1
|
Wang YX, Deng ZH, Li YY, Bai K, Ma J, Liu Y, Chen Q. Function of hematopoiesis and bone marrow niche in inflammation and non-hematopoietic diseases. LIFE MEDICINE 2025; 4:lnaf015. [PMID: 40376111 PMCID: PMC12076419 DOI: 10.1093/lifemedi/lnaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 05/18/2025]
Abstract
Hematopoiesis and the behavior of hematopoietic stem and progenitor cells (HSPCs) are regulated by the bone marrow niche. Here, we introduce the major niche cell types in bone marrow and their response to stress condition. We highlight the hematopoietic response and bone marrow niche adaptation to inflammatory condition and non-hematopoietic diseases, which are not systematically summarized. These emerging data suggest targeting hematopoiesis and bone marrow niche may provide novel therapeutic target to precisely control the progression of the diseases.
Collapse
Affiliation(s)
- Yu-xiang Wang
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Zhao-hua Deng
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Yu-yan Li
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Ke Bai
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
- The Institute of Future Health, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qi Chen
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| |
Collapse
|
2
|
Cifuentes M, Verdejo HE, Castro PF, Corvalan AH, Ferreccio C, Quest AFG, Kogan MJ, Lavandero S. Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Physiology (Bethesda) 2025; 40:0. [PMID: 39078396 DOI: 10.1152/physiol.00021.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammation is an important physiological response of the organism to restore homeostasis upon pathogenic or damaging stimuli. However, the persistence of the harmful trigger or a deficient resolution of the process can evolve into a state of low-grade, chronic inflammation. This condition is strongly associated with the development of several increasingly prevalent and serious chronic conditions, such as obesity, cancer, and cardiovascular diseases, elevating overall morbidity and mortality worldwide. The current pandemic of chronic diseases underscores the need to address chronic inflammation, its pathogenic mechanisms, and potential preventive measures to limit its current widespread impact. The present review discusses the current knowledge and research gaps regarding the association between low-grade chronic inflammation and chronic diseases, focusing on obesity, cardiovascular diseases, digestive diseases, and cancer. We examine the state of the art in selected aspects of the topic and propose future directions and approaches for the field.
Collapse
Affiliation(s)
- Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- OMEGA Laboratory, Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Hematology and Oncology, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Public Health, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Department of Pharmacological & Toxicological Chemistry, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
- Department of Biochemistry & Molecular Biology, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
3
|
Nayak TK, Parasania D, Tilley DG. Adrenergic orchestration of immune cell dynamics in response to cardiac stress. J Mol Cell Cardiol 2024; 196:115-124. [PMID: 39303854 PMCID: PMC12059806 DOI: 10.1016/j.yjmcc.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Immune cells contribute approximately 5-10 % of the heart's total cell population, including several myeloid cell and lymphocyte cell subsets, which, despite their relatively small percentages, play important roles in cardiac homeostasis and remodeling responses to various forms of injury and long-term stress. Pathological cardiac stress activates the sympathetic nervous system (SNS), resulting in the release of the catecholamines epinephrine and norepinephrine either systemically or from sympathetic nerve terminals within various lymphoid organs. Acting at α- or β-adrenergic receptors (αAR, βAR), catecholamines regulate immune cell hematopoiesis, egress and migration in response to stress. Classically, αAR stimulation tends to promote inflammatory responses while βAR stimulation has typically been shown to be immunosuppressive, though the effects can be nuanced depending on the immune cells subtype, the site of regulation and pathophysiological context. Herein, we will discuss several facets of SNS-mediated regulation of immune cells and their response to cardiac stress, including: catecholamine response to cardiovascular stress and action at their receptors, adrenergic regulation of hematopoiesis, immune cell retention and release from the bone marrow, adrenergic regulation of splenic immune cells and their retention, as well as adrenergic regulation of immune cell recruitment to the injured heart, including neutrophils, monocytes and macrophages. A particular focus will be given to βAR-mediated effects on myeloid cells in response to acute or chronic cardiac stress.
Collapse
Affiliation(s)
- Tapas K Nayak
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dev Parasania
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
4
|
Tyus D, Leslie JL, Naz F, Uddin MJ, Thompson B, Petri WA. The sympathetic nervous system drives hyperinflammatory responses to Clostridioides difficile infection. Cell Rep Med 2024; 5:101771. [PMID: 39368481 PMCID: PMC11513855 DOI: 10.1016/j.xcrm.2024.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired infections in the United States, known for triggering severe disease by hyperactivation of the host response. In this study, we determine the impact of the sympathetic nervous system (SNS) on CDI disease severity. Mouse models of CDI are administered inhibitors of SNS activity prior to CDI. Chemical sympathectomy or pharmacological inhibition of norepinephrine synthesis greatly reduces mortality and disease severity in the CDI model. Pharmacological blockade or genetic ablation of the alpha 2 adrenergic receptor ameliorates intestinal inflammation, disease severity, and mortality rate. These results underscore the role of the SNS and the alpha 2 adrenergic receptor in CDI pathogenesis and suggest that targeting neural systems could be a promising approach to therapy in severe disease.
Collapse
Affiliation(s)
- David Tyus
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jhansi L Leslie
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Farha Naz
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Md Jashim Uddin
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brandon Thompson
- Departments of Medicine, Pathology, Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - William A Petri
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA 22908, USA; Departments of Medicine, Pathology, Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
Kigar SL, Lynall ME, DePuyt AE, Atkinson R, Sun VH, Samuels JD, Eassa NE, Poffenberger CN, Lehmann ML, Listwak SJ, Livak F, Elkahloun AG, Clatworthy MR, Bullmore ET, Herkenham M. Chronic social defeat stress induces meningeal neutrophilia via type I interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610447. [PMID: 39257811 PMCID: PMC11383661 DOI: 10.1101/2024.08.30.610447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Animal models of stress and stress-related disorders are also associated with blood neutrophilia. The mechanistic relevance of this to symptoms or behavior is unclear. We used cytometry, immunohistochemistry, whole tissue clearing, and single-cell sequencing to characterize the meningeal immune response to chronic social defeat (CSD) stress in mice. We find that chronic, but not acute, stress causes meningeal neutrophil accumulation, and CSD increases neutrophil trafficking in vascular channels emanating from skull bone marrow (BM). Transcriptional analysis suggested CSD increases type I interferon (IFN-I) signaling in meningeal neutrophils. Blocking this pathway via the IFN-I receptor (IFNAR) protected against the anhedonic and anxiogenic effects of CSD stress, potentially through reduced infiltration of IFNAR+ neutrophils into the meninges from skull BM. Our identification of IFN-I signaling as a putative mediator of meningeal neutrophil recruitment may facilitate development of new therapies for stress-related disorders.
Collapse
Affiliation(s)
- Stacey L. Kigar
- National Institute of Mental Health, Bethesda, MD, USA
- Department of Medicine, University of Cambridge, UK
- Department of Psychiatry, University of Cambridge, UK
| | - Mary-Ellen Lynall
- Department of Psychiatry, University of Cambridge, UK
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | | | | | | | | | | | | | | | - Ferenc Livak
- Laboratory of Genome Integrity, Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - Abdel G. Elkahloun
- Microarrays and Single-Cell Genomics, National Human Genome Research Institute, Bethesda, MD, USA
| | - Menna R. Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, UK
| | | | | |
Collapse
|
6
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
7
|
Reel JM, Abbadi J, Bueno AJ, Cizio K, Pippin R, Doyle DA, Mortan L, Bose JL, Cox MA. The Sympathetic Nervous System Is Necessary for Development of CD4+ T-Cell Memory Following Staphylococcus aureus Infection. J Infect Dis 2023; 228:966-974. [PMID: 37163747 PMCID: PMC10547460 DOI: 10.1093/infdis/jiad154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Lymph nodes and spleens are innervated by sympathetic nerve fibers that enter alongside arteries. Despite discovery of these nerve fibers nearly 40 years ago, the role of these nerves during response to infection remains poorly defined. We have found that chemical depletion of sympathetic nerve fibers compromises the ability of mice to develop protective immune memory to a Staphylococcus aureus infection. Innate control of the primary infection was not impacted by sympathectomy. Germinal center formation is also compromised in nerve-depleted animals; however, protective antibody responses are still generated. Interestingly, protective CD4+ T-cell memory fails to form in the absence of sympathetic nerves after S aureus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laura Mortan
- Stephenson Cancer Center
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City
| | - Maureen A Cox
- Department of Microbiology and Immunology
- Stephenson Cancer Center
| |
Collapse
|
8
|
Meng XL, Lu JC, Zeng HY, Chen Z, Guo XJ, Gao C, Pei YZ, Hu SY, Ye M, Sun QM, Yang GH, Cai JB, Huang PX, Yv L, Zhang L, Shi YH, Ke AW, Zhou J, Fan J, Chen Y, Huang XY, Shi GM. The clinical implications and molecular features of intrahepatic cholangiocarcinoma with perineural invasion. Hepatol Int 2023; 17:63-76. [PMID: 36418844 PMCID: PMC9895046 DOI: 10.1007/s12072-022-10445-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/23/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Perineural invasion (PNI) is associated with metastasis in malignancies, including intrahepatic cholangiocarcinoma (ICC), and is correlated with poor prognosis. METHODS The study included three large cohorts: ZS-ICC and TMA cohorts from our team, MSK cohort from a public database, and a small cohort named cohort 4. Prognostic implications of PNI were investigated in MSK cohort and TMA cohort. PNI-related genomic and transcriptomic profiles were analyzed in MSK and ZS-ICC cohorts. GO, KEGG, and ssGSEA analyses were performed. Immunohistochemistry was used to investigate the relationship between PNI and markers of neurons, hydrolases, and immune cells. The efficacy of adjuvant therapy in ICC patients with PNI was also assessed. RESULTS A total of 30.6% and 20.7% ICC patients had PNI in MSK and TMA cohorts respectively. Patients with PNI presented with malignant phenotypes such as high CA19-9, the large bile duct type, lymph node invasion, and shortened overall survival (OS) and relapse-free survival (RFS). Nerves involved in PNI positively express tyrosine hydroxylase (TH), a marker of sympathetic nerves. Patients with PNI showed high mutation frequency of KRAS and an immune suppressive metastasis prone niche of decreased NK cell, increased neutrophil, and elevated PD-L1, CD80, and CD86 expression. Patients with PNI had an extended OS after adjuvant therapy with TEGIO, GEMOX, or capecitabine. CONCLUSION Our study deciphered the genomic features and the immune suppressive metastasis-prone niche in ICC with PNI. Patients with PNI showed a poor prognosis after surgery but a good response to adjuvant chemotherapy.
Collapse
Affiliation(s)
- Xian-Long Meng
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Jia-Cheng Lu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Hai-Ying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhen Chen
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Xiao-Jun Guo
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Chao Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan-Zi Pei
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shu-Yang Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mu Ye
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qi-Man Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guo-Huang Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Pei-Xin Huang
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Lei Yv
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Lv Zhang
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Ai-Wu Ke
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Yi Chen
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiao-Yong Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China.
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China.
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Fujita S, Morikawa T, Tamaki S, Sezaki M, Takizawa H, Okamoto S, Kataoka K, Takubo K. Quantitative analysis of sympathetic and nociceptive innervation across bone marrow regions in mice. Exp Hematol 2022; 112-113:44-59.e6. [PMID: 35907584 DOI: 10.1016/j.exphem.2022.07.297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
Bone marrow (BM) innervation regulates the mobilization of hematopoietic stem and progenitor cells (HSPCs) from BM and stress hematopoiesis by either acting directly on HSPCs or by altering the niche function of mesenchymal and endothelial cells. However, the spatial distribution of BM innervation across bone regions is yet to be fully elucidated. Thus, we aimed to characterize the distribution of sympathetic and nociceptive nerves in each bone and BM region, using three-dimensional quantitative microscopy. We discovered that sympathetic and nociceptive nerves were the major fibers throughout the BM. Compared to other femoral regions, central parts of the femoral BM were more densely innervated by both sympathetic and nociceptive nerves. Each region of the sternum was similarly innervated by sympathetic and nociceptive nerves. Further, the majority of sympathetic and nociceptive nerves in the BM ran parallel with arteries and arterioles, whereas the degree varied according to the bone types or BM regions. In conclusion, this study provides spatial, topological, and functional information on BM innervation in a quantitative manner and demonstrates that sympathetic and nociceptive nerves are two major components in BM innervation, mostly associated with arteries and arterioles.
Collapse
Affiliation(s)
- Shinya Fujita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinpei Tamaki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Maiko Sezaki
- Laboratory of Stem Cell Stress; Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | | | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keisuke Kataoka
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.
| |
Collapse
|
10
|
Korbecki J, Gąssowska-Dobrowolska M, Wójcik J, Szatkowska I, Barczak K, Chlubek M, Baranowska-Bosiacka I. The Importance of CXCL1 in Physiology and Noncancerous Diseases of Bone, Bone Marrow, Muscle and the Nervous System. Int J Mol Sci 2022; 23:ijms23084205. [PMID: 35457023 PMCID: PMC9024980 DOI: 10.3390/ijms23084205] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
This review describes the role of CXCL1, a chemokine crucial in inflammation as a chemoattractant for neutrophils, in physiology and in selected major non-cancer diseases. Due to the vast amount of available information, we focus on the role CXCL1 plays in the physiology of bones, bone marrow, muscle and the nervous system. For this reason, we describe its effects on hematopoietic stem cells, myoblasts, oligodendrocyte progenitors and osteoclast precursors. We also present the involvement of CXCL1 in diseases of selected tissues and organs including Alzheimer’s disease, epilepsy, herpes simplex virus type 1 (HSV-1) encephalitis, ischemic stroke, major depression, multiple sclerosis, neuromyelitis optica, neuropathic pain, osteoporosis, prion diseases, rheumatoid arthritis, tick-borne encephalitis (TBE), traumatic spinal cord injury and West Nile fever.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Jerzy Wójcik
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
11
|
Nishioka R, Nishi Y, Choudhury ME, Miyaike R, Shinnishi A, Umakoshi K, Takada Y, Sato N, Aibiki M, Yano H, Tanaka J. Surgical stress quickly affects the numbers of circulating B-cells and neutrophils in murine septic and aseptic models through a β 2 adrenergic receptor. J Immunotoxicol 2022; 19:8-16. [PMID: 35232327 DOI: 10.1080/1547691x.2022.2029630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Sepsis is a pathology accompanied by increases in myeloid cells and decreases in lymphoid cells in circulation. In a murine sepsis model induced by cecum ligation and puncture (CLP), increasing numbers of neutrophils and decreasing levels of B-cells in circulation are among the earliest changes in the immune system. However, to date, the mechanisms for these changes remain to be elucidated. The study here sought to elucidate mechanisms underlying the changes in the leukocyte levels after CLP and also to determine what, if any, role for an involvement of the sympathetic nervous system (SNS). Here, male C57/BL6 mice were subjected to CLP or sham-CLP (abdominal wall incised, but cecum was not punctured). The changes in the number of circulating leukocytes over time were then investigated using flow cytometry. The results showed that a sham-CLP led to increased polymorphonuclear cells (PMN; most of which are neutrophils) and decreased B-cells in the circulation to an extent similar to that induced by CLP. Effects of adrenergic agonists and antagonists, as well as of adrenalectomy, were also examined in mice that underwent CLP or sham-CLP. Administering adrenaline or a β2 adrenergic receptor agonist (clenbuterol) to mice 3 h before sacrifice produced almost identical changes to as what was seen 2 h after performing a sham-CLP. In contrast, giving a β2 adrenergic receptor antagonist ICI118,551 1 h before a CLP or sham-CLP suppressed the expected changes 2 h after the operations. Noradrenaline and an α1 adrenergic receptor agonist phenylephrine did not exert significant effects. Adrenalectomy 24 h before a sham-CLP significantly abolished the expected sham-CLP-induced changes seen earlier. Clenbuterol increased splenocyte expression of Cxcr4 (a chemokine receptor gene); adrenalectomy abolished sham-CLP-induced Cxcr4 expression. A CXCR4 antagonist AMD3100 repressed the sham-CLP-induced changes. From these results, it may be concluded that sepsis-induced activation of the SNS may be one cause for immune dysfunction in sepsis - regardless of the pathogenetic processes.
Collapse
Affiliation(s)
- Ryutaro Nishioka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan.,Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Yusuke Nishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan.,Department of Hepato-biliary Pancreatic Surgery and Breast Surgery, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Riko Miyaike
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Ayataka Shinnishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Kensuke Umakoshi
- Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan.,Advanced Emergency and Critical Care Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Yasutsugu Takada
- Department of Hepato-biliary Pancreatic Surgery and Breast Surgery, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Norio Sato
- Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Mayuki Aibiki
- Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| |
Collapse
|
12
|
Nakai A, Leach S, Suzuki K. Control of immune cell trafficking through inter-organ communication. Int Immunol 2021; 33:327-335. [PMID: 33751050 DOI: 10.1093/intimm/dxab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
Cell migration is a cardinal feature of the immune system. Immune cell trafficking is orchestrated principally by chemokines and adhesion molecules, which guide the cells to the right place and at the right time to efficiently induce immune responses. Recent studies have demonstrated that signals from other organ systems influence the expression of and responsiveness to these guidance cues and consequentially immune cell migration. Neuronal inputs control entry and exit of immune cells to and from lymphoid and non-lymphoid tissues. The circadian clock helps establish diurnal variations in immune cell distribution among tissues. Nutritional status also alters immune cell homing to the bone marrow. In this review, we summarize the current knowledge about inter-organ control of immune cell trafficking and discuss the physiological and pathological significance of these mechanisms.
Collapse
Affiliation(s)
- Akiko Nakai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Sarah Leach
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Rapidly emerging evidence implicates an important role of gut-brain-bone marrow (BM) axis involving gut microbiota (GM), gut epithelial wall permeability, increased production of pro-inflammatory BM cells and neuroinflammation in hypertension (HTN). However, the precise sequence of events involving these organs remains to be established. Furthermore, whether an impaired gut-brain-BM axis is a cause or consequence of HTN is actively under investigation. This will be extremely important for translation of this fundamental knowledge to novel, innovative approaches for the control and management of HTN. Therefore, our objectives are to summarize the latest hypothesis, provide evidence for and against the impaired gut, BM and brain interactions in HTN and discuss perspectives and future directions. RECENT FINDINGS Hypertensive stimuli activate autonomic neural pathways resulting in increased sympathetic and decreased parasympathetic cardiovascular modulation. This directly affects the functions of cardiovascular-relevant organs to increase blood pressure. Increases in sympathetic drive to the gut and BM also trigger sequences of signaling events that ultimately contribute to altered GM, increased gut permeability, enhanced gut- and brain-targeted pro-inflammatory cells from the BM in perpetuation and establishment of HTN. SUMMARY In this review, we present the mechanisms involving the brain, gut, and BM, whose dysfunctional interactions may be critical in persistent neuroinflammation and key in the development and establishment of HTN.
Collapse
Affiliation(s)
- Jing Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | |
Collapse
|
14
|
Suzuki K, Shichita T. Introduction: Immuno-neural Connections Special Issue. Int Immunol 2020. [DOI: 10.1093/intimm/dxaa065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kazuhiro Suzuki
- WPI Immunology Frontier Research Center, Osaka, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Takashi Shichita
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|