1
|
Aluzaite K, Soares MO, Hewitt C, Hope W, Robotham J, Woods B. Antimicrobial Resistance (AMR) Development Map: A Conceptual Map and a Tool to Support Economic Evaluation of AMR Interventions. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2025:10.1007/s40258-025-00969-6. [PMID: 40346427 DOI: 10.1007/s40258-025-00969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is a complex, inter-sectoral and international problem. Economic evaluation (EE) methods offer systematic, evidence-driven approaches to inform policy decisions about which AMR interventions to fund. EE of AMR interventions is complicated owing to diffuse effects, complex mechanics of the problem and high levels of uncertainty. Current AMR EE literature restricts the analytical scope, potentially resulting in omissions of effects that may limit the utility of EE to inform policy decisions. We aimed to systemise the key evolutionary and ecological processes of AMR to elucidate the paths through which AMR interventions impact population health and healthcare costs to support EE design and to support decision makers in understanding the limitations of EE evidence for decision-making. METHODS A conceptual map and a corresponding tool were developed on the basis of a literature review in consultation with experts across the relevant disciplines of molecular biology, infectious disease modelling, health economics and ecology. RESULTS The AMR development map: (1) distils the key AMR processes and process drivers behind AMR development and maps the available types of AMR interventions to AMR process drivers; (2) proposes a way to conceptualise the spatial scope of analysis through considering the connectivity of the wider ecosystem and (3) outlines the key dimensions that AMR burden and intervention effects could be measured across. An AMR development map tool was developed to support conceptual modelling, with the focus on the choice of scope in the EE of AMR interventions, and an illustrative case study was provided. DISCUSSION This work summarises the key underlying biological principles of AMR development to provide mechanistical grounding for considering the scope of effects of AMR interventions and the appropriate system of analysis to support conceptual modelling in EE of AMR interventions. In addition, this map can facilitate the identification of effects that cannot be considered or quantified, thus enabling transparency about these omissions within decision-making.
Collapse
Affiliation(s)
| | - Marta O Soares
- Centre for Health Economics, University of York, York, UK
| | - Catherine Hewitt
- York Trials Unit, Department of Health Sciences, University of York, York, UK
| | | | | | - Beth Woods
- Centre for Health Economics, University of York, York, UK
| |
Collapse
|
2
|
Velasco Garcia WJ, Araripe Dos Santos Neto N, Borba Rios T, Rocha Maximiano M, Souza CMD, Franco OL. Genetic basis of antibiotic resistance in bovine mastitis and its possible implications for human and ecological health. Crit Rev Microbiol 2025; 51:427-440. [PMID: 38916977 DOI: 10.1080/1040841x.2024.2369140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Bovine mastitis is a mammary gland inflammation that can occur due to infectious pathogens, Staphylococcus aureus and Escherichia coli, which are, respectively, the most prevalent Gram-positive and Gram-negative bacteria associated with this disease. Currently, antibiotic treatment has become more complicated due to the presence of resistant pathogens. This review, therefore, aims to identify the most common resistance genes reported for these strains in the last four years. During the review, it was noted that blaZ, blaSHV, blaTEM, and blaampC are the most reported genes for S. aureus and E. coli, associated with drug inactivation, mainly β-lactamases. They are characterized by generating bacterial resistance to β-lactam antibiotics, the most common treatment in animal and human bacterial treatments (penicillins and cephalosporins, among others). Genes associated with efflux systems were also present in the two strains and included norA, tetA, tetC, and tetK, which generate resistance to macrolide and tetracycline antibiotics. Additionally, the effects of spreading resistance between animals and humans through direct contact (such as consumption of contaminated milk) or indirect contact (through environmental contamination) has been deeply discussed, emphasizing the importance of having adequate sanitation and antibiotic control and administration protocols.
Collapse
Affiliation(s)
- Wendy Johana Velasco Garcia
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nilton Araripe Dos Santos Neto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Brasília, DF, Brazil
| | - Thuanny Borba Rios
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Mariana Rocha Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Camila Maurmann de Souza
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Brasília, DF, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
3
|
Aseem A, Sagar P, Reddy NS, Veleri S. The antimicrobial resistance profile in poultry of Central and Southern India is evolving with distinct features. Comp Immunol Microbiol Infect Dis 2024; 114:102255. [PMID: 39432940 DOI: 10.1016/j.cimid.2024.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Antimicrobial resistance (AMR) is fast emerging and is depleting antibiotics repertoire. Poultry is a major source for AMR because focus to enhance its production by modern practices widely uses antibiotics. India and China are major producers of meat and have hotspots of AMR. The Central and Southern India were predicted as emerging hotspots for AMR in poultry but no data available to substantiate it. To this end, we collected chicken feces from poultry farms in these regions and isolated genomic DNA. Further, shotgun whole genome sequencing was performed for metagenomics analysis. For the first time, we report the AMR gene profiles in poultry from Kerala and Telangana. The samples exhibited a higher prevalence of gram-negative and anaerobic species. The high priority pathogens in India were detected, like E.coli, Clostridium perfringens, Klebsiella pneumonia Staphylococcus aureus, Enterococcous faecalis, Pseudomonas aeruginosa, Bacteriodes fragiles. Conspicuously, the Southern India had the highest abundance of AMR genes than the Central India. E.coli was significantly more prevalent in the southernmost zone of India than in other sites. Our data had many common AMR profile features of the European Union (EU) poultry farms but lacked mcr-1, which was a lately emerged AMR gene in E.coli. Our data revealed the extent of AMR gene evolved in the Central and Southern India. It is comparable to the EU data but severity is lesser than in the EU.
Collapse
Affiliation(s)
- Ajmal Aseem
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | - Prarthi Sagar
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | | | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India.
| |
Collapse
|
4
|
Koritnik T, Cvetkovikj I, Zendri F, Blum SE, Chaintoutis SC, Kopp PA, Hare C, Štritof Z, Kittl S, Gonçalves J, Zdovc I, Paulshus E, Laconi A, Singleton D, Allerton F, Broens EM, Damborg P, Timofte D. Towards harmonized laboratory methodologies in veterinary clinical bacteriology: outcomes of a European survey. Front Microbiol 2024; 15:1443755. [PMID: 39450288 PMCID: PMC11499178 DOI: 10.3389/fmicb.2024.1443755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Veterinary clinical microbiology laboratories play a key role in antimicrobial stewardship, surveillance of antimicrobial resistance and prevention of healthcare associated-infections. However, there is a shortage of international harmonized guidelines covering all steps of veterinary bacterial culture from sample receipt to reporting. Methods In order to gain insights, the European Network for Optimization of Veterinary Antimicrobial Treatment (ENOVAT) designed an online survey focused on the practices and interpretive criteria used for bacterial culture and identification (C&ID), and antimicrobial susceptibility testing (AST) of animal bacterial pathogens. Results A total of 241 microbiology laboratories in 34 European countries completed the survey, representing a mixture of academic (37.6%), governmental (27.4%), and private (26.5%) laboratories. The C&ID turnaround varied from 1 to 2 days (77.8%) to 3-5 days (20%), and 6- 8 days (1.6%), with similar timeframes for AST. Individual biochemical tests and analytical profile index (API) biochemical test kits or similar were the most frequent tools used for bacterial identification (77% and 56.2%, respectively), followed by PCR (46.6%) and MALDI-TOF MS (43.3%). For AST, Kirby-Bauer disk diffusion (DD) and minimum inhibitory concentration (MIC) determination were conducted by 43.8% and 32.6% of laboratories, respectively, with a combination of EUCAST and CLSI clinical breakpoints (CBPs) preferred for interpretation of the DD (41.2%) and MIC (47.6%) results. In the absence of specific CBPs, laboratories used human CBPs (53.3%) or veterinary CBPs representing another body site, organism or animal species (51.5%). Importantly, most laboratories (47.9%) only report the qualitative interpretation of the result (S, R, and I). As regards testing for AMR mechanisms, 48.5% and 46.7% of laboratories routinely screened isolates for methicillin resistance and ESBL production, respectively. Notably, selective reporting of AST results (i.e. excluding highest priority critically important antimicrobials from AST reports) was adopted by 39.5% of laboratories despite a similar proportion not taking any approach (37.6%) to guide clinicians towards narrower-spectrum or first-line antibiotics. Discussion In conclusion, we identified a broad variety of methodologies and interpretative criteria used for C&ID and AST in European veterinary microbiological diagnostic laboratories. The observed gaps in veterinary microbiology practices emphasize a need to improve and harmonize professional training, innovation, bacterial culture methods and interpretation, AMR surveillance and reporting strategies.
Collapse
Affiliation(s)
- Tom Koritnik
- Department for Public Health Microbiology Ljubljana, Centre for Medical Microbiology, National Laboratory of Health, Environment and Food, Ljubljana, Slovenia
| | - Iskra Cvetkovikj
- Department of Microbiology and Immunology, Faculty of Veterinary medicine-Skopje, Ss Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Flavia Zendri
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
- ESCMID Study Group for Veterinary Microbiology (ESGVM), Basel, Switzerland
| | - Shlomo Eduardo Blum
- Department of Bacteriology and Mycology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Serafeim Christos Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Cassia Hare
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Zrinka Štritof
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Sonja Kittl
- Department of Infectious Diseases and Pathobiology, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - José Gonçalves
- MARE−Marine and Environmental Sciences Centre, ARNET−Aquatic Research Network Associate Laboratory, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Irena Zdovc
- Veterinary Faculty of Ljubljana, Institute of Microbiology and Parasitology, Ljubljana, Slovenia
| | - Erik Paulshus
- Department of Analysis and Diagnostics, Microbiology, Norwegian Veterinary Institute, Ås, Norway
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - David Singleton
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
| | - Fergus Allerton
- Willows Veterinary Centre and Referral Service, Shirley, United Kingdom
| | - Els M. Broens
- ESCMID Study Group for Veterinary Microbiology (ESGVM), Basel, Switzerland
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Peter Damborg
- ESCMID Study Group for Veterinary Microbiology (ESGVM), Basel, Switzerland
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Dorina Timofte
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
- ESCMID Study Group for Veterinary Microbiology (ESGVM), Basel, Switzerland
| |
Collapse
|
5
|
Bennani H, Whatford L, Myers J, Mays N, Glover R, Häsler B. Progress and Challenges: Implementation of the UK Antimicrobial Resistance National Action Plan 2019-2024 within the Beef Cattle Sub-Sector. Antibiotics (Basel) 2024; 13:839. [PMID: 39335012 PMCID: PMC11428892 DOI: 10.3390/antibiotics13090839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The five-year UK antimicrobial resistance (AMR) National Action Plan (NAP) was published in 2019 focusing on reducing the need for, and unintentional exposure to antimicrobials (AMs); optimising the use of AMs; and investing in innovation, supply and access of AMs. This study aimed to evaluate the progress made in the beef cattle sub-sector in addressing specific NAP commitments related to improving animal health and welfare and responsible antimicrobial use (AMU). A thematic analysis was conducted of 21 semi-structured interviews with stakeholders from government organisations, farms, veterinary practices, levy boards and livestock associations. The findings indicate substantial progress, with various initiatives implemented targeting data collection, farmer and veterinarian engagement, and herd health planning. However, there remain a number of challenges and barriers that need to be addressed in order to assess the impacts of these initiatives, such as the availability of AMU and AMR data. Ensuring the adequacy of resources was found to be critical for the sustainability of effective initiatives, considering competing demands on people's time. Additionally, the importance of other outcomes from these initiatives such as developing and strengthening the farmer-veterinarian relationship should not be underestimated since it is fundamental to successfully addressing issues such as AMR.
Collapse
Affiliation(s)
- Houda Bennani
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Louise Whatford
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Jessica Myers
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Nicholas Mays
- Policy Innovation and Evaluation Research Unit, Department of Health Services and Policy, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK
| | - Rebecca Glover
- Policy Innovation and Evaluation Research Unit, Department of Health Services and Policy, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK
| | - Barbara Häsler
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
6
|
Marco-Fuertes A, Marin C, Villora-Gonzalez J, Gimeno-Cardona C, Artal-Muñoz V, Vega S, Montoro-Dasi L. Non-traditional small companion mammals in Spain as reservoirs of antimicrobial-resistant Staphylococci. Front Vet Sci 2024; 11:1378346. [PMID: 39183750 PMCID: PMC11342073 DOI: 10.3389/fvets.2024.1378346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction The increasing prevalence of antimicrobial resistance (AMR) and multidrug resistance (MDR) in microorganisms poses a significant concern in both human and veterinary medicine. Non-traditional companion animals (NTCAs), particularly popular amongst households with children, play a crucial role in AMR epidemiology due to their rising population. Indeed, it is known that some of these animals may act as reservoirs of zoonotic pathogens and thus be able to spread and transmit them to family members, along with their AMR, through their shared environment. It is therefore imperative to address this concern with the involvement of human, animal and environmental health professionals. This pilot study aimed to assess the prevalence and AMR patterns of Staphylococcus spp. strains obtained from commensal mucosal and skin infection samples in NTC small mammals, with a focus on strains like methicillin-resistant Staphylococcus spp. (MRS) that are critical in public health. Methods For this purpose, 81 animals of different small mammal species were sampled, assessing antimicrobial susceptibility to 27 relevant antimicrobial agents (AMAs) in human health using minimum inhibitory concentration assays, and interpreting them according to EUCAST and CLSI guidelines. The isolated Staphylococci strains were identified by MALDI-TOF, with the predominant species being Mammalicoccus sciuri and Staphylococcus aureus. Results and discussion Including all strains isolated, AMR was observed against all 27 AMAs, including six last-resort AMAs in human medicine. Additionally, over 85% of the strains exhibited MDR. These findings underscore the need to monitor AMR and MDR trends in companion animals and emphasise the potential role of NTCAs in spreading resistance to humans, other animals, and their shared environment, calling for a comprehensive "One Health" approach.
Collapse
Affiliation(s)
- Ana Marco-Fuertes
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Clara Marin
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Concepción Gimeno-Cardona
- Servicio de Microbiología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
- Universidad de Valencia, Facultad de Medicina, Valencia, Spain
| | - Violeta Artal-Muñoz
- Servicio de Microbiología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Santiago Vega
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Laura Montoro-Dasi
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
7
|
Pires AJ, Pereira G, Fangueiro D, Bexiga R, Oliveira M. When the solution becomes the problem: a review on antimicrobial resistance in dairy cattle. Future Microbiol 2024; 19:903-929. [PMID: 38661710 PMCID: PMC11290761 DOI: 10.2217/fmb-2023-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Antibiotics' action, once a 'magic bullet', is now hindered by widespread microbial resistance, creating a global antimicrobial resistance (AMR) crisis. A primary driver of AMR is the selective pressure from antimicrobial use. Between 2000 and 2015, antibiotic consumption increased by 65%, reaching 34.8 billion tons, 73% of which was used in animals. In the dairy cattle sector, antibiotics are crucial for treating diseases like mastitis, posing risks to humans, animals and potentially leading to environmental contamination. To address AMR, strategies like selective dry cow therapy, alternative treatments (nanoparticles, phages) and waste management innovations are emerging. However, most solutions are in development, emphasizing the urgent need for further research to tackle AMR in dairy farms.
Collapse
Affiliation(s)
- Ana José Pires
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Gonçalo Pereira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - David Fangueiro
- LEAF Research Center, Terra Associate Laboratory, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ricardo Bexiga
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
- cE3c—Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
8
|
Temmerman R, Berlamont H, El Garch F, Rose M, Simjee S, Meschi S, de Jong A. Antimicrobial Susceptibility of Canine and Feline Urinary Tract Infection Pathogens Isolated from Animals with Clinical Signs in European Veterinary Practices during the Period 2013-2018. Antibiotics (Basel) 2024; 13:500. [PMID: 38927167 PMCID: PMC11200364 DOI: 10.3390/antibiotics13060500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Bacterial urinary tract infections (UTIs) occur frequently in companion animals and are often treated with antibiotics. However, antimicrobial resistance can severely hamper treatment success. Therefore, antimicrobial susceptibility monitoring is key. UTI isolates were obtained from dogs and cats in two collection periods (ComPath II: 2013-2014 and ComPath III: 2017-2018) as part of CEESA's ComPath programme. Susceptibility testing of the UTI isolates (2021 in total) was carried out at one central laboratory using agar and broth dilution methodology as recommended by the Clinical and Laboratory Standards Institute. Escherichia coli was the most frequently isolated bacterium in UTI in both dogs (46.9%, 43.1%) and cats (61.2%, 48.3%) across ComPath II and ComPath III, respectively. The percentage of resistance in E. coli was low (<10%) across both programmes in both dogs and cats except for trimethoprim-sulfamethoxazole (dogs ComPath III: 12.9%; cats ComPath II: 13.0%) and enrofloxacin (10.5%), marbofloxacin (11.4%), and doxycycline (98.8%) for dogs in ComPath III. Three (7.5%) of the 40 isolated S. aureus bacteria in total were MRSA and harboured mecA. The level of multidrug resistance (MDR) was generally low and ranged from 0.0% for feline coagulase-negative Staphylococcus spp. to 11.7% for canine Proteus spp., except for a peak of MDR observed in canine Klebsiella isolates from ComPath II (36.7%). Overall, antimicrobial resistance for most canine and feline UTI pathogens isolated during the ComPath II and ComPath III programmes was low (1-10%) to moderate (10-20%).
Collapse
|
9
|
Marco-Fuertes A, Marin C, Gimeno-Cardona C, Artal-Muñoz V, Vega S, Montoro-Dasi L. Multidrug-Resistant Commensal and Infection-Causing Staphylococcus spp. Isolated from Companion Animals in the Valencia Region. Vet Sci 2024; 11:54. [PMID: 38393072 PMCID: PMC10891909 DOI: 10.3390/vetsci11020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR) and multidrug resistance (MDR) among microorganisms to commonly used antibiotics is a growing concern in both human and veterinary medicine. Companion animals play a significant role in the epidemiology of AMR, as their population is continuously increasing, posing a risk of disseminating AMR, particularly to strains of public health importance, such as methicillin-resistant Staphylococcus strains. Thus, this study aimed to investigate the prevalence of AMR and MDR in commensal and infection-causing Staphylococcus spp. in dogs and cats in Valencia region. For this purpose, 271 samples were taken from veterinary centers to assess antimicrobial susceptibility against 20 antibiotics, including some of the most important antibiotics for the treatment of Staphylococcus infections, including the five last resort antibiotics in this list. Of all the samples, 187 Staphylococcus spp. strains were recovered from asymptomatic and skin-diseased dogs and cats, of which S. pseudintermedius (≈60%) was more prevalent in dogs, while S. felis (≈50%) was more prevalent in cats. In the overall analysis of the isolates, AMR was observed for all antibiotics tested, including those crucial in human medicine. Furthermore, over 70% and 30% of the strains in dogs and cats, respectively, exhibited MDR. This study highlights the significance of monitoring the trends in AMR and MDR among companion animals. The potential contribution of these animals to the dissemination of AMR and its resistance genes to humans, other animals, and their shared environment underscores the necessity for adopting a One Health approach.
Collapse
Affiliation(s)
- Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (C.M.)
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (C.M.)
| | - Concepción Gimeno-Cardona
- Servicio de Microbiología, Consorcio Hospital General Universitario de Valencia, Facultad de Medicina, Universidad de Valencia, 46014 Valencia, Spain;
| | - Violeta Artal-Muñoz
- Servicio de Microbiología, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain;
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (C.M.)
| | - Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (C.M.)
| |
Collapse
|
10
|
Marco-Fuertes A, Vega S, Villora-Gonzalez J, Marin C, Montoro-Dasi L. Exploring the Prevalence of Antimicrobial Resistance in Salmonella and commensal Escherichia coli from Non-Traditional Companion Animals: A Pilot Study. Life (Basel) 2024; 14:170. [PMID: 38398679 PMCID: PMC10889945 DOI: 10.3390/life14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Companion animal ownership has evolved to new exotic animals, including small mammals, posing a new public health challenge, especially due to the ability of some of these new species to harbour zoonotic bacteria, such as Salmonella, and spread their antimicrobial resistances (AMR) to other bacteria through the environment they share. Therefore, the objective of the present pilot study was to evaluate the current epidemiological AMR situation in commensal Escherichia coli and Salmonella spp., in non-traditional companion animal small mammals in the Valencia region. For this purpose, 72 rectal swabs of nine different species of small mammals were taken to assess the antimicrobial susceptibility against 28 antibiotics. A total of one Salmonella enterica serovar Telelkebir 13,23:d:e,n,z15 and twenty commensal E. coli strains were isolated. For E. coli strains, a high prevalence of AMR (85%) and MDR (82.6%) was observed, although neither of them had access outside the household. The highest AMR were observed in quinolones, one of the highest priority critically important antimicrobials (HPCIAs) in human medicine. However, no AMR were found for Salmonella. In conclusion, the results showed that small mammals' commensal E. coli poses a public health risk due to the high AMR found, and the ability of this bacterium to transmit its resistance genes to other bacteria. For this reason, this pilot study highlighted the need to establish programmes to control AMR trends in the growing population of new companion animals, as they could disseminate AMR to humans and animals through their shared environment.
Collapse
Affiliation(s)
- Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Valencia, Spain; (A.M.-F.); (S.V.); (L.M.-D.)
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Valencia, Spain; (A.M.-F.); (S.V.); (L.M.-D.)
| | | | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Valencia, Spain; (A.M.-F.); (S.V.); (L.M.-D.)
| | - Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Valencia, Spain; (A.M.-F.); (S.V.); (L.M.-D.)
| |
Collapse
|
11
|
Cargnel M, Kelly M, Imberechts H, Catry B, Filippitzi ME. Using a Stakeholder Analysis to Implement the Belgian One Health National Report for Antimicrobial Use and Resistance. Antibiotics (Basel) 2024; 13:84. [PMID: 38247644 PMCID: PMC10812551 DOI: 10.3390/antibiotics13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background. Antimicrobial resistance (AMR) poses a substantial global health threat with profound economic implications. Acknowledging the imperative for a One Health (OH) strategy to combat this menace, Belgium introduced an annual national OH report, known as the "BELMAP report," encompassing antimicrobial use (AMU) and AMR, with the first edition completed in 2021. The integration of innovations for the healthcare system demands a meticulously planned process. (2) Methods. We introduced a three-step stakeholder analysis (SA) as a prospective framework for navigating this new report process, fostering complementary collaboration, pinpointing obstacles, suggesting approaches to overcome them, and facilitating national policy development. The SA unfolds in three steps: stakeholders identify and list their relevant activities, assess their positions regarding the BELMAP report, and complete "actor mapping" of national AMR and AMU stakeholders. (3) Results. Stakeholder identification reveals a fragmented landscape of AMR and AMU activities across Belgium. Assessment of stakeholder positions uncovers diverse expectations, collaborative challenges, and resource considerations. "Actor mapping" identifies key stakeholders, emphasizing the importance of high-interest and high-power actors. (4) Conclusions. This SA approach not only provides insights into the present stakeholder landscape in Belgium, it can also serve as a blueprint for other countries in the process of developing OH reports.
Collapse
Affiliation(s)
- Mickaël Cargnel
- Coordination of Veterinary Activities Service, Infectious Diseases in Animals Department, Sciensano, 1050 Brussels, Belgium
| | - Moira Kelly
- Healthcare-Associated Infections and Antimicrobial Resistance Service, Epidemiology and Public Health Department, Sciensano, 1050 Brussels, Belgium; (M.K.); (B.C.)
| | - Hein Imberechts
- Strategy and External Positioning, Sciensano, 1050 Brussels, Belgium;
| | - Boudewijn Catry
- Healthcare-Associated Infections and Antimicrobial Resistance Service, Epidemiology and Public Health Department, Sciensano, 1050 Brussels, Belgium; (M.K.); (B.C.)
- Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maria-Eleni Filippitzi
- Animal Production, Ichthyology, Ecology and Protection of the Environment Department, Health Sciences School, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| |
Collapse
|
12
|
Jiang N, Chen H, Cheng L, Fu Q, Liu R, Liang Q, Fu G, Wan C, Huang Y. Genomic analysis reveals the population structure and antimicrobial resistance of avian Pasteurella multocida in China. J Antimicrob Chemother 2024; 79:186-194. [PMID: 38019670 DOI: 10.1093/jac/dkad365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVES To investigate the population structure and antimicrobial resistance (AMR) of avian Pasteurella multocida in China. METHODS Utilizing WGS analysis, we explored the phylogeny using a dataset of 546 genomes, comprising avian P. multocida isolates from China (n = 121), the USA (n = 165), Australia(n = 153), Bangladesh (n = 3) and isolates of other hosts from China (n = 104). We examined the integrative and conjugative element (ICE) structures and the distribution of their components carrying resistance genes, and reconstructed the evolutionary history of A:L1:ST129 (n = 110). RESULTS The population structure of avian P. multocida in China was dominated by the A:L1:ST129 clone with limited genetic diversity. A:L1:ST129 isolates possessed a broader spectrum of resistance genes at comparatively higher frequencies than those from other hosts and countries. The novel putative ICEs harboured complex resistant clusters that were prevalent in A:L1:ST129. Bayesian analysis predicted that the A:L1:ST129 clone emerged around 1923, and evolved slowly. CONCLUSIONS A:L1:ST129 appears to possess a host predilection towards avian species in China, posing a potential health threat to other animals. The complex AMR determinants coupled with high frequencies may strengthen the population dominance of A:L1:ST129. The extensive antimicrobial utilization in poultry farming and the mixed rearing practices could have accelerated AMR accumulation in A:L1:ST129. ICEs, together with their resistant clusters, significantly contribute to resistance gene transfer and facilitate the adaptation of A:L1:ST129 to ecological niches. Despite the genetic stability and slow evolution rate, A:L1:ST129 deserves continued monitoring due to its propensity to retain resistance genes, warranting global attention to preclude substantial economic losses.
Collapse
Affiliation(s)
- Nansong Jiang
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Hongmei Chen
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Longfei Cheng
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Qiuling Fu
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Rongchang Liu
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Qizhang Liang
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Guanghua Fu
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Chunhe Wan
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Yu Huang
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| |
Collapse
|
13
|
Marco-Fuertes A, Jordá J, Marin C, Lorenzo-Rebenaque L, Montoro-Dasi L, Vega S. Multidrug-Resistant Escherichia coli Strains to Last Resort Human Antibiotics Isolated from Healthy Companion Animals in Valencia Region. Antibiotics (Basel) 2023; 12:1638. [PMID: 37998840 PMCID: PMC10669260 DOI: 10.3390/antibiotics12111638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Failure in antibiotic therapies due to the increase in antimicrobial-resistant (AMR) bacteria is one of the main threats to public and animal health. In recent decades, the perception of companion animals has changed, from being considered as a work tool to a household member, creating a family bond and sharing spaces in their daily routine. Hence, the aim of this study is to assess the current epidemiological situation regarding the presence of AMR and multidrug resistance (MDR) in companion animals in the Valencia Region, using the indicator bacteria Escherichia coli as a sentinel. For this purpose, 244 samples of dogs and cats were collected from veterinary centres to assess antimicrobial susceptibility against a panel of 22 antibiotics with public health relevance. A total of 197 E. coli strains were isolated from asymptomatic dogs and cats. The results showed AMR against all the 22 antibiotics studied, including those critically important to human medicine. Moreover, almost 50% of the strains presented MDR. The present study revealed the importance of monitoring AMR and MDR trends in companion animals, as they could pose a risk due to the spread of AMR and its resistance genes to humans, other animals and the environment they cohabit.
Collapse
Affiliation(s)
- Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 45115 Valencia, Spain; (A.M.-F.); (J.J.); (C.M.); (S.V.)
| | - Jaume Jordá
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 45115 Valencia, Spain; (A.M.-F.); (J.J.); (C.M.); (S.V.)
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 45115 Valencia, Spain; (A.M.-F.); (J.J.); (C.M.); (S.V.)
| | - Laura Lorenzo-Rebenaque
- Institute of Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 45115 Valencia, Spain; (A.M.-F.); (J.J.); (C.M.); (S.V.)
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 45115 Valencia, Spain; (A.M.-F.); (J.J.); (C.M.); (S.V.)
| |
Collapse
|
14
|
Zafeiridis C, Valiakos G, Giakoupi P, Papadogiannakis E. Building the National Antimicrobial Resistance Surveillance Network in Animals in Greece: A "One Health" Approach. Antibiotics (Basel) 2023; 12:1442. [PMID: 37760738 PMCID: PMC10525538 DOI: 10.3390/antibiotics12091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
It is widely accepted that, in order to prevent and control antimicrobial resistance (AMR), surveillance systems across human, animal and environmental sectors need to be integrated, in a One Health approach. Currently, in Europe, there are surveillance networks established only for the human and food sector and, until now, there has been no organized effort to monitor AMR in bacterial pathogens derived from diseased animals in Europe. Since 2017, efforts to fill this gap have taken place by the European Antimicrobial Resistance Surveillance network in a veterinary medicine (EARS-Vet) initiative, included in the EU Joint Action on AMR and Healthcare-Associated Infections (EU-JAMRAI). EARS-Vet is designed to complement and integrate with existing European monitoring systems for AMR as well as constitute a European network of national monitoring systems. As Greece has no national AMR surveillance system for pathogens of animal origin currently in place, in the context of the development of EARS-Vet, an initiative took place for the organization of such a system by competent agencies and other stakeholders. In this article, the steps to organize a first AMR national surveillance network in Greece are presented and a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis is performed to present main characteristics of the approach implemented.
Collapse
Affiliation(s)
- Christos Zafeiridis
- General Directorate of Veterinary Services, Ministry of Rural Development & Food of Greece, 10176 Athens, Greece;
| | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Panagiota Giakoupi
- Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece;
| | - Emmanouil Papadogiannakis
- Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece;
| |
Collapse
|
15
|
Jacobsen ABJE, Ogden J, Ekiri AB. Antimicrobial resistance interventions in the animal sector: scoping review. FRONTIERS IN ANTIBIOTICS 2023; 2:1233698. [PMID: 39816662 PMCID: PMC11732036 DOI: 10.3389/frabi.2023.1233698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/27/2023] [Indexed: 01/18/2025]
Abstract
Animals are considered key contributors to the development and spread of antimicrobial resistance (AMR). However, little is known about the existing AMR interventions in the animal sector. This scoping review examines the existing evidence on AMR interventions aimed at livestock, animal health professionals (AHPs), and farmers, while reviewing their impact, limitations, gaps, and lessons for future use. The scoping review was conducted following guidelines from the PRISMA-ScR checklist. The databases, Web of Science, Scopus, PubMed, and international organisations' websites (WHO, FAO, WOAH) were searched for articles reporting interventions targeting livestock, farmers, and AHPs. Interventions were categorised based on seven pre-defined primary measures including: change in antimicrobial use (AMU) practices; change in the uptake of antimicrobial stewardship (AMS); change in development of AMR; change in knowledge of appropriate AMU practices, AMR, and AMS; change in attitudes and perceptions concerning AMU, AMR, and AMS; and surveillance strategies. In total, ninety three sources were included: 66 studies, 20 reports, and 7 webpages. The reviewed interventions focused mostly on AMU practices (22/90), AMS uptake (8/90), and reduction of bacterial or resistant strains (30/90). Changes in knowledge (14/90) and attitude (1/90) were less frequently assessed and were often implicit. Most interventions were conducted within a select country (83/90) and 7/90 were at a global level. Only 19% (16/83) of interventions were implemented in low- and middle-income countries (LMICs) and most were at herd level with many self-reporting changes. Most of the interventions that focused on surveillance strategies (30/83) were implemented in high-income countries (62/83). Only one study investigated the financial implications of the intervention. The study findings provide an overview of existing AMR interventions and insights into the gaps which can be addressed to guide future interventions and research. A focus on developing, implementing and evaluating interventions in LMICs coupled with the use of objective outcome measures (e.g., measurable outcomes vs. self-reporting) will improve our understanding of the impact of interventions in these settings. Finally, assessing the financial benefits of interventions is necessary to inform feasibility and to encourage uptake of interventions aimed at reducing AMR in the animal health sector.
Collapse
Affiliation(s)
- Alice B. J. E. Jacobsen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
- Department of Psychological Sciences, School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Jane Ogden
- Department of Psychological Sciences, School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Abel B. Ekiri
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
16
|
Collineau L, Bourély C, Rousset L, Berger-Carbonne A, Ploy MC, Pulcini C, Colomb-Cotinat M. Towards One Health surveillance of antibiotic resistance: characterisation and mapping of existing programmes in humans, animals, food and the environment in France, 2021. Euro Surveill 2023; 28:2200804. [PMID: 37261729 PMCID: PMC10236929 DOI: 10.2807/1560-7917.es.2023.28.22.2200804] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/30/2023] [Indexed: 06/02/2023] Open
Abstract
BackgroundInternational organisations are calling for One Health approaches to tackle antimicrobial resistance. In France, getting an overview of the current surveillance system and its level of integration is difficult due to the diversity of surveillance programmes.AimThis study aimed to map and describe all French surveillance programmes for antibiotic resistance (ABR), antibiotic use (ABU) and antibiotic residues, in humans, animals, food and the environment, in 2021. Another objective was to identify integration points, gaps and overlaps in the system.MethodsWe reviewed the literature for surveillance programmes and their descriptions. To further characterise programmes found, semi-directed interviews were conducted with their coordinators.ResultsIn total 48 programmes in the human (n = 35), animal (n = 12), food (n = 3) and/or the environment (n = 1) sectors were identified; 35 programmes focused on ABR, 14 on ABU and two on antibiotic residues. Two programmes were cross-sectoral. Among the 35 ABR programmes, 23 collected bacterial isolates. Bacteria most targeted were Escherichia coli (n = 17 programmes), Klebsiella pneumoniae (n = 13), and Staphylococcus aureus (n = 12). Extended-spectrum beta-lactamase-producing E. coli was monitored by most ABR programmes (15 of 35) in humans, animals and food, and is a good candidate for integrated analyses. ABU indicators were highly variable. Areas poorly covered were the environmental sector, overseas territories, antibiotic-resistant-bacterial colonisation in humans and ABU in companion animals.ConclusionThe French surveillance system appears extensive but has gaps and is highly fragmented. We believe our mapping will interest policymakers and surveillance stakeholders. Our methodology may inspire other countries considering One Health surveillance of ABR.
Collapse
Affiliation(s)
- Lucie Collineau
- University of Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Epidemiology and Surveillance Support Unit, Lyon, France
| | - Clémence Bourély
- French Ministry of Agriculture and Food Sovereignty, General Directorate for Food, Animal Health Unit, Paris, France
| | - Léo Rousset
- University of Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Epidemiology and Surveillance Support Unit, Lyon, France
- Claude Bernard University Lyon 1, Lyon, France
- VetAgro Sup, Marcy L'Etoile, France
| | - Anne Berger-Carbonne
- Direction des maladies infectieuses, Santé Publique France, Saint-Maurice, France
| | - Marie-Cécile Ploy
- Université de Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
| | - Céline Pulcini
- French Ministry for Health and prevention, Paris, France
- CHRU-Nancy, Université de Lorraine, Nancy, France
- Université de Lorraine, APEMAC, Nancy, France
| | | |
Collapse
|
17
|
van Duijkeren E, Rantala M, Bouchard D, Busani L, Catry B, Kaspar H, Pomba C, Moreno MA, Nilsson O, Ružauskas M, Sanders P, Teale C, Wester AL, Ignate K, Jukes H, Kunsagi Z, Schwarz C. The use of aminopenicillins in animals within the EU, emergence of resistance in bacteria of animal and human origin and its possible impact on animal and human health. J Antimicrob Chemother 2023:7179861. [PMID: 37229552 DOI: 10.1093/jac/dkad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Aminopenicillins have been widely used for decades for the treatment of various infections in animals and humans in European countries. Following this extensive use, acquired resistance has emerged among human and animal pathogens and commensal bacteria. Aminopenicillins are important first-line treatment options in both humans and animals, but are also among limited therapies for infections with enterococci and Listeria spp. in humans in some settings. Therefore, there is a need to assess the impact of the use of these antimicrobials in animals on public and animal health. The most important mechanisms of resistance to aminopenicillins are the β-lactamase enzymes. Similar resistance genes have been detected in bacteria of human and animal origin, and molecular studies suggest that transmission of resistant bacteria or resistance genes occurs between animals and humans. Due to the complexity of epidemiology and the near ubiquity of many aminopenicillin resistance determinants, the direction of transfer is difficult to ascertain, except for major zoonotic pathogens. It is therefore challenging to estimate to what extent the use of aminopenicillins in animals could create negative health consequences to humans at the population level. Based on the extent of use of aminopenicillins in humans, it seems probable that the major resistance selection pressure in human pathogens in European countries is due to human consumption. It is evident that veterinary use of these antimicrobials increases the selection pressure towards resistance in animals and loss of efficacy will at minimum jeopardize animal health and welfare.
Collapse
Affiliation(s)
- Engeline van Duijkeren
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Merja Rantala
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Damien Bouchard
- French Agency for Food, Environmental, and Occupational Health and Safety, National Agency for Veterinary Medicinal Products, Fougères, France
| | - Luca Busani
- Instituto Superiore di Sanita, Center for Gender-Specific Medicine, Rome, Italy
| | - Boudewijn Catry
- Sciensano, Department of Epidemiology and Public Health, Brussels, Belgium
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety, Department Method Standardisation, Reference Laboratories, Resistance to Antibiotics, Berlin, Germany
| | - Constança Pomba
- Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel A Moreno
- Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - Oskar Nilsson
- National Veterinary Institute, SVA, Department of Animal Health and Antimicrobial Strategies, Uppsala, Sweden
| | - Modestas Ružauskas
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Pascal Sanders
- French Agency for Food, Environmental, and Occupational Health and Safety, Strategy and Programme Department, Maisons-Alfort, France
| | | | | | | | - Helen Jukes
- European Medicines Agency, Amsterdam, The Netherlands
| | | | - Christine Schwarz
- Federal Office of Consumer Protection and Food Safety, Department Method Standardisation, Reference Laboratories, Resistance to Antibiotics, Berlin, Germany
- Federal Office of Consumer Protection and Food Safety, Veterinary Drugs, Berlin, Germany
| |
Collapse
|
18
|
Lagrange J, Amat JP, Ballesteros C, Damborg P, Grönthal T, Haenni M, Jouy E, Kaspar H, Kenny K, Klein B, Lupo A, Madec JY, Salomonsen CM, Müller E, Madero CM, Nilsson O, Norström M, Nykäsenoja S, Overesch G, Pedersen K, Pohjanvirta T, Slowey R, Justo CT, Urdahl AM, Zafeiridis C, Zini E, Cazeau G, Jarrige N, Collineau L. Pilot testing the EARS-Vet surveillance network for antibiotic resistance in bacterial pathogens from animals in the EU/EEA. Front Microbiol 2023; 14:1188423. [PMID: 37283921 PMCID: PMC10239921 DOI: 10.3389/fmicb.2023.1188423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction As part of the EU Joint Action on Antimicrobial Resistance (AMR) and Healthcare-Associated Infections, an initiative has been launched to build the European AMR Surveillance network in veterinary medicine (EARS-Vet). So far, activities included mapping national systems for AMR surveillance in animal bacterial pathogens, and defining the EARS-Vet objectives, scope, and standards. Drawing on these milestones, this study aimed to pilot test EARS-Vet surveillance, namely to (i) assess available data, (ii) perform cross-country analyses, and (iii) identify potential challenges and develop recommendations to improve future data collection and analysis. Methods Eleven partners from nine EU/EEA countries participated and shared available data for the period 2016-2020, representing a total of 140,110 bacterial isolates and 1,302,389 entries (isolate-antibiotic agent combinations). Results Collected data were highly diverse and fragmented. Using a standardized approach and interpretation with epidemiological cut-offs, we were able to jointly analyze AMR trends of 53 combinations of animal host-bacteria-antibiotic categories of interest to EARS-Vet. This work demonstrated substantial variations of resistance levels, both among and within countries (e.g., between animal host species). Discussion Key issues at this stage include the lack of harmonization of antimicrobial susceptibility testing methods used in European surveillance systems and veterinary diagnostic laboratories, the absence of interpretation criteria for many bacteria-antibiotic combinations of interest, and the lack of data from a lot of EU/EEA countries where little or even surveillance currently exists. Still, this pilot study provides a proof-of-concept of what EARS-Vet can achieve. Results form an important basis to shape future systematic data collection and analysis.
Collapse
Affiliation(s)
- Justine Lagrange
- Laboratory of Lyon, Epidemiology and Surveillance Support Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
- Claude Bernard University of Lyon 1, Lyon, France
| | - Jean-Philippe Amat
- Laboratory of Lyon, Epidemiology and Surveillance Support Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | | | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Marisa Haenni
- Laboratory of Lyon, Antimicrobial Resistance and Bacterial Virulence Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | - Eric Jouy
- Laboratory of Ploufragan-Plouzané-Niort, Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Kevin Kenny
- Department of Agriculture, Food and the Marine Laboratories, Celbridge, Ireland
| | | | - Agnese Lupo
- Laboratory of Lyon, Antimicrobial Resistance and Bacterial Virulence Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | - Jean-Yves Madec
- Laboratory of Lyon, Antimicrobial Resistance and Bacterial Virulence Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | | | | | | | - Oskar Nilsson
- National Veterinary Institute of Sweden, Uppsala, Sweden
| | | | | | - Gudrun Overesch
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Karl Pedersen
- National Veterinary Institute of Sweden, Uppsala, Sweden
| | | | - Rosemarie Slowey
- Department of Agriculture, Food and the Marine Laboratories, Celbridge, Ireland
| | | | | | - Christos Zafeiridis
- Seconded National Expert to the European Commission (DG Health and Food Safety), Ministry of Rural Development and Food of Greece, General Directorate of Veterinary Services, Athens, Greece
| | - Eric Zini
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, Italy
- Vetsuisse Faculty, Clinic for Small Animal Internal Medicine, Zurich, Switzerland
- Department of Animal Medicine, Production and Health, University of Padova, Padua, Italy
| | - Géraldine Cazeau
- Laboratory of Lyon, Epidemiology and Surveillance Support Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | - Nathalie Jarrige
- Laboratory of Lyon, Epidemiology and Surveillance Support Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| | - Lucie Collineau
- Laboratory of Lyon, Epidemiology and Surveillance Support Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Lyon, Lyon, France
| |
Collapse
|
19
|
Sagar P, Aseem A, Banjara SK, Veleri S. The role of food chain in antimicrobial resistance spread and One Health approach to reduce risks. Int J Food Microbiol 2023; 391-393:110148. [PMID: 36868045 DOI: 10.1016/j.ijfoodmicro.2023.110148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/14/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
The incidence of antimicrobial resistance (AMR) is rapidly spreading worldwide. It is depleting the repertoire of antibiotics in use but the pace of development of new antibiotics is stagnant for decades. Annually, millions of people are killed by AMR. This alarming situation urged both scientific and civil bodies to take steps to curb AMR as a top priority. Here we review the various sources of AMR in the environment, especially focusing on the food chain. Food chain inculcates pathogens with AMR genes and serves as a conduit for its transmission. In certain countries, the antibiotics are more used in livestock than in humans. It is also used in agriculture crops of high value products. The indiscriminate use of antibiotics in livestock and agriculture increased rapid emergence of AMR pathogens. In addition, in many countries nosocomial settings are spewing AMR pathogens, which is a serious health hazard. Both the developed and low and middle income countries (LMIC) face the phenomenon of AMR. Therefore, a comprehensive approach for monitoring all sectors of life is required to identify the emerging trend of AMR in environment. AMR genes' mode of action must be understood to develop strategies to reduce risk. The new generation sequencing technologies, metagenomics and bioinformatics capabilities can be resorted to quickly identify and characterize AMR genes. The sampling for AMR monitoring can be done from multiples nodes of the food chain as envisioned and promoted by the WHO, FAO, OIE and UNEP under the One Health approach to overcome threat of AMR pathogens.
Collapse
Affiliation(s)
- Prarthi Sagar
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | - Ajmal Aseem
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | | | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India.
| |
Collapse
|
20
|
Naranjo-Lucena A, Slowey R. Invited review: Antimicrobial resistance in bovine mastitis pathogens: A review of genetic determinants and prevalence of resistance in European countries. J Dairy Sci 2023; 106:1-23. [PMID: 36333144 DOI: 10.3168/jds.2022-22267] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial resistance is an urgent and growing problem worldwide, both for human and animal health. In the animal health sector actions have been taken as concerns grow regarding the development and spread of antimicrobial resistance. Mastitis is the most common infection in dairy cattle. We aimed to summarize the genetic determinants found in staphylococci, streptococci, and Enterobacteriaceae isolated from mastitic milk samples and provide a comparison of percentage resistance to a variety of antimicrobials in European countries.
Collapse
Affiliation(s)
- Amalia Naranjo-Lucena
- National Reference Laboratory for Antimicrobial Resistance, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Ireland W23 VW2C.
| | - Rosemarie Slowey
- National Reference Laboratory for Antimicrobial Resistance, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Ireland W23 VW2C
| |
Collapse
|
21
|
Qian J, Wu Z, Zhu Y, Liu C. One Health: a holistic approach for food safety in livestock. SCIENCE IN ONE HEALTH 2022; 1:100015. [PMID: 39076604 PMCID: PMC11262287 DOI: 10.1016/j.soh.2023.100015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/07/2023] [Indexed: 07/31/2024]
Abstract
The food safety of livestock is a critical issue between animals and humans due to their complex interactions. Pathogens have the potential to spread at every stage of the animal food handling process, including breeding, processing, packaging, storage, transportation, marketing and consumption. In addition, application of the antibiotic usage in domestic animals is a controversial issue because, while they can combat food-borne zoonotic pathogens and promote animal growth and productivity, they can also lead to the transmission of antibiotic-resistant microorganisms and antibiotic-resistant genes across species and habitats. Coevolution of microbiomes may occur in humans and animals as well which may alter the structure of the human microbiome through animal food consumption. One Health is a holistic approach to systematically understand the complex relationships among humans, animals and environments which may provide effective countermeasures to solve food safety problems aforementioned. This paper depicts the main pathogen spectrum of livestock and animal products, summarizes the flow of antibiotic-resistant bacteria and genes between humans and livestock along the food-chain production, and the correlation of their microbiome is reviewed as well to advocate for deeper interdisciplinary communication and collaboration among researchers in medicine, epidemiology, veterinary medicine and ecology to promote One Health approaches to address the global food safety challenges.
Collapse
Affiliation(s)
- Jing Qian
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheyuan Wu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
22
|
Marco-Fuertes A, Marin C, Lorenzo-Rebenaque L, Vega S, Montoro-Dasi L. Antimicrobial Resistance in Companion Animals: A New Challenge for the One Health Approach in the European Union. Vet Sci 2022; 9:208. [PMID: 35622736 PMCID: PMC9146952 DOI: 10.3390/vetsci9050208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AMR) and the increase in multi-resistant bacteria are among the most important threats to public health worldwide, according to the World Health Organisation (WHO). Moreover, this issue is underpinned by the One Health perspective, due to the ability of AMR to be transmitted between animals and humans living in the same environment. Therefore, since 2014 different surveillance and control programmes have been established to control AMR in commensal and zoonotic bacteria in production animals. However, public health authorities' reports on AMR leave out companion animals, due to the lack of national programmes and data collection by countries. This missing information constitutes a serious public health concern due to the close contact between companion animals, humans and their surrounding environment. This absence of control and harmonisation between programmes in European countries leads to the ineffectiveness of antibiotics against common diseases. Thus, there is a pressing need to establish adequate surveillance and monitoring programmes for AMR in companion animals and further develop alternatives to antibiotic use in this sector, considering the impact this could have on the gut microbiota. In this context, the aim of this review is to evaluate the current control and epidemiological situations of AMR in companion animals in the European Union (EU), as well as the proposed alternatives to antibiotics.
Collapse
Affiliation(s)
| | | | | | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain; (A.M.-F.); (C.M.); (L.L.-R.); (L.M.-D.)
| | | |
Collapse
|
23
|
Mader R, Muñoz Madero C, Aasmäe B, Bourély C, Broens EM, Busani L, Callens B, Collineau L, Crespo-Robledo P, Damborg P, Filippitzi ME, Fitzgerald W, Heuvelink A, van Hout J, Kaspar H, Norström M, Pedersen K, Pohjanvirta T, Pokludova L, Dal Pozzo F, Slowey R, Teixeira Justo C, Urdahl AM, Vatopoulos A, Zafeiridis C, Madec JY, Amat JP. Review and Analysis of National Monitoring Systems for Antimicrobial Resistance in Animal Bacterial Pathogens in Europe: A Basis for the Development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet). Front Microbiol 2022; 13:838490. [PMID: 35464909 PMCID: PMC9023068 DOI: 10.3389/fmicb.2022.838490] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
The monitoring of antimicrobial resistance (AMR) in bacterial pathogens of animals is not currently coordinated at European level. To fill this gap, experts of the European Union Joint Action on Antimicrobial Resistance and Healthcare Associated Infections (EU-JAMRAI) recommended building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet). In this study, we (i) identified national monitoring systems for AMR in bacterial pathogens of animals (both companion and food-producing) among 27 countries affiliated to EU-JAMRAI, (ii) described their structures and operations, and (iii) analyzed their respective strengths, weaknesses, opportunities and threats (SWOT). Twelve countries reported having at least one national monitoring system in place, representing an opportunity to launch EARS-Vet, but highlighting important gaps in AMR data generation in Europe. In total, 15 national monitoring systems from 11 countries were described and analyzed. They displayed diverse structures and operations, but most of them shared common weaknesses (e.g., data management and representativeness) and common threats (e.g., economic vulnerability and data access), which could be addressed collectively under EARS-Vet. This work generated useful information to countries planning to build or improve their system, by learning from others' experience. It also enabled to advance on a pragmatic harmonization strategy: EARS-Vet shall follow the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards, collect quantitative data and interpret AMR data using epidemiological cut-off values.
Collapse
Affiliation(s)
- Rodolphe Mader
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Antibiotic Resistance and Bacterial Virulence Unit, Lyon, France
| | - Cristina Muñoz Madero
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Coordinación del Plan Nacional Frente a la Resistencia a los Antibióticos (PRAN), Madrid, Spain
| | - Birgit Aasmäe
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Clémence Bourély
- Direction Générale de l’Alimentation, Bureau de la Santé Animale, Paris, France
| | - Els M. Broens
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Luca Busani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Bénédicte Callens
- Antimicrobial Consumption and Resistance in Animals – AMCRA, Brussels, Belgium
| | - Lucie Collineau
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Epidemiology and Support to Surveillance Unit, Lyon, France
| | - Paloma Crespo-Robledo
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Coordinación del Plan Nacional Frente a la Resistencia a los Antibióticos (PRAN), Madrid, Spain
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria-Eleni Filippitzi
- Sciensano, Veterinary Epidemiology Unit, Belgian Research Centre for Health, Brussels, Belgium
- Laboratory of Animal Production Economics, Department of Animal Production, Ichthyology, Ecology and Protection of the Environment, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - William Fitzgerald
- Limerick Regional Veterinary Laboratory, Department of Agriculture, Food and the Marine, Limerick, Ireland
| | | | | | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | | | - Karl Pedersen
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Tarja Pohjanvirta
- Finnish Food Authority, Veterinary Bacteriology and Pathology Unit, Helsinki, Finland
| | - Lucie Pokludova
- Institute for State Control of Veterinary Biologicals and Medicines (ISCVBM), Brno, Czechia
| | - Fabiana Dal Pozzo
- Antimicrobial Consumption and Resistance in Animals – AMCRA, Brussels, Belgium
| | - Rosemarie Slowey
- Department of Agriculture, Food and the Marine Laboratories, Celbridge, Ireland
| | - Cristiana Teixeira Justo
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Coordinación del Plan Nacional Frente a la Resistencia a los Antibióticos (PRAN), Madrid, Spain
| | | | - Alkiviadis Vatopoulos
- Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | | | - Jean-Yves Madec
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Antibiotic Resistance and Bacterial Virulence Unit, Lyon, France
| | - Jean-Philippe Amat
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Epidemiology and Support to Surveillance Unit, Lyon, France
| |
Collapse
|
24
|
Mader R, Muñoz Madero C, Aasmäe B, Bourély C, Broens EM, Busani L, Callens B, Collineau L, Crespo-Robledo P, Damborg P, Filippitzi ME, Fitzgerald W, Heuvelink A, van Hout J, Kaspar H, Norström M, Pedersen K, Pohjanvirta T, Pokludova L, Dal Pozzo F, Slowey R, Teixeira Justo C, Urdahl AM, Vatopoulos A, Zafeiridis C, Madec JY, Amat JP. Review and Analysis of National Monitoring Systems for Antimicrobial Resistance in Animal Bacterial Pathogens in Europe: A Basis for the Development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet). Front Microbiol 2022; 13:838490. [PMID: 35464909 DOI: 10.5281/zenodo.5205371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023] Open
Abstract
The monitoring of antimicrobial resistance (AMR) in bacterial pathogens of animals is not currently coordinated at European level. To fill this gap, experts of the European Union Joint Action on Antimicrobial Resistance and Healthcare Associated Infections (EU-JAMRAI) recommended building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet). In this study, we (i) identified national monitoring systems for AMR in bacterial pathogens of animals (both companion and food-producing) among 27 countries affiliated to EU-JAMRAI, (ii) described their structures and operations, and (iii) analyzed their respective strengths, weaknesses, opportunities and threats (SWOT). Twelve countries reported having at least one national monitoring system in place, representing an opportunity to launch EARS-Vet, but highlighting important gaps in AMR data generation in Europe. In total, 15 national monitoring systems from 11 countries were described and analyzed. They displayed diverse structures and operations, but most of them shared common weaknesses (e.g., data management and representativeness) and common threats (e.g., economic vulnerability and data access), which could be addressed collectively under EARS-Vet. This work generated useful information to countries planning to build or improve their system, by learning from others' experience. It also enabled to advance on a pragmatic harmonization strategy: EARS-Vet shall follow the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards, collect quantitative data and interpret AMR data using epidemiological cut-off values.
Collapse
Affiliation(s)
- Rodolphe Mader
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Antibiotic Resistance and Bacterial Virulence Unit, Lyon, France
| | - Cristina Muñoz Madero
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Coordinación del Plan Nacional Frente a la Resistencia a los Antibióticos (PRAN), Madrid, Spain
| | - Birgit Aasmäe
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Clémence Bourély
- Direction Générale de l'Alimentation, Bureau de la Santé Animale, Paris, France
| | - Els M Broens
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Luca Busani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Bénédicte Callens
- Antimicrobial Consumption and Resistance in Animals - AMCRA, Brussels, Belgium
| | - Lucie Collineau
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Epidemiology and Support to Surveillance Unit, Lyon, France
| | - Paloma Crespo-Robledo
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Coordinación del Plan Nacional Frente a la Resistencia a los Antibióticos (PRAN), Madrid, Spain
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria-Eleni Filippitzi
- Sciensano, Veterinary Epidemiology Unit, Belgian Research Centre for Health, Brussels, Belgium
- Laboratory of Animal Production Economics, Department of Animal Production, Ichthyology, Ecology and Protection of the Environment, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - William Fitzgerald
- Limerick Regional Veterinary Laboratory, Department of Agriculture, Food and the Marine, Limerick, Ireland
| | | | | | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | | | - Karl Pedersen
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Tarja Pohjanvirta
- Finnish Food Authority, Veterinary Bacteriology and Pathology Unit, Helsinki, Finland
| | - Lucie Pokludova
- Institute for State Control of Veterinary Biologicals and Medicines (ISCVBM), Brno, Czechia
| | - Fabiana Dal Pozzo
- Antimicrobial Consumption and Resistance in Animals - AMCRA, Brussels, Belgium
| | - Rosemarie Slowey
- Department of Agriculture, Food and the Marine Laboratories, Celbridge, Ireland
| | - Cristiana Teixeira Justo
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Coordinación del Plan Nacional Frente a la Resistencia a los Antibióticos (PRAN), Madrid, Spain
| | | | - Alkiviadis Vatopoulos
- Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | | | - Jean-Yves Madec
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Antibiotic Resistance and Bacterial Virulence Unit, Lyon, France
| | - Jean-Philippe Amat
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Epidemiology and Support to Surveillance Unit, Lyon, France
| |
Collapse
|
25
|
Mader R, Muñoz Madero C, Aasmäe B, Bourély C, Broens EM, Busani L, Callens B, Collineau L, Crespo-Robledo P, Damborg P, Filippitzi ME, Fitzgerald W, Heuvelink A, van Hout J, Kaspar H, Norström M, Pedersen K, Pohjanvirta T, Pokludova L, Dal Pozzo F, Slowey R, Teixeira Justo C, Urdahl AM, Vatopoulos A, Zafeiridis C, Madec JY, Amat JP. Review and Analysis of National Monitoring Systems for Antimicrobial Resistance in Animal Bacterial Pathogens in Europe: A Basis for the Development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet). Front Microbiol 2022. [PMID: 35464909 DOI: 10.3389/fmicb.2022.83849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The monitoring of antimicrobial resistance (AMR) in bacterial pathogens of animals is not currently coordinated at European level. To fill this gap, experts of the European Union Joint Action on Antimicrobial Resistance and Healthcare Associated Infections (EU-JAMRAI) recommended building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet). In this study, we (i) identified national monitoring systems for AMR in bacterial pathogens of animals (both companion and food-producing) among 27 countries affiliated to EU-JAMRAI, (ii) described their structures and operations, and (iii) analyzed their respective strengths, weaknesses, opportunities and threats (SWOT). Twelve countries reported having at least one national monitoring system in place, representing an opportunity to launch EARS-Vet, but highlighting important gaps in AMR data generation in Europe. In total, 15 national monitoring systems from 11 countries were described and analyzed. They displayed diverse structures and operations, but most of them shared common weaknesses (e.g., data management and representativeness) and common threats (e.g., economic vulnerability and data access), which could be addressed collectively under EARS-Vet. This work generated useful information to countries planning to build or improve their system, by learning from others' experience. It also enabled to advance on a pragmatic harmonization strategy: EARS-Vet shall follow the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards, collect quantitative data and interpret AMR data using epidemiological cut-off values.
Collapse
Affiliation(s)
- Rodolphe Mader
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Antibiotic Resistance and Bacterial Virulence Unit, Lyon, France
| | - Cristina Muñoz Madero
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Coordinación del Plan Nacional Frente a la Resistencia a los Antibióticos (PRAN), Madrid, Spain
| | - Birgit Aasmäe
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Clémence Bourély
- Direction Générale de l'Alimentation, Bureau de la Santé Animale, Paris, France
| | - Els M Broens
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Luca Busani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Bénédicte Callens
- Antimicrobial Consumption and Resistance in Animals - AMCRA, Brussels, Belgium
| | - Lucie Collineau
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Epidemiology and Support to Surveillance Unit, Lyon, France
| | - Paloma Crespo-Robledo
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Coordinación del Plan Nacional Frente a la Resistencia a los Antibióticos (PRAN), Madrid, Spain
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria-Eleni Filippitzi
- Sciensano, Veterinary Epidemiology Unit, Belgian Research Centre for Health, Brussels, Belgium
- Laboratory of Animal Production Economics, Department of Animal Production, Ichthyology, Ecology and Protection of the Environment, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - William Fitzgerald
- Limerick Regional Veterinary Laboratory, Department of Agriculture, Food and the Marine, Limerick, Ireland
| | | | | | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | | | - Karl Pedersen
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Tarja Pohjanvirta
- Finnish Food Authority, Veterinary Bacteriology and Pathology Unit, Helsinki, Finland
| | - Lucie Pokludova
- Institute for State Control of Veterinary Biologicals and Medicines (ISCVBM), Brno, Czechia
| | - Fabiana Dal Pozzo
- Antimicrobial Consumption and Resistance in Animals - AMCRA, Brussels, Belgium
| | - Rosemarie Slowey
- Department of Agriculture, Food and the Marine Laboratories, Celbridge, Ireland
| | - Cristiana Teixeira Justo
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Coordinación del Plan Nacional Frente a la Resistencia a los Antibióticos (PRAN), Madrid, Spain
| | | | - Alkiviadis Vatopoulos
- Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | | | - Jean-Yves Madec
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Antibiotic Resistance and Bacterial Virulence Unit, Lyon, France
| | - Jean-Philippe Amat
- University of Lyon, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Laboratory of Lyon, Epidemiology and Support to Surveillance Unit, Lyon, France
| |
Collapse
|