1
|
Cheng X, Chen X, Ma L, Wei J, Xu Y, Li Y, Ma S, Li J, Sun W. Comparison of Biological and Genomic Characteristics Between Two Non-Intestinal Salmonella Enterica Serovar Enteritidis Isolates from the Same Patient. Microb Drug Resist 2025. [PMID: 40392691 DOI: 10.1089/mdr.2024.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
This study investigates two isolates of Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis), designated Sal B and Sal D, isolated from the blood and pleural fluid, respectively, of the same patient. Drug susceptibility testing revealed significant differences: Sal D exhibited greater resistance to ticarcillin/clavulanate, piperacillin/sulbactam, and ciprofloxacin compared with Sal B. Morphologically, Sal B formed rougher and drier colonies than Sal D at 37°C. Sal B demonstrated significantly stronger biofilm-forming ability and higher adhesion capacity to HaCaT cells than Sal D, whereas Sal D showed superior adaptation to acidic conditions (pH 3.0). Virulence assays indicated no significant differences between the isolates, suggesting comparable pathogenic potential. Comparative genomic analysis showed high gene content conservation but identified two nonsynonymous single-nucleotide polymorphisms (nsSNPs) and an insertion in the envZ and siiE genes. These genetic variations may account for the observed differences in drug susceptibility and biological characteristics. Collectively, these findings suggest that S. Enteritidis can undergo adaptive changes in response to distinct host environments, influencing drug resistance, adhesion, and acid resistance. This knowledge may inform future strategies for the treatment and prevention of Salmonella infections.
Collapse
Affiliation(s)
- Xin Cheng
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinxin Chen
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liyan Ma
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingjuan Wei
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Xu
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yana Li
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siyu Ma
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Li
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Sun
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Miao S, Zhang Y, Yuan X, Zuo J. Antibiotic resistance evolution driven synergistically by antibiotics and typical organic pollutants in antibiotic production wastewater. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136543. [PMID: 39608073 DOI: 10.1016/j.jhazmat.2024.136543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
A major concern regarding the risk of antibiotic production wastewater (APW) for the transmission of antibiotic resistance (AR) stems from the residual antibiotics. However, APW also contains high concentrations of organic pollutants, many of which have severe biological toxicity and joint toxicity with antibiotics. The contribution of these organic pollutants to the development of AR in the APW treatment system is unknown. In this study, a wild-type Escherichia coli strain was exposed to six typical organic pollutants in APW individually and synergistically with the antibiotic ampicillin (AMP). Independent exposure to organic compounds had negligible effects on the evolution of AR, whereas they synergistically induced AR mutations and increased antibiotic persistence with AMP, especially the raw material d-p-hydroxyphenylglycine (DHPG), at relevant concentrations in APW. Combined exposure to 1-500 mg/L DHPG and 1 mg/L AMP synergistically increased the mutation frequencies against multiple antibiotics by up to 2928.9-fold in a dose-time pattern, and the combination index reached 445.7. Phenotypic and genotypic analyses revealed that the synergism between DHPG and AMP was associated with increased antibacterial activity, enhanced oxidative stress, and stimulation of efflux pump expression. Overall, our results highlight the elevated risk of AR induction caused by antibiotics and organic pollutants in APW.
Collapse
Affiliation(s)
- Sun Miao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yanyan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xin Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Deng F, Zhao L, Wei P, Mai E, Chen M, Yang H, Mu P, Wu J, Wen J, Deng Y. Role and mechanism of the outer membrane porin LamB in T-2 mycotoxin-mediated extensive drug resistance in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136437. [PMID: 39541888 DOI: 10.1016/j.jhazmat.2024.136437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
The influence of mycotoxins in ecological niches shared with antibiotic-resistant bacteria (ARB) remains underexplored. This study examined the impact of T-2 mycotoxin on the evolution of antibiotic resistance in Escherichia coli, highlighting the role of specific porins. Our findings revealed that exposure to 10 ng/mL of T-2 toxin induced multi-drug resistant (MDR) phenotypes in three E. coli. At 10-5 ng/mL, T-2 toxin caused E. coli ATCC 25922 to develop stable resistance to 13 critical antibiotics, with minimum inhibitory concentrations (MICs) increasing 16- to several thousand-fold. This resistance was linked to the downregulation of the mal gene cluster. Notably, T-2 toxin reduced membrane permeability by downregulating lamB, facilitating its own entry and reducing the intracellular accumulation of both the toxin and antibiotics, thereby enhancing resistance development. LamB mediated the XDR phenotypes in E. coli, particularly by blocking last-resort antibiotics such as cephalosporins, carbapenems, tigecycline, and colistin, complicating treatment strategies. LamB demonstrated high binding affinities for T-2 toxin and various antibiotics, with specific binding sites identified for meropenem (Arg134), imipenem (Ser148, Arg170, Lys129), ceftazidime (Phe106, Lys129), and cefepime (Tyr66, Gln267, Lys269), exhibiting binding energies of -2.93, -2.58, -2.53, and -4.3, respectively. These findings suggest that even low levels of T-2 mycotoxin pose a substantial public health risk. They underscore the urgent need to address these contaminants and open new avenues for antibiotic resistance research.
Collapse
Affiliation(s)
- Fengru Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Li Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Ping Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Enhua Mai
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Meichan Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Huixin Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Peiqiang Mu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Jun Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Jikai Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, PR China.
| |
Collapse
|
4
|
Kovačević Z, Čabarkapa I, Šarić L, Pajić M, Tomanić D, Kokić B, Božić DD. Natural Solutions to Antimicrobial Resistance: The Role of Essential Oils in Poultry Meat Preservation with Focus on Gram-Negative Bacteria. Foods 2024; 13:3905. [PMID: 39682977 DOI: 10.3390/foods13233905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) is a major global health problem with implications on human and veterinary medicine, as well as food production. In the poultry industry, the overuse and misuse of antimicrobials has led to the development of resistant or multi-drug resistant (MDR) strains of bacteria such as Salmonella spp., Escherichia coli and Campylobacter spp., which pose a serious risk to meat safety and public health. The genetic transfer of resistance elements between poultry MDR bacteria and human pathogens further exacerbates the AMR crisis and highlights the urgent need for action. Traditional methods of preserving poultry meat, often based on synthetic chemicals, are increasingly being questioned due to their potential impact on human health and the environment. This situation has led to a shift towards natural, sustainable alternatives, such as plant-derived compounds, for meat preservation. Essential oils (EOs) have emerged as promising natural preservatives in the poultry meat industry offering a potential solution to the growing AMR problem by possessing inherent antimicrobial properties making them effective against a broad spectrum of pathogens. Their use in the preservation of poultry meat not only extends shelf life, but also reduces reliance on synthetic preservatives and antibiotics, which contribute significantly to AMR. The unique chemical composition of EOs, that contains a large number of different active compounds, minimizes the risk of bacteria developing resistance. Recent advances in nano-encapsulation technology have further improved the stability, bioavailability and efficacy of EOs, making them more suitable for commercial use. Hence, in this manuscript, the recent literature on the mechanisms of AMR in the most important Gram-negative poultry pathogens and antimicrobial properties of EOs on these meat isolates was reviewed. Additionally, chemical composition, extraction methods of EOs were discussed, as well as future directions of EOs as natural food preservatives. In conclusion, by integrating EOs into poultry meat preservation strategies, the industry can adopt more sustainable and health-conscious practices and ultimately contribute to global efforts to combat AMR.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pajić
- Department for Epizootiology, Clinical Diagnostic, Pathology and DDD, Scientific Veterinary Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Tomanić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojana Kokić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana D Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
5
|
Yu L, Han X, Zhang W, Fu Y, Yang S, Wu S, Jin J, Li S, Chen Y, Jiang Y, Yu Y. The two-component sensor factor envZ influences antibiotic resistance and virulence in the evolutionary dynamics of multidrug-resistant Salmonella enteritidis causing multisite invasive infections. J Antimicrob Chemother 2024; 79:3254-3263. [PMID: 39365636 DOI: 10.1093/jac/dkae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVES To assess the impact of mutations in the two-component sensor envZ on antibiotic resistance and virulence in the evolutionary dynamics of MDR Salmonella enteritidis (S. enteritidis). METHODS Five S. enteritidis isolates obtained from a patient with multisite invasive infections were analysed. Analysis of antibiotic resistance genes, virulence genes and SNP was performed through WGS. RNA sequencing, quantitative RT-PCR, virulence testing in a Galleria mellonella (G. mellonella) infection model and in vitro cell experiments were used to examine the effects of envZ mutations. RESULTS WGS revealed identical resistance and virulence genes on an IncFIB(S)/IncFII(S)/IncX1 fusion plasmid in all strains. The faecal strains harboured envZ mutations, reducing outer membrane protein ompD and ompF transcriptional level. Virulence testing demonstrated elevated virulence in envZ mutant strains. In vitro experiments revealed increased adhesion, invasion and phagocytosis resistance in envZ mutants, along with reduced biofilm formation and growth rates. CONCLUSIONS These findings highlight novel genetic locations on envZ influencing antibiotic resistance and virulence in clinical S. enteritidis strains. envZ mutations impact antibiotic resistance by down-regulating ompD and ompF expression and enhance virulence, contributing to multisite infections with increased fitness costs.
Collapse
Affiliation(s)
- Lifei Yu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xinhong Han
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Wang Zhang
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ying Fu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shaoxue Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Shenghai Wu
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jie Jin
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Siying Li
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Yan Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310016, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yan Jiang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310016, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yunsong Yu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310016, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
6
|
Li W, Wang Y, Gao J, Wang A. Antimicrobial resistance and its risks evaluation in wetlands on the Qinghai-Tibetan Plateau. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116699. [PMID: 38981389 DOI: 10.1016/j.ecoenv.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Amidst the global antimicrobial resistance (AMR) crisis, antibiotic resistance has permeated even the most remote environments. To understand the dissemination and evolution of AMR in minimally impacted ecosystems, the resistome and mobilome of wetlands across the Qinghai-Tibetan Plateau and its marginal regions were scrutinized using metagenomic sequencing techniques. The composition of wetland microbiomes exhibits significant variability, with dominant phyla including Proteobacteria, Actinobacteria, Bacteroidetes, and Verrucomicrobia. Notably, a substantial abundance of Antibiotic Resistance Genes (ARGs) and Mobile Genetic Elements (MGEs) was detected, encompassing 17 ARG types, 132 ARG subtypes, and 5 types of MGEs (Insertion Sequences, Insertions Sequences, Genomic Islands, Transposons, and Integrative Conjugative Elements). No significant variance was observed in the prevalence of resistome and mobilome across different wetland types (i.e., the Yellow River, other rivers, lakes, and marshes) (R=-0.5882, P=0.607). The co-occurrence of 74 ARG subtypes and 22 MGEs was identified, underscoring the pivotal role of MGEs in shaping ARG pools within the Qinghai-Tibetan Plateau wetlands. Metagenomic binning and analysis of assembled genomes (MAGs) revealed that 93 out of 206 MAGs harbored ARGs (45.15 %). Predominantly, Burkholderiales, Pseudomonadales, and Enterobacterales were identified as the primary hosts of these ARGs, many of which represent novel species. Notably, a substantial proportion of ARG-carrying MAGs also contained MGEs, reaffirming the significance of MGEs in AMR dissemination. Furthermore, utilizing the arg_ranker framework for risk assessment unveiled severe contamination of high-risk ARGs across most plateau wetlands. Moreover, some prevalent human pathogens were identified as potential hosts for these high-risk ARGs, posing substantial transmission risks. This study aims to investigate the prevalence of resistome and mobilome in wetlands, along with evaluating the risk posed by high-risk ARGs. Such insights are crucial for informing environmental protection strategies and facilitating the management of water resources on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Weiwei Li
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, China
| | - Yanfang Wang
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, China
| | - Jianxin Gao
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, China
| | - Ailan Wang
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
7
|
Wang L, Fang J, Wang H, Zhang B, Wang N, Yao X, Li H, Qiu J, Deng X, Leng B, Wang J, Tan W, Zhang Q. Natural medicine can substitute antibiotics in animal husbandry: protective effects and mechanisms of rosewood essential oil against Salmonella infection. Chin J Nat Med 2024; 22:785-796. [PMID: 39326973 DOI: 10.1016/s1875-5364(24)60576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 09/28/2024]
Abstract
Aniba rosaeodora essential oil (RO) has been traditionally used in natural medicine as a substitute for antibiotics due to its notable antidepressant and antibacterial properties. Salmonella, a prevalent pathogen in foodborne illnesses, presents a major challenge to current antibiotic treatments. However, the antibacterial efficacy and mechanisms of action of RO against Salmonella spp. remain underexplored. This study aims to elucidate the chemical composition of RO, evaluate its antibacterial activity and mechanisms against Salmonella in vitro, and further delineate its anti-inflammatory mechanisms in vivo during Salmonella infection. Gas chromatography-mass spectrometry (GC-MS) was utilized to characterize the chemical constituents of RO. The antibacterial activity of RO was assessed using minimal inhibitory concentration (MIC) and time-kill assays. Various biochemical assays were employed to uncover the potential bactericidal mechanisms. Additionally, mouse and chick models of Salmonella infection were established to investigate the prophylactic effects of RO treatment. RO exhibited significant antibacterial activity against both Gram-positive and Gram-negative bacteria, with an MIC of 4 mg·mL-1 for Salmonella spp. RO treatment resulted in bacterial damage through the disruption of lipid and purine metabolism. Moreover, RO reduced injury and microbial colonization in infected mice and chicks. RO treatment also modulated the host inflammatory response by inhibiting proinflammatory pathways. In conclusion, our findings demonstrate that RO is effective against Salmonella infection, highlighting its potential as an alternative to antibiotics for antibacterial therapy.
Collapse
Affiliation(s)
- Lanqiao Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Heng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Baoyu Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinyu Yao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - He Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bingfeng Leng
- Shenzhen Beichen Biotech Co., Ltd., Shenzhen 518057, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenxi Tan
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Qiaoling Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
8
|
Gavriil A, Giannenas I, Skandamis PN. A current insight into Salmonella's inducible acid resistance. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39014992 DOI: 10.1080/10408398.2024.2373387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Salmonella is a diverse and ubiquitous group of bacteria and a major zoonotic pathogen implicated in several foodborne disease outbreaks worldwide. With more than 2500 distinct serotypes, this pathogen has evolved to survive in a wide spectrum of environments and across multiple hosts. The primary and most common source of transmission is through contaminated food or water. Although the main sources have been primarily linked to animal-related food products, outbreaks due to the consumption of contaminated plant-related food products have increased in the last few years. The perceived ability of Salmonella to trigger defensive mechanisms following pre-exposure to sublethal acid conditions, namely acid adaptation, has renewed a decade-long attention. The impact of acid adaptation on the subsequent resistance against lethal factors of the same or multiple stresses has been underscored by multiple studies. Α plethora of studies have been published, aiming to outline the factors that- alone or in combination- can impact this phenomenon and to unravel the complex networking mechanisms underlying its induction. This review aims to provide a current and updated insight into the factors and mechanisms that rule this phenomenon.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Athens, Greece
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis N Skandamis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
9
|
Yang Y, Tan L, He S, Hao B, Huang X, Zhou Y, Shang W, Peng H, Hu Z, Ding R, Rao X. Sub-MIC vancomycin enhances the antibiotic tolerance of vancomycin-intermediate Staphylococcus aureus through downregulation of protein succinylation. Microbiol Res 2024; 282:127635. [PMID: 38340572 DOI: 10.1016/j.micres.2024.127635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Bacteria develop tolerance after transient exposure to antibiotics, and tolerance is a significant driver of resistance. The purpose of this study is to evaluate the mechanisms underlying tolerance formation in vancomycin-intermediate Staphylococcus aureus (VISA) strains. VISA strains were cultured with sub-minimum inhibitory concentrations (sub-MICs) of vancomycin. Enhanced vancomycin tolerance was observed in VISA strains with distinct genetic lineages. Western blot revealed that the VISA protein succinylation (Ksucc) levels decreased with the increase in vancomycin exposure. Importantly, Ksucc modification, vancomycin tolerance, and cell wall synthesis were simultaneously affected after deletion of SacobB, which encodes a desuccinylase in S. aureus. Several Ksucc sites were identified in MurA, and vancomycin MIC levels of murA mutant and Ksucc-simulated (MurA(K69E) and MurA(K191E)) mutants were reduced. The vancomycin MIC levels of K65-MurA(K191E) in particular decreased to 1 mg/L, converting VISA strain K65 to a vancomycin-susceptible S. aureus strain. We further demonstrated that the enzymatic activity of MurA was dependent on Ksucc modification. Our data suggested the influence of vancomycin exposure on bacterial tolerance, and protein Ksucc modification is a novel mechanism in regulating vancomycin tolerance.
Collapse
Affiliation(s)
- Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Siyuan He
- College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Bo Hao
- College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yumin Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ruolan Ding
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
10
|
Porwollik S, Chu W, Desai PT, McClelland M. A genome-wide collection of barcoded single-gene deletion mutants in Salmonella enterica serovar Typhimurium. PLoS One 2024; 19:e0298419. [PMID: 38452024 PMCID: PMC10919679 DOI: 10.1371/journal.pone.0298419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
Genetic screening of pools of mutants can reveal genetic determinants involved in complex biological interactions, processes, and systems. We previously constructed two single-gene deletion resources for Salmonella enterica serovar Typhimurium 14028s in which kanamycin (KanR) and chloramphenicol (CamR) cassettes were used to replace non-essential genes. We have now used lambda-red recombination to convert the antibiotic cassettes in these resources into a tetracycline-resistant (TetR) version where each mutant contains a different 21-base barcode flanked by Illumina Read1 and Read2 primer sequences. A motility assay of a pool of the entire library, followed by a single-tube processing of the bacterial pellet, PCR, and sequencing, was used to verify the performance of the barcoded TetR collection. The new resource is useful for experiments with defined subsets of barcoded mutant strains where biological bottlenecks preclude high numbers of founder bacteria, such as in animal infections. The TetR version of the library will also facilitate the construction of triple mutants by transduction. The resource of 6197 mutants covering 3490 genes is deposited at Biological and Emerging Infections Resources (beiresources.org).
Collapse
Affiliation(s)
- Steffen Porwollik
- Dept. of Microbiology and Molecular Genetics, University of California, Irvine, Irvina, CA, United States of America
| | - Weiping Chu
- Dept. of Microbiology and Molecular Genetics, University of California, Irvine, Irvina, CA, United States of America
| | - Prerak T. Desai
- GSK Computational Biology, Upper Providence, PA, United States of America
| | - Michael McClelland
- Dept. of Microbiology and Molecular Genetics, University of California, Irvine, Irvina, CA, United States of America
| |
Collapse
|
11
|
Qin Z, Peng K, Feng Y, Wang Y, Huang B, Tian Z, Ouyang P, Huang X, Chen D, Lai W, Geng Y. Transcriptome reveals the role of the htpG gene in mediating antibiotic resistance through cell envelope modulation in Vibrio mimicus SCCF01. Front Microbiol 2024; 14:1295065. [PMID: 38239724 PMCID: PMC10794384 DOI: 10.3389/fmicb.2023.1295065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
HtpG, a bacterial homolog of the eukaryotic 90 kDa heat-shock protein (Hsp90), represents the simplest member of the heat shock protein family. While the significance of Hsp90 in fungal and cancer drug resistance has been confirmed, the role of HtpG in bacterial antibiotic resistance remains largely unexplored. This research aims to investigate the impact of the htpG gene on antibiotic resistance in Vibrio mimicus. Through the creation of htpG gene deletion and complementation strains, we have uncovered the essential role of htpG in regulating the structural integrity of the bacterial cell envelope. Our transcriptomics analysis demonstrates that the deletion of htpG increases the sensitivity of V. mimicus to antimicrobial peptides, primarily due to upregulated lipopolysaccharide synthesis, reduced glycerophospholipid content, and weakened efflux pumps activity. Conversely, reduced sensitivity to β-lactam antibiotics in the ΔhtpG strain results from decreased peptidoglycan synthesis and dysregulated peptidoglycan recycling and regulation. Further exploration of specific pathway components is essential for a comprehensive understanding of htpG-mediated resistance mechanisms, aiding in the development of antimicrobial agents. To our knowledge, this is the first effort to explore the relationship between htpG and drug resistance in bacteria.
Collapse
Affiliation(s)
- Zhenyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kun Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yilin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bowen Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Ko D, Sung D, Kim TY, Choi G, Bang YJ, Choi SH. CarRS Two-Component System Essential for Polymyxin B Resistance of Vibrio vulnificus Responds to Multiple Host Environmental Signals. Microbiol Spectr 2023; 11:e0030523. [PMID: 37289068 PMCID: PMC10433830 DOI: 10.1128/spectrum.00305-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Enteropathogenic bacteria express two-component systems (TCSs) to sense and respond to host environments, developing resistance to host innate immune systems like cationic antimicrobial peptides (CAMPs). Although an opportunistic human pathogen Vibrio vulnificus shows intrinsic resistance to the CAMP-like polymyxin B (PMB), its TCSs responsible for resistance have barely been investigated. Here, a mutant exhibiting a reduced growth rate in the presence of PMB was screened from a random transposon mutant library of V. vulnificus, and response regulator CarR of the CarRS TCS was identified as essential for its PMB resistance. Transcriptome analysis revealed that CarR strongly activates the expression of the eptA, tolCV2, and carRS operons. In particular, the eptA operon plays a major role in developing the CarR-mediated PMB resistance. Phosphorylation of CarR by the sensor kinase CarS is required for the regulation of its downstream genes, leading to the PMB resistance. Nevertheless, CarR directly binds to specific sequences in the upstream regions of the eptA and carRS operons, regardless of its phosphorylation. Notably, the CarRS TCS alters its own activation state by responding to several environmental stresses, including PMB, divalent cations, bile salts, and pH change. Furthermore, CarR modulates the resistance of V. vulnificus to bile salts and acidic pH among the stresses, as well as PMB. Altogether, this study suggests that the CarRS TCS, in responding to multiple host environmental signals, could provide V. vulnificus with the benefit of surviving within the host by enhancing its optimal fitness during infection. IMPORTANCE Enteropathogenic bacteria have evolved multiple TCSs to recognize and appropriately respond to host environments. CAMP is one of the inherent host barriers that the pathogens encounter during the course of infection. In this study, the CarRS TCS of V. vulnificus was found to develop resistance to PMB, a CAMP-like antimicrobial peptide, by directly activating the expression of the eptA operon. Although CarR binds to the upstream regions of the eptA and carRS operons regardless of phosphorylation, phosphorylation of CarR is required for the regulation of the operons, resulting in the PMB resistance. Furthermore, the CarRS TCS determines the resistance of V. vulnificus to bile salts and acidic pH by differentially regulating its own activation state in response to these environmental stresses. Altogether, the CarRS TCS responds to multiple host-related signals, and thus could enhance the survival of V. vulnificus within the host, leading to successful infection.
Collapse
Affiliation(s)
- Duhyun Ko
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Dayoung Sung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Tae Young Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Zhou G, Wang Q, Wang Y, Wen X, Peng H, Peng R, Shi Q, Xie X, Li L. Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria. Microorganisms 2023; 11:1690. [PMID: 37512863 PMCID: PMC10385648 DOI: 10.3390/microorganisms11071690] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Gram-negative bacteria depend on their cell membranes for survival and environmental adaptation. They contain two membranes, one of which is the outer membrane (OM), which is home to several different outer membrane proteins (Omps). One class of important Omps is porins, which mediate the inflow of nutrients and several antimicrobial drugs. The microorganism's sensitivity to antibiotics, which are predominantly targeted at internal sites, is greatly influenced by the permeability characteristics of porins. In this review, the properties and interactions of five common porins, OmpA, OmpC, OmpF, OmpW, and OmpX, in connection to porin-mediated permeability are outlined. Meanwhile, this review also highlighted the discovered regulatory characteristics and identified molecular mechanisms in antibiotic penetration through porins. Taken together, uncovering porins' functional properties will pave the way to investigate effective agents or approaches that use porins as targets to get rid of resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qian Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xia Wen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruqun Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liangqiu Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
14
|
Ma W, Wang X, Zhang W, Hu X, Yang JL, Liang X. Two-Component System Response Regulator ompR Regulates Mussel Settlement through Exopolysaccharides. Int J Mol Sci 2023; 24:ijms24087474. [PMID: 37108636 PMCID: PMC10139040 DOI: 10.3390/ijms24087474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The outer membrane protein (OMP) is a kind of biofilm matrix component that widely exists in Gram-negative bacteria. However, the mechanism of OMP involved in the settlement of molluscs is still unclear. In this study, the mussel Mytilus coruscus was selected as a model to explore the function of ompR, a two-component system response regulator, on Pseudoalteromonas marina biofilm-forming capacity and the mussel settlement. The motility of the ΔompR strain was increased, the biofilm-forming capacity was decreased, and the inducing activity of the ΔompR biofilms in plantigrades decreased significantly (p < 0.05). The extracellular α-polysaccharide and β-polysaccharide of the ΔompR strain decreased by 57.27% and 62.63%, respectively. The inactivation of the ompR gene decreased the ompW gene expression and had no impact on envZ expression or c-di-GMP levels. Adding recombinant OmpW protein caused the recovery of biofilm-inducing activities, accompanied by the upregulation of exopolysaccharides. The findings deepen the understanding of the regulatory mechanism of bacterial two-component systems and the settlement of benthic animals.
Collapse
Affiliation(s)
- Wei Ma
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Xiaoyu Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Wen Zhang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Xiaomeng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| |
Collapse
|
15
|
Jia X, Zhao K, Liu F, Lin J, Lin C, Chen J. Transcriptional factor OmpR positively regulates prodigiosin biosynthesis in Serratia marcescens FZSF02 by binding with the promoter of the prodigiosin cluster. Front Microbiol 2022; 13:1041146. [PMID: 36466667 PMCID: PMC9712742 DOI: 10.3389/fmicb.2022.1041146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/01/2022] [Indexed: 10/27/2023] Open
Abstract
Prodigiosin is a promising secondary metabolite mainly produced by Serratia marcescens. The production of prodigiosin by S. marcescens is regulated by different kinds of regulatory systems, including the EnvZ/OmpR system. In this study, we demonstrated that the regulatory factor OmpR positively regulated prodigiosin production in S. marcescens FZSF02 by directly binding to the promoter region of the prodigiosin biosynthesis cluster with a lacZ reporter assay and electrophoretic mobility shift assay (EMSA). The binding sequence with the pig promoter was identified by a DNase I footprinting assay. We further demonstrate that OmpR regulates its own expression by directly binding to the promoter region of envZ/ompR. For the first time, the regulatory mechanism of prodigiosin production by the transcriptional factor OmpR was revealed.
Collapse
Affiliation(s)
- Xianbo Jia
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Ke Zhao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangchen Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junjie Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenqiang Lin
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Jichen Chen
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| |
Collapse
|