1
|
Shao Y, Shao J, de Hoog S, Verweij P, Bai L, Richardson R, Richardson M, Wan Z, Li R, Yu J, Song Y. Emerging antifungal resistance in Trichophyton mentagrophytes: insights from susceptibility profiling and genetic mutation analysis. Emerg Microbes Infect 2025; 14:2450026. [PMID: 39749731 PMCID: PMC11740296 DOI: 10.1080/22221751.2025.2450026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/10/2024] [Accepted: 01/01/2025] [Indexed: 01/04/2025]
Abstract
ABSTRACTTrichophyton species, the leading cause of dermatophytosis globally, are increasingly resistant to antifungal treatments, concerns about effective management strategies. In light of the absence of established resistance criteria for terbinafine and azoles, coupled with a dearth of research on resistance mechanisms in Trichophyton, antifungal susceptibility and drug resistance gene diversity were analyzed across 64 T. mentagrophytes, 65 T. interdigitale, and 2 T. indotineae isolates collected in China between 1999 and 2024 and 101 published T. indotineae strains. Analyses of the minimum inhibitory concentrations (MICs) of terbinafine, itraconazole, voriconazole, posaconazole, and isavuconazole revealed a concerning increase in T. indotineae with terbinafine resistance, including two novel isolates from China. Compared with T. interdigitale, T. mentagrophytes presented higher terbinafine MICs but similar azole susceptibility. Notably, 27 T. interdigitale isolates were classified as non-wild-type for terbinafine. Genetic diversity was analyzed for the SQLE, CYP51A and CYP51B gene. Specifically, T. indotineae isolates presented SQLE protein changes linked to terbinafine resistance. SQLE diversity was linked to terbinafine sensitivity, whereas alterations in CYP51A were associated with itraconazole sensitivity, with notable statistical significance evident across various protein isoforms. The relationship between protein diversity and drug sensitivity is presented in detail. Together, these findings highlight a growing prevalence of antibiotic resistance among Trichophyton and identify potential target genes for new therapies, underscoring the need for ongoing monitoring and offering directions for novel therapeutics.
Collapse
Affiliation(s)
- Yakun Shao
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People’s Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People’s Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People’s Republic of China
| | - Jin Shao
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People’s Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People’s Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People’s Republic of China
| | - Sybren de Hoog
- Research Center for Medical Mycology, Peking University, Beijing, People’s Republic of China
- Department of Medical Microbiology and Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul Verweij
- Department of Medical Microbiology and Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lin Bai
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, People’s Republic of China
| | - Riina Richardson
- Mycology Reference Centre Manchester and Department of Infectious Diseases, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust and Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Malcolm Richardson
- Mycology Reference Centre Manchester and Department of Infectious Diseases, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust and Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People’s Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People’s Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People’s Republic of China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People’s Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People’s Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People’s Republic of China
| | - Jin Yu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People’s Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People’s Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People’s Republic of China
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People’s Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People’s Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People’s Republic of China
- Department of Medical Microbiology and Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Cai R, He C, Kong Q, Lu L, Sang H. Synergistic Antifungal Activity of PIT and ITZ Against Varied Aspergillus Species via Affecting The Ergosterol Content and Intracellular Drug Retention. Curr Microbiol 2025; 82:198. [PMID: 40095083 DOI: 10.1007/s00284-025-04150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Aspergillus species are a significant cause of aspergillosis, with invasive pulmonary aspergillosis (IPA) being particularly severe and often fatal. The increasing resistance to azole antifungals and limited treatment options highlight the need for new therapeutic strategies. This study explores the synergistic effects of pitavastatin (PIT), a statin, combined with itraconazole (ITZ) against various Aspergillus species. In vitro assessments included plate inoculation, liquid medium incubation, and microscopic observation of spore germination, alongside ergosterol content analysis, intracellular itraconazole retention, and rhodamine 6G (Rh6G) uptake and efflux assays. The PIT and ITZ combination exhibited significant synergistic antifungal activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus fumigatus. The synergistic mechanism was attributed to decreased ergosterol levels, increased intracellular itraconazole retention, reduced spore germination, and abnormal hyphal formation in fungal cells. An in vivo Galleria mellonella infectious model demonstrated reduced mortality in larvae treated with the drug combination compared to those treated with ITZ alone. These findings suggest that the PIT and ITZ combination enhances antifungal effects against Aspergillus species, potentially offering a novel therapeutic strategy for IPA treatment. Further clinical trials are warranted to explore the potential of this drug combination in treating aspergillosis.
Collapse
Affiliation(s)
- Renhui Cai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Dermatology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Cong He
- Department of Dermatology, Jinling Hospital, Nanjing, 210002, China
| | - Qingtao Kong
- Department of Dermatology, Jinling Hospital, Nanjing, 210002, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Jiangsu Engineering and Technology Research Center for Microbiology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| | - Hong Sang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Dermatology, Jinling Hospital, Nanjing, 210002, China.
| |
Collapse
|
3
|
Klyasova G, Malchikova A, Khrulnova S. The first case of Aspergillus fumigatus with high-level resistance to voriconazole due to the TR46/Y121F/T289A mutation in the Russian Federation. Diagn Microbiol Infect Dis 2025; 111:116624. [PMID: 39644541 DOI: 10.1016/j.diagmicrobio.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
We report the first case of voriconazole-resistant A. fumigatus with the TR46/Y121F/T289A mutation in the Russian Federation, identified in a 43-year-old woman with acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Galina Klyasova
- National Medical Research Center for Hematology, Novy Zykovsky proezd 4, Moscow, 125167, Russia.
| | - Anna Malchikova
- National Medical Research Center for Hematology, Novy Zykovsky proezd 4, Moscow, 125167, Russia
| | - Svetlana Khrulnova
- National Medical Research Center for Hematology, Novy Zykovsky proezd 4, Moscow, 125167, Russia
| |
Collapse
|
4
|
Dagher H, Chaftari AM, Haddad A, Jiang Y, Shrestha J, Sherchan R, Lamie P, Makhoul J, Chaftari P, Hachem R, Raad I. Outcome Analysis of Breakthrough Invasive Aspergillosis on Anti-Mold Azole Prophylaxis and Treatment: 30-Year Experience in Hematologic Malignancy Patients. J Fungi (Basel) 2025; 11:160. [PMID: 39997454 PMCID: PMC11856094 DOI: 10.3390/jof11020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Anti-mold azoles have improved the outcomes of invasive aspergillosis (IA) when used therapeutically, but they are extensively used as prophylaxis. There are limited data regarding the outcomes of patients with hematologic malignancy who develop breakthrough IA on anti-mold azoles. We aimed to determine whether breakthrough IA on azole prophylaxis shows worse outcomes compared to no prophylaxis. METHODS We compared outcomes including therapy response and mortality between antifungal regimens in hematologic malignancy patients with IA between July 1993 and July 2023. RESULTS Compared to an amphotericin B-containing regimen (AMB), an anti-mold azole as the primary therapy was independently associated with successful response at the end of therapy (OR = 4.38, p < 0.0001), protective against 42-day IA-associated mortality (OR = 0.51, p = 0.024) or all cause mortality (OR = 0.35, p < 0.0001), and protective against 84-day mortality, both IA-associated (OR = 0.50, p = 0.01) and all-cause mortality (OR = 0.27, p < 0.0001). Azole prophylaxis was independently associated with higher IA-associated mortality at 42 days (OR = 1.91, p = 0.012) and 84 days (OR = 2.03, p = 0.004), compared to fluconazole or no prophylaxis. CONCLUSIONS Patients with breakthrough IA on anti-mold azole prophylaxis show a worse prognosis than those on other or no prophylaxis, possibly related to the emergence of azole resistance due to their widespread use as prophylaxis agents. On the other hand, anti-mold azole primary therapy is superior to AMB therapy in the treatment of IA.
Collapse
Affiliation(s)
| | - Anne-Marie Chaftari
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.D.); (A.H.); (Y.J.); (J.S.); (R.S.); (P.L.); (P.C.); (R.H.); (I.R.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Meijer EFJ, Marek A, Ramage G, Chowdhary A, Bagrade L, Voss A, Bal AM. A practical approach to investigating nosocomial acquisition of Aspergillus. Med Mycol 2025; 63:myaf007. [PMID: 39875195 DOI: 10.1093/mmy/myaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025] Open
Abstract
Invasive mould disease (IMD) has a high mortality in immunosuppressed patients. Invasive aspergillosis (IA) is the most common IMD. A guideline for preventing IA has been published jointly by the Centers for Disease Control and Prevention, the Infectious Disease Society of America, and the American Society of Blood and Marrow Transplantation. Use of high-efficiency particulate air filters, adequate air exchange rates, sealing of patient rooms, and preventing exposure to moulds by nursing patients in areas away from construction sites are recommended by the guideline. However, there is limited information in relation to the actions to be undertaken by infection prevention and control teams in the event of one or more cases of nosocomial aspergillosis. In this review, we describe a systematic approach to aspergillosis by defining possible and probable nosocomial acquisition based on the number of days since hospital admission. We advocate an incremental response to the investigation of nosocomial aspergillosis in patients in protective isolation taking into account the number of cases and the likelihood of nosocomial origin. For single cases of nosocomial IA, we suggest that infection control investigations should focus on case surveillance and walk-through inspection escalating in a stepwise manner to enhanced case surveillance, verification of environmental controls, environmental monitoring, genotyping of clinical and environmental isolates, and review of antifungal prophylaxis for multiple cases and outbreaks. Where applicable, the construction site should be inspected with the aim to reduce the dispersal of conidia. Surveillance systems need to be strengthened to better understand the epidemiology of IA.
Collapse
Affiliation(s)
- Eelco F J Meijer
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Medical Microbiology and Immunology, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
| | - Aleksandra Marek
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
- Department of Infection Prevention and Control, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Gordon Ramage
- Safeguarding Health through Infection Prevention (SHIP) Research Group, Research Centre for Health, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Anuradha Chowdhary
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Linda Bagrade
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
- Department of Infection Prevention and Control, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Andreas Voss
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Abhijit M Bal
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
- Department of Infection Prevention and Control, NHS Greater Glasgow and Clyde, Glasgow, UK
- Department of Microbiology, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
6
|
Sanseverino I, Scaccabarozzi D, Sanz MC, Teixeira M, Sabino R, Prigitano A, Porcel-Rodríguez E, Marinov D, Gómez L, Lahm A, Romanò L, Lettieri T. Activity of Azole and Non-Azole Substances Against Aspergillus fumigatus in Clinical and Environmental Samples to Address Antimicrobial Resistance. Int J Mol Sci 2025; 26:1033. [PMID: 39940801 PMCID: PMC11816432 DOI: 10.3390/ijms26031033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Aspergillus fumigatus is a common fungus which has gained attention due to its resistance to azole compounds, substances used in both medical and agricultural settings. One of the genetic alterations responsible for this resistance is the mutation TR34/L98H in the cyp51A gene. The aim of this study was to understand the impact of azoles and non-azoles on Aspergillus fumigatus. By examining clinical samples, soil samples, and compost material, this research aims to provide insights into the susceptibility of these strains to antifungal substances. To deepen our understanding of the factors potentially involved in antifungal resistance, we combined in vitro studies of sixteen compounds against Aspergillus fumigatus with results from the sequencing of the cyp51 gene. We observed that compounds generally displayed a similar pattern activity against wild-type Aspergillus fumigatus. Non-azoles, except Pyrisoxazole and Amisulbrom, did not show any activity against Aspergillus fumigatus, while azole compounds displayed differential activity against the fungus, except for Tetraconazole. For the mutant strains, a generally similar activity was observed in both clinical and environmental samples, likely due to the same mutation in all the isolates. The implications of these findings may be relevant for better understanding the relationship between Aspergillus fumigatus and its ability to develop resistance to antifungal substances.
Collapse
Affiliation(s)
- Isabella Sanseverino
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Diletta Scaccabarozzi
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Marcos Cuesta Sanz
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Miguel Teixeira
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Raquel Sabino
- Faculdade de Farmácia, University of Lisbon, 1649-003 Lisbon, Portugal;
- Instituto de Saúde Ambiental, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Laboratório Associado TERRA, Laboratório para o Uso Sustentável da Terra e dos Serviços dos Ecossistemas, Instituto Superior de Agronomia, 1349-017 Lisbon, Portugal
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (A.P.); (L.R.)
| | - Elena Porcel-Rodríguez
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Dimitar Marinov
- Advanced and Reliable Information Systems (ARHS) Developments S.A., 4370 Belvaux, Luxembourg;
| | - Livia Gómez
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Armin Lahm
- Bioinformatics Project Support, Piazza Santa Maria Liberatrice 18, 00153 Roma, Italy;
| | - Luisa Romanò
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (A.P.); (L.R.)
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| |
Collapse
|
7
|
Tashiro M, Nakano Y, Shirahige T, Kakiuchi S, Fujita A, Tanaka T, Takazono T, Izumikawa K. Comprehensive Review of Environmental Surveillance for Azole-Resistant Aspergillus fumigatus: A Practical Roadmap for Hospital Clinicians and Infection Control Teams. J Fungi (Basel) 2025; 11:96. [PMID: 39997390 PMCID: PMC11856238 DOI: 10.3390/jof11020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
As azole-resistant Aspergillus fumigatus emerges globally, healthcare facilities face mounting challenges in managing invasive aspergillosis. This review synthesizes worldwide azole resistance data to reveal profound regional variability, demonstrating that findings from other regions cannot be directly extrapolated to local settings. Consequently, hospital-level environmental surveillance is crucial for tailoring interventions to local epidemiology and detecting resistant strains in real-time. We outline practical approaches-encompassing sampling site prioritization, diagnostic workflows (culture-based and molecular), and PDCA-driven continuous improvement-so that even resource-limited facilities can manage resistant isolates more effectively. By linking real-time surveillance findings with clinical decisions, hospitals can tailor antifungal stewardship programs and swiftly adjust prophylaxis or treatment regimens. Our approach aims to enable accurate, ongoing evaluations of emerging resistance patterns, ensuring that institutions maintain efficient and adaptive programs. Ultimately, we advocate for sustained, collaborative efforts worldwide, where facilities adapt protocols to local conditions, share data through international networks, and contribute to a global knowledge base on resistance mechanisms. Through consistent application of these recommendations, healthcare systems can better preserve azole efficacy, safeguard immunocompromised populations, and refine infection control practices in the face of evolving challenges.
Collapse
Affiliation(s)
- Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Yuichiro Nakano
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
| | - Tomoyuki Shirahige
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
| | - Satoshi Kakiuchi
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Ayumi Fujita
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Takeshi Tanaka
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| |
Collapse
|
8
|
Zubovskaia A, Vazquez JA. Invasive Aspergillosis in the Intensive Care Unit. J Fungi (Basel) 2025; 11:70. [PMID: 39852489 PMCID: PMC11766804 DOI: 10.3390/jof11010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Invasive aspergillosis (IA) is a fungal infection, which has traditionally been associated with neutropenia and immunosuppressive therapies. Our understanding of invasive aspergillosis has been evolving and, in the past few decades, IA among ICU patients has been recognized as a common infection and has become more widely recognized. The diagnosis and management of invasive aspergillosis in the ICU is particularly challenging, due to the unstable clinical condition of the patients, lack of diagnostic markers, increased risk of further clinical deterioration, multiple comorbidities, and a need for early assessment and treatment. In this article, we will discuss the challenges and pitfalls of the diagnosis and management of invasive aspergillosis in an ICU setting, along with a review of the current literature that is pertinent and specific to this population.
Collapse
Affiliation(s)
| | - Jose A. Vazquez
- Division of Infectious Diseases, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
9
|
Giannella M, Lanternier F, Dellière S, Groll AH, Mueller NJ, Alastruey-Izquierdo A, Slavin MA. Invasive fungal disease in the immunocompromised host: changing epidemiology, new antifungal therapies, and management challenges. Clin Microbiol Infect 2025; 31:29-36. [PMID: 39142631 DOI: 10.1016/j.cmi.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Invasive fungal disease (IFD) causes morbidity and mortality in immunocompromised hosts (ICHs). Based on increasing recognition of the impact of IFD on human disease, a recent WHO priority list identified key areas of need. OBJECTIVES This review examines changes in the epidemiology of IFD, in particular the emergence of antifungal-resistant pathogens and the current availability of rapid diagnostic tests and antifungal treatment options. SOURCES Literature between 2000 and January 2024 regarding fungal epidemiology, diagnostic tests, antifungal resistance, emerging fungal pathogens, and novel antifungal agents in both adult and paediatric ICH were reviewed. CONTENT We describe the changing epidemiology and continued burden and mortality of IFD in ICH. Furthermore, we discuss the emergence of antifungal-resistant organisms driven by new immunosuppressed populations, climate change, and antifungal exposure in the individual and environment. We highlight novel antifungal agents and how they will address current unmet needs. IMPLICATIONS The changing epidemiology and increased population at risk for IFD, lack of recognition or quantification of risks for IFD with new therapies, current gaps in the availability of rapid diagnostic tests, and the imminent availability of novel antifungals with distinct spectra of activity argue for improved availability of and access to rapid diagnostics, antifungal stewardship programmes, and global access to antifungal agents.
Collapse
Affiliation(s)
- Maddalena Giannella
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Italy; European Society of Clinical Microbiology and Infectious Diseases Study Group for Infections in Compromised Hosts (ESCICH/ESCMID), Basel, Switzerland
| | - Fanny Lanternier
- Fungal Infection Study Group, European Society of Clinical Microbiology and Infectious Diseases (EFISG/ESCMID), Basel, Switzerland; Infectious Diseases Department, Necker-Enfants Malades Hospital, Paris Cité University, AP-HP, Paris, France; Mycology Department, Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Paris, France
| | - Sarah Dellière
- Fungal Infection Study Group, European Society of Clinical Microbiology and Infectious Diseases (EFISG/ESCMID), Basel, Switzerland; Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Saint-Louis, Paris, France; Institut Pasteur, Université Paris Cité, Immunobiology of Aspergillus, Paris, France
| | - Andreas H Groll
- Fungal Infection Study Group, European Society of Clinical Microbiology and Infectious Diseases (EFISG/ESCMID), Basel, Switzerland; Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Nicolas J Mueller
- European Society of Clinical Microbiology and Infectious Diseases Study Group for Infections in Compromised Hosts (ESCICH/ESCMID), Basel, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Ana Alastruey-Izquierdo
- Fungal Infection Study Group, European Society of Clinical Microbiology and Infectious Diseases (EFISG/ESCMID), Basel, Switzerland; Mycology Reference Laboratory, Spanish National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Monica A Slavin
- European Society of Clinical Microbiology and Infectious Diseases Study Group for Infections in Compromised Hosts (ESCICH/ESCMID), Basel, Switzerland; Department of Oncology, National Centre for Infections in Cancer, Peter MacCallum Cancer Centre and Sir Peter MacCallum, University of Melbourne, Melbourne, Victoria, Australia; Department of Infectious Diseases, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Debergh H, Haesendonck R, Botteldoorn N, Martel A, Pasmans F, Saegerman C, Packeu A. Pan-azole resistance in clinical Aspergillus fumigatus isolates carrying TR34/L98H from birds and mammals in Belgium. One Health 2024; 19:100907. [PMID: 39430230 PMCID: PMC11490837 DOI: 10.1016/j.onehlt.2024.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Aspergillosis causes significant health risks to both birds and mammals. The outcome of these infections is often poor due to delayed diagnosis and treatment failure. We investigated 152 cases of aspergillosis from birds and mammals in Belgium. Most samples originated from the taxonomic orders Artiodactyla (40.1 %) and Columbiformes (19.7 %). Five isolates (3.3 %) showed phenotypical resistance against at least one medical azole. Three of these isolates were pan-azole resistant bearing the TR34/L98H mutation. The predominance of this resistance mutation supports an environmental route for exposure and resistance selection, highlighting the importance of the One Health concept.
Collapse
Affiliation(s)
- Hanne Debergh
- Scientific Department Mycology and Aerobiology, Sciensano, 1050 Brussels, Belgium
- Fundamental and Applied Research for Animal and Health (FARAH) Center, ULiège, 4000 Liège, Belgium
| | | | | | - An Martel
- University of Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, 9820 Merelbeke, Belgium
| | - Frank Pasmans
- University of Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, 9820 Merelbeke, Belgium
| | - Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, ULiège, 4000 Liège, Belgium
| | - Ann Packeu
- Scientific Department Mycology and Aerobiology, Sciensano, 1050 Brussels, Belgium
- BCCM/IHEM, Mycology and Aerobiology, Sciensano, 1050 Brussels, Belgium
| |
Collapse
|
11
|
Peppe S, Farrokhi M, Waite EA, Muhi M, Matthaiou EI. Nanoparticle-Mediated Delivery of Deferasirox: A Promising Strategy Against Invasive Aspergillosis. Bioengineering (Basel) 2024; 11:1115. [PMID: 39593775 PMCID: PMC11591955 DOI: 10.3390/bioengineering11111115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) is a deadly fungal lung infection. Antifungal resistance and treatment side effects are major concerns. Iron chelators are vital for IA management, but systemic use can cause side effects. We developed nanoparticles (NPs) to selectively deliver the iron chelator deferasirox (DFX) for IA treatment. METHODS DFX was encapsulated in poly(lactic-co-glycolic acid) (PLGA) NPs using a single emulsion solvent evaporation method. The NPs were characterized by light scattering and electron microscopy. DFX loading efficiency and release were assessed spectrophotometrically. Toxicity was evaluated using SRB, luciferase, and XTT assays. Therapeutic efficacy was tested in an IA mouse model, assessing fungal burden by qPCR and biodistribution via imaging. RESULTS DFX-NPs had a size of ~50 nm and a charge of ~-30 mV, with a loading efficiency of ~80%. Release kinetics showed DFX release via diffusion and bioerosion. The EC50 of DFX-NPs was significantly lower (p < 0.001) than the free drug, and they were significantly less toxic (p < 0.0001) in mammalian cell cultures. In vivo, NP treatment significantly reduced Af burden (p < 0.05). CONCLUSION The designed DFX-NPs effectively target and kill Af with minimal toxicity to mammalian cells. The significant in vivo therapeutic efficacy suggests these NPs could be a safe and effective treatment for IA.
Collapse
Affiliation(s)
- Sydney Peppe
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.P.); (M.F.); (M.M.)
- Albany Medical College, Washington and Lee University, Lexington, VA 24450, USA
| | - Moloud Farrokhi
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.P.); (M.F.); (M.M.)
| | - Evan A. Waite
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.P.); (M.F.); (M.M.)
- Albany Medical College, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Mustafa Muhi
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.P.); (M.F.); (M.M.)
| | - Efthymia Iliana Matthaiou
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.P.); (M.F.); (M.M.)
| |
Collapse
|
12
|
Pfaller MA, Carvalhaes CG, Rhomberg PR, Klauer A, Castanheira M. Evaluation of the Activity of Triazoles Against Non- fumigatus Aspergillus and Cryptic Aspergillus Species Causing Invasive Infections Tested in the SENTRY Program. Open Forum Infect Dis 2024; 11:ofae532. [PMID: 39494454 PMCID: PMC11528510 DOI: 10.1093/ofid/ofae532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 11/05/2024] Open
Abstract
The activity of isavuconazole and other triazoles against non-fumigatus (non-AFM) Aspergillus causing invasive aspergillosis was evaluated. A total of 390 non-AFM isolates were collected (1/patient) in 2017-2021 from 41 hospitals. Isolates were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry and/or internal spacer region/β-tubulin sequencing and tested by Clinical and Laboratory Standards Institute (CLSI) broth microdilution. CLSI epidemiological cutoff values were applied, where available. Isavuconazole showed activity against Aspergillus sections Flavi (n = 122; minimum inhibitory concentration [MIC]50/90, 0.5/1 mg/L), Terrei (n = 57; MIC50/90, 0.5/0.5 mg/L), Nidulantes (n = 34; MIC50/90, 0.12/0.25 mg/L), Versicolores (n = 7; MIC50, 1 mg/L), and Circumdati (n = 2; MIC range, 0.12-2 mg/L). Similar activity was displayed by other triazoles against those Aspergillus sections. Most of the isolates from Aspergillus sections Fumigati (n = 9), Nigri (n = 146), and Usti (n = 12) exhibited elevated MIC values to isavuconazole (MIC50/90, 2/-, 2/4, and 2/8 mg/L), voriconazole (MIC50/90, 2/-, 1/2, and 4/8 mg/L), itraconazole (MIC50/90, 2/-, 2/4, and 8/>8 mg/L), and posaconazole (MIC50/90, 0.5/-, 0.5/1, and >8/>8 mg/L), respectively. Isavuconazole was active (MIC values, ≤1 mg/L) against Aspergillus parasiticus, Aspergillus tamarii, Aspergillus nomius, Aspergillus nidulans, Aspergillus unguis, Aspergillus terreus, Aspergillus alabamensis, and Aspergillus hortai, while isavuconazole MIC values between 2 and 8 mg/L were observed against cryptic isolates from Aspergillus section Fumigati. Isavuconazole inhibited 96.1% of Aspergillus niger and 80.0% of Aspergillus tubingensis at ≤4 mg/L, the CLSI wild-type cutoff value for A niger. Voriconazole, itraconazole, and posaconazole showed similar activity to isavuconazole against most cryptic species. Isavuconazole exhibited potent in vitro activity against non-AFM; however, the activity of triazoles varies among and within cryptic species.
Collapse
Affiliation(s)
- Michael A Pfaller
- JMI Laboratories, North Liberty, Iowa, USA
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
13
|
Kimura Y, Sasabuchi Y, Jo T, Hashimoto Y, Kumazawa R, Ishimaru M, Matsui H, Yokoyama A, Tanaka G, Yasunaga H. Epidemiology of chronic pulmonary aspergillosis: A nationwide descriptive study. Respir Investig 2024; 62:1102-1108. [PMID: 39357113 DOI: 10.1016/j.resinv.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Chronic pulmonary aspergillosis (CPA) has recently gained attention owing to its substantial health burden. However, the precise epidemiology and prognosis of the disease are still unclear due to the lack of a nationwide descriptive analysis. This study aimed to elucidate the epidemiology of patients with CPA and to investigate their prognosis. METHODS Using a national administrative database covering >99% of the population in Japan, we calculated the nationwide incidence and prevalence of CPA from 2016 to 2022. Additionally, we clarified the survival rate of patients diagnosed with CPA and identified independent prognostic factors using multivariate Cox proportional hazard analysis. RESULTS During the study period, while the prevalence of CPA remained stable at 9.0-9.5 per 100,000 persons, its incidence declined to 2.1 from 3.5 per 100,000 person-years. The 1-, 3-, and 5-year survival rates were 65%, 48%, and 41%, respectively. During the year of CPA onset, approximately 50% of patients received oral corticosteroids (OCS) at least once, while about 30% underwent frequent OCS treatment (≥4 times per year) within the same timeframe. Increased mortality was independently associated with older age (>65 years) (hazard ratio [HR], 2.65; 95% confidence interval (CI), 2.54-2.77), males (1.24; 1.20-1.29), a history of chronic obstructive pulmonary disease (1.05; 1.02-1.09), lung cancer (1.12; 1.06-1.18); and ILD (1.19; 1.14-1.24); and frequent OCS use (1.13; 1.09-1.17). Conversely, decreased mortality was associated with a history of tuberculosis (HR, 0.81; 95% CI, 0.76-0.86), non-tuberculous mycobacteria (0.91; 0.86-0.96), and other chronic pulmonary diseases (0.89; 0.85-0.92). CONCLUSIONS The incidence of CPA decreased over the past decade, although the prevalence was stable and much higher than that in European countries. Moreover, the patients' prognosis was poor. Physicians should be vigilant about CPA onset in patients with specific high-risk underlying pulmonary conditions.
Collapse
Affiliation(s)
- Yuya Kimura
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Clinical Research Center, National Hospital Organization Tokyo Hospital, 3-1-1 Takeoka, Kiyose-shi, Tokyo, 204-8585, Japan.
| | - Yusuke Sasabuchi
- Department of Real-world Evidence, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taisuke Jo
- Department of Health Services Research, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yohei Hashimoto
- Save Sight Institute, The University of Sydney, South Block, Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Ryosuke Kumazawa
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Miho Ishimaru
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Institute of Education, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroki Matsui
- Department of Health Services Research, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Yokoyama
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Goh Tanaka
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
14
|
Lu H, Mao Y, Zeng Y, Li P, Yan P, Shi Q, Liu L. The Effect of Rifapentine and Rifampicin on Serum Voriconazole Levels Persist for 5 Days and 7 Days or More After Discontinuation in Tuberculosis Patients with Chronic Pulmonary Aspergillosis. Infect Drug Resist 2024; 17:2853-2862. [PMID: 39005851 PMCID: PMC11244130 DOI: 10.2147/idr.s461785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Voriconazole, a first-line therapeutic agent for chronic pulmonary aspergillosis, is metabolized by the cytochrome 450 enzymes, specifically CYP2C19 and CYP3A4. Rifampicin and rifapentine act as inducers of the cytochrome P450 enzyme. The current study explored the potential drug interactions arising from the co-administration of voriconazole with either rifampicin or rifapentine, as well as the duration of this effect on serum voriconazole levels after discontinuation of rifampicin or rifapentine. Patients and Methods A retrospective study was conducted in tuberculosis patients with chronic pulmonary aspergillosis. These patients underwent a combination therapy involving voriconazole and rifampicin or rifapentine, or they were treated with voriconazole after discontinuation of rifampicin or rifapentine. The serum concentrations of voriconazole at steady-state were monitored. Data on demographic characteristics and the serum voriconazole levels were used for statistical analyses. Results A total of 124 serum voriconazole concentrations from 109 patients were included in the study. The average serum concentration of voriconazole fell below the effective therapeutic range in patients treated with both voriconazole and rifampicin or rifapentine. Notably the co-administration of rifapentine led to a substantial (>70%) decrease in serum voriconazole levels in two patients. Moreover, this interfering effect persisted for at least 7 days following rifampicin discontinuation, while it endured for 5 days or more after discontinuation of rifapentine. Conclusion Concomitant use of voriconazole and rifampicin or rifapentine should be avoided, and it is not recommended to initiate voriconazole therapy within 5 or 7 days after discontinuation of rifapentine or rifampicin. Therapeutic drug monitoring not only provides a basis for the adjustment of clinical dose, but also serves as a valuable tool for identifying drug interactions.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Yanmei Mao
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Pengyu Li
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Pan Yan
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Qunzhi Shi
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Lin Liu
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| |
Collapse
|
15
|
van Dijk MAM, Buil JB, Tehupeiory-Kooreman M, Broekhuizen MJ, Broens EM, Wagenaar JA, Verweij PE. Azole Resistance in Veterinary Clinical Aspergillus fumigatus Isolates in the Netherlands. Mycopathologia 2024; 189:50. [PMID: 38864903 PMCID: PMC11169034 DOI: 10.1007/s11046-024-00850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 06/13/2024]
Abstract
Aspergillus fumigatus is a saprophytic fungal pathogen that causes opportunistic infections in animals and humans. Azole resistance has been reported globally in human A. fumigatus isolates, but the prevalence of resistance in isolates from animals is largely unknown. A retrospective resistance surveillance study was performed using a collection of clinical A. fumigatus isolates from various animal species collected between 2015 and 2020. Agar-based azole resistance screening of all isolates was followed by in vitro antifungal susceptibility testing and cyp51A gene sequencing of the azole-resistant isolates. Over the 5 year period 16 (11.3%) of 142 A. fumigatus culture-positive animals harbored an azole-resistant isolate. Resistant isolates were found in birds (15%; 2/13), cats (21%; 6/28), dogs (8%; 6/75) and free-ranging harbor porpoise (33%; 2/6). Azole-resistance was cyp51A mediated in all isolates: 81.3% (T-67G/)TR34/L98H, 12.5% TR46/Y121F/T289A. In one azole-resistant A. fumigatus isolate a combination of C(-70)T/F46Y/C(intron7)T/C(intron66)T/M172V/E427K single-nucleotide polymorphisms in the cyp51A gene was found. Of the animals with an azole-resistant isolate and known azole exposure status 71.4% (10/14) were azole naive. Azole resistance in A. fumigatus isolates from animals in the Netherlands is present and predominantly cyp51A TR-mediated, supporting an environmental route of resistance selection. Our data supports the need to include veterinary isolates in resistance surveillance programs. Veterinarians should consider azole resistance as a reason for therapy failure when treating aspergillosis and consider resistance testing of relevant isolates.
Collapse
Affiliation(s)
- Marloes A M van Dijk
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands.
| | - Jochem B Buil
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Marlou Tehupeiory-Kooreman
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Marian J Broekhuizen
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Els M Broens
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
- Wageningen Bioveterinary Research, 8221 RA, Lelystad, The Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Ghorbel D, Amouri I, Khemekhem N, Neji S, Trabelsi H, Elloumi M, Sellami H, Makni F, Ayadi A, Hadrich I. Investigation of Azole Resistance Involving cyp51A and cyp51B Genes in Clinical Aspergillus flavus Isolates. Pol J Microbiol 2024; 73:131-142. [PMID: 38700908 PMCID: PMC11192525 DOI: 10.33073/pjm-2024-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/03/2023] [Indexed: 06/22/2024] Open
Abstract
This study aimed to investigate azole resistance mechanisms in Aspergillus flavus, which involve cyp51A and cyp51B genes. Real-time Reverse Transcriptase qPCR method was applied to determine the overexpression of cyp51A and cyp51B genes for 34 A. flavus isolates. PCR sequencing of these two genes was used to detect the presence of gene mutations. Susceptibility test found sensitivity to voriconazole (VOR) in all strains. 14.7% and 8.8% of isolates were resistant to itraconazole (IT) and posaconazole (POS), respectively, with a cross-resistance in 5.8%. For the double resistant isolates (IT/POS), the expression of cyp51A was up to 17-fold higher. PCR sequencing showed the presence of 2 mutations in cyp51A: a synonymous point mutation (P61P) in eight isolates, which did not affect the structure of CYP51A protein, and another non synonymous mutation (G206L) for only the TN-33 strain (cross IT/POS resistance) causing an amino acid change in the protein sequence. However, we noted in cyp51B the presence of the only non-synonymous mutation (L177G) causing a change in amino acids in the protein sequence for the TN-31 strain, which exhibits IT/POS cross-resistance. A short single intron of 67 bp was identified in the cyp51A gene, whereas three short introns of 54, 53, and 160 bp were identified in the cyp51B gene. According to the models provided by PatchDock software, the presence of non-synonymous mutations did not affect the interaction of CYP51A and CYP51B proteins with antifungals. In our study, the overexpression of the cyp51A and cyp51B genes is the primary mechanism responsible for resistance in A. flavus collection. Nevertheless, other resistance mechanisms can be involved.
Collapse
Affiliation(s)
- Dhoha Ghorbel
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Imen Amouri
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Nahed Khemekhem
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Sourour Neji
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Houaida Trabelsi
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Moez Elloumi
- Haematology Department, UH Hedi Chaker, Sfax, Tunisia
| | - Hayet Sellami
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Fattouma Makni
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ali Ayadi
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ines Hadrich
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
- Faculty of Science, University of Gabes, Gabes, Tunisia
| |
Collapse
|
17
|
Yerbanga IW, Lagrou K, Merckx R, Nakanabo Diallo S, Gangneux JP, Delabarre A, Denis O, Rodriguez-Villalobos H, Montesinos I, Bamba S. First detection of triazole-resistant aspergillus fumigatus harbouring the TR34/L98H Cyp51A mutation in Burkina Faso. Mycoses 2024; 67:e13732. [PMID: 38712846 DOI: 10.1111/myc.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Triazole-resistant Aspergillus fumigatus (TRAF) isolates are a growing public health problem with worldwide distribution. Epidemiological data on TRAF is limited in Africa, particularly in West Africa. OBJECTIVES This study aimed to screen for the environmental presence of TRAF isolates in the indoor air of two hospitals in Burkina Faso. MATERIALS AND METHODS Air samples were collected in wards housing patients at risk for invasive aspergillosis, namely infectious diseases ward, internal medicine ward, nephrology ward, pulmonology ward, medical emergency ward and paediatric ward. Sabouraud Dextrose Agar supplemented with triazoles was used to screen the suspected TRAF isolates and EUCAST method to confirm the resistance of suspected isolates. Sequencing of cyp51A gene was used to identify the resistance mechanism of confirmed TRAF isolates. RESULTS Of the 198 samples collected and analysed, 67 showed growth of A. fumigatus isolates. The prevalence of TRAF isolates was 3.23% (4/124). One TRAF isolate exhibited a pan-triazole resistance. Sequencing of cyp51A gene identified the TR34/L98H mutation for this pan-triazole resistant isolate. This study showed for the first time the circulation of the pan-azole resistant isolate harbouring the TR34/L98H mutation in Burkina Faso. CONCLUSIONS These findings emphasise the need to map these TRAF isolates in all parts of Burkina Faso and to establish local and national continuous surveillance of environmental and clinical TRAF isolates in this country.
Collapse
Affiliation(s)
- Isidore W Yerbanga
- Centre Hospitalier Universitaire Régional de Ouahigouya, Ouahigouya, Burkina Faso
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, Excellence Center for Medical Mycology (ECMM), University Hospitals Leuven, Leuven, Belgium
| | - Rita Merckx
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, Excellence Center for Medical Mycology (ECMM), University Hospitals Leuven, Leuven, Belgium
| | - Seydou Nakanabo Diallo
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Centre Muraz/Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail), European ECMM Excellence Center in Medical Mycology, Rennes, France
| | - Aymeric Delabarre
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail), European ECMM Excellence Center in Medical Mycology, Rennes, France
| | - Olivier Denis
- Department of Microbiology, CHU Namur site-Godinne, Université Catholique de Louvain, Brussels, Belgium
- Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | - Hector Rodriguez-Villalobos
- Department of Microbiology, Cliniques Universitaires Saint-Luc-Université Catholique de Louvain, Brussels, Belgium
| | - Isabel Montesinos
- Department of Microbiology, CHU Namur site-Godinne, Université Catholique de Louvain, Brussels, Belgium
| | - Sanata Bamba
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Centre Hospitalier Universitaire Sourô Sanou, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
18
|
Chen S, Zhu G, Lin H, Guo J, Deng S, Wu W, Goldman GH, Lu L, Zhang Y. Variability in competitive fitness among environmental and clinical azole-resistant Aspergillus fumigatus isolates. mBio 2024; 15:e0026324. [PMID: 38407058 PMCID: PMC11005360 DOI: 10.1128/mbio.00263-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Azoles are the primary antifungal drugs used to treat infections caused by Aspergillus fumigatus. However, the emergence of azole resistance in A. fumigatus has become a global health concern despite the low proportion of resistant isolates in natural populations. In bacteria, antibiotic resistance incurs a fitness cost that renders strains less competitive in the absence of antibiotics. Consequently, fitness cost is a key determinant of the spread of resistant mutations. However, the cost of azole resistance and its underlying causes in A. fumigatus remain poorly understood. In this observation, we revealed that the 10 out of 15 screened azole-resistant isolates, which possessed the most common azole-targeted cyp51A mutations, particularly the presence of tandem repeats in the promoter region, exhibit fitness cost when competing with the susceptible isolates in azole-free environments. These results suggest that fitness cost may significantly influence the dynamics of azole resistance, which ultimately contributes to the low prevalence of azole-resistant A. fumigatus isolates in the environment and clinic. By constructing in situ cyp51A mutations in a parental azole-susceptible strain and reintroducing the wild-type cyp51A gene into the azole-resistant strains, we demonstrated that fitness cost is not directly dependent on cyp51A mutations but is instead associated with the evolution of variable mutations related to conidial germination or other unknown development-related processes. Importantly, our observations unexpectedly revealed that some azole-resistant isolates showed no detectable fitness cost, and some even exhibited significantly increased competitive fitness in azole-free environments, highlighting the potential risk associated with the prevalence of these isolates. IMPORTANCE Azole resistance in the human fungal pathogen Aspergillus fumigatus presents a global public health challenge. Understanding the epidemic trends and evolutionary patterns of azole resistance is critical to prevent and control the spread of azole-resistant isolates. The primary cause is the mutation of the drug target 14α-sterol-demethylase Cyp51A, yet its impact on competitive ability remains uncertain. Our competition assays revealed a diverse range of fitness outcomes for environmental and clinical cyp51A-mutated isolates. We have shown that this fitness cost is not reliant on cyp51A mutations but might be linked to unknown mutations induced by stress conditions. Among these isolates, the majority displayed fitness costs, while a few displayed enhanced competitive ability, which may have a potential risk of spread and the need to closely monitor these isolates. Our observation reveals the variation in fitness costs among azole-resistant isolates of A. fumigatus, highlighting the significant role of fitness cost in the spread of resistant strains.
Collapse
Affiliation(s)
- Shu Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guoxing Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huiping Lin
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuwen Deng
- The People’s Hospital of SND (Suzhou New District), Suzhou, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
19
|
Koga S, Takazono T, Namie H, Okuno D, Ito Y, Nakada N, Hirayama T, Takeda K, Ide S, Iwanaga N, Tashiro M, Sakamoto N, Watanabe A, Izumikawa K, Yanagihara K, Tanaka Y, Mukae H. Human Vγ9Vδ2 T cells exhibit antifungal activity against Aspergillus fumigatus and other filamentous fungi. Microbiol Spectr 2024; 12:e0361423. [PMID: 38426765 PMCID: PMC10986472 DOI: 10.1128/spectrum.03614-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/11/2024] [Indexed: 03/02/2024] Open
Abstract
Invasive aspergillosis (IA) and mucormycosis are life-threatening diseases, especially among immunocompromised patients. Drug-resistant Aspergillus fumigatus strains have been isolated worldwide, which can pose a serious clinical problem. As IA mainly occurs in patients with compromised immune systems, the ideal therapeutic approach should aim to bolster the immune system. In this study, we focused on Vγ9Vδ2 T cells that exhibit immune effector functions and examined the possibility of harnessing this unconventional T cell subset as a novel therapeutic modality for IA. A potent antifungal effect was observed when A. fumigatus (Af293) hyphae were challenged by Vγ9Vδ2 T cells derived from peripheral blood. In addition, Vγ9Vδ2 T cells exhibited antifungal activity against hyphae of all Aspergillus spp., Cunninghamella bertholletiae, and Rhizopus microsporus but not against their conidia. Furthermore, Vγ9Vδ2 T cells also exhibited antifungal activity against azole-resistant A. fumigatus, indicating that Vγ9Vδ2 T cells could be used for treating drug-resistant A. fumigatus. The antifungal activity of Vγ9Vδ2 T cells depended on cell-to-cell contact with A. fumigatus hyphae, and degranulation characterized by CD107a mobilization seems essential for this activity against A. fumigatus. Vγ9Vδ2 T cells could be developed as a novel modality for treating IA or mucormycosis. IMPORTANCE Invasive aspergillosis (IA) and mucormycosis are often resistant to treatment with conventional antifungal agents and have a high mortality rate. Additionally, effective antifungal treatment is hindered by drug toxicity, given that both fungal and human cells are eukaryotic, and antifungal agents are also likely to act on human cells, resulting in adverse effects. Therefore, the development of novel therapeutic agents specifically targeting fungi is challenging. This study demonstrated the antifungal activity of Vγ9Vδ2 T cells against various Aspergillus spp. and several Mucorales in vitro and discussed the mechanism underlying their antifungal activity. We indicate that adoptive immunotherapy using Vγ9Vδ2 T cells may offer a new therapeutic approach to IA.
Collapse
Affiliation(s)
- Satoru Koga
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hodaka Namie
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daisuke Okuno
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yuya Ito
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Nana Nakada
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Health Center, Nagasaki University, Nagasaki, Japan
| | - Tatsuro Hirayama
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Shotaro Ide
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Infectious Diseases Experts Training Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
20
|
Lucio J, Alcazar-Fuoli L, Gil H, Cano-Pascual S, Hernandez-Egido S, Cuetara MS, Mellado E. Distribution of Aspergillus species and prevalence of azole resistance in clinical and environmental samples from a Spanish hospital during a three-year study period. Mycoses 2024; 67:e13719. [PMID: 38551063 DOI: 10.1111/myc.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Surveillance studies are crucial for updating trends in Aspergillus species and antifungal susceptibility information. OBJECTIVES Determine the Aspergillus species distribution and azole resistance prevalence during this 3-year prospective surveillance study in a Spanish hospital. MATERIALS AND METHODS Three hundred thirty-five Aspergillus spp. clinical and environmental isolates were collected during a 3-year study. All isolates were screened for azole resistance using an agar-based screening method and resistance was confirmed by EUCAST antifungal susceptibility testing. The azole resistance mechanism was confirmed by sequencing the cyp51A gene and its promoter. All Aspergillus fumigatus strains were genotyped using TRESPERG analysis. RESULTS Aspergillus fumigatus was the predominant species recovered with a total of 174 strains (51.94%). The rest of Aspergillus spp. were less frequent: Aspergillus niger (14.93%), Aspergillus terreus (9.55%), Aspergillus flavus (8.36%), Aspergillus nidulans (5.37%) and Aspergillus lentulus (3.28%), among other Aspergillus species (6.57%). TRESPERG analysis showed 99 different genotypes, with 72.73% of the strains being represented as a single genotype. Some genotypes were common among clinical and environmental A. fumigatus azole-susceptible strains, even when isolated months apart. We describe the occurrence of two azole-resistant A. fumigatus strains, one clinical and another environmental, that were genotypically different and did not share genotypes with any of the azole-susceptible strains. CONCLUSIONS Aspergillus fumigatus strains showed a very diverse population although several genotypes were shared among clinical and environmental strains. The isolation of azole-resistant strains from both settings suggest that an efficient analysis of clinical and environmental sources must be done to detect azole resistance in A. fumigatus.
Collapse
Affiliation(s)
- Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| | - Horacio Gil
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Samuel Cano-Pascual
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Hernandez-Egido
- Microbiology Department, University Hospital Severo Ochoa, Leganés, Madrid, Spain
| | | | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Sen P, Vijay M, Kamboj H, Gupta L, Shankar J, Vijayaraghavan P. cyp51A mutations, protein modeling, and efflux pump gene expression reveals multifactorial complexity towards understanding Aspergillus section Nigri azole resistance mechanism. Sci Rep 2024; 14:6156. [PMID: 38486086 PMCID: PMC10940716 DOI: 10.1038/s41598-024-55237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Black Aspergillus species are the most common etiological agents of otomycosis, and pulmonary aspergillosis. However, limited data is available on their antifungal susceptibility profiles and associated resistance mechanisms. Here, we determined the azole susceptibility profiles of black Aspergillus species isolated from the Indian environment and explored the potential resistance mechanisms through cyp51A gene sequencing, protein homology modeling, and expression analysis of selected genes cyp51A, cyp51B, mdr1, and mfs based on their role in imparting resistance against antifungal drugs. In this study, we have isolated a total of 161 black aspergilli isolates from 174 agricultural soil samples. Isolates had variable resistance towards medical azoles; approximately 11.80%, 3.10%, and 1.24% of isolates were resistant to itraconazole (ITC), posaconazole (POS), and voriconazole (VRC), respectively. Further, cyp51A sequence analysis showed that non-synonymous mutations were present in 20 azole-resistant Aspergillus section Nigri and 10 susceptible isolates. However, Cyp51A homology modeling indicated insignificant protein structural variations because of these mutations. Most of the isolates showed the overexpression of mdr1, and mfs genes. Hence, the study concluded that azole-resistance in section Nigri cannot be attributed exclusively to the cyp51A gene mutation or its overexpression. However, overexpression of mdr1 and mfs genes may have a potential role in drug resistance.
Collapse
Affiliation(s)
- Pooja Sen
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Mukund Vijay
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Himanshu Kamboj
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Lovely Gupta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Pooja Vijayaraghavan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India.
| |
Collapse
|
22
|
Miyazawa K, Umeyama T, Takatsuka S, Muraosa Y, Hoshino Y, Yano S, Abe K, Miyazaki Y. Real-time monitoring of mycelial growth in liquid culture using hyphal dispersion mutant of Aspergillus fumigatus. Med Mycol 2024; 62:myae011. [PMID: 38429972 DOI: 10.1093/mmy/myae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/03/2024] Open
Abstract
Hyphal pellet formation by Aspergillus species in liquid cultures is one of the main obstacles to high-throughput anti-Aspergillus reagent screening. We previously constructed a hyphal dispersion mutant of Aspergillus fumigatus by disrupting the genes encoding the primary cell wall α-1,3-glucan synthase Ags1 and putative galactosaminogalactan synthase Gtb3 (Δags1Δgtb3). Mycelial growth of the mutant in liquid cultures monitored by optical density was reproducible, and the dose-response of hyphal growth to antifungal agents has been quantified by optical density. However, Δags1Δgtb3 still forms hyphal pellets in some rich growth media. Here, we constructed a disruptant lacking all three α-1,3-glucan synthases and galactosaminogalactan synthase (Δags1Δags2Δags3Δgtb3), and confirmed that its hyphae were dispersed in all the media tested. We established an automatic method to monitor hyphal growth of the mutant in a 24-well plate shaken with a real-time plate reader. Dose-dependent growth suppression and unique growth responses to antifungal agents (voriconazole, amphotericin B, and micafungin) were clearly observed. A 96-well plate was also found to be useful for the evaluation of mycelial growth by optical density. Our method is potentially applicable to high-throughput screening for anti-Aspergillus agents.
Collapse
Affiliation(s)
- Ken Miyazawa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Umeyama
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Takatsuka
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasunori Muraosa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasutaka Hoshino
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Yonezawa, Japan
| | - Keietsu Abe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
23
|
Pfaller MA, Carvalhaes CG, Rhomberg PR, Desphande LM, Castanheira M. Trends in the activity of mold-active azole agents against Aspergillus fumigatus clinical isolates with and without cyp51 alterations from Europe and North America (2017-2021). J Clin Microbiol 2024; 62:e0114123. [PMID: 38193696 PMCID: PMC10865804 DOI: 10.1128/jcm.01141-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024] Open
Abstract
Azole resistance in Aspergillus fumigatus (AFM) is increasing and often associated with cyp51 alterations. We evaluated the activity of isavuconazole and other mold-active azoles against 731 AFM isolates causing invasive aspergillosis collected in Europe (EU; n = 449) and North America (NA; n = 282). Isolates were submitted to CLSI susceptibility testing and epidemiological cutoff value (ECV) criteria. A posaconazole ECV of 0.5 mg/L was used as no CLSI ECV was determined. Azole non-wild-type (NWT) isolates were submitted for cyp51 sequencing by whole genome sequencing. Overall, isavuconazole activity (92.7%/94.0% WT in EU/NA) was comparable to other azoles (WT rate range, 90.9%-96.4%/91.8%-98.6%, respectively), regardless of the region. A total of 79 (10.8%) azole NWT isolates were detected, and similar rates of these isolates were noted in EU (10.7%) and NA (11.0%). Although most AFM were WT to azoles, increasing azole NWT rates were observed in NA (from 6.0% in 2017 to 29.3% in 2021). Azole NWT rates varied from 4.9% (2019) to 20.6% (2018) in EU without an observed trend. cyp51 alterations occurred in 56.3%/54.8% of azole NWT from EU/NA, respectively. The cyp51A TR34/L98H alteration was observed only in EU isolates (72.0% of EU isolates), while cyp51A I242V occurred only in NA isolates (58.3%). Isavuconazole remained active (MIC, ≤1 mg/L) against 18.5/47.1% of azole NWT AFM exhibiting cyp51 alterations in EU/NA, along with voriconazole (29.6/82.4%; MIC, ≤1 mg/L) and posaconazole (48.1/88.2%; MIC, ≤0.5 mg/L). Fourteen different cyp51 alterations were detected in 44 of 79 NWT isolates. The in vitro activity of the azoles varied in AFM that displayed cyp51 alterations. IMPORTANCE A few microbiology laboratories perform antifungal susceptibility testing locally for systemically active antifungal agents. The identification of emerging azole-resistant Aspergillus fumigatus is worrisome. As such, there is a critical role for antifungal surveillance in tracking emerging resistance among both common and uncommon opportunistic fungi. Differences in the regional prevalence and antifungal resistance of these fungi render local epidemiological knowledge essential for the care of patients with a suspected invasive fungal infection.
Collapse
Affiliation(s)
- M. A. Pfaller
- JMI Laboratories, North Liberty, Iowa, USA
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
24
|
Wang T, Pan M, Bao M, Bu Q, Yang R, Yang Y, Shao J, Wang C, Li N. Ethyl caffeate combined with fluconazole exhibits efficacy against azole-resistant oropharyngeal candidiasis via the EFGR/JNK/c-JUN signaling pathway. Med Mycol 2023; 61:myad114. [PMID: 37947257 DOI: 10.1093/mmy/myad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Ethyl caffeate (EC) is a phenylpropanoid compound derived from Elephantopus scaber. In our previous work, EC was investigated to have a strong synergistic antifungal effect against azole-resistant strains of Candida albicans when combined with fluconazole (FLU). However, the protective effect and mechanism of EC + FLU on oropharyngeal candidiasis (OPC) caused by drug-resistant strains of C. albicans have not been investigated. This study aimed to investigate the protective effect and mechanism of EC combined with FLU against C. albicans-resistant strains that lead to OPC. An OPC mouse model revealed that EC + FLU treatment reduced fungal load and massive hyphal invasion of tongue tissues, and ameliorated the integrity of the tongue mucosa. Periodic acid-Schiff staining results showed more structural integrity of the tongue tissues and reduced inflammatory cell infiltration after EC + FLU treatment. Phosphorylation of EGFR (epidermal growth factor receptor) and other proteins in the EFGR/JNK (c-Jun N-terminal kinase)/c-JUN (transcription factor Jun) signaling pathway was significantly downregulated by EC + FLU. EGFR and S100A9 mRNA expression were also reduced. The above results were verified in FaDu cells. ELISA results showed that the concentration of inflammatory factors in the cell supernatant was significantly reduced after EC combined with FLU treatment. Molecular docking revealed that EC exhibited high binding energy to EGFR. In conclusion, EC enhances the susceptibility of azole-resistant C. albicans to FLU, and the underlying mechanism is related to the inhibition of the EGFR/JNK/c-JUN signaling pathway. This result suggests that EC has potential to be developed as an antifungal sensitizer to treat OPC caused by azole-resistant C. albicans.
Collapse
Affiliation(s)
- Tianming Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meshan Road, Hefei 230032, China
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Min Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Mengyuan Bao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Qingru Bu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Ruotong Yang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Yue Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Jing Shao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Changzhong Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meshan Road, Hefei 230032, China
| |
Collapse
|
25
|
Tio SY, Chen SCA, Hamilton K, Heath CH, Pradhan A, Morris AJ, Korman TM, Morrissey O, Halliday CL, Kidd S, Spelman T, Brell N, McMullan B, Clark JE, Mitsakos K, Hardiman RP, Williams P, Campbell AJ, Beardsley J, Van Hal S, Yong MK, Worth LJ, Slavin MA. Invasive aspergillosis in adult patients in Australia and New Zealand: 2017-2020. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 40:100888. [PMID: 37701716 PMCID: PMC10494171 DOI: 10.1016/j.lanwpc.2023.100888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Background New and emerging risks for invasive aspergillosis (IA) bring the need for contemporary analyses of the epidemiology and outcomes of IA, in order to improve clinical practice. Methods The study was a retrospective, multicenter, cohort design of proven and probable IA in adults from 10 Australasian tertiary centres (January 2017-December 2020). Descriptive analyses were used to report patients' demographics, predisposing factors, mycological characteristics, diagnosis and management. Accelerated failure-time model was employed to determine factor(s) associated with 90-day all-cause mortality (ACM). Findings Of 382 IA episodes, 221 (in 221 patients) fulfilled inclusion criteria - 53 proven and 168 probable IA. Median patient age was 61 years (IQR 51-69). Patients with haematologic malignancies (HM) comprised 49.8% of cases. Fifteen patients (6.8%) had no pre-specified immunosuppression and eleven patients (5.0%) had no documented comorbidity. Only 30% of patients had neutropenia. Of 170 isolates identified, 40 (23.5%) were identified as non-Aspergillus fumigatus species complex. Azole-resistance was present in 3/46 (6.5%) of A. fumigatus sensu stricto isolates. Ninety-day ACM was 30.3%. HM (HR 1.90; 95% CI 1.04-3.46, p = 0.036) and ICU admission (HR 4.89; 95% CI 2.93-8.17, p < 0.001) but not neutropenia (HR 1.45; 95% CI 0.88-2.39, p = 0.135) were associated with mortality. Chronic kidney disease was also a significant predictor of death in the HM subgroup (HR 3.94; 95% CI 1.15-13.44, p = 0.028). Interpretation IA is identified in high number of patients with mild/no immunosuppression in our study. The relatively high proportion of non-A. fumigatus species complex isolates and 6.5% azole-resistance rate amongst A. fumigatus sensu stricto necessitates accurate species identification and susceptibility testing for optimal patient outcomes. Funding This work is unfunded. All authors' financial disclosures are listed in detail at the end of the manuscript.
Collapse
Affiliation(s)
- Shio Yen Tio
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- National Centre for Infections in Cancer, Melbourne, Australia
- Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- School of Medicine, University of Sydney, Australia
| | - Kate Hamilton
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Christopher H. Heath
- Department of Microbiology, PathWest Laboratory Medicine, Murdoch, Western Australia, Australia
- Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Department of Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Alyssa Pradhan
- Prince of Wales Hospital, Southeast Sydney LHD, NSW Health Pathology, Australia
- School of Medicine, University of Sydney, Australia
| | - Arthur J. Morris
- Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Tony M. Korman
- Monash University and Monash Health, Clayton, Victoria, Australia
| | - Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- School of Medicine, University of Sydney, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, Microbiology & Infectious Diseases, SA Pathology, Adelaide, South Australia, Australia
| | - Timothy Spelman
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Nadiya Brell
- Prince of Wales Hospital, Southeast Sydney LHD, NSW Health Pathology, Australia
- University of New South Wales, Australia
| | - Brendan McMullan
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Australia
| | - Julia E. Clark
- Infection Management Service, Queensland Children’s Hospital, Children’s Health Queensland, Brisbane 4101, Australia
- School of Clinical Medicine, CHQCU, University of Queensland, Australia
| | - Katerina Mitsakos
- Department of Infectious Disease and Microbiology, Royal North Shore Hospital, Sydney, Australia
| | - Robyn P. Hardiman
- Department of Infectious Disease and Microbiology, Royal North Shore Hospital, Sydney, Australia
| | - Phoebe Williams
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, Australia
- School of Public Health, Faculty of Medicine, The University of Sydney, Australia
| | - Anita J. Campbell
- Department of Infectious Diseases, Perth Children’s Hospital, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Western Australia, Australia
| | - Justin Beardsley
- University of Sydney Infectious Disease Institute, Australia
- Westmead Hospital, Western Sydney LHD, NSW Health, Australia
- Westmead Institute for Medical Research, Australia
| | - Sebastiaan Van Hal
- School of Medicine, University of Sydney, Australia
- Department of Infectious Diseases and Microbiology Royal Prince Alfred Hospital, Australia
| | - Michelle K. Yong
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- National Centre for Infections in Cancer, Melbourne, Australia
- Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Leon J. Worth
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- National Centre for Infections in Cancer, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Monica A. Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- National Centre for Infections in Cancer, Melbourne, Australia
- Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| |
Collapse
|
26
|
De Francesco MA. Drug-Resistant Aspergillus spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe. Pathogens 2023; 12:1305. [PMID: 38003770 PMCID: PMC10674884 DOI: 10.3390/pathogens12111305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Infections due to the Aspergillus species constitute an important challenge for human health. Invasive aspergillosis represents a life-threatening disease, mostly in patients with immune defects. Drugs used for fungal infections comprise amphotericin B, triazoles, and echinocandins. However, in the last decade, an increased emergence of azole-resistant Aspergillus strains has been reported, principally belonging to Aspergillus fumigatus species. Therefore, both the early diagnosis of aspergillosis and its epidemiological surveillance are very important to establish the correct antifungal therapy and to ensure a successful patient outcome. In this paper, a literature review is performed to analyze the prevalence of Aspergillus antifungal resistance in European countries. Amphotericin B resistance is observed in 2.6% and 10.8% of Aspergillus fumigatus isolates in Denmark and Greece, respectively. A prevalence of 84% of amphotericin B-resistant Aspergillus flavus isolates is reported in France, followed by 49.4%, 35.1%, 21.7%, and 20% in Spain, Portugal, Greece, and amphotericin B resistance of Aspergillus niger isolates is observed in Greece and Belgium with a prevalence of 75% and 12.8%, respectively. The prevalence of triazole resistance of Aspergillus fumigatus isolates, the most studied mold obtained from the included studies, is 0.3% in Austria, 1% in Greece, 1.2% in Switzerland, 2.1% in France, 3.9% in Portugal, 4.9% in Italy, 5.3% in Germany, 6.1% in Denmark, 7.4% in Spain, 8.3% in Belgium, 11% in the Netherlands, and 13.2% in the United Kingdom. The mechanism of resistance is mainly driven by the TR34/L98H mutation. In Europe, no in vivo resistance is reported for echinocandins. Future studies are needed to implement the knowledge on the spread of drug-resistant Aspergillus spp. with the aim of defining optimal treatment strategies.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
27
|
Pfaller MA, Carvalhaes CG, Castanheira M. Susceptibility patterns of amphotericin B, itraconazole, posaconazole, voriconazole and caspofungin for isolates causing invasive mould infections from the SENTRY Antifungal Surveillance Program (2018-2021) and application of single-site epidemiological cutoff values to evaluate amphotericin B activity. Mycoses 2023; 66:854-868. [PMID: 37431241 DOI: 10.1111/myc.13620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
We evaluated the activity of amphotericin B, itraconazole, posaconazole, voriconazole and caspofungin against 1468 invasive moulds collected worldwide from 2018 to 2021. Most (>92%) of the Aspergillus spp. isolates were wildtype (WT) to amphotericin B, caspofungin and the azoles. Azole-non-wildtype A. fumigatus rates were higher in Europe (9.5%) and North America (9.1%) than Latin America (0.0%; only 12 isolates) and the Asia-Pacific region (5.3%). Amphotericin B and caspofungin were active against azole-non-wildtype A. fumigatus isolates. Posaconazole and amphotericin B were the most active agents against the Mucorales. Among the less common moulds, several expressed a pan-azole-resistant phenotype; many of these species also showed elevated MIC values (MIC, >2 mg/L) for amphotericin B and caspofungin. Although most isolates of Aspergillus spp. remain WT to the azoles, azole resistance is increasing in both North America and Europe. Amphotericin B and caspofungin exhibit potentially useful activity against azole-resistant A. fumigatus.
Collapse
Affiliation(s)
- Michael A Pfaller
- JMI Laboratories, North Liberty, Iowa, USA
- University of Iowa College of Medicine, Iowa City, Iowa, USA
| | | | | |
Collapse
|
28
|
Zhou S, Ismail MAI, Buil JB, Gabr A, Verweij PE, Mahgoub ES, de Hoog S, Kang Y, Ahmed SA. Fungi involved in rhinosinusitis in arid regions: insights from molecular identification and antifungal susceptibility. Microbiol Spectr 2023; 11:e0183123. [PMID: 37772821 PMCID: PMC10580872 DOI: 10.1128/spectrum.01831-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
Fungal rhinosinusitis (FRS) is a common problem worldwide, with an increasing burden in arid climate regions. Aspergillus species are the most common causative agents involved. In the present study, we investigated the prevalence, molecular characterization, and antifungal susceptibility of opportunists causing FRS in Sudan on the basis of strains collected over a period of 5 years. β-Tubulin and calmodulin sequencing were used for species identification, and antifungal susceptibility profiles were evaluated by the protocol of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Predominant species belonged to the Aspergillus flavus complex (n = 244), A. terreus complex (n = 16), A. fumigatus complex (n = 7), and other fungi (n = 17). Molecular identification of 94 strains of Aspergillus revealed the following species: A. flavus (n = 88), A. terreus (n = 1), A. citrinoterreus (n = 2), A. fumigatus (n = 1), A. caespitosus (n = 1), and A. sydowii (n = 1). Several A. flavus and an A. fumigatus isolates showed reduced susceptibility to azoles (minimum inhibitory concentrations above the clinical breakpoints or epidemiological cutoff values). Despite several mutations revealed in cyp51A of these isolates, none could be directly linked to azole resistance. Molecular identification of fungi causing FRS is useful to identify cryptic species and for epidemiologic studies. IMPORTANCE Fungal rhinosinusitis (FRS) is a significant clinical problem in arid regions. This study provides new insights into the prevalence, etiology, and antifungal susceptibility of FRS pathogens in Sudan, where the disease burden is high. Aspergillus species, particularly the A. flavus complex, were identified as the primary FRS pathogens in the region, with some evidence of antifungal resistance. The molecular identification of fungal species causing FRS is useful for detecting antifungal resistance, identifying cryptic species, and characterizing the epidemiology of the disease. The emergence of Azole resistance Aspergilli in Sudan highlights the need for continued surveillance and appropriate use of antifungal agents. These findings have important implications for clinical management, public health policy, and future research on FRS. Publishing this study in Microbiology Spectrum would enable other researchers and clinicians to build on these findings, ultimately improving the diagnosis, treatment, and prevention of FRS.
Collapse
Affiliation(s)
- Shaoqin Zhou
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | | | - Jochem B. Buil
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Aida Gabr
- Mycology Reference Laboratory, University of Khartoum, Khartoum, Sudan
| | - Paul E. Verweij
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - El-Sheikh Mahgoub
- Mycology Reference Laboratory, University of Khartoum, Khartoum, Sudan
| | - Sybren de Hoog
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands
| | - Yingqian Kang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Sarah A. Ahmed
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands
| |
Collapse
|
29
|
Lin H, Guo J, Li Y, Xiao C, Hu L, Chen H, Lu X, Wu W. In vitro antifungal susceptibility profile and genotypic characterization of clinical Aspergillus isolates in Eastern China on behalf of Eastern China Invasive Fungi Infection Group. Med Mycol 2023; 61:myad082. [PMID: 37580143 DOI: 10.1093/mmy/myad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Aspergillus species is a widespread environmental mould that can cause aspergillosis. The purpose of this study was to investigate the antifungal susceptibility profile and genotypic characterization of clinical Aspergillus isolates from different provinces in Eastern China. The data included the antifungal susceptibility distributions with eight common antifungal drugs, cyp51A gene mutations of triazole-resistant Aspergillus fumigatus sensu stricto, and the genotypic relationships among the A. fumigatus sensu stricto isolates based on microsatellite typing. A. fumigatus sensu lato was the most common clinical Aspergillus species (n = 252), followed by A. flavus (n = 169), A. terreus (n = 37), A. niger (n = 29), and A. nidulans (n = 4). The modal minimum effective concentration values of micafungin and anidulafungin were lower than those of caspofungin for all Aspergillus species. The in vitro efficacy of isavuconazole was similar to that of voriconazole against most Aspergillus species. Sequencing revealed cyp51A gene mutations TR34/L98H, TR34/L98H/S297T/F495I, and TR46/Y121F/T289A in four triazole-resistant A. fumigatus sensu stricto. Phylogenetic analyses using microsatellite markers of A. fumigatus sensu stricto revealed that 211 unique genotypes clustered into two clades. The data demonstrate the diversity of clinically relevant Aspergillus species in Eastern China. Routine antifungal susceptibility testing should be performed to monitor the antifungal resistance and guide clinical therapy.
Collapse
Affiliation(s)
- Huiping Lin
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Yueting Li
- Department of Laboratory Medicine, Jiangxi provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Chenlu Xiao
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Liang Hu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Hui Chen
- Department of Laboratory Medicine, Jiangxi provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Xiuhai Lu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, 250000, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| |
Collapse
|
30
|
Majima H, Arai T, Kamei K, Watanabe A. In vivo efficacy of pitavastatin combined with itraconazole against Aspergillus fumigatus in silkworm models. Microbiol Spectr 2023; 11:e0266623. [PMID: 37655910 PMCID: PMC10581172 DOI: 10.1128/spectrum.02666-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023] Open
Abstract
Azole resistance in Aspergillus fumigatus is a worldwide concern and new antifungal drugs are required to overcome this problem. Statin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, has been reported to suppress the growth of A. fumigatus, but little is known about its in vivo antifungal effect against A. fumigatus. In this study, we evaluated the in vivo efficacy of pitavastatin (PIT) combined with itraconazole (ITC) against azole-susceptible and azole-resistant strains with silkworm models. Prolongation of survival was confirmed in the combination-therapy (PIT and ITC) group compared to the no-treatment group in both azole-susceptible and azole-resistant strain models. Furthermore, when the azole-susceptible strain was used, the combination-therapy resulted in a higher survival rate than with ITC alone. Histopathological analysis of the silkworms revealed a reduction of the hyphal amount in both azole-susceptible and azole-resistant strain models. Quantitative evaluation of fungal DNA by qPCR in azole-susceptible strain models clarified the reduction of fungal burden in the combination-therapy group compared with the no-treatment group and ITC-alone group. These results indicate that the efficacy of PIT was enhanced when combined with ITC in vivo. As opposed to most statins, PIT has little drug-drug interaction with azoles in humans and can be used safely with ITC. This combination therapy may be a promising option as an effective treatment in clinical settings in the future. IMPORTANCE Azole resistance among A. fumigatus isolates has recently been increasingly recognized as a cause of treatment failure, and alternative antifungal therapies are required to overcome this problem. Our study shows the in vivo efficacy of PIT combined with ITC against A. fumigatus using silkworm models by several methods including evaluation of survival rates, histopathological analysis, and assessment of fungal burden. Contrary to most statins, PIT can be safely administered with azoles because of less drug-drug interactions, so this study should help us to verify how to make use of the drug in clinical settings in the future.
Collapse
Affiliation(s)
- Hidetaka Majima
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Teppei Arai
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Katsuhiko Kamei
- Department of Infectious Disease, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Japan
- Division of Infection Control and Prevention, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Akira Watanabe
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
31
|
Hokken MWJ, Coolen JPM, Steenbreker H, Zoll J, Baltussen TJH, Verweij PE, Melchers WJG. The Transcriptome Response to Azole Compounds in Aspergillus fumigatus Shows Differential Gene Expression across Pathways Essential for Azole Resistance and Cell Survival. J Fungi (Basel) 2023; 9:807. [PMID: 37623579 PMCID: PMC10455693 DOI: 10.3390/jof9080807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The opportunistic pathogen Aspergillus fumigatus is found on all continents and thrives in soil and agricultural environments. Its ability to readily adapt to novel environments and to produce billions of spores led to the spread of azole-resistant A. fumigatus across the globe, posing a threat to many immunocompromised patients, including critically ill patients with severe influenza or COVID-19. In our study, we sought to compare the adaptational response to azoles from A. fumigatus isolates that differ in azole susceptibility and genetic background. To gain more insight into how short-term adaptation to stressful azole compounds is managed through gene expression, we conducted an RNA-sequencing study on the response of A. fumigatus to itraconazole and the newest clinically approved azole, isavuconazole. We observed many similarities in ergosterol biosynthesis up-regulation across isolates, with the exception of the pan-azole-resistant isolate, which showed very little differential regulation in comparison to other isolates. Additionally, we found differential regulation of membrane efflux transporters, secondary metabolites, iron metabolism, and various stress response and cell signaling mechanisms.
Collapse
Affiliation(s)
- Margriet W. J. Hokken
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Hilbert Steenbreker
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
| | - Jan Zoll
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Tim J. H. Baltussen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
32
|
Asadzadeh M, Alobaid K, Ahmad S, Mazloum S. First Report of Azole-Resistant Aspergillus fumigatus with TR 46/Y121F/T289A Mutations in Kuwait and an Update on Their Occurrence in the Middle East. J Fungi (Basel) 2023; 9:784. [PMID: 37623555 PMCID: PMC10455753 DOI: 10.3390/jof9080784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Pulmonary aspergillosis is a common fungal infection with several clinical manifestations including invasive, allergic and chronic chest diseases. Invasive pulmonary aspergillosis (IPA) is a leading cause of death in immunocompromised patients, particularly those receiving chemotherapy and among bone marrow transplant recipients. Aspergillus fumigatus is the most prevalent causative agent and voriconazole is the first-line therapy for IPA. In this study, we report the first isolation of voriconazole-resistant A. fumigatus carrying TR46/Y121F/T289A mutations from an immunocompromised pregnant lady in Kuwait. The patient was successfully treated for a probable respiratory infection with caspofungin and voriconazole. The literature review from PubMed has identified itraconazole-resistant clinical and environmental A. fumigatus isolates with TR34/L98H mutations in the cyp51A from several Middle Eastern countries including Kuwait. However, clinical A. fumigatus isolates with cyp51A TR46/Y121F/T289A mutations have not been reported previously from any country in the region while environmental isolates have been reported only from Iran. The source of voriconazole-resistant A. fumigatus CYP51A TR46/Y121F/T289A mutant in our patient remained unknown. Surveillance for azole resistance among clinical and environmental isolates of A. fumigatus is warranted in Kuwait.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Khaled Alobaid
- Mycology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya 46300, Kuwait;
| | - Suhail Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Sara Mazloum
- Microbiology Laboratory, Jaber Al-Ahmad Hospital, Ministry of Health, South Surra 91711, Kuwait;
| |
Collapse
|
33
|
Vahedi-Shahandashti R, Houbraken J, Birch M, Lass-Flörl C. Novel Antifungals and Aspergillus Section Terrei with Potpourri Susceptibility Profiles to Conventional Antifungals. J Fungi (Basel) 2023; 9:649. [PMID: 37367585 DOI: 10.3390/jof9060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The epidemiology of invasive fungal infections (IFIs) is currently changing, driven by aggressive immunosuppressive therapy, leading to an expanded spectrum of patients at risk of IFIs. Aspergillosis is a leading cause of IFIs, which usually affects immunocompromised patients. There are a limited number of antifungal medications available for treating IFIs, and their effectiveness is often hindered by rising resistance rates and practical limitations. Consequently, new antifungals, especially those with novel mechanisms of action, are increasingly required. This study assessed the activity of four novel antifungal agents with different mechanisms of activity, namely, manogepix, rezafungin, ibrexafungerp, and olorofim, against 100 isolates of Aspergillus section Terrei, containing amphotericin-B (AmB)-wildtype/non-wildtype and azole-susceptible/-resistant strains, according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) method. In general, all tested agents showed potent and consistent activity against the tested isolates, exhibiting geometric mean (GM) and minimum effective concentration (MEC)/minimum inhibitory concentration (MIC) ranges, respectively, as follows: manogepix (0.048 mg/L, 0.032-0.5 mg/L), rezafungin (0.020 mg/L, 0.016-0.5 mg/L), ibrexafungerp (0.071 mg/L, 0.032-2 mg/L), and olorofim (0.008 mg/L, 0.008-0.032 mg/L). In terms of MIC90/MEC90, olorofim had the lowest values (0.008 mg/L), followed by rezafungin (0.032 mg/L), manogepix (0.125 mg/L), and ibrexafungerp (0.25 mg/L). All the antifungals tested demonstrated promising in vitro activity against Aspergillus section Terrei, including A. terreus as well as azole-resistant and AmB-non-wildtype cryptic species.
Collapse
Affiliation(s)
- Roya Vahedi-Shahandashti
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands
| | | | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Pfaller MA, Carvalhaes CG, Deshpande LM, Rhomberg PR, Castanheira M. In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations. J Fungi (Basel) 2023; 9:608. [PMID: 37367544 DOI: 10.3390/jof9060608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Azole resistance in Aspergillus fumigatus (AFM) is mainly associated with mutations in CYP51A and its promoter region or its homologue CYP51B. We evaluated the in vitro activity of isavuconazole, itraconazole, posaconazole, and voriconazole against 660 AFM collected during 2017-2020. Isolates were tested via CLSI broth microdilution. CLSI epidemiological cutoff values were applied. Non-wildtype (NWT) isolates to azoles were screened for alterations in the CYP51 sequences using whole genome sequencing. Azoles had similar activities against 660 AFM isolates. Overall, AFM displayed WT MIC values to isavuconazole (92.7%), itraconazole (92.9%), posaconazole (97.3%), and voriconazole (96.7%). Only 66 isolates (10.0%) were NWT to 1 or more of the azoles, and 32 harbored one or more alterations in the CYP51 sequences. Of these, 29/32 (90.1%) were NWT to itraconazole, 25/32 (78.1%) were NWT to isavuconazole, 17/32 (53.1%) were NWT to voriconazole, and 11/32 (34.4%) were NWT to posaconazole. The most frequent alteration was CYP51A TR34/L98H, carried by 14 isolates. Four isolates carried the alteration I242V in CYP51A, and G448S; A9T, or G138C was carried by one isolate each. Multiple alterations in CYP51A were detected in five isolates. Alterations in CYP51B were noted in seven isolates. Among 34 NWT isolates without -CYP51 alterations, WT rates to isavuconazole, itraconazole, voriconazole, and posaconazole were 32.4%, 47.1%, 85.3%, and 82.4%, respectively. Ten different CYP51 alterations were detected in 32/66 NWT isolates. Alterations in AFM CYP51 sequences can have variable effects on the in vitro activity of the azoles that are best delineated by testing all triazoles.
Collapse
Affiliation(s)
- Michael A Pfaller
- Department of Pathology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| | - Cecilia G Carvalhaes
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| | | | - Paul R Rhomberg
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| | - Mariana Castanheira
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| |
Collapse
|
35
|
Venugopalan LP, Aimanianda V, Namperumalsamy VP, Prajna L, Kuppamuthu D, Jayapal JM. Comparative proteome analysis identifies species-specific signature proteins in Aspergillus pathogens. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12559-4. [PMID: 37166481 DOI: 10.1007/s00253-023-12559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Aspergillus flavus and Aspergillus fumigatus are important human pathogens that can infect the lung and cornea. During infection, Aspergillus dormant conidia are the primary morphotype that comes in contact with the host. As the conidial surface-associated proteins (CSPs) and the extracellular proteins during the early stages of growth play a crucial role in establishing infection, we profiled and compared these proteins between a clinical strain of A. flavus and a clinical strain of A. fumigatus. We identified nearly 100 CSPs in both Aspergillus, and these non-covalently associated surface proteins were able to stimulate the neutrophils to secrete interleukin IL-8. Mass spectrometry analysis identified more than 200 proteins in the extracellular space during the early stages of conidial growth and germination (early exoproteome). The conidial surface proteins and the early exoproteome of A. fumigatus were enriched with immunoreactive proteins and those with pathogenicity-related functions while that of the A. flavus were primarily enzymes involved in cell wall reorganization and binding. Comparative proteome analysis of the CSPs and the early exoproteome between A. flavus and A. fumigatus enabled the identification of a common core proteome and potential species-specific signature proteins. Transcript analysis of selected proteins indicate that the transcript-protein level correlation does not exist for all proteins and might depend on factors such as membrane-anchor signals and protein half-life. The probable signature proteins of A. flavus and A. fumigatus identified in this study can serve as potential candidates for developing species-specific diagnostic tests. KEY POINTS: • CSPs and exoproteins could differentiate A. flavus and A. fumigatus. • A. fumigatus conidial surface harbored more antigenic proteins than A. flavus. • Identified species-specific signature proteins of A. flavus and A. fumigatus.
Collapse
Affiliation(s)
- Lakshmi Prabha Venugopalan
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
- Present address: Centre for Biotechnology, Anna University, Chennai, India
| | - Vishukumar Aimanianda
- Unité des Aspergillus, Institut Pasteur, 75015, Paris, France
- Present address: Unité de recherche Mycologie Moléculaire, UMR2000, Institut Pasteur, 75015, Paris, France
| | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
| | - Dharmalingam Kuppamuthu
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
| | - Jeya Maheshwari Jayapal
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India.
| |
Collapse
|
36
|
Abstract
The burden of fungal infections has been on the rise globally and remains a significant public health concern in Kenya. We estimated the incidence and prevalence of fungal infections using all mycology publications in Kenya up to January 2023, and from neighbouring countries where data lacked. We used deterministic modelling using populations at risk to calculate the disease burden. The total burden of serious fungal infections is estimated to affect 6,328,294 persons which translates to 11.57% of the Kenyan population. Those suffering from chronic infections such as chronic pulmonary aspergillosis are estimated to be 100,570 people (0.2% of the population) and probably nearly 200,000 with fungal asthma, all treatable with oral antifungal therapy. Serious acute fungal infections secondary to HIV (cryptococcal meningitis, disseminated histoplasmosis, pneumocystis pneumonia, and mucosal candidiasis) affect 196,543 adults and children (0.4% of the total population), while cancer-related invasive fungal infection cases probably exceed 2,299 and those in intensive care about 1,230 incident cases, including Candida auris bloodstream infection. The burden of fungal infections in Kenya is high; however, limited diagnostic test availability, low clinician awareness and inadequate laboratory capacity constrain the country's health system in responding to the syndemic of fungal disease in Kenya.
Collapse
Affiliation(s)
- Stanley N. Ratemo
- Research Department, Kisii Teaching and Referral Hospital, Kisii, Kenya
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Global Action for Fungal Infections (GAFFI), Geneva, Switzerland
| |
Collapse
|
37
|
Bosetti D, Neofytos D. Invasive Aspergillosis and the Impact of Azole-resistance. CURRENT FUNGAL INFECTION REPORTS 2023; 17:1-10. [PMID: 37360857 PMCID: PMC10024029 DOI: 10.1007/s12281-023-00459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review IA (invasive aspergillosis) caused by azole-resistant strains has been associated with higher clinical burden and mortality rates. We review the current epidemiology, diagnostic, and therapeutic strategies of this clinical entity, with a special focus on patients with hematologic malignancies. Recent Findings There is an increase of azole resistance in Aspergillus spp. worldwide, probably due to environmental pressure and the increase of long-term azole prophylaxis and treatment in immunocompromised patients (e.g., in hematopoietic stem cell transplant recipients). The therapeutic approaches are challenging, due to multidrug-resistant strains, drug interactions, side effects, and patient-related conditions. Summary Rapid recognition of resistant Aspergillus spp. strains is fundamental to initiate an appropriate antifungal regimen, above all for allogeneic hematopoietic cell transplantation recipients. Clearly, more studies are needed in order to better understand the resistance mechanisms and optimize the diagnostic methods to identify Aspergillus spp. resistance to the existing antifungal agents/classes. More data on the susceptibility profile of Aspergillus spp. against the new classes of antifungal agents may allow for better treatment options and improved clinical outcomes in the coming years. In the meantime, continuous surveillance studies to monitor the prevalence of environmental and patient prevalence of azole resistance among Aspergillus spp. is absolutely crucial.
Collapse
Affiliation(s)
- Davide Bosetti
- Division of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland
| | - Dionysios Neofytos
- Division of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland
| |
Collapse
|
38
|
Managing the Next Wave of Influenza and/or SARS-CoV-2 in the ICU—Practical Recommendations from an Expert Group for CAPA/IAPA Patients. J Fungi (Basel) 2023; 9:jof9030312. [PMID: 36983480 PMCID: PMC10058160 DOI: 10.3390/jof9030312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The aim of this study was to establish practical recommendations for the diagnosis and treatment of influenza-associated invasive aspergillosis (IAPA) based on the available evidence and experience acquired in the management of patients with COVID-19-associated pulmonary aspergillosis (CAPA). The CAPA/IAPA expert group defined 14 areas in which recommendations would be made. To search for evidence, the PICO strategy was used for both CAPA and IAPA in PubMed, using MeSH terms in combination with free text. Based on the results, each expert developed recommendations for two to three areas that they presented to the rest of the group in various meetings in order to reach consensus. As results, the practical recommendations for the management of CAPA/IAPA patients have been grouped into 12 sections. These recommendations are presented for both entities in the following situations: when to suspect fungal infection; what diagnostic methods are useful to diagnose these two entities; what treatment is recommended; what to do in case of resistance; drug interactions or determination of antifungal levels; how to monitor treatment effectiveness; what action to take in the event of treatment failure; the implications of concomitant corticosteroid administration; indications for the combined use of antifungals; when to withdraw treatment; what to do in case of positive cultures for Aspergillus spp. in a patient with severe viral pneumonia or Aspergillus colonization; and how to position antifungal prophylaxis in these patients. Available evidence to support the practical management of CAPA/IAPA patients is very scarce. Accumulated experience acquired in the management of CAPA patients can be very useful for the management of IAPA patients. The expert group presents eminently practical recommendations for the management of CAPA/IAPA patients.
Collapse
|
39
|
Alves-Silva JM, Gonçalves MJ, Silva A, Cavaleiro C, Cruz MT, Salgueiro L. Chemical Profile, Anti-Microbial and Anti-Inflammaging Activities of Santolina rosmarinifolia L. Essential Oil from Portugal. Antibiotics (Basel) 2023; 12:antibiotics12010179. [PMID: 36671380 PMCID: PMC9854695 DOI: 10.3390/antibiotics12010179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Fungal infections and the accompanying inflammatory responses are associated with great morbidity and mortality due to the frequent relapses triggered by an increased resistance to antifungal agents. Furthermore, this inflammatory state can be exacerbated during inflammaging and cellular senescence. Essential oils (EO) are receiving increasing interest in the field of drug discovery due to their lipophilic nature and complex composition, making them suitable candidates in the development of new antifungal drugs and modulators of numerous molecular targets. This work chemically characterized the EO from Santolina rosmarinifolia L., collected in Setúbal (Portugal), and assessed its antifungal potential by determining its minimum inhibitory (MIC) and minimum lethal (MLC) concentration in accordance with the Clinical Laboratory Standard Guidelines (CLSI) guidelines, as well as its effect on several Candida albicans virulence factors. The anti-inflammatory effect was unveiled using lipopolysaccharide (LPS)-stimulated macrophages by assessing several pro-inflammatory mediators. The wound healing and anti-senescence potential of the EO was also disclosed. The EO was mainly characterized by β-pinene (29.6%), borneol (16.9%), myrcene (15.4%) and limonene (5.7%). It showed a strong antifungal effect against yeasts and filamentous fungi (MIC = 0.07-0.29 mg/mL). Furthermore, it inhibited dimorphic transition (MIC/16), decreased biofilm formation with a preeminent effect after 24 h (MIC/2) and disrupted preformed biofilms in C. albicans. Additionally, the EO decreased nitric oxide (NO) release (IC50 = 0.52 mg/mL) and pro-IL-1β and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated macrophages, promoted wound healing (91% vs. 81% closed wound) and reduced cellular senescence (53% vs. 73% β-galactosidase-positive cells). Overall, this study highlights the relevant pharmacological properties of S. rosmarinifolia, opening new avenues for its industrial exploitation.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Institute for Clinical and Biomedical Research, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Maria José Gonçalves
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
40
|
Li C, Sun L, Liu Y, Zhou H, Chen J, She M, Wang Y. Diagnostic value of bronchoalveolar lavage fluid galactomannan assay for invasive pulmonary aspergillosis in adults: A meta-analysis. J Clin Pharm Ther 2022; 47:1913-1922. [PMID: 36324286 DOI: 10.1111/jcpt.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE To analyse the diagnostic accuracy of bronchoalveolar lavage fluid galactomannan (BALF-GM) assay for invasive pulmonary aspergillosis (IPA) in adults to determine the optimal diagnostic cut-off by meta-analysis. METHODS PubMed, Embase, Web of Science, Cochrane Library, China national knowledge infrastructure (CNKI), and China Wanfang databases were searched to collect relevant studies on the diagnostic value of BALF-GM for IPA from inception to March 2022. The summary receiver operating characteristic (SROC) curve was drawn to determine the optimal diagnostic cut-off. RESULTS AND DISCUSSION Nineteen articles (56 data sets) were included. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were 0.79 (95% CI: 0.72-0.84), 0.92 (95% CI: 0.88-0.94), 9.25 (95% CI: 6.84-12.52), 0.23 (95% CI: 0.18-0.30), 39.44 (95% CI: 29.55-52.65), and 0.92 (95% CI: 0.90-0.94), respectively. The area under the curves (AUCs) were 0.92, 0.86, 0.93, 0.89, 0.88, and 0.94 when the cut-off values were 0.5, 0.8, 1.0, 1.5, 2.0, and 3.0, respectively. Sixteen studies were included in the combined analysis when the cut-off value was 0.5. The results showed that the pooled sensitivity, specificity, PLR, NLR and DOR of BALF-GM (cut-off 0.5) for the diagnosis of IPA were 0.89 (95% CI: 0.83-0.93), 0.79 (95% CI: 0.71-0.86), 4.33 (95% CI: 3.04-6.16), 0.14 (95% CI: 0.09-0.22), and 31.51 (95% CI: 17.43-56.98). The AUC was 0.92 (95% CI: 0.89-0.94). WHAT IS NEW AND CONCLUSIONS BALF-GM has excellent diagnostic accuracy for adult IPA, which can be diagnosed early and treated early to reduce the mortality rate. Considering the sensitivity, specificity, PLR and NLR, the recommended diagnostic cut-off of BALF-GM for adult IPA is 0.5.
Collapse
Affiliation(s)
- Chang Li
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Lin Sun
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Yin Liu
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Hongbing Zhou
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Jianguo Chen
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Min She
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Yong Wang
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Sheydaei M, Pouraman V, Edraki M, Alinia-Ahandani E, Asadi-Sadeh SM. Targeted application of GO to improve mechanical and thermal properties of PVCS/RS composites. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2150853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Milad Sheydaei
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Vahid Pouraman
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Milad Edraki
- Polymer Department, Technical Faculty, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | | |
Collapse
|
42
|
Punia A, Choudhary P, Sharma N, Dahiya S, Gulia P, Chhillar AK. Therapeutic Approaches for Combating Aspergillus Associated Infection. Curr Drug Targets 2022; 23:1465-1488. [PMID: 35748549 DOI: 10.2174/1389450123666220623164548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 01/25/2023]
Abstract
Now-a-days fungal infection emerges as a significant problem to healthcare management systems due to high frequency of associated morbidity, mortality toxicity, drug-drug interactions, and resistance of the antifungal agents. Aspergillus is the most common mold that cause infection in immunocompromised hosts. It's a hyaline mold that is cosmopolitan and ubiquitous in nature. Aspergillus infects around 10 million population each year with a mortality rate of 30-90%. Clinically available antifungal formulations are restricted to four classes (i.e., polyene, triazole, echinocandin, and allylamine), and each of them have their own limitations associated with the activity spectrum, the emergence of resistance, and toxicity. Consequently, novel antifungal agents with modified and altered chemical structures are required to combat these invasive fungal infections. To overcome these limitations, there is an urgent need for new antifungal agents that can act as potent drugs in near future. Currently, some compounds have shown effective antifungal activity. In this review article, we have discussed all potential antifungal therapies that contain old antifungal drugs, combination therapies, and recent novel antifungal formulations, with a focus on the Aspergillus associated infections.
Collapse
Affiliation(s)
- Aruna Punia
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Choudhary
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Namita Sharma
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Sweety Dahiya
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Prity Gulia
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Anil K Chhillar
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
43
|
Maertens J, Pagano L, Azoulay E, Warris A. Liposomal amphotericin B-the present. J Antimicrob Chemother 2022; 77:ii11-ii20. [PMID: 36426672 PMCID: PMC9693760 DOI: 10.1093/jac/dkac352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Most invasive fungal infections are opportunistic in nature but the epidemiology is constantly changing, with new risk groups being identified. Neutropenia is a classical risk factor for fungal infections, while critically ill patients in the ICU are now increasingly at risk of yeast and mould infections. Factors to be considered when choosing antifungal treatment include the emergence of rarer fungal pathogens, the risk of resistance to azoles and echinocandins and the possibility of drug-drug interactions. Liposomal amphotericin B has retained its place in the therapeutic armamentarium based on its clinical profile: a broad spectrum of antifungal activity with a low risk of resistance, predictable pharmacokinetics with a rapid accumulation at the infection site (including biofilms), a low potential for drug-drug interactions and a low risk of acute and chronic treatment-limiting toxicities versus other formulations of amphotericin B. It is a suitable choice for the first-line empirical or pre-emptive treatment of suspected fungal infections in neutropenic haematology patients and is an excellent alternative for patients with documented fungal disease who can no longer tolerate or continue their first-line azole or echinocandin therapy, both in the haematology setting and in the ICU. Moreover, it is the first-line drug of choice for the treatment of invasive mucormycosis. Finally, liposomal amphotericin B is one of the few antifungal agents approved for use in children of all ages over 1 month and is included in paediatric-specific guidelines for the management of fungal disease.
Collapse
Affiliation(s)
- J Maertens
- Department of Hematology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - L Pagano
- Sezione di Ematologia, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - E Azoulay
- Médecine Intensive et Réanimation, Hôpital Saint-Louis, APHP, University of Paris, Paris, France
| | - A Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK.,Great Ormond Street Hospital, Paediatric Infectious Diseases Unit, London, UK
| |
Collapse
|
44
|
Ancuceanu R, Hovaneț MV, Cojocaru-Toma M, Anghel AI, Dinu M. Potential Antifungal Targets for Aspergillus sp. from the Calcineurin and Heat Shock Protein Pathways. Int J Mol Sci 2022; 23:ijms232012543. [PMID: 36293395 PMCID: PMC9603945 DOI: 10.3390/ijms232012543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus species, especially A. fumigatus, and to a lesser extent others (A. flavus, A. niger, A. terreus), although rarely pathogenic to healthy humans, can be very aggressive to immunocompromised patients (they are opportunistic pathogens). Although survival rates for such infections have improved in recent decades following the introduction of azole derivatives, they remain a clinical challenge. The fact that current antifungals act as fungistatic rather than fungicide, that they have limited safety, and that resistance is becoming increasingly common make the need for new, more effective, and safer therapies to become more acute. Over the last decades, knowledge about the molecular biology of A. fumigatus and other Aspergillus species, and particularly of calcineurin, Hsp90, and their signaling pathway proteins, has progressed remarkably. Although calcineurin has attracted much interest, its adverse effects, particularly its immunosuppressive effects, make it less attractive than it might at first appear. The situation is not very different for Hsp90. Other proteins from their signaling pathways, such as protein kinases phosphorylating the four SPRR serine residues, CrzA, rcnA, pmcA-pmcC (particularly pmcC), rfeF, BAR adapter protein(s), the phkB histidine kinase, sskB MAP kinase kinase, zfpA, htfA, ctfA, SwoH (nucleoside diphosphate kinase), CchA, MidA, FKBP12, the K27 lysine position from Hsp90, PkcA, MpkA, RlmA, brlA, abaA, wetA, other heat shock proteins (Hsp70, Hsp40, Hsp12) currently appear promising and deserve further investigation as potential targets for antifungal drug development.
Collapse
Affiliation(s)
- Robert Ancuceanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
- Correspondence: (R.A.); (M.V.H.)
| | - Marilena Viorica Hovaneț
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
- Correspondence: (R.A.); (M.V.H.)
| | - Maria Cojocaru-Toma
- Faculty of Pharmacy, Nicolae Testemițanu State University of Medicine and Pharmacy, 2025 Chisinau, Moldova
| | - Adriana-Iuliana Anghel
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mihaela Dinu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
45
|
Wei T, Zheng N, Zheng H, Chen Y, Hong P, Liu W, Liu M. Proteomic Perspective of Azole Resistance in Aspergillus fumigatus Biofilm Extracellular Matrix in Response to Itraconazole. Med Mycol 2022; 60:myac084. [PMID: 36243954 DOI: 10.1093/mmy/myac084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Azole-resistant Aspergillus fumigatus makes a major challenge to the chemotherapy for invasive aspergillosis, whereas cyp51A gene mutation is the most dominant mechanism for azole resistance. Moreover, biofilm contributes to drug resistance for A. fumigatus, and extracellular matrix (ECM) is essential to protect live cells from antifungal drugs. Therefore, we performed a comparative proteomic study on the biofilm ECM of both the wild-type and azole-resistant strains of A. fumigatus under azole pressure. In total, 2377 proteins were identified, of which 480 and 604 proteins with differential expression were obtained from the wild-type and azole-resistant A. fumigatus in exposure to itraconazole respectively (fold change > 2 or < 0.5, P-value < 0.05). We found that a high proportion of regulated proteins were located in cytoplasm, nucleus, and mitochondria. Meanwhile, GO and KEGG analyses revealed that metabolic process and ribosome pathway were significantly enriched. Particularly, differentially expressed proteins in response to azole pressure of both the wild-type and resistant strains were further analyzed. Our results indicated that these changes in biofilm ECM proteins were related to ergosterol synthesis, oxidative stress, efflux pumps, DNA repair, DNA replication, and transcription.
Collapse
Affiliation(s)
- Tianqi Wei
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Nan Zheng
- Medical School, Nanjing University, Nanjing, China
| | - Hailin Zheng
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Yuping Chen
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Pianpian Hong
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Musang Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|
46
|
Talapko J, Meštrović T, Juzbašić M, Tomas M, Erić S, Horvat Aleksijević L, Bekić S, Schwarz D, Matić S, Neuberg M, Škrlec I. Antimicrobial Peptides-Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics (Basel) 2022; 11:1417. [PMID: 36290075 PMCID: PMC9598582 DOI: 10.3390/antibiotics11101417] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
The growing emergence of antimicrobial resistance represents a global problem that not only influences healthcare systems but also has grave implications for political and economic processes. As the discovery of novel antimicrobial agents is lagging, one of the solutions is innovative therapeutic options that would expand our armamentarium against this hazard. Compounds of interest in many such studies are antimicrobial peptides (AMPs), which actually represent the host's first line of defense against pathogens and are involved in innate immunity. They have a broad range of antimicrobial activity against Gram-negative and Gram-positive bacteria, fungi, and viruses, with specific mechanisms of action utilized by different AMPs. Coupled with a lower propensity for resistance development, it is becoming clear that AMPs can be seen as emerging and very promising candidates for more pervasive usage in the treatment of infectious diseases. However, their use in quotidian clinical practice is not without challenges. In this review, we aimed to summarize state-of-the-art evidence on the structure and mechanisms of action of AMPs, as well as to provide detailed information on their antimicrobial activity. We also aimed to present contemporary evidence of clinical trials and application of AMPs and highlight their use beyond infectious diseases and potential challenges that may arise with their increasing availability.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, 3980 15th Ave. NE, Seattle, WA 98195, USA
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Dragan Schwarz
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Marijana Neuberg
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
47
|
Matsumoto Y, Suzuki M, Nihei H, Matsumoto S. Discovery of Tolerance to Itraconazole in Japanese Isolates of Aspergillus Section Nigri, Aspergillus tubingensis and Aspergillus welwitschiae, by Microscopic Observation. Med Mycol J 2022; 63:65-69. [PMID: 36047184 DOI: 10.3314/mmj.22-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aspergillus section Nigri, a group of black Aspergillus, has several cryptic species that were recently discovered to be intrinsically resistant to azole antifungals. In this study, susceptibility testing of 35 clinical isolates of Aspergillus tubingensis and Aspergillus welwitschiae in Japan was carried out using microdilution method. Strains tolerant to itraconazole in A. tubingensis (14/17 strains) and A. welwitschiae (6/18 strains) were discovered with hyphal growth and conidial germination above the minimal inhibitory concentration by microscopic observation, while no resistant strain was observed macroscopically. In contrast, no strain with reduced susceptibility to voriconazole, posaconazole, and amphotericin-B was found. Further examination may be required to determine the susceptibility of cryptic species in Aspergillus section Nigri to antifungals.
Collapse
Affiliation(s)
- Yasunobu Matsumoto
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| | - Makoto Suzuki
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| | - Hiroyoshi Nihei
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| | - Satoru Matsumoto
- Infectious Diseases Testing Department, Microbiological Testing Group, LSI Medience Corporation
| |
Collapse
|
48
|
Amona MF, Oladele RO, Resendiz-Sharpe A, Denning DW, Kosmidis C, Lagrou K, Zhong H, Han L. Triazole resistance in Aspergillus fumigatus isolates in Africa: a systematic review. Med Mycol 2022; 60:6652216. [PMID: 35906879 DOI: 10.1093/mmy/myac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Emergence of triazole resistance has been observed in Aspergillus fumigatus over the past decade including in Africa. This review summarizes the current published data on the epidemiology and reported mechanisms of triazole-resistant Aspergillus fumigatus (TRAF) in both environmental and clinical isolates from Africa. Searches on databases Medline, PubMed, HINARI, Science Direct, Scopus and Google Scholar on triazole resistance published between 2000 and 2021 from Africa were performed. Isolate source, antifungal susceptibility using internationally recognized methods, cyp51A mechanism of resistance and genotype were collected. Eleven published African studies were found that fitted the search criteria; these were subsequently analyzed. In total this constituted of 1686 environmental and 46 clinical samples. A TRAF prevalence of 17.1% (66/387) and 1,3% (5/387) was found in respectively environmental and clinical settings in African studies. Resistant to itraconazole, voriconazole, and posaconazole was documented. Most of the triazole-resistant isolates (30/71, 42.25%) were found to possess the TR34/L98H mutation in the cyp51A-gene; fewer with TR46/Y121F/T289A (n = 8), F46Y/M172V/E427K (n = 1), G54E (n = 13), and M172V (n = 1) mutations. African isolates with the TR34/L98H, TR46/Y121F/T289A and the G54E mutations were closely related and could be grouped in one of two clusters (cluster-B), whereas the cyp51A-M172V mutation clustered with most cyp51A- WT strains (cluster-A). A single case from Kenya shows that TR34/L98H from environmental and clinical isolates are closely related. Our findings highlight that triazole resistance in environmental and clinical A. fumigatus is a cause for concern in a number of African countries. There is need for epidemiological surveillance to determine the true burden of the problem in Africa.
Collapse
Affiliation(s)
- Modeste Fructueux Amona
- Faculty of Health Sciences, Marien Ngouabi University, Brazzaville, Republic of Congo.,Research Center and Study of Infectious and Tropical Pathologies, Oyo, Republic of Congo
| | - Rita Okeoghene Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria.,Department of Medical Microbiology and Parasitology, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| | - Agustin Resendiz-Sharpe
- Department of Microbiology, Laboratory of Clinical Bacteriology and Mycology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Imaging and Pathology, Biomedical MRI, KU Leuven, Leuven, Belgium
| | - David W Denning
- Manchester Fungal Infection Group, the University of Manchester and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Chris Kosmidis
- National Aspergillosis Centre, Manchester University Foundation Trust, UK, and Manchester Academic Health Science Centre, the University of Manchester, Manchester, UK
| | - Katrien Lagrou
- Department of Microbiology, Laboratory of Clinical Bacteriology and Mycology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Hanying Zhong
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Li Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
49
|
Bezerra LP, Silva AF, Santos-Oliveira R, Alencar LM, Amaral JL, Neto NA, Silva RG, Belém MO, de Andrade CR, Oliveira JT, Freitas CD, Souza PF. Combined antibiofilm activity of synthetic peptides and antifungal drugs against Candida spp. Future Microbiol 2022; 17:1133-1146. [PMID: 35880557 DOI: 10.2217/fmb-2022-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: Candida krusei and Candida albicans are biofilm-forming drug-resistant yeasts that cause bloodstream infections that can lead to death. Materials & methods: nystatin and itraconazole were combined with two synthetic peptides, PepGAT and PepKAA, to evaluate the synergistic effect against Candida biofilms. Additionally, scanning electron and fluorescence microscopies were employed to understand the mechanism behind the synergistic activity. Results: Peptides enhanced the action of drugs to inhibit the biofilm formation of C. krusei and C. albicans and the degradation of mature biofilms of C. krusei. In combination with antifungal drugs, peptides' mechanism of action involved cell wall and membrane damage and overproduction of reactive oxygen species. Additionally, in combination, the peptides reduced the toxicity of drugs to red blood cells. Conclusion: These results reveal that the synthetic peptides enhanced the antibiofilm activity of drugs, in addition to reducing their toxicity. Thus, these peptides have strong potential as adjuvants and to decrease the toxicity of drugs.
Collapse
Affiliation(s)
- Leandro P Bezerra
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Ayrles Fb Silva
- Department of Physic, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Ralph Santos-Oliveira
- Nanoradiopharmaceuticals & Radiopharmacy, Zona Oeste State University, Brazilian Nuclear Energy Commission, Rio de Janeiro, Rio de Janeiro, 23070200, Brazil
| | - Luciana Mr Alencar
- Department of Physics, Laboratory of Biophysics & Nanosystems, Federal University of Maranhao, São Luís, Maranhão, 65080-805, Brazil
| | - Jackson L Amaral
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil.,Department of Physic, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Nilton As Neto
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Rafael Gg Silva
- Department of Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Mônica O Belém
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará, 60192, Brazil
| | - Claudia R de Andrade
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará, 60192, Brazil
| | - Jose Ta Oliveira
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Cleverson Dt Freitas
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Pedro Fn Souza
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil.,Drug Research & Development Center, Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| |
Collapse
|
50
|
Maldiney T, Chassot JM, Boccara C, Blot M, Piroth L, Charles PE, Garcia-Hermoso D, Lanternier F, Dalle F, Sautour M. Dynamic full-field optical coherence tomography as complementary tool in fungal diagnostics. J Mycol Med 2022; 32:101303. [PMID: 35732095 DOI: 10.1016/j.mycmed.2022.101303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 10/31/2022]
Abstract
Histopathology and microscopic examination of infected tissue are the gold standards to prove the diagnosis of invasive fungal infection (IFI). Yet, they suffer from essential limitations that hamper rapid diagnosis and require the future development of new imaging tools dedicated to fungal diagnostics. To this end, the present work introduces the first use of dynamic full-field optical coherence tomography (D-FF-OCT) for the visualization of microscopic filamentous fungi. Data collected from the observation of three different fungal species (Nannizzia gypsea, Aspergillus fumigatus and Rhizopus arrhizus) confirm the ability of D-FF-OCT to visualize not only the main structures of all selected fungal species (hyphae, spores, conidia, sporulating structures), but also the metabolic activity of the organisms, which could provide additional help in the future to better characterize the signature of each fungal structure. These results demonstrate how D-FF-OCT could serve as potential complementary tool for rapid diagnosis of IFI in both intensive and non-intensive care units.
Collapse
Affiliation(s)
- Thomas Maldiney
- Department of Intensive Care Medicine, William Morey General Hospital, Chalon-sur-Saône, France; Lipness team, INSERM Research Center LNC-UMR1231, University of Burgundy, Dijon, France.
| | - Jean-Marie Chassot
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
| | - Mathieu Blot
- Lipness team, INSERM Research Center LNC-UMR1231, University of Burgundy, Dijon, France; Infectious Diseases Department, Dijon Bourgogne University Hospital, Dijon, France
| | - Lionel Piroth
- Infectious Diseases Department, Dijon Bourgogne University Hospital, Dijon, France; INSERM, CIC1432, Clinical Epidemiology unit, Dijon, France
| | - Pierre-Emmanuel Charles
- Lipness team, INSERM Research Center LNC-UMR1231, University of Burgundy, Dijon, France; Department of Intensive Care, Dijon Bourgogne University Hospital, Dijon, France
| | - Dea Garcia-Hermoso
- Institut Pasteur, Université de Paris, Molecular Mycology Unit, National Reference Center for Invasive Mycoses and Antifungals (NRCMA), UMR 2000, CNRS, Paris, France
| | - Fanny Lanternier
- Institut Pasteur, Université de Paris, Molecular Mycology Unit, National Reference Center for Invasive Mycoses and Antifungals (NRCMA), UMR 2000, CNRS, Paris, France; Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Frédéric Dalle
- Department of Parasitology/Mycology, Dijon Bourgogne University Hospital, 21000 Dijon, France; UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Univ. Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| | - Marc Sautour
- Department of Parasitology/Mycology, Dijon Bourgogne University Hospital, 21000 Dijon, France; UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Univ. Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| |
Collapse
|