1
|
Hirai J, Hanai Y. Comparative study of ensitrelvir and symptomatic therapy in healthcare workers with mild COVID-19: A single center retrospective analysis in Chiba, Japan. J Infect Chemother 2025; 31:102668. [PMID: 40021002 DOI: 10.1016/j.jiac.2025.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Ensitrelvir, a novel oral antiviral targeting the 3CL protease of SARS-CoV-2, has demonstrated efficacy in reducing viral load in clinical trials. Rapid viral clearance in healthcare workers (HCWs) with mild COVID-19 is critical for symptom relief and minimizing secondary transmission. However, real-world evidence on ensitrelvir's effectiveness in this population is limited. METHODS This single-center retrospective study analyzed 407 HCWs with mild COVID-19 treated with either ensitrelvir or symptomatic therapy. Viral load was assessed using reverse transcription-polymerase chain reaction cycle threshold (Ct) values. The primary endpoint was achieving a Ct > 30, indicating low infectivity, on days 5-8 or 9-12. Secondary endpoints included adverse events, hospitalization, disease progression, and all-cause mortality within 30 days of symptom onset. Multivariate logistic regression identified factors associated with achieving Ct > 30. RESULTS Patients in the ensitrelvir group had significantly higher rates of achieving Ct > 30 on days 5-8 (38.0 % vs. 9.9 %, p < 0.01) and days 9-12 (77.8 % vs. 42.3 %, p < 0.01). Treatment with ensitrelvir was associated with a significantly higher likelihood of symptom improvement within 5-8 days compared to symptomatic therapy (p < 0.01). Multivariate analysis confirmed ensitrelvir as independently associated with Ct > 30 (adjusted odds ratio: 6.498; p < 0.01). No adverse events, hospitalizations, or mortality were observed. DISCUSSION Ensitrelvir demonstrated superior viral clearance compared to symptomatic therapy, facilitating a safer and earlier return to work for HCWs. However, additional precautions, such as mask use, remain essential for HCWs working in high-risk environments, even after ensitrelvir treatment. CONCLUSIONS Ensitrelvir is a safe and effective option for reducing SARS-CoV-2 viral load in HCWs with mild COVID-19, supporting timely recovery and reducing infectivity.
Collapse
Affiliation(s)
- Jun Hirai
- Division of Infection Control and Prevention, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan.
| | - Yuki Hanai
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Japan
| |
Collapse
|
2
|
Novotný P, Humpolíčková J, Nováková V, Stanchev S, Stříšovský K, Zgarbová M, Weber J, Kryštůfek R, Starková J, Hradilek M, Moravcová A, Günterová J, Bach K, Majer P, Konvalinka J, Majerová T. The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery. J Biol Chem 2025; 301:108079. [PMID: 39675720 PMCID: PMC11773056 DOI: 10.1016/j.jbc.2024.108079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) autocatalytically releases itself out of the viral polyprotein to form a fully active mature dimer in a manner that is not fully understood. Here, we introduce several tools to help elucidate differences between cis (intramolecular) and trans (intermolecular) proteolytic processing and to evaluate inhibition of precursor Mpro. We found that many mutations at the P1 position of the N-terminal autoprocessing site do not block cis autoprocessing but do inhibit trans processing. Notably, substituting the WT glutamine at the P1 position with isoleucine retains Mpro in an unprocessed precursor form that can be purified and further studied. We also developed a cell-based reporter assay suitable for compound library screening and evaluation in HEK293T cells. This assay can detect both overall Mpro inhibition and the fraction of uncleaved precursor form of Mpro through separable fluorescent signals. We observed that inhibitory compounds preferentially block mature Mpro. Bofutrelvir and a novel compound designed in-house showed the lowest selectivity between precursor and mature Mpro, indicating that inhibition of both forms may be possible. Additionally, we observed positive modulation of precursor activity at low concentrations of inhibitors. Our findings help expand understanding of the SARS-CoV-2 viral life cycle and may facilitate development of strategies to target precursor form of Mpro for inhibition or premature activation of Mpro.
Collapse
Affiliation(s)
- Pavel Novotný
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Nováková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Genetics and Microbiology, Charles University in Prague, Prague, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kvido Stříšovský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michala Zgarbová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Genetics and Microbiology, Charles University in Prague, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robin Kryštůfek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
| | - Jana Starková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hradilek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Adéla Moravcová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jana Günterová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kathrin Bach
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Genetics and Microbiology, Charles University in Prague, Prague, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Biochemistry, Charles University in Prague, Prague, Czech Republic
| | - Taťána Majerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Ishibashi T, Shimizu R, Kubota R. Population Pharmacokinetics of Ensitrelvir in Healthy Participants and Participants with SARS-CoV-2 Infection in the SCORPIO-SR Study. Clin Pharmacokinet 2024; 63:1723-1734. [PMID: 39565561 DOI: 10.1007/s40262-024-01446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
INTRODUCTION Ensitrelvir, a novel oral inhibitor of the 3C-like protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has shown efficacy and safety in participants with mild to moderate coronavirus disease 2019 (COVID-19) with once-daily multiple doses of 375 mg on day 1 followed by 125 mg on days 2-5. The aims of this study were to characterize the pharmacokinetics of ensitrelvir and to explore its exposure-response relationships on the dose regimen. METHODS Pharmacokinetic data, including 8034 plasma concentration datasets from 2060 participants, from two phase I and one phase II/III study in healthy participants and participants infected with SARS-CoV-2 were used to develop a population pharmacokinetic model. The correlation between exposure and drug response was evaluated using observed plasma concentrations and estimated pharmacokinetic parameters as pharmacokinetic indexes and viral RNA as drug response. RESULTS A two-compartment model with a first-order absorption model effectively described plasma ensitrelvir concentrations. The effects of body weight on clearance and volume of distribution and of food conditions and formulation on the absorption rate constant were selected as significant covariates. The efficacy indexes changed in the active group, but the responses were similar across the exposure range in the phase II/III study (SCORPIO-SR) regardless of the effects of the pharmacokinetic covariates. CONCLUSION Population pharmacokinetics revealed that body weight is the most important covariate in the pharmacokinetics of ensitrelvir. The antiviral effect, independent of ensitrelvir exposure, was demonstrated on the current dose regimen for treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Toru Ishibashi
- Clinical Pharmacology and Pharmacokinetics, Shionogi & Co., Ltd., 3-13, Imabashi 3-chome, Chuo-ku, Osaka, 541-0042, Japan.
| | - Ryosuke Shimizu
- Clinical Pharmacology and Pharmacokinetics, Shionogi & Co., Ltd., 3-13, Imabashi 3-chome, Chuo-ku, Osaka, 541-0042, Japan
| | - Ryuji Kubota
- Clinical Pharmacology and Pharmacokinetics, Shionogi & Co., Ltd., 3-13, Imabashi 3-chome, Chuo-ku, Osaka, 541-0042, Japan
| |
Collapse
|
4
|
Nakashima M, Nobori H, Kuroda T, Shimba A, Miyagawa S, Hayashi A, Matsumoto K, Yoshida M, Baba K, Kato T, Fukao K. Oral 3CL protease inhibitor ensitrelvir suppressed SARS-CoV-2 shedding and infection in a hamster aerosol transmission model. Antiviral Res 2024; 232:106026. [PMID: 39477094 DOI: 10.1016/j.antiviral.2024.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) remain a major global health challenge, with aerosol transmission being the primary route of spread. The use of antivirals as medical countermeasures to control SARS-CoV-2 transmission and spread is promising but remains to be clarified. The current study established and used an in vivo hamster aerosol transmission model system to evaluate the efficacy of the protease inhibitor ensitrelvir to prevent the spread of SARS-CoV-2. Male Index Syrian hamsters were intranasally infected with SARS-CoV-2, paired with naïve Contact hamsters, and co-housed for 12 h under conditions to allow for only aerosol transmission. The Index hamsters were treated three times with ensitrelvir starting 8 h post infection, or the Contact hamsters were treated once with ensitrelvir 12 h prior to co-housing. Viral infection and transmission were monitored by evaluating nasal lavage fluid, lung tissues, and body and lung weights. Post-infection administration of ensitrelvir to Index hamsters suppressed virus shedding in a dose-dependent manner. Pre-exposure administration of 750 mg/kg ensitrelvir to naïve Contact hamsters also protected against aerosol SARS-CoV-2 infection in a dose-dependent manner. Furthermore, pre-exposure treatment of 750 mg/kg ensitrelvir supressed body weight loss and lung weight increase of aerosol infected hamsters compared to vehicle-treated hamsters. These findings suggest that ensitrelvir may prevent SARS-CoV-2 spread when administered to infected patients and may prevent or limit SARS-CoV-2 infection when prophylactically administered to non-infected individuals. Both approaches may help protect at-risk individuals, such as family members living with SARS-CoV-2-infected patients.
Collapse
Affiliation(s)
- Masaaki Nakashima
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Haruaki Nobori
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Takayuki Kuroda
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Alice Shimba
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Satoshi Miyagawa
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Akane Hayashi
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Kazumi Matsumoto
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Mei Yoshida
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Kaoru Baba
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Teruhisa Kato
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Keita Fukao
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan.
| |
Collapse
|
5
|
Abe S, Wannigama DL, Suzuki Y, Akaneya D, Igarashi J, Suto M, Moriya K, Ishizawa D, Okuma Y, Hongsing P, Hurst C, Saethang T, Higgins PG, Stick SM, Kicic A. Real world effectiveness of early ensitrelvir treatment in patients with SARS-CoV-2, a retrospective case series. New Microbes New Infect 2024; 62:101522. [PMID: 39552926 PMCID: PMC11567130 DOI: 10.1016/j.nmni.2024.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Background Ensitrelvir, a 3C-like protease inhibitor, received emergency approval in Japan in November 2022 for treating non-hospitalized patients with mild-to-moderate COVID-19. However, confirmation of its real-world clinical effectiveness is limited. Methods This retrospective study evaluated 18 vaccinated outpatients (15 men; median age, 39.5 years; range, 26-56), treated with a 5-day oral ensitrelvir regimen (375 mg loading dose, followed by 125 mg daily) between December 1, 2022, and January 31, 2023. Nasal swabs were collected on days 0, 3, 6, and 9 for RT-qPCR to assess viral load. Variants were identified by Sanger sequencing, and outcomes were compared to historical controls. Patients were followed for 60 days to monitor for post-acute sequelae of COVID-19 (PASC). Results Symptoms such as mild fever and sore throat improved rapidly after one day of ensitrelvir treatment, with 66 % of patients recovering within six days. All individuals were infected with the BA.5 Omicron variant. Viral loads, as measured by Ct values, increased significantly from 21.82 at symptom onset to 37.65 b y day 6, with SARS-CoV-2 RNA undetectable in most patients by day 9. Those treated within 48 h of symptom onset showed the viral load reduction. Compared to historical controls, where symptom resolution took 8.5 days, ensitrelvir shortened recovery time to as little as 1.4 days for over 66 % of patients. Conclusion Ensitrelvir treatment resulted in rapid symptom relief and significant viral load reduction, with no adverse events, viral rebound, or PASC symptoms, demonstrating its potential efficacy and safety. Larger studies are needed for further confirmation.
Collapse
Affiliation(s)
- Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Infectious Diseases, Faculty of Medicine Yamagata University, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
| | - Yu Suzuki
- Department of Clinical Laboratory, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Daisuke Akaneya
- Department of Clinical Laboratory, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Junko Igarashi
- Department of Clinical Laboratory, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Mayu Suto
- Department of Clinical Laboratory, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Kazunori Moriya
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Daisuke Ishizawa
- Department of Pharmacy, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Yoshikazu Okuma
- Department of Pharmacy, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland, Australia
- Department of Clinical Epidemiology, Faculty of Medicine, Thammasat University, Rangsit, Thailand, 10120
- Center of Excellence in Applied Epidemiology, Thammasat University, Rangsit, Thailand, 10120
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Stephen M. Stick
- Wal-yan Respiratory Centre, Telethon Kids Institute, University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Centre, Telethon Kids Institute, University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
- School of Population Health, Curtin University, Bentley, 6102, Western Australia, Australia
| |
Collapse
|
6
|
Syed YY. Ensitrelvir Fumaric Acid: First Approval. Drugs 2024; 84:721-728. [PMID: 38795314 DOI: 10.1007/s40265-024-02039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Ensitrelvir fumaric acid (Xocova®) is an oral SARS-CoV-2 main protease inhibitor developed by Shionogi for the treatment of SARS-CoV-2 infection. It is the first single-entity, nonpeptidic, noncovalent, small molecule antiviral of its kind. Following emergency regulatory approval in Japan in November 2022, ensitrelvir received standard approval in Japan on 5 March 2024 for the treatment of SARS-CoV-2 infection. This article summarizes the milestones in the development of ensitrelvir leading to this first standard approval for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
7
|
Yoshida R, Sasaki T, Ohsaki Y. Real-World Efficacy of Ensitrelvir in Hospitalized Patients With COVID-19 in Japan: A Retrospective Observational Study. Cureus 2024; 16:e61048. [PMID: 38915977 PMCID: PMC11195001 DOI: 10.7759/cureus.61048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND AND AIM The coronavirus disease 2019 (COVID-19) pandemic necessitates continuously evaluating antiviral treatments, especially for high-risk groups, including older individuals. This study aimed to compare the efficacy of three antiviral drugs, including remdesivir, molnupiravir, and ensitrelvir, in hospitalized patients as measured by our own institution's antigen test, focusing on outcomes, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen levels, hospitalization duration, and fever resolution. METHODS This retrospective observational study was conducted at Yoshida Hospital, Asahikawa City, Japan, enrolling 154 patients who received antiviral treatment upon COVID-19 diagnosis from July 1, 2022, to September 15, 2023. The diagnosis was confirmed by proprietary antigen tests or loop-mediated isothermal amplification assays. Patients who received treatment outside the hospital or with consistently negative antigen results were excluded. Drug administration was determined by attending physicians, considering oral administration challenges and renal dysfunction. The data were statistically analyzed using an unpaired two-tailed Student's t-test and one-way analysis of variance complemented by the Tukey post-hoc test for detailed group comparisons. RESULTS No significant differences were observed in the initial antigen levels among the treatment groups. By day 10, the ensitrelvir group showed lower antigen levels than the other groups, but not significantly. The ensitrelvir group had a higher antigen-negative conversion rate and a significantly shorter hospital stay than the molnupiravir group. However, no significant differences were noted in the fever resolution time among the groups. CONCLUSION This study suggests the potential benefits of ensitrelvir in reducing antigen levels and hospitalization duration. However, the overall efficacy of the antiviral agents for symptomatic relief appears similar. These findings underscore the need for further research to optimize COVID-19 management by considering personalized treatment approaches and long-term outcomes.
Collapse
Affiliation(s)
- Ryohei Yoshida
- Institute of Biomedical Research, Yoshida Hospital, Asahikawa, JPN
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, JPN
| | - Takaaki Sasaki
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Yoshinobu Ohsaki
- Institute of Biomedical Research, Yoshida Hospital, Asahikawa, JPN
| |
Collapse
|
8
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
9
|
Nobori H, Baba K, Kuroda T, Baba K, Matsumoto K, Yoshida S, Watari R, Tachibana Y, Kato T, Fukao K. Prophylactic effect of ensitrelvir in mice infected with SARS-CoV-2. Antiviral Res 2024; 224:105852. [PMID: 38428748 DOI: 10.1016/j.antiviral.2024.105852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological cause of coronavirus disease 2019 (COVID-19) and continues to be a major health concern worldwide. Strategies to protect individuals at high risk of COVID-19 are critical but are currently a largely unmet need. We evaluated the oral antiviral drug ensitrelvir, which specifically targets the SARS-CoV-2 3CL protease, for its efficacy as a pre-exposure prophylactic treatment. Aged BALB/c mice were subcutaneously treated with various doses of ensitrelvir 24 h prior to a lethal SARS-CoV-2 challenge infection. Mouse body weight changes, survival rates, and viral titers in the lungs were evaluated, and plasma concentrations of ensitrelvir were determined. A single subcutaneous administration of ensitrelvir at 64 mg/kg or greater 24 h prior to SARS-CoV-2 challenge infection significantly protected aged mice against lethality and inhibited body weight loss. Pharmacokinetic analysis of ensitrelvir in the aged mice suggested that plasma concentrations ≥2.99 μg/mL resulted in a significant prophylactic effect against SARS-CoV-2 infection. In the aged mouse prophylaxis model, SARS-CoV-2 titers were suppressed in the lungs of mice treated with ensitrelvir 24 h prior to challenge infection, suggesting that the prophylactic administration of ensitrelvir exerted its prophylactic effect by suppressing viral proliferation. These findings suggest that ensitrelvir is a candidate drug for pre-exposure prophylactic treatment of individuals at high risk of COVID-19.
Collapse
Affiliation(s)
- Haruaki Nobori
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| | - Keiko Baba
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| | - Takayuki Kuroda
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| | - Kaoru Baba
- Shionogi TechnoAdvance Research & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| | - Kazumi Matsumoto
- Shionogi TechnoAdvance Research & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| | - Shinpei Yoshida
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| | - Ryosuke Watari
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| | - Yuki Tachibana
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| | - Teruhisa Kato
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| | - Keita Fukao
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| |
Collapse
|
10
|
Tan B, Zhang X, Ansari A, Jadhav P, Tan H, Li K, Chopra A, Ford A, Chi X, Ruiz FX, Arnold E, Deng X, Wang J. Design of a SARS-CoV-2 papain-like protease inhibitor with antiviral efficacy in a mouse model. Science 2024; 383:1434-1440. [PMID: 38547259 DOI: 10.1126/science.adm9724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024]
Abstract
The emergence of SARS-CoV-2 variants and drug-resistant mutants calls for additional oral antivirals. The SARS-CoV-2 papain-like protease (PLpro) is a promising but challenging drug target. We designed and synthesized 85 noncovalent PLpro inhibitors that bind to a recently discovered ubiquitin binding site and the known BL2 groove pocket near the S4 subsite. Leads inhibited PLpro with the inhibitory constant Ki values from 13.2 to 88.2 nanomolar. The co-crystal structures of PLpro with eight leads revealed their interaction modes. The in vivo lead Jun12682 inhibited SARS-CoV-2 and its variants, including nirmatrelvir-resistant strains with EC50 from 0.44 to 2.02 micromolar. Oral treatment with Jun12682 improved survival and reduced lung viral loads and lesions in a SARS-CoV-2 infection mouse model, suggesting that PLpro inhibitors are promising oral SARS-CoV-2 antiviral candidates.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xiaoming Zhang
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ahmadullah Ansari
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ashima Chopra
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexandra Ford
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiang Chi
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xufang Deng
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
11
|
Watari R, Sawada H, Hashimoto H, Kasai Y, Oka R, Shimizu R, Matsuzaki T. Utility of Coproporphyrin-I Determination in First-in-Human Study for Early Evaluation of OATP1B Inhibitory Potential Based on Investigation of Ensitrelvir, an Oral SARS-CoV-2 3C-Like Protease Inhibitor. J Pharm Sci 2024; 113:798-805. [PMID: 37742997 DOI: 10.1016/j.xphs.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Coproporphyrin-I (CP-I) has been investigated as an endogenous biomarker of organic anion transporting polypeptide (OATP) 1B. Here, we determined the CP-I concentrations in a cocktail drug-drug interaction (DDI) study of ensitrelvir to evaluate the OATP1B inhibitory potential because ensitrelvir had increased plasma concentrations of rosuvastatin in this study, raising concerns about breast cancer resistance protein and OATP1B inhibition. Furthermore, CP-I concentrations were compared between active and placebo groups in a first-in-human (FIH) study of ensitrelvir to verify whether the OATP1B inhibitory potential could be estimated at an early drug development stage. In the cocktail DDI study, CP-I did not differ between with/without administration of ensitrelvir, indicating that ensitrelvir has no OATP1B inhibitory effect. Although there were some individual variabilities in CP-I concentrations among the treatment groups in the FIH study, the normalization of CP-I concentrations with pre-dose values minimized these variabilities, suggesting that this normalized method would be helpful for comparing the CP-I from different participants. Finally, we concluded that CP-I concentrations were not affected by ensitrelvir in the FIH study. These results suggested that the CP-I determination in an FIH study and its normalized method can be useful for an early evaluation of the OATP1B-mediated DDI potential in humans.
Collapse
Affiliation(s)
- Ryosuke Watari
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, Japan.
| | - Hiromi Sawada
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, Japan
| | - Hiroshi Hashimoto
- Department of ADMET and Analytical Chemistry II, Shionogi TechnoAdvance Research & Co., Ltd, Japan
| | - Yasuyuki Kasai
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, Japan
| | - Ryoko Oka
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, Japan
| | - Ryosuke Shimizu
- Clinical Pharmacology & Pharmacokinetics, Shionogi & Co., Ltd, Japan
| | - Takanobu Matsuzaki
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, Japan
| |
Collapse
|
12
|
Ferraro S, Convertino I, Cappello E, Valdiserra G, Bonaso M, Tuccori M. Lessons learnt from the preclinical discovery and development of ensitrelvir as a COVID-19 therapeutic option. Expert Opin Drug Discov 2024; 19:9-20. [PMID: 37830361 DOI: 10.1080/17460441.2023.2267001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION The COVID-19 pandemic stimulated the development of several therapeutic tools with several degrees of success. Ensitrelvir, a protease inhibitor that blocks the replication of SARS-CoV-2, can reduce the viral load and the severity of symptoms in infected patients and become available for emergency use in Japan. Clinical trials showed a good tolerability profile although the potential for interactions with substrates, inhibitors, and inducers of CYP3A must be considered. The occurrence of resistance is also a matter of investigation. AREAS COVERED In this article, the authors describe the development of ensitrelvir starting from the identification of the molecule to the pre-clinical and clinical trials up to the post-authorization phase. EXPERT OPINION Ensitrelvir was developed in a late phase of the pandemic when the availability of patients that can be candidate to enter the clinical trial was limited with consequences for the possibility of assessing certain outcomes and for the robustness of results. Although the evidence about the benefits of ensitrelvir in COVID-19 is not questionable, the problems of interactions with other drugs, emerging resistant variants, the availability of alternative therapeutic options, costs, and accessibility will concur to its probable limited clinical use in the future.
Collapse
Affiliation(s)
- Sara Ferraro
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
| | - Irma Convertino
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
| | - Emiliano Cappello
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
| | - Giulia Valdiserra
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
| | - Marco Bonaso
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
| | - Marco Tuccori
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
- Unit of Adverse Drug Reaction Monitoring, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Song L, Gao S, Ye B, Yang M, Cheng Y, Kang D, Yi F, Sun JP, Menéndez-Arias L, Neyts J, Liu X, Zhan P. Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 M pro inhibitors. Acta Pharm Sin B 2024; 14:87-109. [PMID: 38239241 PMCID: PMC10792984 DOI: 10.1016/j.apsb.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 01/22/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.
Collapse
Affiliation(s)
- Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mianling Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Autonomous University of Madrid), Madrid 28049, Spain
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven 3000, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
14
|
Tsuge Y, Ariwa Y, Shibata K. [Pharmacological characteristics and clinical study results of ensitrelvir fumaric acid (XOCOVA ® Tablets 125 mg)]. Nihon Yakurigaku Zasshi 2024; 159:264-281. [PMID: 38945910 DOI: 10.1254/fpj.24017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Ensitrelvir fumaric acid (Xocova® hereafter ensitrelvir) is a novel anti-SARS-CoV-2 drug for COVID-19. Hokkaido University and Shionogi & Co., Ltd. engaged in joint research targeting SARS-CoV-2 3C-like (3CL) protease at an early stage and started clinical trials in July 2021. In February 2022, an application was filed for manufacture and sales approval for the indication of "SARS-CoV-2 infection,". Ensitrelvir recieved the first emergency regulatory approval from the Ministry of Health, Labour and Welfare (MHLW) in Japan in November 2022, and has obtained standard approval in March 2024. This emergency approval was based on the confirmed safety in a Phase 2/3 study (T1221) conducted in Japan and other Asian countries (Korea and Vietnam) in patients with mild/moderate COVID-19 and the presumed efficacy in Phase 3 Part (SCORPIO-SR), and the standard approval is based on efficacy from the Phase 3 part. In the Phase 3 part, ensitrelvir administered orally 375/125 mg once daily for five days, in patients with irrespective of risk factors for severe complications and vaccination status, demonstrating a significant reduction vs placebo in the time to resolution of five typical Omicron-related symptoms (stuffy or runny nose, sore throat, cough, feeling hot or feverish, and low energy or tiredness), and also showed a significant reduction in viral RNA on day 4 relative to placebo (P < 0.001). In the Phase 2/3 study, there were no serious adverse events or deaths, indicating good tolerability and safety. We hope that ensitrelvir will contribute as a new treatment option for patients suffering from COVID-19 symptoms.
Collapse
Affiliation(s)
- Yuko Tsuge
- Clinical Development Department, Shionogi & Co., Ltd
| | | | | |
Collapse
|
15
|
Tan B, Zhang X, Ansari A, Jadhav P, Tan H, Li K, Chopra A, Ford A, Chi X, Ruiz FX, Arnold E, Deng X, Wang J. Design of SARS-CoV-2 papain-like protease inhibitor with antiviral efficacy in a mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569653. [PMID: 38076941 PMCID: PMC10705561 DOI: 10.1101/2023.12.01.569653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The emergence of SARS-CoV-2 variants and drug-resistant mutants calls for additional oral antivirals. The SARS-CoV-2 papain-like protease (PLpro) is a promising but challenging drug target. In this study, we designed and synthesized 85 noncovalent PLpro inhibitors that bind to the newly discovered Val70Ub site and the known BL2 groove pocket. Potent compounds inhibited PLpro with inhibitory constant Ki values from 13.2 to 88.2 nM. The co-crystal structures of PLpro with eight leads revealed their interaction modes. The in vivo lead Jun12682 inhibited SARS-CoV-2 and its variants, including nirmatrelvir-resistant strains with EC50 from 0.44 to 2.02 μM. Oral treatment with Jun12682 significantly improved survival and reduced lung viral loads and lesions in a SARS-CoV-2 infection mouse model, suggesting PLpro inhibitors are promising oral SARS-CoV-2 antiviral candidates.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xiaoming Zhang
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ahmadullah Ansari
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ashima Chopra
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Alexandra Ford
- Deprtment of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiang Chi
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xufang Deng
- Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
16
|
Fukao K, Nobori H, Kuroda T, Baba K, Matsumoto K, Tanaka Y, Tachibana Y, Kato T, Shishido T. Pharmacokinetic and Pharmacodynamic Analysis of the 3CL Protease Inhibitor Ensitrelvir in a SARS-CoV-2 Infection Mouse Model. Viruses 2023; 15:2052. [PMID: 37896829 PMCID: PMC10612060 DOI: 10.3390/v15102052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The small-molecule antiviral drug ensitrelvir targets the 3C-like protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study evaluated its inhibitory effect on viral replication in a delayed-treatment mouse model and investigated the relationship between pharmacokinetic (PK) parameters and pharmacodynamic (PD) effects. SARS-CoV-2 gamma-strain-infected BALB/c mice were orally treated with various doses of ensitrelvir starting 24 h post-infection. Effectiveness was determined 48 h after first administration based on lung viral titers. Ensitrelvir PK parameters were estimated from previously reported plasma concentration data and PK/PD analyses were performed. Ensitrelvir doses ≥ 16 mg/kg once daily, ≥8 mg/kg twice daily, or ≥8 mg/kg thrice daily for two days significantly reduced lung viral titers compared to that of the vehicle. PK/PD analyses revealed that mean AUC0-48h post-first administration, plasma concentration 48 h post-first administration (C48h), and total time above the target plasma concentration (TimeHigh) were PK parameters predictive of viral titer reduction. In conclusion, ensitrelvir dose-dependently reduced lung SARS-CoV-2 titers in mice, suggesting it inhibited viral replication. PK parameters C48h and TimeHigh were associated with sustained ensitrelvir plasma concentrations and correlated with the reduced viral titers. The findings suggest that maintaining ensitrelvir plasma concentration is effective for exerting antiviral activity against SARS-CoV-2.
Collapse
Affiliation(s)
- Keita Fukao
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka 561-0825, Osaka, Japan
| | - Haruaki Nobori
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka 561-0825, Osaka, Japan
| | - Takayuki Kuroda
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka 561-0825, Osaka, Japan
| | - Kaoru Baba
- Research Area for Drug Candidate Generation II, Shionogi TechnoAdvance Research Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka 561-0825, Osaka, Japan
| | - Kazumi Matsumoto
- Research Area for Drug Candidate Generation II, Shionogi TechnoAdvance Research Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka 561-0825, Osaka, Japan
| | - Yukari Tanaka
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka 561-0825, Osaka, Japan
| | - Yuki Tachibana
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka 561-0825, Osaka, Japan
| | - Teruhisa Kato
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka 561-0825, Osaka, Japan
| | - Takao Shishido
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka 561-0825, Osaka, Japan
| |
Collapse
|
17
|
Kiso M, Yamayoshi S, Iida S, Furusawa Y, Hirata Y, Uraki R, Imai M, Suzuki T, Kawaoka Y. In vitro and in vivo characterization of SARS-CoV-2 resistance to ensitrelvir. Nat Commun 2023; 14:4231. [PMID: 37454219 PMCID: PMC10349878 DOI: 10.1038/s41467-023-40018-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Ensitrelvir, an oral antiviral agent that targets a SARS-CoV-2 main protease (3CLpro or Nsp5), is clinically useful against SARS-CoV-2 including its omicron variants. Since most omicron subvariants have reduced sensitivity to most monoclonal antibody therapies, SARS-CoV-2 resistance to other antivirals including main protease inhibitors such as ensitrelvir is a major public health concern. Here, repeating passages of SARS-CoV-2 in the presence of ensitrelvir revealed that the M49L and E166A substitutions in Nsp5 are responsible for reduced sensitivity to ensitrelvir. Both substitutions reduced in vitro virus growth in the absence of ensitrelvir. The combination of the M49L and E166A substitutions allowed the virus to largely evade the suppressive effect of ensitrelvir in vitro. The virus possessing Nsp5-M49L showed similar pathogenicity to wild-type virus, whereas the virus possessing Nsp5-E166A or Nsp5-M49L/E166A slightly attenuated. Ensitrelvir treatment of hamsters infected with the virus possessing Nsp5-M49L/E166A was ineffective; however, nirmatrelvir or molnupiravir treatment was effective. Therefore, it is important to closely monitor the emergence of ensitrelvir-resistant SARS-CoV-2 variants to guide antiviral treatment selection.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryuta Uraki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, Japan.
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
18
|
Jeong JH, Choi JH, Kim BK, Min SC, Chokkakula S, Oh S, Park JH, Shim SM, Kim EG, Choi YK, Lee JY, Baek YH, Song MS. Evaluating Z-FA-FMK, a host cathepsin L protease inhibitor, as a potent and broad-spectrum antiviral therapy against SARS-CoV-2 and related coronaviruses. Antiviral Res 2023; 216:105669. [PMID: 37437781 DOI: 10.1016/j.antiviral.2023.105669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Even though the World Health Organization announced the end of the COVID-19 pandemic as a global public health emergency on May 5, 2023, SARS-CoV-2 continues to pose a significant health threat worldwide, resulting in substantial numbers of infections and fatalities. This study investigated the antiviral potential of Z-FA-FMK (FMK), a novel host cathepsin L protease inhibitor, against SARS-CoV-2 infection using both in vitro and in vivo models. In vitro assessments of FMK against a diverse set of SARS-CoV-2 strains, including the Wuhan-like strain and nine variants, demonstrated potent inhibition with EC50 values ranging from 0.55 to 2.41 μM, showcasing similar or superior efficacy compared to FDA-approved antivirals nirmatrelvir (NTV) and molnupiravir (MPV). In vivo experiments using orally administered FMK (25 mg/kg) in SARS-CoV-2-infected K18 hACE2 transgenic mice revealed improved survival rates of 60% and accelerated recovery compared to NTV and MPV treatments. Additionally, FMK displayed a longer half-life (17.26 ± 8.89 h) than NTV and MPV in the mouse model. Due to its host-targeting mechanism, FMK offers potential advantages such as reduced drug resistance and broad-spectrum antiviral activity against multiple coronaviruses. These findings indicate that FMK may serve as a promising candidate for further clinical evaluation in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jang-Hoon Choi
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Beom Kyu Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Seong Cheol Min
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Santosh Chokkakula
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sol Oh
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ji-Hyun Park
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang-Mu Shim
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Republic of Korea.
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
19
|
Su P, Wu Y, Xie F, Zheng Q, Chen L, Liu Z, Meng X, Zhou F, Zhang L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206095. [PMID: 37144543 PMCID: PMC10323633 DOI: 10.1002/advs.202206095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing, and has necessitated scientific efforts in disease diagnosis, treatment, and prevention. Interestingly, extracellular vesicles (EVs) have been crucial in these developments. EVs are a collection of various nanovesicles which are delimited by a lipid bilayer. They are enriched in proteins, nucleic acids, lipids, and metabolites, and naturally released from different cells. Their natural material transport properties, inherent long-term recycling ability, excellent biocompatibility, editable targeting, and inheritance of parental cell properties make EVs one of the most promising next-generation drug delivery nanocarriers and active biologics. During the COVID-19 pandemic, many efforts have been made to exploit the payload of natural EVs for the treatment of COVID-19. Furthermore, strategies that use engineered EVs to manufacture vaccines and neutralization traps have produced excellent efficacy in animal experiments and clinical trials. Here, the recent literature on the application of EVs in COVID-19 diagnosis, treatment, damage repair, and prevention is reviewed. And the therapeutic value, application strategies, safety, and biotoxicity in the production and clinical applications of EV agents for COVID-19 treatment, as well as inspiration for using EVs to block and eliminate novel viruses are discussed.
Collapse
Affiliation(s)
- Peng Su
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yuchen Wu
- Department of Clinical MedicineThe First School of MedicineWenzhou Medical UniversityWenzhouZhejiang325035P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qinghui Zheng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Long Chen
- Center for Translational MedicineThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangJiangsu215600China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Xuli Meng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
20
|
Bonilla H, Peluso MJ, Rodgers K, Aberg JA, Patterson TF, Tamburro R, Baizer L, Goldman JD, Rouphael N, Deitchman A, Fine J, Fontelo P, Kim AY, Shaw G, Stratford J, Ceger P, Costantine MM, Fisher L, O’Brien L, Maughan C, Quigley JG, Gabbay V, Mohandas S, Williams D, McComsey GA. Therapeutic trials for long COVID-19: A call to action from the interventions taskforce of the RECOVER initiative. Front Immunol 2023; 14:1129459. [PMID: 36969241 PMCID: PMC10034329 DOI: 10.3389/fimmu.2023.1129459] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Although most individuals recover from acute SARS-CoV-2 infection, a significant number continue to suffer from Post-Acute Sequelae of SARS-CoV-2 (PASC), including the unexplained symptoms that are frequently referred to as long COVID, which could last for weeks, months, or even years after the acute phase of illness. The National Institutes of Health is currently funding large multi-center research programs as part of its Researching COVID to Enhance Recover (RECOVER) initiative to understand why some individuals do not recover fully from COVID-19. Several ongoing pathobiology studies have provided clues to potential mechanisms contributing to this condition. These include persistence of SARS-CoV-2 antigen and/or genetic material, immune dysregulation, reactivation of other latent viral infections, microvascular dysfunction, and gut dysbiosis, among others. Although our understanding of the causes of long COVID remains incomplete, these early pathophysiologic studies suggest biological pathways that could be targeted in therapeutic trials that aim to ameliorate symptoms. Repurposed medicines and novel therapeutics deserve formal testing in clinical trial settings prior to adoption. While we endorse clinical trials, especially those that prioritize inclusion of the diverse populations most affected by COVID-19 and long COVID, we discourage off-label experimentation in uncontrolled and/or unsupervised settings. Here, we review ongoing, planned, and potential future therapeutic interventions for long COVID based on the current understanding of the pathobiological processes underlying this condition. We focus on clinical, pharmacological, and feasibility data, with the goal of informing future interventional research studies.
Collapse
Affiliation(s)
- Hector Bonilla
- Department of Medicine and Infectious Diseases, Stanford University, Palo Alto, CA, United States
| | - Michael J. Peluso
- Department of Medicine and Infectious Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Judith A. Aberg
- Department of Medicine, Infectious Diseases, Icahn School of Medicine at Mount Sinai, Chief, Division of Infectious Disease, New York, NY, United States
| | - Thomas F. Patterson
- Department of Medicine, Infectious Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Robert Tamburro
- Division of Intramural Research, National Institute of Health, Bethesda, MD, United States
| | - Lawrence Baizer
- National Heart Lung and Blood Institute, Division of Lung Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jason D. Goldman
- Department of Medicine, Organ Transplant and Liver Center, Swedish Medical Center, Seattle, WA, United States
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Nadine Rouphael
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Amelia Deitchman
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey Fine
- Department of Rehabilitation Medicine at New York University (NYU) Grossman School of Medicine, Physical Medicine and Rehabilitation Service, New York University (NYU), New York University Medical Center, New York, NY, United States
| | - Paul Fontelo
- Applied Clinical Informatics Branch, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Arthur Y. Kim
- Department of Medicine at Harvard Medical School, Division of Infectious Disease, Boston, MA, United States
| | - Gwendolyn Shaw
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Jeran Stratford
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Patricia Ceger
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Maged M. Costantine
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, United States
| | - Liza Fisher
- Long COVID Families, Houston, TX, United States
| | - Lisa O’Brien
- Utah Covid-19 Long Haulers, Salt Lake City, UT, United States
| | | | - John G. Quigley
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Vilma Gabbay
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Sindhu Mohandas
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - David Williams
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Grace A. McComsey
- Department of Pediatrics and Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Abstract
INTRODUCTION As the third year of the SARS-CoV-2 pandemic approaches, COVID-19 continues to cause substantial morbidity and mortality due to waning vaccine efficacy and the emergence of new, highly contagious subvariants and better therapies are urgently needed. AREAS COVERED Hospitalized patients who develop hypoxia due to SARS-CoV-2 infection are typically treated with an antiviral agent, remdesivir, as well as an immunomodulator, dexamethasone, but mortality rates for severe COVID-19 remain unacceptably high. Mounting evidence suggests a second immunomodulator added to the standard of care may benefit some hospitalized patients; however, the optimal treatment remains controversial. EXPERT OPINION On 2 June 2022, the United States National Institutes of Health reported results from a large, randomized placebo-controlled clinical trial known as ACTIV-1. The study found a mortality benefit and substantially improved clinical status for adults hospitalized with COVID-19 who were treated with infliximab, a chimeric monoclonal antibody that binds to and inhibits TNF-α, and is widely used to treat a variety of autoimmune conditions, including rheumatoid arthritis, Crohn's disease, and ulcerative colitis. This manuscript reviews what is known about infliximab as an immunomodulator for patients with COVID-19 and explores how this agent may be used in the future to address the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Matthew P Velez
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
22
|
Homma T, Nagata N, Hashimoto M, Iwata-Yoshikawa N, Seki NM, Shiwa-Sudo N, Ainai A, Dohi K, Nikaido E, Mukai A, Ukai Y, Nakagawa T, Shimo Y, Maeda H, Shirai S, Aoki M, Sonoyama T, Sato M, Fumoto M, Nagira M, Nakata F, Hashiguchi T, Suzuki T, Omoto S, Hasegawa H. Immune response and protective efficacy of the SARS-CoV-2 recombinant spike protein vaccine S-268019-b in mice. Sci Rep 2022; 12:20861. [PMID: 36460696 PMCID: PMC9718471 DOI: 10.1038/s41598-022-25418-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Vaccines that efficiently target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for coronavirus disease (COVID-19), are the best means for controlling viral spread. This study evaluated the efficacy of the COVID-19 vaccine S-268019-b, which comprises the recombinant full-length SARS-CoV-2 spike protein S-910823 (antigen) and A-910823 (adjuvant). In addition to eliciting both Th1-type and Th2-type cellular immune responses, two doses of S-910823 plus A-910823 induced anti-spike protein IgG antibodies and neutralizing antibodies against SARS-CoV-2. In a SARS-CoV-2 challenge test, S-910823 plus A-910823 mitigated SARS-CoV-2 infection-induced weight loss and death and inhibited viral replication in mouse lungs. S-910823 plus A-910823 promoted cytokine and chemokine at the injection site and immune cell accumulation in the draining lymph nodes. This led to the formation of germinal centers and the induction of memory B cells, antibody-secreting cells, and memory T cells. These findings provide fundamental property of S-268019-b, especially importance of A-910823 to elicit humoral and cellular immune responses.
Collapse
Affiliation(s)
- Tomoyuki Homma
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Masayuki Hashimoto
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Naomi M Seki
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Keiji Dohi
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Eiji Nikaido
- Laboratory for Bio-Modality Research, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Akiko Mukai
- UMN Pharma Inc., 7F, Tekko Building, 1-8-2, Marunouchi, Chiyoda-ku, Tokyo, 100-0005, Japan
| | - Yuuta Ukai
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Takayuki Nakagawa
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Yusuke Shimo
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Hiroki Maeda
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Seiki Shirai
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Miwa Aoki
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Takuhiro Sonoyama
- Medical Science Department, Shionogi & Co., Ltd., 8F, Nissei East Building, 3-3-16, Imabashi, Chuo-ku, Osaka, 541-0032, Japan
| | - Mamoru Sato
- UMN Pharma Inc., 7F, Tekko Building, 1-8-2, Marunouchi, Chiyoda-ku, Tokyo, 100-0005, Japan
| | - Masataka Fumoto
- Laboratory for Bio-Modality Research, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Morio Nagira
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Fumihisa Nakata
- UMN Pharma Inc., 7F, Tekko Building, 1-8-2, Marunouchi, Chiyoda-ku, Tokyo, 100-0005, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Virology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shinya Omoto
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan.
| | - Hideki Hasegawa
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan.
| |
Collapse
|