1
|
Março KS, da Silva Borégio J, Jussiani GG, de Souza Ferreira LFE, Flores GVA, Pacheco CMS, Laurenti MD, Machado GF. Thymic alterations resulting from experimental visceral leishmaniasis in a Syrian hamster (Mesocricetus auratus). Vet Immunol Immunopathol 2023; 257:110558. [PMID: 36758455 DOI: 10.1016/j.vetimm.2023.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The thymus is a lymphoid organ responsible for the development and maturation of T cells, which are part of the Th1, Th2, Th17, and Treg immune responses triggered by visceral leishmaniasis. The maturation and immunological development of T lymphocytes require a bidirectional interaction between the thymic microenvironment of epithelial cells, dendritic cells, and macrophages and the extracellular matrix with differentiating lymphocytes. OBJECTIVES We evaluated the morphological characteristics and tissue distribution of hematopoietic and stromal cells in the thymuses of hamsters experimentally infected with Leishmania infantum, aiming to gain an insight into the pathophysiology of the disease. METHODS Fifteen hamsters were subjected to intraperitoneal experimental infection with 107L. infantum promastigotes (MHOM/BR/1972/BH46). The animals were divided into three groups, each comprising five infected hamsters, and were then euthanized 15, 60, and 120 days postinfection. The control groups consisted of three groups of five healthy hamsters euthanized simultaneously with the infected ones. Thymic morphology was evaluated through histopathology and the cell composition through immunohistochemistry. We used antibodies to mark mesenchymal cells (anti-vimentin), epithelial cells (anti-cytokeratin), macrophages (anti-MAC387), B lymphocytes (anti-CD79a), and T lymphocytes (anti-CD3). Immunohistochemistry was also used to mark the parasite in the thymus. RESULTS Infected and control hamsters showed no difference in thymic morphology and degree of atrophy. After 15 days of infection, CD3 + T lymphocytes in the thymus showed an increase that stabilized over time. At 120 days of infection, we detected a significant decrease in CD79a+ B lymphocytes. The parasite was present in the medullary and corticomedullary regions of 9 out of 15 hamsters. These findings confirm that the presence of a parasite can cause changes in a thymus cell population. However, further studies are needed to evaluate these changes' effects on the immune response of infected animals.
Collapse
Affiliation(s)
- Karen Santos Março
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Jaqueline da Silva Borégio
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Giulia Gonçalves Jussiani
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Laura Flávia Esperança de Souza Ferreira
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Gabriela Venicia Araujo Flores
- Laboratory of Infectious Disease Pathology (LIM/50), Department of Pathology, Faculty of Medicine, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Carmen Maria Sandoval Pacheco
- Laboratory of Infectious Disease Pathology (LIM/50), Department of Pathology, Faculty of Medicine, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Marcia Dalastra Laurenti
- Laboratory of Infectious Disease Pathology (LIM/50), Department of Pathology, Faculty of Medicine, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Gisele Fabrino Machado
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil.
| |
Collapse
|
2
|
Cosway EJ, James KD, Lucas B, Anderson G, White AJ. The thymus medulla and its control of αβT cell development. Semin Immunopathol 2020; 43:15-27. [PMID: 33306154 PMCID: PMC7925449 DOI: 10.1007/s00281-020-00830-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
αβT cells are an essential component of effective immune responses. The heterogeneity that lies within them includes subsets that express diverse self-MHC-restricted αβT cell receptors, which can be further subdivided into CD4+ helper, CD8+ cytotoxic, and Foxp3+ regulatory T cells. In addition, αβT cells also include invariant natural killer T cells that are very limited in αβT cell receptor repertoire diversity and recognise non-polymorphic CD1d molecules that present lipid antigens. Importantly, all αβT cell sublineages are dependent upon the thymus as a shared site of their development. Ongoing research has examined how the thymus balances the intrathymic production of multiple αβT cell subsets to ensure correct formation and functioning of the peripheral immune system. Experiments in both wild-type and genetically modified mice have been essential in revealing complex cellular and molecular mechanisms that regulate thymus function. In particular, studies have demonstrated the diverse and critical role that the thymus medulla plays in shaping the peripheral T cell pool. In this review, we summarise current knowledge on functional properties of the thymus medulla that enable the thymus to support the production of diverse αβT cell types.
Collapse
Affiliation(s)
- Emilie J Cosway
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Andrea J White
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Yan F, Mo X, Liu J, Ye S, Zeng X, Chen D. Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Mol Med Rep 2017; 16:7175-7184. [PMID: 28944829 PMCID: PMC5865843 DOI: 10.3892/mmr.2017.7525] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/12/2017] [Indexed: 01/08/2023] Open
Abstract
The thymus is critical in establishing and maintaining the appropriate microenvironment for promoting the development and selection of T cells. The function and structure of the thymus gland has been extensively studied, particularly as the thymus serves an important physiological role in the lymphatic system. Numerous studies have investigated the morphological features of thymic involution. Recently, research attention has increasingly been focused on thymic proteins as targets for drug intervention. Omics approaches have yielded novel insights into the thymus and possible drug targets. The present review addresses the signaling and transcriptional functions of the thymus, including the molecular mechanisms underlying the regulatory functions of T cells and their role in the immune system. In addition, the levels of cytokines secreted in the thymus have a significant effect on thymic functions, including thymocyte migration and development, thymic atrophy and thymic recovery. Furthermore, the regulation and molecular mechanisms of stress-mediated thymic atrophy and involution were investigated, with particular emphasis on thymic function as a potential target for drug development and discovery using proteomics.
Collapse
Affiliation(s)
- Fenggen Yan
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xiumei Mo
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Junfeng Liu
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Siqi Ye
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xing Zeng
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Dacan Chen
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
4
|
Tang H, Zhang J, Sun X, Qian X, Zhang Y, Jin R. Thymic DCs derived IL-27 regulates the final maturation of CD4(+) SP thymocytes. Sci Rep 2016; 6:30448. [PMID: 27469302 PMCID: PMC5387111 DOI: 10.1038/srep30448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022] Open
Abstract
IL-27, as a pleiotropic cytokine, promotes the differentiation of naïve T cells to Th1, while suppressing Th2 and Th17 differentiation in the periphery. However, the role of IL-27 in the thymocyte development remains unknown. Here we showed that IL-27 was highly expressed in thymic plasmacytoid dendritic cells (pDCs) while its receptor expression was mainly detected in CD4+ single-positive (SP) thymocytes. Deletion of the p28 subunit in DCs resulted in a reduction of the most mature Qa-2+ subsets of CD4+ SP T cells. This defect was rescued by intrathymic administration of exogenous IL-27. In vitro differentiation assay further demonstrated that IL-27 alone was able to drive the maturation of the newly generated 6C10+CD69+CD4+ SP cells into Qa-2+ cells. Collectively, this study has revealed an important role of thymic DCs-derived IL-27 in the regulation of the phenotypic maturation of CD4+ SP thymocytes.
Collapse
Affiliation(s)
- Hui Tang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Jie Zhang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Xiuyuan Sun
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Xiaoping Qian
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Yu Zhang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Rong Jin
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| |
Collapse
|
5
|
Cowan JE, Jenkinson WE, Anderson G. Thymus medulla fosters generation of natural Treg cells, invariant γδ T cells, and invariant NKT cells: what we learn from intrathymic migration. Eur J Immunol 2015; 45:652-60. [PMID: 25615828 PMCID: PMC4405047 DOI: 10.1002/eji.201445108] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/16/2022]
Abstract
The organization of the thymus into distinct cortical and medullary regions enables it to control the step-wise migration and development of immature T-cell precursors. Such a process provides access to specialized cortical and medullary thymic epithelial cells at defined stages of maturation, ensuring the generation of self-tolerant and MHC-restricted conventional CD4+ and CD8+ αβ T cells. The migratory cues and stromal cell requirements that regulate the development of conventional αβ T cells have been well studied. However, the thymus also fosters the generation of several immunoregulatory T-cell populations that form key components of both innate and adaptive immune responses. These include Foxp3+ natural regulatory T cells, invariant γδ T cells, and CD1d-restricted invariant natural killer T cells (iNKT cells). While less is known about the intrathymic requirements of these nonconventional T cells, recent studies have highlighted the importance of the thymus medulla in their development. Here, we review recent findings on the mechanisms controlling the intrathymic migration of distinct T-cell subsets, and relate this to knowledge of the microenvironmental requirements of these cells.
Collapse
Affiliation(s)
- Jennifer E Cowan
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
6
|
Melo-Lima BL, Evangelista AF, de Magalhães DAR, Passos GA, Moreau P, Donadi EA. Differential transcript profiles of MHC class Ib(Qa-1, Qa-2, and Qa-10) and Aire genes during the ontogeny of thymus and other tissues. J Immunol Res 2014; 2014:159247. [PMID: 24829926 PMCID: PMC4009201 DOI: 10.1155/2014/159247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/07/2014] [Indexed: 11/17/2022] Open
Abstract
Qa-2 and Qa-1 are murine nonclassical MHC class I molecules involved in the modulation of immune responses by interacting with T CD8(+) and NK cell inhibitory receptors. During thymic education, the Aire gene imposes the expression of thousands of tissue-related antigens in the thymic medulla, permitting the negative selection events. Aiming to characterize the transcriptional profiles of nonclassical MHC class I genes in spatial-temporal association with the Aire expression, we evaluated the gene expression of H2-Q7(Qa-2), H2-T23(Qa-1), H2-Q10(Qa-10), and Aire during fetal and postnatal development of thymus and other tissues. In the thymus, H2-Q7(Qa-2) transcripts were detected at high levels throughout development and were positively correlated with Aire expression during fetal ages. H2-Q7(Qa-2) and H2-T23(Qa-1) showed distinct expression patterns with gradual increasing levels according to age in most tissues analyzed. H2-Q10(Qa-10) was preferentially expressed by the liver. The Aire transcriptional profile showed increased levels during the fetal period and was detectable in postnatal ages in the thymus. Overall, nonclassical MHC class I genes started to be expressed early during the ontogeny. Their levels varied according to age, tissue, and mouse strain analyzed. This differential expression may contribute to the distinct patterns of mouse susceptibility/resistance to infectious and noninfectious disorders.
Collapse
Affiliation(s)
- Breno Luiz Melo-Lima
- Basic and Applied Immunology Program, Division of Clinical Immunology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Therapies Innovantes, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, Bâtiment Lailler, 75475 Paris Cedex 10, France
- Université Paris-Diderot, Sorbonne Paris-Cité, UMR E5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Adriane Feijó Evangelista
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Danielle Aparecida Rosa de Magalhães
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Philippe Moreau
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Therapies Innovantes, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, Bâtiment Lailler, 75475 Paris Cedex 10, France
- Université Paris-Diderot, Sorbonne Paris-Cité, UMR E5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Eduardo Antonio Donadi
- Basic and Applied Immunology Program, Division of Clinical Immunology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Xu X, Ge Q. Maturation and migration of murine CD4 single positive thymocytes and thymic emigrants. Comput Struct Biotechnol J 2014; 9:e201403003. [PMID: 24757506 PMCID: PMC3995209 DOI: 10.5936/csbj.201403003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 11/22/2022] Open
Abstract
T lymphopoiesis in the thymus was thought to be completed once they reach the single positive (SP) stage, when they are “fully mature” and wait to be exported at random or follow a “first in-first out” manner. Recently, accumulating evidence has revealed that newly generated SP thymocytes undergo further maturation in the thymic medulla before they follow a tightly regulated emigrating process to become recent thymic emigrants (RTEs). RTEs in the periphery then experience a post-thymic maturation and peripheral tolerance and eventually become licensed as mature naïve T cells. This review summarizes the recent progress in the late stage T cell development in and outside of the thymus. The regulation of this developmental process is also discussed.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Medical Immunology, Ministry of Health. Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, P R China
| | - Qing Ge
- Key Laboratory of Medical Immunology, Ministry of Health. Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, P R China
| |
Collapse
|
8
|
Maturation and emigration of single-positive thymocytes. Clin Dev Immunol 2013; 2013:282870. [PMID: 24187562 PMCID: PMC3804360 DOI: 10.1155/2013/282870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/01/2013] [Indexed: 01/01/2023]
Abstract
T lymphopoiesis in the thymus was thought to be completed once it reaches the single positive (SP)
stage, a stage when T cells are “fully mature” and waiting to be exported at random or follow a “first-in-first-out” manner. Recent evidence, however, has revealed that the newly generated SP thymocytes undergo a multistage maturation program in the thymic medulla. Such maturation is followed by a tightly regulated emigration process and a further postthymic maturation of recent thymic emigrants (RTEs). This review summarizes recent progress in the late stage T cell development. The regulation of this developmental process is discussed.
Collapse
|
9
|
Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, Uemura A, Kiyonari H, Abe T, Fukamizu A, Hirashima M, Sawa H, Aoki J, Ishii M, Mochizuki N. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 2012; 122:1416-26. [PMID: 22406534 DOI: 10.1172/jci60746] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/30/2012] [Indexed: 12/11/2022] Open
Abstract
The bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) promotes the egress of newly formed T cells from the thymus and the release of immature B cells from the bone marrow. It has remained unclear, however, where and how S1P is released. Here, we show that in mice, the S1P transporter spinster homolog 2 (Spns2) is responsible for the egress of mature T cells and immature B cells from the thymus and bone marrow, respectively. Global Spns2-KO mice exhibited marked accumulation of mature T cells in thymi and decreased numbers of peripheral T cells in blood and secondary lymphoid organs. Mature recirculating B cells were reduced in frequency in the bone marrow as well as in blood and secondary lymphoid organs. Bone marrow reconstitution studies revealed that Spns2 was not involved in S1P release from blood cells and suggested a role for Spns2 in other cells. Consistent with these data, endothelia-specific deletion of Spns2 resulted in defects of lymphocyte egress similar to those observed in the global Spns2-KO mice. These data suggest that Spns2 functions in ECs to establish the S1P gradient required for T and B cells to egress from their respective primary lymphoid organs. Furthermore, Spns2 could be a therapeutic target for a broad array of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kroetz DN, Deepe GS. An aberrant thymus in CCR5-/- mice is coupled with an enhanced adaptive immune response in fungal infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:5949-55. [PMID: 21478401 DOI: 10.4049/jimmunol.1003876] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CCR5 is a potent mediator of regulatory T cell (Treg) chemotaxis. In murine histoplasmosis, mice lacking CCR5 or endogenous CCL4 have a reduced number of Tregs in the lungs, which results in accelerated resolution of infection. In this study, we demonstrate that CCR5 controls the outcome of Histoplasma capsulatum infection by dictating thymic and lymph node egress of Tregs. Mice lacking CCR5 or treated with a mAb to CCL4 had more Tregs in the thymus prior to and during infection. Thymic accumulation was associated with diminished transcription of the sphingosine 1-phosphate 1 receptor and Krüppel-like factor 2, both of which regulate thymic and lymph node emigration of T cells. The significance of CCR5 in Treg egress was demonstrated by generating mixed bone marrow chimeras. Chimeric mice had an increased proportion of CCR5(-/-) Tregs in the thymus and lymph nodes and a decreased proportion of Tregs in the lungs prior to and during H. capsulatum infection. Hence, CCR5 signaling regulates pathogen persistence in murine histoplasmosis by regulating Tregs exiting from the thymus and lymph nodes and, consequently, their subsequent homing in the periphery.
Collapse
Affiliation(s)
- Danielle N Kroetz
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | |
Collapse
|
11
|
Bosco N, Kirberg J, Ceredig R, Agenès F. Peripheral T cells in the thymus: have they just lost their way or do they do something? Immunol Cell Biol 2009; 87:50-7. [DOI: 10.1038/icb.2008.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nabil Bosco
- Developmental and Molecular Immunology Laboratory, Department of Biomedicine, University of Basel Basel Switzerland
| | - Jörg Kirberg
- Department of Biochemistry, University of Lausanne Epalinges Switzerland
| | - Rod Ceredig
- Developmental and Molecular Immunology Laboratory, Department of Biomedicine, University of Basel Basel Switzerland
| | - Fabien Agenès
- INSERM U743, Département de microbiologie et immunologie de l'Université de Montréal, CR‐CHUM Montréal Quebec Canada
| |
Collapse
|
12
|
Jin R, Wang W, Yao JY, Zhou YB, Qian XP, Zhang J, Zhang Y, Chen WF. Characterization of the in vivo dynamics of medullary CD4+CD8- thymocyte development. THE JOURNAL OF IMMUNOLOGY 2008; 180:2256-63. [PMID: 18250433 DOI: 10.4049/jimmunol.180.4.2256] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Our previous studies have defined a differentiation program followed by the newly generated single-positive (SP) thymocytes before their emigration to the periphery. In the present study, we further characterize the development of CD4SP cells in the thymic medulla using mainly intrathymic adoptive transfer assays. By analyzing the differentiation kinetics of the donor cells, which were shown to home correctly to the medullary region following adoptive transfer, we established the precursor-progeny relationship among the four subsets of CD4SP thymocytes (SP1-SP4) and demonstrated that the progression from SP1 to SP4 was unidirectional and largely synchronized. Notably, while the phenotypic maturation from SP1 to SP4 was achieved in 2-3 days, a small fraction of donor cells could be retained in the thymus for a longer period, during which they further matured in function. BrdU incorporation indicated that cell expansion occurred at multiple stages except SP1. Nevertheless, CFSE labeling revealed that only a limited number of cells actually divided during their stay in the medulla. As to the thymic emigration, there was a clear bias toward cells with increasing maturity, but no distinction was found between dividing and nondividing thymocytes. Collectively, these data not only provide solid evidence for a highly ordered differentiation program for CD4SP thymocytes, but they also illustrate several important features associated with the developmental process.
Collapse
Affiliation(s)
- Rong Jin
- Department of Immunology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li J, Li Y, Yao JY, Jin R, Zhu MZ, Qian XP, Zhang J, Fu YX, Wu L, Zhang Y, Chen WF. Developmental pathway of CD4+CD8- medullary thymocytes during mouse ontogeny and its defect in Aire-/- mice. Proc Natl Acad Sci U S A 2007; 104:18175-80. [PMID: 17984055 PMCID: PMC2084316 DOI: 10.1073/pnas.0708884104] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Indexed: 01/19/2023] Open
Abstract
The newly generated single-positive (SP) thymocytes undergo further maturation in the thymic medulla before their emigration to the periphery. The present study was undertaken to validate a developmental program we proposed for CD4SP medullary thymocytes and to explore the mechanisms regulating this process. During mouse ontogeny, the emergence of different subsets of CD4SP thymocytes followed a strict temporal order from SP1 to SP4. Parallel to the transition in surface phenotype, a steady increase in function was observed. As further evidence, purified SP1 cells were able to sequentially give rise to SP2, SP3, and SP4 cells in intrathymic adoptive transfer and in culture. Notably, the development of CD4SP cells in the medulla seemed to be critically dependent on a functionally intact medullary epithelial cell compartment because Relb and Aire deficiency were found to cause severe blockage at the transition from SP3 to SP4. Taken together, this work establishes an ontogenetically and functionally relevant maturation program for CD4SP thymocytes. Precise dissection of this program should facilitate further inquiry into the molecular mechanisms governing normal thymocyte development and its disturbance in pathological conditions.
Collapse
Affiliation(s)
- Juan Li
- *Department of Immunology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| | - Yan Li
- *Department of Immunology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| | - Jin-Yan Yao
- *Department of Immunology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| | - Rong Jin
- *Department of Immunology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| | - Ming-Zhao Zhu
- Department of Pathology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637; and
| | - Xiao-Ping Qian
- *Department of Immunology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| | - Jun Zhang
- *Department of Immunology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| | - Yang-Xin Fu
- Department of Pathology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637; and
| | - Li Wu
- *Department of Immunology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia
| | - Yu Zhang
- *Department of Immunology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| | - Wei-Feng Chen
- *Department of Immunology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| |
Collapse
|
14
|
Liu HH, Xie M, Schneider MD, Chen ZJ. Essential role of TAK1 in thymocyte development and activation. Proc Natl Acad Sci U S A 2006; 103:11677-82. [PMID: 16857737 PMCID: PMC1544229 DOI: 10.1073/pnas.0603089103] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Indexed: 01/13/2023] Open
Abstract
The protein kinase TAK1 mediates the activation of NF-kappaB in response to stimulation by proinflammatory cytokines and microbial pathogens in the innate immunity pathways. However, the physiological function of TAK1 in the adaptive immunity pathways is unclear. By engineering mice lacking TAK1 in T cells, here, we show that TAK1 is essential for thymocyte development and activation in vivo. Deletion of TAK1 prevented the maturation of single-positive thymocytes displaying CD4 or CD8, leading to reduction of T cells in the peripheral tissues. Thymocytes lacking TAK1 failed to activate NF-kappaB and JNK and were prone to apoptosis upon stimulation. Our results provide the genetic evidence that TAK1 is required for the activation of NF-kappaB in thymocytes and suggest that TAK1 plays a central role in both innate and adaptive immunity.
Collapse
Affiliation(s)
| | - Min Xie
- Department of Medicine, Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030
| | - Michael D. Schneider
- Department of Medicine, Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030
| | - Zhijian J. Chen
- *Department of Molecular Biology and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148; and
| |
Collapse
|
15
|
Alfonso C, McHeyzer-Williams MG, Rosen H. CD69 down-modulation and inhibition of thymic egress by short- and long-term selective chemical agonism of sphingosine 1-phosphate receptors. Eur J Immunol 2006; 36:149-59. [PMID: 16342326 DOI: 10.1002/eji.200535127] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thymic development requires proliferation, selection, maturation and release of mature single-positive CD4 and CD8 T cells into the periphery. In mice, non-selective sphingosine-1 phosphate (S1P) receptor agonists, active on four of the five known S1P receptors, alter thymocyte phenotype and egress. Here, we show that down-modulation of CD69 occurs acutely and transiently at a discrete and late stage of medullary development after a single-dose administration of S1P(1) receptor-selective agonist, which induces long-term tonic receptor activation in the absence of receptor degradation. In addition, agonist acutely inhibited egress of mature thymocytes into peripheral lymphoid organs, suggesting that both the phenotype and migration of medullary thymocytes are regulated simultaneously and coordinately by agonism of S1P(1) alone. Long-term dosing shifted the early/late medullary thymocyte ratio with an expansion of the late medullary compartment, as mature CD69(-) thymocytes were retained within the thymus. Therefore, chemical agonism of S1P(1) accelerates medullary phenotypic maturation and inhibits egress, leading to the expansion and accumulation of the recent thymocyte emigrant population in the medulla. However, chemical agonism fails to replicate the S1P(1)-null CD69(hi) late medullary phenotype, suggesting that agonism and gene deletion operate by distinct mechanisms, and that functional receptor antagonism may not be required for lymphocyte sequestration.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cell Differentiation
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/immunology
- Down-Regulation
- Female
- Flow Cytometry
- Lectins, C-Type
- Lymph Nodes/cytology
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymphocytes/cytology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Mice
- Mice, Inbred C57BL
- Oxadiazoles/pharmacology
- Receptors, Lysosphingolipid/agonists
- Receptors, Lysosphingolipid/drug effects
- Receptors, Lysosphingolipid/immunology
- Thiophenes/pharmacology
- Thymus Gland/drug effects
- Thymus Gland/growth & development
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Christopher Alfonso
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
16
|
Ehlers M, Laule-Kilian K, Petter M, Aldrian CJ, Grueter B, Würch A, Yoshida N, Watanabe T, Satake M, Steimle V. Morpholino antisense oligonucleotide-mediated gene knockdown during thymocyte development reveals role for Runx3 transcription factor in CD4 silencing during development of CD4-/CD8+ thymocytes. THE JOURNAL OF IMMUNOLOGY 2004; 171:3594-604. [PMID: 14500656 DOI: 10.4049/jimmunol.171.7.3594] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During thymic T cell development, immature CD4(+)/CD8(+) thymocytes develop into either CD4(+)/CD8(-) helper or CD4(-)/CD8(+) CTLs. The molecular mechanisms governing the complex selection and differentiation steps during thymic T cell development are not well understood. Here we developed a novel approach to investigate gene function during thymocyte development. We transfected ex vivo isolated immature thymocytes with gene-specific morpholino antisense oligonucleotides and induced differentiation in cell or organ cultures. A morpholino oligonucleotide specific for CD8alpha strongly reduces CD8 expression. To our knowledge, this is the first demonstrated gene knockdown by morpholino oligonucleotides in primary lymphocytes. Using this approach, we show here that the transcription factor Runx3 is involved in silencing of CD4 expression during CD8 T cell differentiation. Runx3 protein expression appears late in thymocyte differentiation and is confined to mature CD8 single-positive thymocytes, whereas Runx3 mRNA is transcribed in mature CD4 and CD8 thymocytes. Therefore, Runx3 protein expression is regulated at a post-transcriptional level. The knockdown of Runx3 protein expression through morpholino oligonucleotides inhibited the development of CD4(-)/CD8(+) T cells. Instead, mature cells with a CD4(+)/CD8(+) phenotype accumulated. Potential Runx binding sites were identified in the CD4 gene silencer element, which are bound by Runx protein in EMSAs. Mutagenesis of potential Runx binding sites in the CD4 gene silencer abolished silencing activity in a reporter gene assay, indicating that Runx3 is involved in CD4 gene silencing. The experimental approach developed here should be valuable for the functional analysis of other candidate genes in T cell differentiation.
Collapse
Affiliation(s)
- Marc Ehlers
- Hans Spemann Laboratories, Max Planck Institute of Immunology, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schmidt-Supprian M, Courtois G, Tian J, Coyle AJ, Israël A, Rajewsky K, Pasparakis M. Mature T cells depend on signaling through the IKK complex. Immunity 2003; 19:377-89. [PMID: 14499113 DOI: 10.1016/s1074-7613(03)00237-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transcription factor NF-kappaB is implicated in various aspects of T cell development and function. The IkappaB kinase (IKK) complex, consisting of two kinases, IKK1/alpha and IKK2/beta, and the NEMO/IKKgamma regulatory subunit, mediates NF-kappaB activation by most known stimuli. Adoptive transfer experiments had demonstrated that IKK1 and IKK2 are dispensable for T cell development. We show here that T lineage-specific deletion of IKK2 allows survival of naive peripheral T cells but interferes with the generation of regulatory and memory T cells. T cell-specific ablation of NEMO or replacement of IKK2 with a kinase-dead mutant prevent development of peripheral T cells altogether. Thus, IKK-induced NF-kappaB activation, mediated by either IKK1 or IKK2, is essential for the generation and survival of mature T cells, and IKK2 has an additional role in regulatory and memory T cell development.
Collapse
Affiliation(s)
- Marc Schmidt-Supprian
- Center for Blood Research, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Blood lymphocyte numbers, which are maintained by recirculation through secondary lymphoid organs, are essential for the efficient development of immune responses. Recirculating populations of B and T lymphocytes are regulated by the sphingosine-1-phosphate (S1P) receptor-dependent control of lymphocyte egress. T-cell egress from thymus into blood, egress from lymph node and Peyer's patch into lymph, and B-cell egress into lymph are rapidly and completely inhibited by agonism of S1P receptors. Mesenteric lymph nodes show log-jamming of lymphocytes subjacent to sinus-lining endothelium. Agonism of S1P receptors produces rapid peripheral blood lymphopenia, which is maintained in the presence of receptor agonist. Effector CD4+ and CD8+ T cells, produced by clonal expansion in draining lymph node in response to antigen, are sequestered in lymph node and fail to reach the peripheral blood. The S1P receptor system may represent an early physiological link between the non-specific inflammatory response and the alteration of lymphocyte traffic through draining lymph nodes. Pharmacological subversion of the S1P receptor system, through systemic S1P agonist-induced inhibition of lymphocyte egress, suppresses antigenic responses to peripheral, but not to systemically, delivered antigen. This inhibition induces significant immunosuppression in models of transplantation and autoimmune tissue damage that may prove to be of clinical benefit.
Collapse
Affiliation(s)
- Hugh Rosen
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|