1
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Listeria Rhomboencephalitis in an Immunocompetent Host. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2021. [DOI: 10.1097/ipc.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Stocksmeier T, Köhler K, Prenger-Berninghoff E. [Listeriosis in a chinchilla herd - a case report]. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2020; 48:297-303. [PMID: 32823352 DOI: 10.1055/a-1197-4475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A 6-year-old female chinchilla from a small colony in residential housing was presented due to lethargy and anorexia. Besides a ketoacidosis diagnosed by urinalysis, sepsis was suspected. Symptomatic treatment did not lead to any improvement, in consequence the animal was euthanized. On the basis of histopathological, immunohistological, and bacteriological examinations an infection with Listeria monocytogenes was diagnosed. The pathogen was also detectable in the feces of 2 other animals of the herd, one of which died and the other survived. The herd was treated with antibiotics following microbiologic sensitivity testing. At the end of the 2-month observation period, 3 out of 7 chinchillas were still alive. The presented case report describes the detection of listeriosis in pet chinchillas, the pathogenesis of the disease, as well as the diagnostic options and therapy.
Collapse
Affiliation(s)
| | - Kernt Köhler
- Institut für Veterinär-Pathologie, Justus-Liebig-Universität Gießen
| | | |
Collapse
|
4
|
Choi MH, Park YJ, Kim M, Seo YH, Kim YA, Choi JY, Yong D, Jeong SH, Lee K. Increasing Incidence of Listeriosis and Infection-associated Clinical Outcomes. Ann Lab Med 2018; 38:102-109. [PMID: 29214753 PMCID: PMC5736668 DOI: 10.3343/alm.2018.38.2.102] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/11/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Listeriosis caused by Listeria monocytogenes has a high case-fatality rate (CFR) of approximately 20% to 30%. An increasing incidence of listeriosis has been reported in many countries recently. We investigated the annual incidence, clinical characteristics, and outcomes of listeriosis at three different hospitals in Korea and evaluated the effects of appropriate empiric antimicrobial treatments on patient outcomes. METHODS We retrospectively collected the data of all culture-positive cases of human listeriosis from three hospitals of different sizes in Korea during 2006-2016 and calculated the annual number of cases and incidence per 100,000 admissions. RESULTS A total of 58 patients with L. monocytogenes were included in this study. The incidence of listeriosis was significantly higher in 2013-2016 than in 2006-2012 (RR 3.1; 95% CI 1.79-5.36; P<0.001), mainly because of an increase in patients over 60 years of age (RR 3.69; 95% CI 1.70-8.02; P<0.001). Multivariate analysis showed that healthcare-associated infection (adjusted OR, 12.15; 95% CI, 2.56-86.01; P=0.004) and empirical treatment with first-line antimicrobial agents (adjusted OR, 0.08; 95% CI, 0.00-0.63; P=0.044) were associated with CFR. CONCLUSIONS Healthcare-associated infections caused by L. monocytogenes are associated with high CFR. Adequate initial empirical treatments could reduce CFR, suggesting that careful consideration of an empirical antimicrobial regimen is warranted for elderly or immunocompromised patients admitted to the hospital.
Collapse
Affiliation(s)
- Min Hyuk Choi
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Yu Jin Park
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Myungsook Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Young Hee Seo
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Jun Yong Choi
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Carvalho F, Atilano ML, Pombinho R, Covas G, Gallo RL, Filipe SR, Sousa S, Cabanes D. L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to Antimicrobial Peptides by Delaying Interaction with the Membrane. PLoS Pathog 2015; 11:e1004919. [PMID: 26001194 PMCID: PMC4441387 DOI: 10.1371/journal.ppat.1004919] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/27/2015] [Indexed: 11/29/2022] Open
Abstract
Listeria monocytogenes is an opportunistic Gram-positive bacterial pathogen responsible for listeriosis, a human foodborne disease. Its cell wall is densely decorated with wall teichoic acids (WTAs), a class of anionic glycopolymers that play key roles in bacterial physiology, including protection against the activity of antimicrobial peptides (AMPs). In other Gram-positive pathogens, WTA modification by amine-containing groups such as D-alanine was largely correlated with resistance to AMPs. However, in L. monocytogenes, where WTA modification is achieved solely via glycosylation, WTA-associated mechanisms of AMP resistance were unknown. Here, we show that the L-rhamnosylation of L. monocytogenes WTAs relies not only on the rmlACBD locus, which encodes the biosynthetic pathway for L-rhamnose, but also on rmlT encoding a putative rhamnosyltransferase. We demonstrate that this WTA tailoring mechanism promotes resistance to AMPs, unveiling a novel link between WTA glycosylation and bacterial resistance to host defense peptides. Using in vitro binding assays, fluorescence-based techniques and electron microscopy, we show that the presence of L-rhamnosylated WTAs at the surface of L. monocytogenes delays the crossing of the cell wall by AMPs and postpones their contact with the listerial membrane. We propose that WTA L-rhamnosylation promotes L. monocytogenes survival by decreasing the cell wall permeability to AMPs, thus hindering their access and detrimental interaction with the plasma membrane. Strikingly, we reveal a key contribution of WTA L-rhamnosylation for L. monocytogenes virulence in a mouse model of infection. Listeria monocytogenes is a foodborne bacterial pathogen that preferentially infects immunocompromised hosts, eliciting a severe and often lethal disease. In humans, clinical manifestations range from asymptomatic intestinal carriage and gastroenteritis to harsher systemic states of the disease such as sepsis, meningitis or encephalitis, and fetal infections. The surface of L. monocytogenes is decorated with wall teichoic acids (WTAs), a class of carbohydrate-based polymers that contributes to cell surface-related events with implications in physiological processes, such as bacterial division or resistance to antimicrobial peptides (AMPs). The addition of other molecules to the backbone of WTAs modulates their chemical properties and consequently their functionality. In this context, we studied the role of WTA tailoring mechanisms in L. monocytogenes, whose WTAs are strictly decorated with monosaccharides. For the first time, we link WTA glycosylation with AMP resistance by showing that the decoration of L. monocytogenes WTAs with l-rhamnose confers resistance to host defense peptides. We suggest that this resistance is based on changes in the permeability of the cell wall that delay its crossing by AMPs and therefore promote the protection of the bacterial membrane integrity. Importantly, we also demonstrate the significance of this WTA modification in L. monocytogenes virulence.
Collapse
Affiliation(s)
- Filipe Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Magda L Atilano
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rita Pombinho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Gonçalo Covas
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Richard L Gallo
- Division of Dermatology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Sérgio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sandra Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Didier Cabanes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
6
|
Zhang Y, Zang GQ, Tang ZH, Yu YS. Listeria monocytogenes meningitis in an immunocompetent adult: a case report. Rev Soc Bras Med Trop 2012; 45:410-1. [PMID: 22760149 DOI: 10.1590/s0037-86822012000300028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 05/13/2011] [Indexed: 11/22/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is an uncommon cause of bacterial meningitis in immunocompetent adults. Patients with immunosuppression are at increased risk of developing serious invasive diseases, particularly meningitis. We describe a case of meningitis caused by L. monocytogenes in an immunocompetent and previously healthy 34-year-old adult. The patient received treatment with intravenous ampicillin plus amikacin and made a full recovery. L. monocytogenes should be suspected in immunocompetent adults with bacterial meningitis who fail to respond to empirical antibiotic treatment.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
7
|
Abstract
Listeria monocytogenes is the causative agent of human listeriosis, a potentially fatal foodborne infection. Clinical manifestations range from febrile gastroenteritis to more severe invasive forms, including sepsis, meningitis, rhombencephalitis, perinatal infections, and abortions. In recent years, an increasing rate of listeriosis has been reported in several European countries. These increases primarily reflect a higher rate of bacteraemic listeriosis in those > or =65 years of age, and are not otherwise correlated with geography, gender, ethnicity, socioeconomic factors or infectious serotypes. In the late 1980s, an upsurge in listeriosis rates was due to the contamination of a small number of food products. However, a restricted range of strains was responsible for most of the additional cases at that time, and no evidence exists for such a pattern since 2001. From a clinical perspective, the importance of isolating the pathogen as a prerequisite for an accurate epidemiological investigation and ultimately stopping transmission cannot be overemphasized.
Collapse
Affiliation(s)
- F Allerberger
- Austrian Agency for Health and Food Safety (AGES), Binational Austrian-German Listeria Reference Centre, Spargelfeldstrasse 191, Vienna, Austria.
| | | |
Collapse
|
8
|
Chavanet P. [Presumptive bacterial meningitis in adults: initial antimicrobial therapy]. Med Mal Infect 2009; 39:499-512. [PMID: 19428207 DOI: 10.1016/j.medmal.2009.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 02/20/2009] [Indexed: 11/28/2022]
Abstract
CSF sterilization should be obtained very rapidly to reduce both mortality and morbidity due to bacterial meningitis. Thus, antibiotic treatment should be adapted to the suspected bacterium and administered as early as possible at high dosage with - if necessary - a loading dose and continuous perfusion. The rates of abnormal susceptibility to penicillin of Streptococcus pneumoniae, Neisseria meningitis and Haemophilus influenzae are 37%, 30% and 12% respectively. Thus, ceftriaxone or cefotaxim must be used as empirical treatment. Listeria monocytogenes remains fully susceptible to aminopenicillin, so, the combination aminopenicillin and aminoglycoside is the first-line treatment. Antibiotic resistance, allergy or contra-indications, are in fact rare but in these cases, antibiotic combinations are often needed. The latter are more or less complex and clinically validated; they include molecules such as vancomycine, fosfomycin, fluoroquinolone or linezolid.
Collapse
Affiliation(s)
- P Chavanet
- Département d'infectiologie, CHU de Dijon, BP 77908, 21000 Dijon, France.
| |
Collapse
|
9
|
Rapid eradication of Listeria monocytogenes by moxifloxacin in a murine model of central nervous system listeriosis. Antimicrob Agents Chemother 2008; 52:3210-5. [PMID: 18573932 DOI: 10.1128/aac.00177-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Listeriosis is a rare but life-threatening infection. A favorable outcome is greatly aided by early administration of antibiotics with rapid bactericidal activity against Listeria monocytogenes. Moxifloxacin, a new-generation fluoroquinolone with extended activity against gram-positive bacteria, has proved its effectiveness in vitro against intracellular reservoirs of bacteria. The efficacies of moxifloxacin and amoxicillin were compared in vivo by survival curve assays and by studying the kinetics of bacterial growth in blood and organs in a murine model of central nervous system (CNS) listeriosis. We combined pharmacokinetic and pharmacodynamic approaches to correlate the observed efficacy in vivo with plasma and tissue moxifloxacin concentrations. Death was significantly delayed for animals treated with a single dose of moxifloxacin compared to a single dose of amoxicillin. We observed rapid bacterial clearance from blood and organs of animals treated with moxifloxacin. The decrease in the bacterial counts in blood and brain correlated with plasma and cerebral concentrations of antibiotic. Moxifloxacin peaked in the brain at 1.92 +/- 0.32 microg/g 1 hour after intraperitoneal injection. This suggests that moxifloxacin rapidly crosses the blood-brain barrier and diffuses into the cerebral parenchyma. Moreover, no resistant strains were selected during in vivo experiments. Our results indicate that moxifloxacin combines useful pharmacokinetic properties and rapid bactericidal activity and that it may be a valuable alternative for the treatment of CNS listeriosis.
Collapse
|
10
|
Abstract
It is still not quite well understood why there is no optimal or even a satisfactory antibiotic therapy for listeriosis. Although almost all Listeria strains that induce sepsis, meningitis and encephalitis, as well as many other manifestations--in particular, in immunocompromised individuals--are susceptible to most of the common antibiotics, the cure rate is only approximately 70%. The most effective regimen still consists of a combination of an aminopenicillin (amoxicillin or ampicillin) plus an aminoglycoside. In vitro, this combination is bactericidal, whereas aminopenicillin alone only exerts a weak bactericidal activity against Listeriae. These antibiotics only poorly penetrate the cerebrospinal fluid and thus, only high doses given over a prolonged period of 2-3 weeks are curative. Furthermore, Listeria monocytogenes belongs to the group of facultative intracellular bacteria, which means that a certain population is inaccessible for antibiotics. Theoretically, a drug which is endowed with bactericidal activity superior to that of ampicillin would be preferable. Furthermore, the candidate drug should easily cross the blood-brain barrier into the CNS, be able to accumulate within host cells, reach the cytoplasm and be active under these unusual conditions. Because of all these arguments, the new quinolones are of particular interest; but broad clinical data are still lacking. It is unclear as to whether antibiotics alone will be sufficient to increase the prognosis. Adjunctive therapy with immunomodulators, which are able to reconstitute the defective defence capacities, would presumably create the conditions necessary to finally resolve listeriosis.
Collapse
Affiliation(s)
- Herbert Hof
- Heidelberg University, Institute of Medical Microbiology and Hygiene, Faculty of Clinical Medicine Mannheim, D-68167 Mannheim, Germany.
| |
Collapse
|
11
|
Drevets DA, Jelinek TA, Freitag NE. Listeria monocytogenes-infected phagocytes can initiate central nervous system infection in mice. Infect Immun 2001; 69:1344-50. [PMID: 11179297 PMCID: PMC98026 DOI: 10.1128/iai.69.3.1344-1350.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes-infected phagocytes are present in the bloodstream of experimentally infected mice, but whether they play a role in central nervous system (CNS) invasion is unclear. To test whether bacteria within infected leukocytes could establish CNS infection, experimentally infected mice were treated with gentamicin delivered by surgically implanted osmotic pumps. Bacterial inhibitory titers in serum and plasma ranged from 1:16 to 1:256, and essentially all viable bacteria in the bloodstream of treated mice were leukocyte associated. Nevertheless, CNS infection developed in gentamicin-treated animals infected intraperitoneally or by gastric lavage, suggesting that intracellular bacteria could be responsible for neuroinvasion. This was supported by data showing that 43.5% of bacteria found with blood leukocytes were intracellular and some colocalized with F-actin, indicating productive intracellular parasitism. Experiments using an L. monocytogenes strain containing a chromosomal actA-gfpuv-plcB transcriptional fusion showed that blood leukocytes were associated with intracellular and extracellularly bound green fluorescent protein-expressing (GFP+) bacteria. Treatment with gentamicin decreased the numbers of extracellularly bound GFP+ bacteria significantly but did not affect the numbers of intracellular GFP+ bacteria, suggesting that the latter were the result of intercellular spread of GFP+ bacteria to leukocytes. These data demonstrate that infected leukocytes and the intracellular L. monocytogenes harbored within them play key roles in neuroinvasion. Moreover, they suggest that phagocytes recruited to infected organs such as the liver or spleen are themselves parasitized by intercellular spread of L. monocytogenes and then reenter the bloodstream and contribute to the systemic dissemination of bacteria.
Collapse
Affiliation(s)
- D A Drevets
- Department of Medicine, Oklahoma University Health Sciences Center and the Harold Muchmore Laboratories for Infectious Diseases Research of the Veterans Administration Medical Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | |
Collapse
|