MD,
Program in Nutritional Metabolism, Massachusetts General Hospital, 55 Fruit Street,
5LON207, Boston, Massachusetts 02114. E-mail:
| |
Collapse
|
13
|
Murphy CA, Fitch KV, Feldpausch M, Maehler P, Wong K, Torriani M, Adler GK, Grinspoon SK, Srinivasa S. Excessive Adiposity and Metabolic Dysfunction Relate to Reduced Natriuretic Peptide During RAAS Activation in HIV. J Clin Endocrinol Metab 2018; 103:1558-1565. [PMID: 29408981 PMCID: PMC6276716 DOI: 10.1210/jc.2017-02198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
Purpose Natriuretic peptides (NPs) negatively feedback on the renin-angiotensin-aldosterone system (RAAS) and play a critical role in preserving cardiac structure and maintaining metabolic homeostasis. Well-treated HIV-infected individuals are at risk for fat redistribution and demonstrate evidence of RAAS dysregulation, which relates to metabolic dysfunction. We investigated circulating NPs in relation to RAAS physiology and metrics of body composition in HIV. Methods We assessed atrial natriuretic peptide, brain natriuretic peptide (BNP), and amino terminal pro B-type natriuretic peptide (NT-proBNP) during acute activation of the RAAS using a low-sodium controlled diet among 20 HIV-infected and 10 non-HIV-infected individuals well phenotyped for body composition. Results BNP was significantly lower [median, 60 (interquartile range, 44, 152) pg/mL vs 196 (91, 251) pg/mL, respectively; P = 0.04], and serum aldosterone was higher, among HIV-infected than among non-HIV-infected individuals. BNP was significantly and inversely associated with body composition [waist circumference: r = -0.46 (P = 0.04); BMI: r = -0.55 (P = 0.01); body adiposity index: r = -0.49 (P = 0.03)], metabolic indices [total cholesterol: r = -0.44 (P = 0.05), insulin resistance calculated by using homeostatic model assessment: r = -0.44 (P = 0.05); mean arterial pressure: r = -0.44 (P = 0.05)], and serum aldosterone (r = -0.49; P = 0.03) among the HIV-infected group. These relationships were not demonstrated in the non-HIV-infected group. In a four-group comparison stratifying by HIV serostatus and above or below a body mass index (BMI) of 25 kg/m2, BNP decreased significantly across groups; it was highest in non-HIV-infected patients with a BMI <25 kg/m2 and lowest in HIV-infected patients with a BMI ≥25 kg/m2 (overall P = 0.01). Conclusion Relatively reduced NP, particularly BNP, among HIV-infected individuals with excess adiposity may contribute to reduced suppression of aldosterone and potentially drive aldosterone-mediated metabolic complications. Strategies that target RAAS blockade and/or augment NPs may be useful to reduce cardiometabolic disease among HIV-infected individuals in whom these systems are perturbed.
Collapse
Affiliation(s)
- Caitlin A Murphy
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathleen V Fitch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Meghan Feldpausch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Patrick Maehler
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kimberly Wong
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gail K Adler
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven K Grinspoon
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Suman Srinivasa
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Abstract
: The well treated HIV population remains at risk for insulin resistance and chronic immune activation. We tested the effects of acute hyperinsulinemia on inflammation in HIV. Twenty HIV-infected and 10 non-HIV-infected individuals well matched for BMI underwent oral glucose tolerance testing to stimulate insulin secretion and assess for changes in circulating soluble CD163, soluble CD14, and monocyte chemoattract protein 1. Soluble CD14 decreased significantly after stimulation of hyperinsulinemia and no significant changes in soluble CD163 or monocyte chemoattract protein 1 were demonstrated in HIV-infected and non-HIV-infected groups.
Collapse
|